1. You are given the following:

(a) \(\delta(t) = \frac{2t^3 + 8t}{t^4 + 8t^2 + 16}, \quad 0 \leq t \leq 1, \)

(b) \(i = \) equivalent annual effective rate over the first year, given \(\delta(t) \) in (a),

(c) Fund X accumulates with simple interest at rate \(i \).

(d) Fund Y accumulates with force of interest \(\delta(t) \),

(e) An amount of 1 is deposited in each of Fund X and Fund Y at time \(t = 0 \).

At what time \(t \) is (Fund X - Fund Y) a maximum?

2. An amount \(X \) is deposited into an account that pays 8\% simple interest. At the same time \(X/2 \) is deposited into an account that accumulates at a constant force of interest \(\delta \). The total interest earned in each account after 10 years is the same. Find \(\delta \).

3. Fund X starts with 1,000 and accumulates with a force of interest \(\delta(t) = 1/(15-t) \) for \(0 \leq t < 15 \). Fund Y starts with 1,000 and accumulates with an interest rate of 8\% per annum compounded semiannually for the first three years and an effective rate of \(i \) per annum thereafter. Fund X equals Fund Y at the end of four years. Calculate \(i \).

4. An investment of 1 will double in 27.72 years at force of interest \(\delta \). An investment of 1 will increase to 7.04 in \(n \) years at a nominal rate of interest equal to \(\delta \) and convertible once every 2 years. Calculate \(n \).

5. Elsie makes deposits into an account of 100 today and 200 twelve years later. For the first twelve years interest is credited at an annual nominal rate of 6\% convertible quarterly. For the next 8 years the account earns at a force of interest of \(\delta \). At the end of 20 years the accumulated amount is 802. Find \(\delta \).