Chapter 5

Ruin Theory
Learning Objectives

1. Surplus function, premium rate and loss process
2. Probability of ultimate ruin
3. Probability of ruin before a finite time
4. Adjustment coefficient and Lundberg’s inequality
5. Poisson process and continuous-time ruin theory
5.1 Discrete-Time Surplus and Ruin

- An insurance company establishes its business with a start-up capital of u at time 0, called the **initial surplus**.

- It receives premiums of one unit per period at the end of each period. Loss claim of amount X_i is paid out at the end of period i for $i = 1, 2, \cdots$.

- X_i are independently and identically distributed as the loss random variable X.

- The **surplus** at time n with initial capital u, denoted by $U(n; u)$, is given by
\[U(n; u) = u + n - \sum_{i=1}^{n} X_i, \quad \text{for } n = 1, 2, \cdots. \] (5.1)

- The numeraire of the above equation is the amount of premium per period, or the premium rate. All other variables are measured as multiples of the premium rate.

- Thus, the initial surplus \(u \) may take values of 0, 1, \(\cdots \), times the premium rate. Likewise, \(X_i \) may take values of \(j \) times the premium rate with \(pf f_X(j) \) for \(j = 0, 1, \cdots \).

- We denote the mean of \(X \) by \(\mu_X \) and its variance by \(\sigma_X^2 \).

- We assume \(X \) is of finite support, although in notation we allow \(j \) to run to infinity.
• If we denote the premium loading by θ, then we have

$$1 = (1 + \theta)\mu_X,$$

(5.2)

which implies

$$\mu_X = \frac{1}{1 + \theta}.$$

(5.3)

We shall assume positive loading so that $\mu_X < 1$.

• The business is said to be in ruin if the surplus function $U(n; u)$ falls to or below zero sometime after the business started, i.e., at a point $n \geq 1$.

Definition 5.1: Ruin occurs at time n if $U(n; u) \leq 0$ for the first time at n, for $n \geq 1$.
Definition 5.2: The time-of-ruin random variable $T(u)$ is defined as

$$T(u) = \min \{n \geq 1 : U(n; u) \leq 0\}. \quad (5.4)$$

Definition 5.3: Given an initial surplus u, the probability of ultimate ruin, denoted by $\psi(u)$, is

$$\psi(u) = \Pr(T(u) < \infty). \quad (5.5)$$

Definition 5.4: Given an initial surplus u, the probability of ruin by time t, denoted by $\psi(t; u)$, is

$$\psi(t; u) = \Pr(T(u) \leq t), \quad \text{for } t = 1, 2, \cdots. \quad (5.6)$$
5.2 Discrete-Time Ruin Theory

5.2.1 Ultimate Ruin in Discrete Time

• We now derive recursive formulas for $\psi(u)$.

• First, for $u = 0$, we have

$$\psi(0) = f_X(0)\psi(1) + S_X(0). \quad (5.7)$$

• Similarly, for $u = 1$, we have

$$\psi(1) = f_X(0)\psi(2) + f_X(1)\psi(1) + S_X(1). \quad (5.8)$$

• The above equations can be generalized to larger values of u as
follows
\[\psi(u) = f_X(0)\psi(u+1) + \sum_{j=1}^{u} f_X(j)\psi(u+1-j) + S_X(u), \quad \text{for } u \geq 1. \]

(5.9)

• Re-arranging equation (5.9), we obtain the following recursive formula for the probability of ultimate ruin

\[\psi(u+1) = \frac{1}{f_X(0)} \left[\psi(u) - \sum_{j=1}^{u} f_X(j)\psi(u+1-j) - S_X(u) \right], \quad \text{for } u \geq 1. \]

(5.10)

• To apply the above equation we need the starting value \(\psi(0) \), which is given by the following theorem.

Theorem 5.1: For the discrete-time surplus model, \(\psi(0) = \mu_X \).
Proof: See NAM.

Example 5.1: The claim variable X has the following distribution: $f_X(0) = 0.5$, $f_X(1) = f_X(2) = 0.2$ and $f_X(3) = 0.1$. Calculate the probability of ultimate ruin $\psi(u)$ for $u \geq 0$.

Solution: The survival function of X is $S_X(0) = 0.2 + 0.2 + 0.1 = 0.5$, $S_X(1) = 0.2 + 0.1 = 0.3$, $S_X(2) = 0.1$ and $S_X(u) = 0$ for $u \geq 3$. The mean of X is

$$\mu_X = (0)(0.5) + (1)(0.2) + (2)(0.2) + (3)(0.1) = 0.9,$$

which can also be calculated as

$$\mu_X = \sum_{u=0}^{\infty} S_X(u) = 0.5 + 0.3 + 0.1 = 0.9.$$

Thus, from Theorem 5.1 $\psi(0) = 0.9$, and from equation (5.7), $\psi(1)$ is given
by
\[\psi(1) = \frac{\psi(0) - S_X(0)}{f_X(0)} = \frac{0.9 - 0.5}{0.5} = 0.8. \]

From equation (5.8), we have
\[\psi(2) = \frac{\psi(1) - f_X(1)\psi(1) - S_X(1)}{f_X(0)} = \frac{0.8 - (0.2)(0.8) - 0.3}{0.5} = 0.68, \]

and applying equation (5.10) for \(u = 3 \), we have
\[\psi(3) = \frac{\psi(2) - f_X(1)\psi(2) - f_X(2)\psi(1) - S_X(2)}{f_X(0)} = 0.568. \]

As \(S_X(u) = 0 \) for \(u \geq 3 \), using equation (5.10) we have, for \(u \geq 4 \),
\[\psi(u) = \frac{\psi(u) - f_X(1)\psi(u) - f_X(2)\psi(u - 1) - f_X(3)\psi(u - 2)}{f_X(0)}. \]
Initial surplus u

Prob of ultimate ruin $\psi(u)$
5.2.2 Finite-Time Ruin in Discrete Time

- We now consider the probability of ruin at or before a finite time point t given an initial surplus u.

- First we consider $t = 1$ given initial surplus u.

- As defined in equation (5.6), $\psi(t; u) = \Pr(T(u) \leq t)$. If $u = 0$, the ruin event occurs at time $t = 1$ when $X_1 \geq 1$. Thus,

 $$\psi(1; 0) = 1 - f_X(0) = S_X(0). \quad (5.20)$$

- Likewise, for $u > 0$, we have

 $$\psi(1; u) = \Pr(X_1 > u) = S_X(u). \quad (5.21)$$

- We now consider $\psi(t; u)$ for $t \geq 2$ and $u \geq 0$.

• The event of ruin occurring at or before time $t \geq 2$ may be due to (a) ruin at time 1, or (b) loss of j at time 1 for $j = 0, 1, \cdots, u$, followed by ruin occurring within the next $t - 1$ periods.

• When there is a loss of j at time 1, the surplus becomes $u + 1 - j$, so that the probability of ruin within the next $t - 1$ periods is $\psi(t - 1; u + 1 - j)$.

• Thus, we conclude that

$$
\psi(t; u) = \psi(1; u) + \sum_{j=0}^{u} f_X(j) \psi(t - 1; u + 1 - j). \tag{5.22}
$$

Hence, $\psi(t; u)$ can be computed as follows.

1. Construct a table with time t running down the rows for $t = 1, 2, \cdots$, and u running across the columns for $u = 0, 1, \cdots$.

12
2. Initialize the first row of the table for \(t = 1 \) with \(\psi(1; u) = S_X(u) \). Note that if \(M \) is the maximum loss in each period, then \(\psi(1; u) = 0 \) for \(u \geq M \).

3. Increase the value of \(t \) by 1 and calculate \(\psi(t; u) \) for \(u = 0, 1, \cdots \), using equation (5.22). Note that the computation requires the corresponding entry in the first row of the table, i.e., \(\psi(1; u) \), as well as some entries in the \((t - 1)\)th row. In particular, the \(u + 1 \) entries \(\psi(t - 1; 1), \cdots, \psi(t - 1; u + 1) \) in the \((t - 1)\)th row are required.

4. Re-do Step 3 until the desired time point.

Example 5.3: As in Example 5.1, the claim variable \(X \) has the following distribution: \(f_X(0) = 0.5, f_X(1) = f_X(2) = 0.2 \) and \(f_X(3) = 0.1 \). Calculate the probability of ruin at or before a finite time \(t \) given initial surplus \(u \), \(\psi(t; u) \), for \(u \geq 0 \).
Solution: The results are summarized in Table 5.1 for \(t = 1, 2 \) and 3, and \(u = 0, 1, \cdots, 6 \).

Table 5.1: Results of Example 5.3

<table>
<thead>
<tr>
<th>Time (t)</th>
<th>Initial surplus (u)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.500</td>
</tr>
<tr>
<td>2</td>
<td>0.650</td>
</tr>
<tr>
<td>3</td>
<td>0.705</td>
</tr>
</tbody>
</table>

The first row of the table is \(S_X(u) \). Note that \(\psi(1; u) = 0 \) for \(u \geq 3 \), as the maximum loss in each period is 3. For the second row, the details of the computation is as follows. First, \(\psi(2; 0) \) is computed as

\[
\psi(2; 0) = \psi(1; 0) + f_X(0)\psi(1; 1) = 0.5 + (0.5)(0.3) = 0.65.
\]

Similarly,

\[
\psi(2; 1) = \psi(1; 1) + f_X(0)\psi(1; 2) + f_X(1)\psi(1; 1) = 0.3 + (0.5)(0.1) + (0.2)(0.3) = 0.41,
\]
and

\[\psi(2; 2) = \psi(1; 2) + f_X(0)\psi(1; 3) + f_X(1)\psi(1; 2) + f_X(2)\psi(1; 1) = 0.18. \]

We use \(\psi(3; 3) \) to illustrate the computation of the third row as follows

\[
\begin{align*}
\psi(3; 3) &= \psi(1; 3) + f_X(0)\psi(2; 4) + f_X(1)\psi(2; 3) + f_X(2)\psi(2; 2) + f_X(3)\psi(2; 1) \\
&= 0 + (0.5)(0.01) + (0.2)(0.05) + (0.2)(0.18) + (0.1)(0.41) \\
&= 0.092.
\end{align*}
\]
Time t

Prob of ruin at or before time t

- Initial surplus $u = 0$
- Initial surplus $u = 5$
- Initial surplus $u = 10$
5.2.3 Lundberg’s inequality in Discrete Time

Definition 5.5: Suppose X is the loss random variable. The adjustment coefficient, denoted by r^*, is the value of r that satisfies the following equation

\[
E[\exp \{ r(X - 1) \}] = 1.
\]

(5.23)

Example 5.4: Assume the loss random variable X follows the distribution given in Examples 5.1 and 5.3. Calculate the adjustment coefficient r^*.

Solution: Equation (5.23) is set up as follows

\[
0.5e^{-r} + 0.2 + 0.2e^{r} + 0.1e^{2r} = 1,
\]
which is equivalent to

\[0.1w^3 + 0.2w^2 - 0.8w + 0.5 = 0, \]

for \(w = e^r \). We solve the above equation numerically to obtain \(w = 1.1901 \), so that \(r^* = \log(1.1901) = 0.1740 \).

Theorem 5.2 (Lundberg’s Theorem): For the discrete-time surplus function, the probability of ultimate ruin satisfies the following inequality

\[\psi(u) \leq \exp(-r^*u), \quad (5.28) \]

where \(r^* \) is the adjustment coefficient.

Proof: By induction, see NAM.

Example 5.5: Assume the loss random variable \(X \) follows the distribution given in Examples 5.1 and 5.4. Calculate the Lundberg upper bound for the probability of ultimate ruin for \(u = 0, 1, 2 \) and 3.
Solution: From Example 5.4, the adjustment coefficient is \(r^* = 0.1740 \). The Lundberg upper bound for \(u = 0 \) is 1, and for \(u = 1, 2 \) and 3, we have \(e^{-0.174} = 0.8403 \), \(e^{-(2)(0.174)} = 0.7061 \) and \(e^{-(3)(0.174)} = 0.5933 \), respectively. These figures may be compared against the exact values computed in Example 5.1, namely, 0.8, 0.68 and 0.568, respectively.
5.3 Continuous-Time Surplus Function

• In a continuous-time model the insurance company receives premiums continuously, while claim losses may occur at any time.

• We assume that the initial surplus of the insurance company is u and the amount of premium received per unit time is c.

• We denote the number of claims (described as the number of occurrences of events) in the interval $(0, t]$ by $N(t)$, with claim amounts $X_1, \cdots, X_{N(t)}$, which are assumed to be independently and identically distributed as X.

• We denote the aggregate losses up to (and including) time t by $S(t)$,
which is given by

\[S(t) = \sum_{i=1}^{N(t)} X_i, \]

(5.39)

with the convention that if \(N(t) = 0 \), \(S(t) = 0 \).

- Thus, the surplus at time \(t \), denoted by \(U(t; u) \), is defined as

\[U(t; u) = u + ct - S(t). \]

(5.40)

- Figure 5.4 illustrates an example of a realization of the surplus function \(U(t; u) \).

- To analyze the behavior of \(U(t; u) \) we make some assumptions about the claim process \(S(t) \).

- In particular, we assume that the number of occurrences of (claim) events up to (and including) time \(t \), \(N(t) \), follows a **Poisson process**.
ruin occurred
Definition 5.6: $N(t)$ is a Poisson process with parameter λ, which is the rate of occurrences of events per unit time, if (a) in any interval $(t_1, t_2]$, the number of occurrences of events, i.e., $N(t_2) - N(t_1)$, has a Poisson distribution with mean $\lambda(t_2 - t_1)$, and (b) over any non-overlapping intervals, the numbers of occurrences of events are independently distributed.

- For a fixed t, $N(t)$ is distributed as a Poisson variable with parameter λt, i.e., $N(t) \sim \mathcal{PN}(\lambda t)$, and $S(t)$ follows a compound Poisson distribution.

- As a function of time t, $S(t)$ is a compound Poisson process and the corresponding surplus process $U(t; u)$ is a compound Poisson surplus process. We assume that the claim random variable X has a mgf $M_X(r)$ for $r \in [0, \gamma)$.

5.4 Continuous-Time Ruin Theory

5.4.1 Lundberg’s Inequality in Continuous Time

- We first define the adjustment coefficient in continuous time. Analogous to the discrete-time case, in which the adjustment coefficient is the solution of

\[
1 + (1 + \theta) r \mu_X = M_X(r).
\] \hspace{1cm} (5.47)

Theorem 5.3: If the surplus function follows a compound Poisson process defined in equation (5.40), the probability of ultimate ruin given initial surplus \(u \), \(\psi(u) \), satisfies the inequality

\[
\psi(u) \leq \exp(-r^* u),
\] \hspace{1cm} (5.48)
where \(r^* \) is the adjustment coefficient satisfying equation (5.47).

Example 5.6: Let \(U(t; u) \) be a compound Poisson surplus function with \(X \sim \mathcal{G}(3, 0.5) \). Compute the adjustment coefficient and its approximate value using equation (5.52), for \(\theta = 0.1 \) and 0.2. Calculate the upper bounds for the probability of ultimate ruin for \(u = 5 \) and \(u = 10 \).

Solution: The mgf of \(X \) is, from equation (2.32),

\[
M_X(r) = \frac{1}{(1 - \beta r)^\alpha} = \frac{1}{(1 - 0.5r)^3},
\]

and its mean and variance are, respectively, \(\mu_X = \alpha \beta = 1.5 \) and \(\sigma^2_X = \alpha \beta^2 = 0.75 \). From equation (5.47), the adjustment coefficient is the solution of \(r \) in the equation

\[
\frac{1}{(1 - 0.5r)^3} = 1 + (1 + \theta)(1.5)r,
\]
from which we solve numerically to obtain \(r^* = 0.0924 \) when \(\theta = 0.1 \). The upper bounds for the probability of ultimate ruin are

\[
\exp(-r^* u) = \begin{cases}
0.6300, & \text{for } u = 5, \\
0.3969, & \text{for } u = 10.
\end{cases}
\]

When the loading is increased to 0.2, \(r^* = 0.1718 \), so that the upper bounds for the probability of ruin are

\[
\exp(-r^* u) = \begin{cases}
0.4236, & \text{for } u = 5, \\
0.1794, & \text{for } u = 10.
\end{cases}
\]

To compute the approximate values of \(r^* \), we use equation (5.52) to obtain, for \(\theta = 0.1 \),

\[
r^* \simeq \frac{(2)(0.1)(1.5)}{0.75 + (1.1)^2(1.5)^2} = 0.0864,
\]

and, for \(\theta = 0.2 \),

\[
r^* \simeq \frac{(2)(0.2)(1.5)}{0.75 + (1.2)^2(1.5)^2} = 0.1504.
\]
Based on these approximate values, the upper bounds for the probability of ultimate ruin are, for $\theta = 0.1$,

$$\exp(-r^* u) = \begin{cases}
0.6492, & \text{for } u = 5, \\
0.4215, & \text{for } u = 10.
\end{cases}$$

and, for $\theta = 0.2$,

$$\exp(-r^* u) = \begin{cases}
0.4714, & \text{for } u = 5, \\
0.2222, & \text{for } u = 10.
\end{cases}$$

Thus, we can see that the adjustment coefficient increases with the premium loading θ. Also, the upper bound for the probability of ultimate ruin decreases with θ and u. We also observe that the approximation of r^* works reasonably well.