

TwitterRank: Finding Topicsensitive Influential Twitterers

Jianshu Weng, Ee-Peng Lim, Jing Jiang Singapore Management University Qi He Pennsylvania State University

WSDM 2010 Feb 5, 2010

- Introduction
- Dataset
- Topic Modeling and Homophily among Twitterers
- TwitterRank
- Experiments and Results
- Conclusions and Future Work

Introduction

- Given a set of twitterers, find the influential ones
 - for different topics
- Why the problem?
 - Identify opinion leaders, experts
 - Viral marketing, advertisement
- Challenges:
 - The relationship among twitterers seems to be nonserious
 - Topics unknown
 - Evaluation without ground truth

- Introduction
- Dataset
- Topic Modeling and Homophily among Twitterers
- TwitterRank
- Experiments and Results
- Conclusions and Future Work

Data preparation

- Crawled S = a set of Singapore-based twitterers from twitterholic.com with highest number of followers.
- For each $s \in \mathcal{S}$, crawled its followers and friends \mathcal{S} .
- $\mathcal{S}' = \mathcal{S} \cup \overline{\mathcal{S}}$ and $\mathcal{S}^* = \{s | s \in \mathcal{S}', and s is from Singapore\}$
- For each $s \in S^*$, get its published tweets. Denote the set of all tweets as T.

$ \mathcal{S} $	996
$ \mathcal{S}^* $	6748(4050 with more than 10 tweets)
$ \mathcal{T} $	1,021,039
# following relationships	49,872
Min/Max/Avg #tweets/twitterer	1/3200/179.57

Reciprocity in the Following Relationships

- Friend count = # twitterers being followed
- Follower count = # twitterers following
- Correlation between friends count and follower count.
- 72.4% of the users follow more than 80% of their followers.
- 80.5% of the users have 80% of their friends follow them back.

Possible Explanations

- Two possible explanations:
 - "Following" relationship is too casual
 - Homophily, implying a stronger notion.
- Does homophily really exist?
 - Are twitterers with "following" relationships more similar than those without according to the topics they are interested in?
 - Are twitterers with reciprocal "following" relationships more similar than those without according to the topics they are interested in?

- Introduction
- Dataset
- Topic Modeling and Homophily among Twitterers
- TwitterRank
- Experiments and Results
- Conclusions and Future Work

Topic Distillation

- Apply LDA to distill topics automatically.
- Find topics in the twitterer's content to represent her interests
 - Twitterer's content = aggregated tweets
- Pre-processing
 - Use only those words without non-English characters
 - Min word length= 3
 - Remove
 - @userid
 - URL
 - All-digit word
 - Stopwords
 - Apply analysis on twitterers with more than 10 tweets. (#twitterer=4050)

LDA

Results of Topic Distillation

- Three matrices:
 - DT, a $D \times T$ matrix, where D is the number of twitterers and T is the number of topics. DT_{ij} contains the number of times a word in tweets of twitterer s_i has been assigned to topic t_j .
 - WT, $aW \times T$ matrix, where W is the number of unique words used in the tweets and T is the number of topics. WT_{ij} captures the number of times unique word W_i has been assigned to topic t_j
 - Z, a 1 × N vector, where N is the total number of words in the tweets. Z_i is the topic assignment for word w_i

Hypothesis testing (I)

- Are twitterers with "following" relationships more similar than those without according to the topics they are interested in?
- Topical difference= $\sqrt{2 * D_{JS}(i,j)}$
- μ_{follow} : Mean difference of the pairs with following relationships
- $\mu_{nofollow}$: Mean difference of the pairs without following relationships
- $H_0: \mu_{follow} = \mu_{nofollow}$ $H_1: \mu_{follow} < \mu_{nofollow}$
- The null hypothesis is rejected at $\alpha = 0.01$ for both twitterers with more than/less than 30 friends.

Hypothesis testing (II)

- Are twitterers with reciprocal "following" relationships more similar than those without according to the topics they are interested in?
- μ_{sym} : Mean difference of the pairs of users with reciprocal following relationships
- μ_{asym} : Mean difference of the pairs of users with only one-directional following relationships
- $H_0: \mu_{sym} = \mu_{asym}$ $H_1: \mu_{sym} < \mu_{asym}$
- The null hypothesis is rejected at $\alpha = 0.01$.

Implication

- Homophily phenomenon does exist.
 - Twitterers with "following" relationships are more similar than those without according to the topics they are interested in.
 - Twitterers with reciprocal "following" relationships are more similar than those without according to the topics they are interested in.
 - There are twitterers who are serious in following others.

- Introduction
- Dataset
- Topic Modeling and Homophily among Twitterers
- TwitterRank
- Experiments and Results
- Conclusions and Future Work

Topic-specific TwitterRank

- A topic-specific random walk model is applied to calculate each twitterer's influential score.
- The transition matrix for topic t, denoted as P_t . The transition probability of the random surfer from *follower* s_i to *friend* s_j :

$$P_t(i,j) = rac{|\mathcal{T}_j|}{\sum\limits_{a:\ s_i\ follows\ s_a} |\mathcal{T}_a|} * sim_t(i,j)$$
 $sim_t(i,j) = 1 - |DT'_{it} - DT'_{jt}|$

- This captures two notions:
 - The more ^S*i* publishes, the higher portion of tweets ^S*i* reads is from ^S*j* Generally, this leads to a higher influence on ^S*i*.
 - $s'_j s$ influence on s_i is also related to the topical similarity between the two as suggested by the *homophily* phenomenon.

Topic-specific TwitterRank (II)

- Topic-specific teleportation $-E_t = DT''_{\cdot t}$
- The influence scores of twitterers are calculated iteratively

- $\overrightarrow{TR_t} = \gamma P_t \times \overrightarrow{TR_t} + (1 - \gamma)E_t$

Aggregation of Topic-specific TwitterRank

- $\overrightarrow{TR} = \sum r_t \cdot \overrightarrow{TR_t}$
- Generral influence: $r'_t s$ can be set as the probabilities of different topics' presence
- Perceived general influence: r'_ts can also be set as the probabilities that a particular twitterer s_i is interested in different topics.

- Introduction
- Dataset
- Topic Modeling and Homophily among Twitterers
- TwitterRank
- Experiments and Results
- Conclusions and Future Work

Comparison with Other Algorithms

• Comparison of performance in a recommendation task. Set *L* is consider the ground truth.

1 randomly choose |L| existing "following" relationship formed among *twitterers* in \mathcal{S}_{u}^{*} ; 2 foreach $l \in L$ do let s_o and s_f be the follower and friend in в "following" relationship *l* respectively; randomly choose 10 *twitterers* that s_o does not 4 follow, denote this set as S_t ; remove l to generate a new network in which *twitter* 5 s_o does not follow s_f ; apply different algorithms to measure the influence of s_f and all the *twitterers* in \mathcal{S}_t in the new network, based on which s_o is recommended whether to "follow" s_f ; compare the quality of the recommendation by different algorithms; $\mathbf{8} \ \mathbf{end}$ Figure 8: Recommendation Task for Performance Evaluation and Comparison

The Recommendation Task

So A recommendation is considered "good" if s_f is ranked higher than all the twitterers in S_t

Criteria to generate the L Set

- Number of followers that sf has.
- Number of tweets that s_f published.
- Topical difference between s_f and s_o
- Whether reciprocal relationship exists among s_f and s_o

Comparison with Other Algorithms (III)

Major Observations (I)

- All performs better $\ln L_{dl}$ than in L_{dh} :
 - There are twitterers who "follow" because of the topical similarity between them and their friends. This supports the phenomenon of *homophily*.

• TR is outperformed in L_{fh}, L_{tl}, and L_{dh}

 InD performs the best in L_{fh}. This is probably because twitterers' "following" behaviors have already been biased toward those with more followers.

Major Observations (II)

- TR performs the worst in L_{tl}, because LDAbased topic distillation needs more contents to achieve reasonable accuracy
- TR outperforms all the other algorithms except InD in *L*_{dh}. There still exist some twitterers who do not "follow" based on topical similarity, although homophily is observed.

- Introduction
- Dataset
- Topic Modeling and Homophily among Twitterers
- TwitterRank
- Experiments and Results
- Conclusions and Future Work

Conclusions and Future Work

- Homophily does exist.
 - Not all users just randomly "follows".
- Future work:
 - To make the algorithm more robust to manipulation, e.g purposely publish large number of tweets
 - To classify different categories of twitterers by studying their "following" behaviors more closely
 - Incremental topic distillation/event detection

School of Information Systems

Thank you