
Formal Specification and Verification of an Extended Security Policy Model
for Database Systems1

Zhu Hong, Zhu Yi, Fu Ge
Database and Multimedia Technology Research Institute

Huazhong University of Science and Technology, Wuhan, Hubei,430074, P.R China
zhuhong@public.wh.hb.cn

1 The work presented in this paper is supported by 863 hi-tech research and development program of China, granted number: 2006AA01Z430.

Abstract

In order to develop highly secure database systems
to meet the requirements for class B2, an extended
formal security policy model based on the BLP model
is presented in this paper. A method for verifying
security model for database systems is proposed.
According to this method, the development of a formal
specification and verification to ensure the security of
the extended model is introduced. During the process
of the verification, a number of mistakes have been
identified and corrections have been made. Both the
specification and verification are developed in Coq
Proof Assistant. Our formal security model was
improved and has been verified secure. This work
demonstrates that our verification method is effective
and sufficient and illustrates the necessity for formal
verification of the extended model by using tools.

1. Introduction

In many database applications (such as e-bussiness,
military and governmental information systems),
sensitive information needs to be processed. Database
management systems are required to provide high
levels of security.

Before a high secure database system is designed to
meet the security requirements for class B2 [5], a
formal security policy model is normally needed. The
Bell & LaPadula model (BLP model) [1][2] is the
security model recommended by the TCSEC [5]. It can
be used to design a secure system to meet the criteria
of Class A1. However when we apply the BLP model
to modern databases, a problem arises: in the BLP
model objects form a tree, but a tree would not be able
to describe all the relationships among objects because

of the complex relationships among objects in database
systems. Therefore, objects and their structures in the
BLP model need to be extended. Because of the
extension, the descriptions of the security properties as
well as state transition rules in the BLP model need to
be modified or extended. In this study, we extended
the BLP model to support complex relationships
between objects in modern databases.

Once the BLP model is extended, the security of the
extended model should be verified. In this paper, we
mainly introduce our effort on specifying and verifying
the security of our extended model by using proof
assistant tools.

The contributions of this paper are in the following:
1) A formal security model for highly secure

database systems is presented. The structures of
objects in the security model are extended into two
categories: tree and graph. Meanwhile, the security
properties and state transition rules are also extended.

2) A method for verifying formal security model for
database systems is developed by using proof assistant
tools. During the process of the verification of the
security model, a number of mistakes have been
identified by our method and corrections have been
made. Our formal security model was improved and
has been verified secure. Both the specification and
verification of the formal security model were
developed in Coq Proof Assistant [15]. This
experience illustrates the necessity of verification of
the model by using tools.

The rest of this paper is organized as follows. First,
section 2 is the related work. The extended model is
illustrated in section 3. Our method for verifying the
extended security model is proposed in section 4. The
specification and verification of our security model in
Coq is presented in section 5. We analyse the results of

our work in section 6. Finally, we summarize the
conclusion and future work in section 7.

2. Related Work

In this section, we will illustrate the related work for
the security models for different secure systems as well
as their verification.

The BLP model is widely applied in secure systems.
It describes the well-known “no read up” and “no write
down” rules (or simple security and “*”-properties) for
preserving mandatory security. “No read up” indicates
that no subject is allowed to read from an object with a
classification higher than the subject’s clearance. “No
write down” requires that information at a
classification cannot be written to an object at a lower
classification. The BLP model also adds discretionary
access controls which control the modes of access by
subjects to objects.

Many researchers have formally analyzed the
security of the BLP model and its extended models for
operating systems.

Liping Li and Sihan Qin proposed a formal method
to specify models by using Z. They took BLP model as
an example in [11] and illustrated that the proving by
using tools was more rigorous than proving manually.
In addition, the BLP model was extended and formally
analyzed when the extended model was applied in
operation systems. Jianbo He analyzed an extended
BLP model and specified the model in Z language.
After they analyzed the model by using tools, they
made a conclusion that their extended model was not
secure in [7]. The paper illustrated the necessity of
formal verification of the extended models. Moreover,
verifying the security of a model by using tools is a
more convincible way.

C. Maximiliano proposed an extension of a UNIX
file system. They formalized their extension and
analyzed that the file system operations satisfied a set
of security properties by using the Coq Proof Assistant.
In their paper, a method for specifying the policy of a
system specified in Coq was presented in [13].

Other extended models based on the BLP model had
also been formally analyzed.

The formal security policy model for the NATO Air
Command and Control System was specified in Z
language in [3]. An approach for specifying the model
was presented in the paper, but their verification was
finished manually because of the limitation of Z
language.

Boniface Hicks has modeled the SELinux MLS
policy and specified the model in the Prolog language
in [8]. In addition, they developed an analyser which is

able to automatically find information flows for
SELinux in XSB Prolog. In addition, a method was
proposed to determine policy compliance in different
systems. According to the method, they proved the
accordance of the SELinux reference policy with the
simple security property and the *–property defined by
Bell and LaPadula model.

The BLP model has been extensively applied in
secure database systems and several security models
have been proposed for secure databases. The first
model was proposed by Hinkehchaefer [9]. It supports
the label of the objects at the granularity of attribute
level, and it relies on the underlying trusted operating
system for enforcement of both mandatory and
discretionary security.

The TRW model [10] was developed to support the
label of the objects at the granularity of tuple level. It
enforces both mandatory and discretionary security
within the database system, and it requires more
trusted code and duplication of some of the security
functionality of the operating system. Therefore the
overload of verification was heavy.

The SeaView Project specified a formal security
model to meet the security requirements for multilevel
secure databases [12]. In addition, a general
description of the database operations and the formal
verification of the SQL operations in EHDM are
presented in [16]. However, more objects, such as
stored procedures and triggers in modern database
systems, are not included in the SeaView model.
Moreover, because the labels of the objects are at the
granularity of element label (every element has a
security level), more storage space was needed and the
performance of the system would be decreased.

Wanjun Cheng extended the object hierarchy in a
secure model for a database system and verified the
transition rules manually [4], but objects such as stored
procedures and triggers are not mentioned in their
model.

3. Security Model

A security model is a set of states and rules which

describe the security policy precisely and
unambiguously. In this section we will briefly illustrate
our extended model.

3.1 The Preliminary of the Model

We describe the state of a database system as a five-
tuple v= (B, M, F, S, O). Every element of a state is
extended or modified based on the BLP model in the
following.

 Because the structures of the objects in the BLP
model would not be able to describe all the
relationships among objects in database systems, we
extended the objects and their structure in our model.

O is the set of all objects in database systems. We
extended the structures of objects and divided the types
of the objects into two categories: stored objects and
derived objects. Suppose SO denotes the set of stored
objects and O-SO denotes the set of derived objects in
the following discussion.

There are three types of stored objects which are
really stored in a database system. These objects
include tuples, tables and databases. There are also
three types of derived objects including views, stored
procedures and triggers.

There are two categories of structures for objects in
a database system: tree and graph. All the stored
objects form a tree. For example, the database is the
root, the tables are the children of the database, and
tuples in a table are the children of the table. Every
tuple or table has only one parent (the table or the
database). Empty table has no child. A derived object
is derived from stored objects or other derived objects.
The relationships between derived objects and deriving
objects form a graph. A derived object is a child of the
objects from which it is derived. The object who
derives an object is the parent of the derived object.
For example, the view va is derived from table ta and
tb, and view vb is derived from ta and va. Therefore,
va is the son of ta and tb, and va is the parent of vb and
ta. A derived object has at least one parent and may
have no child if no derived objects are derived from it.

S is the set of all subjects, which are active sessions
accessing objects in a database system under a state v.
In our model subjects in set S are all untrusted subjects.

A is a set of access mode. A={read(r), append(a),
write(w), control(c), execute(e)}.

B is an accessible set, consisting of triplets, (s, o, x).
Every element in set B denotes that subject s accesses
object o in mode x under a state v in the database
system.

M is an authorization set, consisting of triplets (s, o,
x). Every element in set M denotes subject s has
privilege to access object o in mode x.

F is a set of security level function, consisting of
four functions fs, fc, fol, foh. They returns the highest
security level of a subject, the current security level of
a subject, the lowest security level of an object, and the
highest security level of an object respectively.

For any s∈S, fs(s) ≥ fc(s), the highest security level
of s dominates its current security level.

After we have analyzed the performance and storage
cost in SeaView model which labels the objects at the
minimal granularity of element level, we label the

objects at the minimal label granularity of tuple level.
Namely, every tuple in our secure database system is
labeled a security level.

If o∈ (Tuple∪(O-SO)) then fol(o)=foh(o). Tuple
denotes the set of tuples. If the object o is a tuple or a
derived object, then the security levels of object o,
fol(o) and foh(o) are the same.

If o∈ (Table∪Database) then foh(o) ≥ fol(o). Table
denotes the set of tables. Database denotes the set of
databases. If the object o is a table or a database, the
security level of o is between ranges of security levels
[fol(o), foh(o)]. Such an object includes other objects
which have different security levels. When an object o
is created, fol(o) is the security level of the creator of o,
no matter what type of o is, and foh(o) is the highest
security level of system if o is a table or a database.

Assume that ρ is a state transition rule, ρ: RE×V-
>D×V. A database system has a set of state transition
rules, denoted by ω = {ρ1, ρ2, …, ρs}.

RE is the set of requests.
V is the set of the states of the system.
D = {yes, no}, is the set of response decision.
A database system Sys is abstracted as a state

machine and described as a triple Sys= (V, ω, D).
Because of the extension of the objects, the

descriptions of the integrity constraints, the security
properties as well as state transition rules all need to be
extended or modified.

3.2 The Security Properties

In our model the security properties are three
extended integrity constraints and security axioms.

3.2.1. Integrity Constraints. In the following, we will
first present the object-compatibility property. Object-
compatibility property is extended because the objects
are extended in our model.

object-compatibility property: A state v= (B, M, F, S,
O) satisfies the Object-Compatibility Property, if and
only if for the state v, an object o2 is the parent of the
object o1, and one of the conditions below should be
satisfied:

i) if o1 is a stored object, foh(o2)≥ foh(o1), and fol(o1)
≥ fol(o2);

ii) if o1 is a derived object, foh(o1)≥ fol(o2), because
foh(o1) = fol(o1).

When a subject accesses a table in a database system,
tuples are usually in the final results. When a subject s
accesses a stored object, if the current security level of
s could not dominate the lowest security level of the
object, s could not access any objects contained in the

object. Therefore, we have i) in above object-
compatibility property.

We also label a derived object whose security level
dominates the lowest security level of its parents.
Therefore, the derived objects could only be accessed
by subjects with higher security level. No information
(even the descriptive information of objects) in the
higher security level would be disclosed to a subject
with lower security level. With the property above, we
would prevent the covert channels by using data
dictionary in database systems.

entity-integrity property: A state v=(B, M, F, S, O)
satisfies the Entity-Integrity Property, if and only if in
the state v, for all tuples in any table, the primary key
and the security level of the tuple together identify the
tuple uniquely. The primary key should not be empty.

Assume only a primary key identifies a tuple
uniquely. When a subject s inserts a new tuple t1 at its
security level fc(s) into a table, if the primary key of t1
is the same as the primary key of t2 in the table and the
security level of t2 dominates fc(s), the insertion of t1
would not be allowed. Then the subject s would be
able to infer that there exists a tuple whose primary
key is the same as the primary key of t1. In this
situation, a covert channel would be exploited to
transfer sensitive information. To avoid the covert
channel, we permit the insertion of tuple t1 and the
security level of t1 is fc(s). The t1 and t2 in the same
table are different tuples with the same primary key,
but they are at different security levels. Then the covert
channel is eliminated.

reference-integrity property: State v=(B, M, F, S, O)
satisfies the Reference-Integrity Property, if and only if
for the state v, and there exist objects o1 and o2, the
condition below should be satisfied:

If o1 , o2 are tuples and the table which contains o1 is
referenced by the table which contains o2, then the
value of the primary key of o1 equals to the value of the
foreign key of o2 and fol(o1)=fol(o2.).

In the property above, we specified that the security
level of tuple o1 and o2 should be equal. Otherwise, if a
subject deletes the tuple o1 which referenced by a tuple
o2 in a higher security level, the delete operation would
be rejected. Therefore, the subject at lower security
level could infer that there is a tuple at higher security
level referencing o1. That would cause information
leakage and covert channels.

Although there may be several foreign keys in a
table, the notations of the property for several foreign
keys are similar. Therefore, we only denote one
foreign key without loss of generalization.

Entity-integrity property and reference-integrity
property above are modified based on the SeaView
Model. Integrity constraints are important in database

systems. They define a correct database state after an
operation is complete in database systems.

3.2.2. Security Axioms. The BLP model defines a
security state and security system by simple-security
property, star-property, and discretionary property. We
modified the Star-Property, and Discretionary Property
according to different types of objects. Our model
should conform to these properties.

simple-security property: the simple-security
property in our model is the same as the simple
security property in BLP model.

The simple-security property indicates that no
subject is allowed to read from an object with a
classification higher than the subject’s clearance.
Therefore, information flows from high security level
to low security level are controlled and no illegal
information flow would occur.

star-property: State v = (B, M, F, S, O) satisfies the
Star-Property, if and only if for the state v and any
subject s, one of the conditions below should be
satisfied.
i) when s accesses o in mode r, fc(s) ≥ fol(o);
ii) when s accesses o in mode a, foh(o)≥ fc(s) ≥ fol(o);
iii) when s accesses o in mode w, fc(s)=fol(o).
iv) when s accesses o in mode c or e, state v satisfies

the Star-Property.
We use star-property to control the updated-

involved access to objects in database systems.
discretionary property: State v=(B, M, F, S, O)

satisfies the Discretionary Property, if and only if for
the state v and any subject s accessing an object o in
mode x, either of the conditions below should be
satisfied:

i) if the object o is a tuple, s has the privilege of the
table which contains the tuple o;

ii) if the object o is not a tuple, s has the privilege to
access object o in mode x.

3.3 State transition rules

re1 = query;
If [oj∈O /\ (si, oj, r) ∈M /\ fc(si) ≥fol (oj)

/\ o'j ∈ InvolvedO(oj) /\ fc(si) ≥fol (o'j)]
Then ρ1(re1 =query, vi) =

 (yes, vj=(b (si, o'j, r)), M, f, H) ∪
Else ρ1(re1 =query, vi) = (no, vj)

Figure 1. The formal description of query rule

We defined nine state transition rules according to
nine important operations in databases, including:
query, insert, update, alter, execute, delete, drop, grant,
and revoke. We take the query as an typical example.

In the following query rule, only one object (table)
is concerned because the access to several objects is
actually the composition of several accesses. Therefore,
the access to one object is the basis and we only
analyze the query rule for one object in the following.

In Figure 1, InvolvedO(oj) denotes the set of tuples
involved in oj and o'j∈InvolvedO(oj) denotes o'j is one
of the tuples.

The query rule: Under state vi, a subject si can
query an object oj in a database system, when the
following conditions are satisfied:

i) oj exists in the database;
ii) si has the privilege to access oj in mode r;
iii) fc(si)≥ fol(oj).
If the response is “yes”, vi is changed into vj. For

any tuple o'j involved in oj, fc(si) ≥ fol (o'j), the (s, o'j, r)
should be added into the accessible set B in the state vi
to obtain a new B in vj . The other four elements of vj,
M, S, F, O are the same as the elements in vi and are
not changed by the query operation.

However if any condition in i), ii) and iii) above is
not satisfied, the decision would be “no” and the state
of the database system is still vi.

4. The Method for Verification

4.1 The Extended Security Theorems

Before we verify the extended model, we should
define the security invariants. The security invariants
should describe the security policy accurately and
could be preserved during the state transitions. If the
security invariants are not consistent with the security
policy, the system is not secure even if the invariants
could be preserved during the state transition. In our
extended model, the security policy is that no illegal
information flow between subjects with different
security levels. Namely, no information in high
security level would be transferred to the subjects with
low security level. Therefore, the security invariants
could partly be insured by the three security axioms in
our model.

The difference between database systems and other
systems is the requirements for data integrity. For
example, the ignorance of the entity integrity
constraint would cause covert channels. Therefore, in
order to forbid the illegal information flow in our
model, we should preserve the integrity constraints in
the database systems. In addition, during our proof
when we specify the security invariants, the security
invariants should be extended to include integrity
constraints in our model. Namely, the integrity
constraints should be preserved in every reachable

state in a database system. Otherwise, the operations
from a subject would not return the correct results and
the security would be violated. Therefore, when we
verify the security of a state in the system, we should
verify the integrity of the state first.

The extended security theorems for verification are
defined as follows. Theorem-1, Theorem-2 and
Theorem-5 are extended theorems, Theorem-3,
Theorem-4, inference-1 and Theorem-6 are modified
from BLP model.

Theorem-1:A state vi satisfies the integrity
constraints if and only if the state satisfies the Object-
Compatibility Property, the Entity-Integrity Property
and the Reference-Integrity Property.

Theorem- 2: A state vi is secure if and only if the
state satisfies the integrity constraints, the Simple-
Security property, the Star Property and the
Discretionary Property.

Theorem-3: A state vi is a reachable state if and
only if it is the initial state v0 or it is transferred from
the initial state v0 by a sequence of state transition rules
ρi1, ρi2,…, ρin .

Theorem-4: A state transition rule ρi∈ω is secure if
for any secure state vi, a state vi+1, which is changed
from vi by a request re under the state transition rule ρi,
is also secure.

Theorem-5: Suppose state vi+1 is changed from vi by
a request re, and ρi is secure,

i) If vi satisfies the integrity constraints, then vi+1
satisfies the integrity constraints,

ii) If vi satisfies the Simple-Security Property and
vi+1 satisfies the integrity constraints, then vi+1 satisfies
the Simple-Security Property,

iii) If vi satisfies the Star-Property and vi+1 satisfies
the integrity constraints, then vi+1 satisfies the Star
Property.

iv) If vi satisfies the Discretionary Property and vi+1
satisfies the integrity constraints, then vi+1 satisfies the
Discretionary Property.

Inference-1: A sequence of state transition rules is
secure if and only if every rule in the sequence is
secure.

Theorem-6: A system Sys is secure if and only if all
the reachable states in the system are secure.

4.2 The Verification Method

According to Theorem-6, in order to verify the
system is secure, we should verify that every state of
the system is secure. The first step is verifying that the
initial state is secure.

Different systems have different definitions of the
initiate state. In our model for secure database system,

we assume that there are only untrusted subjects in the
system. So both the set B and set S are empty in the
initiate state v0 = (B, M, F, S, O). Also there is no
object created by untrusted subjects in set O in v0.
Therefore, we should verify that the initiate state
satisfies the integrity constrains as well as the security
axioms first. Then we should prove that any state vi+1,
which is changed from a secure state vi by a state
transition rule ρi, is also secure. Therefore, the state
transition rule ρi is secure. From the steps above, we
can obtain that any reachable state is secure if it is
transferred from the initial state v0 by a sequence of
state transition rules ρi1, ρi2,…, ρin.

We have following steps when we verify that the
model is secure.

Step 1 Verify v0 is secure.
All the other states are transferred from v0 according

to a sequence of state transition rules. After verifying
that v0 is secure, we should verify all the other states v1,
which are transferred from v0, are also secure by any
state transition rule ρi.

Then we should prove that any state vi+1, which is
changed from a secure state vi by a state transition rule
ρi, is also secure. Therefore, the state transition rule ρi
is secure.

Step 2 Verify vi+1 satisfies the integrity constraints
according to Theorem-1;

Step 3 Verify vi+1 satisfies the Simple-Security
property, the Star Property and the Discretionary
Property;

Step 4 Verify vi+1 is secure according to Theorem-2;
Step 5 Verify any ρi is secure according to

Theorem-4
Step 6 Verify any sequence of the state rules is

secure according to Inference -1.
Step 7 Verify that any reachable state is secure if it

is transferred from the initial state v0 by a sequence of
state transition rules ρi1, ρi2,…, ρin.

Step 8 Verify the system is secure according to
Theorem-6.

We applied the steps above to verify our extended
model by using Coq in section 5. In addition, this
method is able to be applied in verifying other security
models for secure database systems.

5. Formal Specification and Verification

5.1 The Coq Proof Assistant

Coq Proof Assistant is a flexible theorem proving
tool. It allows interactively constructing formal proofs
and supports specification of static data, functions and
definitions which can be developed using the basic

specification language Gallina in Coq. Conveniently,
the reasoning is at the same platform with the
specification. What’s more, Coq provide various
tactics to prove the goals interactively. All above
strong points of Coq make us to use it to finish our
specification and verification work.

5.2 The Formal Specification of the Security
Model in Coq

We applied the method and the steps presented in
section 4 to verify our model in Coq. Before we
verified the model, we specify our model in the Gallina
language in Coq.

A formal specification in Gallina consists of a
sequence of declarations and definitions. There are
basically three kinds of specifications in Coq: logical
propositions, mathematical collections, and abstract
types. They are classified by the three basic sorts of the
system, called Prop, Set, and Type respectively. Every
valid expression e in Gallina is associated with a valid
expression, called type E. We write e:E for the
judgment that e is type E. Arrow in Coq has two
usages: i) function constructor ((A → B) means a
function expecting one arguments of type A in order to
get type B); ii) the arrow symbol can be used as well as
propositional connective in implication.

5.2.1. Definition of Elements’ Type. In Coq an
element with type U is defined by keyword Variable.
A set consisting of elements with type U is defined by
using Sets in Coq library (shown in Figure 2. line (1)).
Moreover, S, O, B, M in our model are all sets in
mathematics. In order to define such sets we should
first define the type of the element in these sets.

Figure 2. Definitions of elements’ type in Coq

When the elements of some sets is simple and
undetermined, like s in set S, the type of the element is
simply defined as Type (e.g. shown in line (1) and line
(2) in Figure 2). While the elements are easy to list, for
example the kinds of objects and the access mode, we
use inductive way. As shown in line (3) and (4) in
Figure 2, all the elements listed with its type
ObjectType_element are defined inductively. However
when the type of the elements is complex, such as the
state of the system, the security level (e.g. shown in
line (5) and (6) in Figure 2), the type of their elements
is Cartesian product. ((_*_) %type) is one of the ways
in Coq to define the type of Cartesian product.
Accessible set B and authorization set M should be
defined in this way (e.g. shown in line (7) and (8) in
Figure 2).

In the Figure 3, we define four functions. Fs, Fc,
Fol and Fol are functions need one parameter (e.g.
subject or object) and return the type of SecurityLevel
of the input parameter.

Figure 3. Definitions of functions in Coq

5.2.2. Definitions of Proposition. We use predicate to
specify the security invariants and integrity constrains
of a system state.

Definition Simple_Security (v: State) : Prop :=
forall (s :Subject_element) (o : Object_element) (x:op),
 s∈v.S /\ o∈v.O/\ (s, o, x) ∈v.Accessible_B
→ (((x=r \/ x=w) /\v.Fs(s)≥v.Fol(o)

\/(x=a\/x=c\/x=e)).

(1) Variable Subject_element: Type.
Definition Subject:= Sets Subject_element.

(2) Variable Object_element:Type.
Definition Object:= Sets Object_element.

(3) Inductive ObjectType_element:Type:=
 | tuple : ObjectType_element

| table : ObjectType_element
| database :ObjectType_element
| view : ObjectType_element
| procedure_trigger : ObjectType_element.

(4) Inductive op : Type:=
 | r : op | a: op | w: op | c : op | e : op.
(5) Definition SecurityLevel:=

((Classification*Category)%type).
(6) Definition State : Type:=

((Accessable_B*M*F*Subject*Object)%type).
(7) Definition Access :=

((Subject_element*Object_element*op)%type).
(8) Definition Accessable_B := Sets Access.

Definition M:=Sets Access.

Figure 4. Definition of Security_Simple Property in Coq

(1) Definition Star_Security (v : State) : Prop :=
(2) forall (s :Subject_element)
(3) (o : Object_element) (x:op),
(4) s∈v.S /\ o∈v.O /\ (s, o, x) ∈v.Accessible_B
(5) → (x=r/\ v.Fc(s)≥v.Fol(o)
(6) \/ (x=a/\ v.Foh(o)≥v.Fc(s)≥v.Fol(o)
(7) \/ (x=w/\v.Fc(s)= v.Fol(o))
(8) \/(x=c\/x=e)).

(9) Definition Security_Discretionary (v: State) :=
(10) forall (s :Subject_element)
(11) (o : Object_element) (x:op),
(12) s∈v.S /\ o∈v.O /\ (s, o, x) ∈v.Accessible_B
(13) → ((o∈v.Tuple/\ (s ,(Parentof o), x) ∈v.M)
(14) \/ ((o∈v.Table \/ o∈v.Databse \/ o∈v.View
(15) \/ o∈v.Procedure_trigger)
(16) /\ (s ,o, x) ∈v.M)).

Figure 5. Definitions of Star-Property and Discretionary
Property in Coq

The simple-security property is defined as a
predicate with parameter v in Figure 4. The proposition
that Simple_Security (v) is true indicates that state v
satisfies the Security-Simple Property. v.S denotes set
S of state v, so does v.O, and so on. The star-property
and the discretionary property are specified in the same
way in the Figure 5.

The three integrity constrains are also defined as
predicates. The proposition that Object-Compatibility
(v) in Figure 6 is true indicates that State v satisfied the
object-compatibility property. For two objects o1,o2
that have parent-and-son relationship, if the son is a
stored object, the lowest security level of the son must
dominate the lowest security level of his parent, and
the highest security level of the son must be dominated
by the highest security level of his parent. Definition Fs := Subject_element→SecurityLevel.

Definition Fc:= Subject_element→SecurityLevel.
Definition Fol := Object_element→SecurityLevel.
Definition Foh := Object_element →SecurityLevel.

In Figure 6, the entity-integrity property and
reference-integrity property are defined in the same
way. Function Parentof in line 12 returns the parent of
the object parameter. The function KeyLevelof in line
13 returns the security level of the object parameter.
The function Pkeyvalueof in line 14 returns the value
of primary key of the tuple.

The proposition that Entity-Integrity (v) is true
indicates that state v satisfied the Entity-Integrity
Property. The proposition that Reference-Integrity (v)

is true indicates that state v satisfied the Reference-
Integrity Property.

Figure 7. Definitions of Security

5.3 The Formal Verification

 (1) Definition Object-Compatibility(v : State) :=
(2) forall (o1 o2: Object_element),
(3) o1∈v.O /\ o2∈v.O/\ o2 =Parentof (o1)
(4)→((o1∈v.Table \/o1∈v.Tuple)
(5) /\ v.Fol(o1)≥v. Fol(o2))/\ v.Foh(o2)≥v. Foh(o1))
(6)\/ ((o1∈v.View \/ o1∈v.Procedure_trigger)
(7) /\ v.Fol(o1)≥v. Fol(o2)).

(8) Definition Entity_Integrity (v : State) :=
(9) forall (o1 o2 : Object_element)
(10),o1∈v.O /\ o2∈v.O
(11) →((o1∈v.Tuple/\ o2∈v.Tuple
(12) /\Parentof o1 = Parentof o2
(13) /\KeyLevelof o1 <> KeyLevelof o2
(14) /\ Pkeyvalueof o1 <> null
(15) /\ Pkeyvalueof o2 <> null)
(16) \/ (o1∈v.Table \/ o1∈v.View
(17) \/ o1∈v.Procedure_trigger
(18) \/ o1∈v. Database)).

(19) Definition Referrence_Integrity (v: State) :=
(20) forall (o1: Object_element) o1∈v.O
(21)→ ((o1∈v.Table
(22) /\(exists o2:Object_element,
(23) o2∈v.O /\ o2∈v.Table
(24) /\ o2=Referrenceof o1 /\Fkeyof o1=Pkeyof o2))
(25)\/ (o1∈v.Tuple
(26) ∧(exists o2:Object_element, o2∈v.O
(27) /\ (Parentof o2) =Referenceof (Parentof o1)
(28) /\ Fkeyof (Parentof o1)=Pkeyof (Parentof o2)
(29) /\ o2∈v.Tuple/\(v.Fol (o1)= (v.Fol(o2))
(30) /\(Fkeyvalueof o1=Pkeyvalueof o2)
(31)\/ (o1∈v.View\/o1∈v.Database
(32) \/ o1∈v.Procedure_trigger)).

We verified the model following the steps presented
in section 4.2. We take one state transition rule query
as a typical example to illustrate our formal analysis of
the model, which is accordant with the definition in
section 3.3. As the key procedure above for
verification is verifying that any rule in our extended
model is secure, we describe the important procedure
in detail.

Firstly, the rule query was defined as a predicate
with two parameters: subject and object (shown in
Figure 8). If the proposition (query s o) is true, s
queries o and the state is changed from vi to vj.

In the query rule shown in Figure 8, if o exists and s
has the privilege to query o, a query request is
permitted. The returned objects for the query rule are
tuples no matter what type of o is. InvolvedTule(o) is a
function which returns a set of tuples involved in o.
For every tuple t in o, if fc(s)≥fol(t) and t is in the
results of the query rule, then (s, t, r) should be added
into the set B. Other elements of vj, M, S, F and O are
the same as that of vi since they are not changed by the
query rule.

AddB (v: State) describes the relationship between vj
and vi, because new elements are added to vi.B.

Figure 6. Definitions of integrity properties in Coq

5.2.3. Definition of Security Proposition. We define
the security proposition in Figure 7. The proposition
that Secure (v) is true indicates state v is secure, when
a state v satisfies the three integrity constrains and the
three security invariants.

Definition Query (s:Subject_element)
(o:Object_element):Prop :=

((o∈vi.O /\ (s,o,r) ∈vi.M
/\(forall t : Object_element,

 (t∈vi. Tuple/\t∈ InvolvedTule(o)
 /\ vi.Fc (s) ≥vi.Fol(t) /\ vj=AddB vi (s,t,r)))

Figure 8. The definition of query rule in Coq

Secondly we define the propositions needed to be
verified by using the keyword Lemma in Coq. We
should verify that the state vj satisfies the object-
compatibility property, the entity-Integrity property
and the reference-integrity property respectively. Then
we can conclude that vj satisfies the integrity
constraints according to Theorem-1. In the following,
we should prove that vj satisfies the simple-security
Property, star property and discretionary property
respectively in order to prove state vj is secure. We
take the verification of discretionary property in Figure
9 as an typical example.

Definition Integrity_State (v : State) : Prop :=
Entity_Integrity v /\Referrence_Integrity v
/\Object_Compatibility v.

Definition Security_State (v : State) : Prop :=
Security_Discretionary v /\ Security_Simple v
 /\ Security_Star v.

Definition Secure (v : State) : Prop :=
Integrity_State v/\ Security_State v.

Lemma Query_Discretionary:
 forall (s : Subject_element) (o : Object_element),
Secure vi/\Integrity_State vj
->Query s o ->Security_Discrestionary vj.

Figure 10. The modifed query rule in Coq Figure 9. Lemma Query_Discretionary

In Figure 9, Query_Discrestionary is the name of
the Lemma to be proved for the Discretionary Property
of the query rule. Under a secure state vi, when s
queries o, then the state is changed from vi to vj. We
only need to prove that vj satisfies the Discretionary
Property. In the description of Query_Discretionary,
(Secure vi) is a proposition that indicates vi is secure.
Another condition (Integrity_State vj) indicates that
the state vj should satisfy the integrity constrains.
Therefore, before we prove the Query_Discrestionary,
we should first prove that state vj satisfies the integrity
constrains and then we have (Integrity_State vj). The
last condition (Query s o) indicates s queries o
successfully. The Lemma Query_Discretionary
illustrates that vj satisfies Discretionary Property only
after the three conditions above are obtained.

The mistake in the query state transition rule made
us verify the Lemma Query_Discretionary
unsuccessfully. Then we modified the definition of the
query rule in Figure 2 and obtained the modified query
rule in Figure 4. From the verification, mistakes and
imprecise description which seems quite right
intuitively in our mind could be found out. Because the
Coq tool operates on the current proving goal by
attempting to construct a proof of the current goal from
corresponding conditions (Secure vi, Integrity_State vj
and Query s o), if one condition was missing, the
current goal would not be proved. This proving logic
makes our verification sure stricter and more precise.
The analogous mistakes could be corrected and our
model could be improved.

The query rule in Figure 1 in section 3.3 should be
modified in the following: Thirdly, we prove the Lemma Query_Discretionary

in Coq. During verification the Discretionary Property,
we found that objects should be processed according to
their types. If o is a tuple, we should verify that s
should have the privilege to read the parent of o.
However, we don’t have this condition from the
definition of the query rule in Figure 8. Therefore there
may be something wrong in the query state transition
rule in Figure 8. After we analyzed the query rule
carefully, we found that if o is a table the returned
results for the query rule are actually tuples, and if o is
a view the returned objects are also the tuples in the
table(s) deriving the view. As a result, we should
describe the query rule according to different types of
the extended objects. The parent-and-son relationships
are different in different structures because of the
extension of the object structure. Tuple can not be the
son of derived objects.

However if any condition in i), ii) and iii) above is
not satisfied, the decision would be “no” and the state
of the database system is still vi.

re1 = query;
If [oj Table∈ (s∧ i,oj,r) M f∈ ∧ s(si) ≥fol (oj)

 o∧ j=parentof (o'j) f∧ s(si) ≥fol (o'j)]
\/ [oj View∈ (s∧ i,oj,r) M f∈ ∧ s(si)≥fol(oj)

∧oi DerivedSO(o∈ j) o∧ i=parentof (o'j)
 f∧ s(si) ≥fol (o'j)]

Then ρ1(re1 =query, vi) =
(yes，vj=(b (s∪ i, o'j, r)), M, f, H)

Else ρ1(re1 =query, vi) = (no, vi).

Figure 11. The modified formal description of query rule

The query rule: Under state vi, a subject si can query
a table or a view oj in a database system, when the
following conditions are satisfied:

i) oj is a table or a view existing in the database;
ii) si has the privilege to access oj in mode r;
iii) fc(si)≥ fol(oj).
If the response is “yes”, vi is changed into vj.
When oj is a table, for any tuple o'j whose parent is

oj, fc(si) ≥ fol (o'j), the (s, o'j, r) should be added into
the accessible set B in the state vi to obtain a new B in
vj . The other four elements of vj, M, S, F, O are the
same as the elements in vi and are not changed by the
query operation. Definition Query (s: Subject_element)

 (o:Object_element) :Prop :=
 ((o∈vi.Table /\ o∈vi.O /\ (s,o,r) ∈vi.M
/\ vi.Fc (s) ≥vi.Fol(o) /\ (forall t : Object_element,
 (t∈vi. Tuple/\o=Parentof (t)
 /\ vi.Fc (s) ≥vi.Fol(t) /\vj=AddB vi (s, t, r)))

\/ ((o∈vi.View/\ o∈vi.O /\ (s,o,r) ∈vi.M)
 /\ vi.Fc (s) ≥vi.Fol(o) /\(forall t : Object_element,
 (t∈vi. Tuple/\(Parentof t) ∈DerivedSO

/\ vi.Fc (s) ≥vi.Fol(t)) /\(vj=AddB vi (s,t,r))).

When oj is a view, for any tuple o'j whose parent
derived oj, fc(si) ≥ fol (o'j), the (s, o'j, r) should be
added into the accessible set B in the state vi to obtain
a new B in vj . The other four elements of vj, M, S, F, O
are the same as the elements in vi and are not changed
by the query operation.

In Figure 11, the formal description of modified
query rule is illustrated. oj=parentof (o'j) represents
that o'j is the son of oj, if oj is a derived object,
oi DerivedSO(o∈ j) represents that oi is a stored object
from which oj is derived.

The verification procedure that verifies the state vj
satisfies simple-security property and star property are
almost the same as the proof of the Lemma
Query_Discretionary.

Finally, the state vj is secure according to Theorem-
2 and the query rule is secure according to Theorem-4.

Other eight state transition rules in our model could
be also formally verified secure analogously.
According to inference-1, any sequence of the state
transition rules is secure.

Suppose a sequence is Seqi=ρ i1, ρi2,…, ρin, and v0 is
secure. If any state vi is secure, the successive state vi+1
of vi , which is transferred by transition rule ρi1,
satisfies the integrity constraints according to
Theorem-5 and the state vi+1 satisfies the Simple-
Security property, the Star Property and the
Discretionary Property according to Theorem-5.
Therefore, the state vi+1 is secure according to
Theorem-2. Analogically, the successive state of vi+1
transferred by transition rule ρi2 is secure. Therefore, a
reachable state vj transferred from vi by Seqi is also
secure.

Since v0 is secure, any state vi is secure, state vj
transferred from vi by Seqi is also secure. Finally, the
system is secure according to Theorem-6.

6. The Result of the Work

Both the formal specification and verification were
developed in Coq proof assistant. We spent two
months to finish the formal proof, and 72 lemmas and
2100 lines Coq code were written to verify the nine
state transition rules. The verification of the extended
security model costs 20 minutes. The whole
verification of our model is executed in the computer
with Intel Core 2 Duo processor (1.86GHz), 2G
memory and Microsoft Windows xp operating system.

During the formal analysing, four ambiguities and
imprecise description for the model have been found
out and modified. Our model has been improved.
Moreover, Coq proofing assistant has been used in a
new field for specifying and verifying the security
model for database systems.

7. Conclusion and Future Work

A formal security model is vital for high secure
DBMS development. In this study, an extended BLP
model is presented to model the complex relationships
between objects in modern database systems. It is
based on the BLP model, the security properties and
state transition rules are also extended.

Also, a method for verifying a formal security model
for database systems is proposed. The integrity
constraints are the premises of security axioms.
Several mistakes have been identified during the
verification process and have been corrected
accordingly. This work demonstrated that our
verification method is effective and sufficient.

In the future, we plan to extend our security model
into a more specific level and closer to the
implementation of database systems. We also plan to
develop techniques to verify that all the SQL
operations in database systems are accordant with our
security model.

References

[1] D. Bell, L. LaPadula, "Secure Computer Systems:
Mathematical Foundations and Model," Technical Report,
MITRE Corp., 1974, Bedford, MA.

[2] D. E. Bell and L. J. LaPadula, “Secure computer system:
Unified exposition and multics interpretation,” MTR-2997,
Revision 1, Mar.1976.

[3] Anthony Boswell, “Specification and Validation of a
Security Policy Model, ” IEEE Transactions on Software
Engineering, Vol. 21. No. 2, February 1995, Security
Foundations Workshop, pp 70-83,1997.

[4] Wanjun Cheng, Xia Zhang, Jiren Liu, “A Secure Policy
Model for Secure Database System Based on Extended
Object Hierarchy,” Journal of Software, vol.14, No.5, 2003.

[5] Department of Defense, Trusted Computer System
Evaluation Criteria, DoD STD 5200.28STD, Dec., 1985.

[6] J. W. Freeman, R. B.Neely, “On Security Policy
Modeling,” IEEE 1993 61-69.

[7] JianBo He, Sihan Qing Chao Wang, “Formal Safety
Analysis of a Class of Multilevel Security Models,” Chinese
Journal of Computers, Vol. 29 No. 8 Aug. 2006.

[8] Boniface Hicks, Sandra Rueda, Luke St.Clair, Trent
Jaeger, and Patrick McDaniel. “A Logical Specification and
Analysis for SELinux MLS Policy” in
Proc.SACMAT’07,Sophia Antipolis, France, pp.91-100.
2007.

[9] T.H.Hinke and M. Schaefer, “Secure data management
system,”System Development Corp., Tech. Rep. RADC-TR-
75-266, No1975.

[10] T. H. Hinke, C. Garvey, N. Jensen, J. Wilson, and A.
Wu, “A1 secure DBMS design,” in Proc. 11th Nat'l
Computer Security Conf.: A Postscript, Baltimore, Oct. 1988,
pp. 1-13.

[11] Liping Li, Sihan Qing, Yi Zhou, “Research on formal
security policy model specification and its formal analysis,”
Journal on Communication, Vol.27 No.6 June 2006.

[12] Terasa F. Lunt, Dorothy E. Denning, Roger R. Schell,
Mark Heckman, William R.Shockley, “The SeaView
Security Model,” IEEE Transactions on software engineering
vol.16.NO.6,June 1990.

[13] C. Maximiliano, “Formal verification of an extension of
a secure, compatible UNIX file system,” Master's thesis,

Instituto de Computacion, Universidad de la Republica,
Uruguay, 2002.

[14] Junkil Park, Jin-Young Choi, “Formal Security Policy
Model for a Common Criteria Evaluation,”
ICACT2007,pp.277-281, Feb. 12-14, 2007.
[15] The Coq Proof Assistant, 2001.[Online].Available:
http://coq.inria.fr/

[16] R. A. Whitehurst and T. F. Lunt, “The SeaView
verification,”in Proc. Second Workshop Foundations of
Computer Security. Fran-conia, NH, IEEE Computer Society
Press, June 1989.

4 http://www.ieeeconfpublishing.org/cpir/AuthorKit.asp?

Community=CPS&Facility=CPS_Oct&ERoom=APTC
+2008

http://coq.inria.fr/

	1. Introduction
	2. Related Work
	3. Security Model
	3.1 The Preliminary of the Model
	3.2 The Security Properties
	3.3 State transition rules

	4. The Method for Verification
	4.1 The Extended Security Theorems
	4.2 The Verification Method

	5. Formal Specification and Verification
	5.1 The Coq Proof Assistant
	5.2 The Formal Specification of the Security Model in Coq
	5.3 The Formal Verification

	6. The Result of the Work
	7. Conclusion and Future Work
	References

