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Abstract 
 

In order to develop highly secure database systems 
to meet the requirements for class B2, an extended 
formal security policy model based on the BLP model 
is presented in this paper. A method for verifying 
security model for database systems is proposed. 
According to this method, the development of a formal 
specification and verification to ensure the security of 
the extended model is introduced. During the process 
of the verification, a number of mistakes have been 
identified and corrections have been made. Both the 
specification and verification are developed in Coq 
Proof Assistant. Our formal security model was 
improved and has been verified secure. This work 
demonstrates that our verification method is effective 
and sufficient and illustrates the necessity for formal 
verification of the extended model by using tools. 
 
1. Introduction 
 

In many database applications (such as e-bussiness, 
military and governmental information systems), 
sensitive information needs to be processed. Database 
management systems are required to provide high 
levels of security. 

Before a high secure database system is designed to 
meet the security requirements for class B2 [5], a 
formal security policy model is normally needed. The 
Bell & LaPadula model (BLP model) [1][2] is the 
security model recommended by the TCSEC [5]. It can 
be used to design a secure system to meet the criteria 
of Class A1. However when we apply the BLP model 
to modern databases, a problem arises: in the BLP 
model objects form a tree, but a tree would not be able 
to describe all the relationships among objects because 

of the complex relationships among objects in database 
systems. Therefore, objects and their structures in the 
BLP model need to be extended. Because of the 
extension, the descriptions of the security properties as 
well as state transition rules in the BLP model need to 
be modified or extended. In this study, we extended 
the BLP model to support complex relationships 
between objects in modern databases. 

Once the BLP model is extended, the security of the 
extended model should be verified. In this paper, we 
mainly introduce our effort on specifying and verifying 
the security of our extended model by using proof 
assistant tools.  

The contributions of this paper are in the following: 
1) A formal security model for highly secure 

database systems is presented. The structures of 
objects in the security model are extended into two 
categories: tree and graph. Meanwhile, the security 
properties and state transition rules are also extended.  

2) A method for verifying formal security model for 
database systems is developed by using proof assistant 
tools. During the process of the verification of the 
security model, a number of mistakes have been 
identified by our method and corrections have been 
made. Our formal security model was improved and 
has been verified secure. Both the specification and 
verification of the formal security model were 
developed in Coq Proof Assistant [15]. This 
experience illustrates the necessity of verification of 
the model by using tools.   

The rest of this paper is organized as follows. First, 
section 2 is the related work. The extended model is 
illustrated in section 3. Our method for verifying the 
extended security model is proposed in section 4. The 
specification and verification of our security model in 
Coq is presented in section 5. We analyse the results of 



our work in section 6. Finally, we summarize the 
conclusion and future work in section 7. 
 
2. Related Work 
 

In this section, we will illustrate the related work for 
the security models for different secure systems as well 
as their verification.  

The BLP model is widely applied in secure systems. 
It describes the well-known “no read up” and “no write 
down” rules (or simple security and “*”-properties) for 
preserving mandatory security. “No read up” indicates 
that no subject is allowed to read from an object with a 
classification higher than the subject’s clearance. “No 
write down” requires that information at a 
classification cannot be written to an object at a lower 
classification. The BLP model also adds discretionary 
access controls which control the modes of access by 
subjects to objects. 

Many researchers have formally analyzed the 
security of the BLP model and its extended models for 
operating systems.  

Liping Li and Sihan Qin proposed a formal method 
to specify models by using Z. They took BLP model as 
an example in [11] and illustrated that the proving by 
using tools was more rigorous than proving manually. 
In addition, the BLP model was extended and formally 
analyzed when the extended model was applied in 
operation systems. Jianbo He analyzed an extended 
BLP model and specified the model in Z language. 
After they analyzed the model by using tools, they 
made a conclusion that their extended model was not 
secure in [7]. The paper illustrated the necessity of 
formal verification of the extended models. Moreover, 
verifying the security of a model by using tools is a 
more convincible way.   

C. Maximiliano proposed an extension of a UNIX 
file system. They formalized their extension and 
analyzed that the file system operations satisfied a set 
of security properties by using the Coq Proof Assistant. 
In their paper, a method for specifying the policy of a 
system specified in Coq was presented in [13]. 

Other extended models based on the BLP model had 
also been formally analyzed. 

The formal security policy model for the NATO Air 
Command and Control System was specified in Z 
language in [3]. An approach for specifying the model 
was presented in the paper, but their verification was 
finished manually because of the limitation of Z 
language. 

Boniface Hicks has modeled the SELinux MLS 
policy and specified the model in the Prolog language 
in [8]. In addition, they developed an analyser which is 

able to automatically find information flows for 
SELinux in XSB Prolog. In addition, a method was 
proposed to determine policy compliance in different 
systems. According to the method, they proved the 
accordance of the SELinux reference policy with the 
simple security property and the *–property defined by 
Bell and LaPadula model. 

The BLP model has been extensively applied in 
secure database systems and several security models 
have been proposed for secure databases. The first 
model was proposed by Hinkehchaefer [9]. It supports 
the label of the objects at the granularity of attribute 
level, and it relies on the underlying trusted operating 
system for enforcement of both mandatory and 
discretionary security. 

The TRW model [10] was developed to support the 
label of the objects at the granularity of tuple level. It 
enforces both mandatory and discretionary security 
within the database system, and it requires more 
trusted code and duplication of some of the security 
functionality of the operating system. Therefore the 
overload of verification was heavy. 

The SeaView Project specified a formal security 
model to meet the security requirements for multilevel 
secure databases [12]. In addition, a general 
description of the database operations and the formal 
verification of the SQL operations in EHDM are 
presented in [16]. However, more objects, such as 
stored procedures and triggers in modern database 
systems, are not included in the SeaView model. 
Moreover, because the labels of the objects are at the 
granularity of element label (every element has a 
security level), more storage space was needed and the 
performance of the system would be decreased.  

Wanjun Cheng extended the object hierarchy in a 
secure model for a database system and verified the 
transition rules manually [4], but objects such as stored 
procedures and triggers are not mentioned in their 
model. 

 
3. Security Model 

 
A security model is a set of states and rules which 

describe the security policy precisely and 
unambiguously. In this section we will briefly illustrate 
our extended model. 

 
3.1 The Preliminary of the Model 
 

We describe the state of a database system as a five-
tuple v= (B, M, F, S, O). Every element of a state is 
extended or modified based on the BLP model in the 
following. 



  Because the structures of the objects in the BLP 
model would not be able to describe all the 
relationships among objects in database systems, we 
extended the objects and their structure in our model. 

O is the set of all objects in database systems. We 
extended the structures of objects and divided the types 
of the objects into two categories: stored objects and 
derived objects. Suppose SO denotes the set of stored 
objects and O-SO denotes the set of derived objects in 
the following discussion.  

There are three types of stored objects which are 
really stored in a database system. These objects 
include tuples, tables and databases. There are also 
three types of derived objects including views, stored 
procedures and triggers.  

There are two categories of structures for objects in 
a database system: tree and graph. All the stored 
objects form a tree. For example, the database is the 
root, the tables are the children of the database, and 
tuples in a table are the children of the table. Every 
tuple or table has only one parent (the table or the 
database). Empty table has no child. A derived object 
is derived from stored objects or other derived objects. 
The relationships between derived objects and deriving 
objects form a graph. A derived object is a child of the 
objects from which it is derived. The object who 
derives an object is the parent of the derived object. 
For example, the view va is derived from table ta and 
tb, and view vb is derived from ta and va. Therefore, 
va is the son of ta and tb, and va is the parent of vb and 
ta. A derived object has at least one parent and may 
have no child if no derived objects are derived from it.  

S is the set of all subjects, which are active sessions 
accessing objects in a database system under a state v. 
In our model subjects in set S are all untrusted subjects. 

A is a set of access mode. A={read(r), append(a), 
write(w), control(c), execute(e)}. 

B is an accessible set, consisting of triplets, (s, o, x). 
Every element in set B denotes that subject s accesses 
object o in mode x under a state v in the database 
system.  

M is an authorization set, consisting of triplets (s, o, 
x). Every element in set M denotes subject s has 
privilege to access object o in mode x.  

F is a set of security level function, consisting of 
four functions fs, fc, fol, foh. They returns the highest 
security level of a subject, the current security level of 
a subject, the lowest security level of an object, and the 
highest security level of an object respectively. 

For any s∈S, fs(s) ≥ fc(s), the highest security level 
of s dominates its current security level. 

After we have analyzed the performance and storage 
cost in SeaView model which labels the objects at the 
minimal granularity of element level, we label the 

objects at the minimal label granularity of tuple level. 
Namely, every tuple in our secure database system is 
labeled a security level. 

If o∈ (Tuple∪(O-SO)) then fol(o)=foh(o). Tuple 
denotes the set of tuples. If the object o is a tuple or a 
derived object, then the security levels of object o, 
fol(o) and foh(o) are the same. 

If o∈  (Table∪Database) then foh(o) ≥ fol(o). Table 
denotes the set of tables. Database denotes the set of 
databases. If the object o is a table or a database, the 
security level of o is between ranges of security levels 
[fol(o), foh(o)]. Such an object includes other objects 
which have different security levels. When an object o 
is created, fol(o) is the security level of the creator of o, 
no matter what type of o is, and foh(o) is the highest 
security level of system if o is a table or a database. 

Assume that ρ is a state transition rule, ρ: RE×V-
>D×V. A database system has a set of state transition 
rules, denoted by ω = {ρ1, ρ2, …, ρs}.  

RE is the set of requests. 
V is the set of the states of the system.  
D = {yes, no}, is the set of response decision. 
A database system Sys is abstracted as a state 

machine and described as a triple Sys= (V, ω, D). 
Because of the extension of the objects, the 

descriptions of the integrity constraints, the security 
properties as well as state transition rules all need to be 
extended or modified. 

 
3.2 The Security Properties 
 

In our model the security properties are three 
extended integrity constraints and security axioms.  

 
3.2.1. Integrity Constraints. In the following, we will 
first present the object-compatibility property. Object-
compatibility property is extended because the objects 
are extended in our model.  

object-compatibility property: A state v= (B, M, F, S, 
O) satisfies the Object-Compatibility Property, if and 
only if for the state v, an object o2 is the parent of the 
object o1, and one of the conditions below should be 
satisfied: 

i) if o1 is a stored object, foh(o2)≥ foh(o1), and fol(o1) 
≥ fol(o2); 

ii) if o1 is a derived object, foh(o1)≥ fol(o2), because 
foh(o1) = fol(o1).  

When a subject accesses a table in a database system, 
tuples are usually in the final results. When a subject s 
accesses a stored object, if the current security level of 
s could not dominate the lowest security level of the 
object, s could not access any objects contained in the 



object. Therefore, we have i) in above object-
compatibility property.  

We also label a derived object whose security level 
dominates the lowest security level of its parents. 
Therefore, the derived objects could only be accessed 
by subjects with higher security level. No information 
(even the descriptive information of objects) in the 
higher security level would be disclosed to a subject 
with lower security level. With the property above, we 
would prevent the covert channels by using data 
dictionary in database systems. 

entity-integrity property: A state v=(B, M, F, S, O) 
satisfies the Entity-Integrity Property, if and only if in 
the state v, for all tuples in any table, the primary key 
and the security level of the tuple together identify the 
tuple uniquely. The primary key should not be empty.  

Assume only a primary key identifies a tuple 
uniquely. When a subject s inserts a new tuple t1 at its 
security level fc(s) into a table, if the primary key of t1 
is the same as the primary key of t2 in the table and the 
security level of t2 dominates fc(s), the insertion of t1 
would not be allowed. Then the subject s would be 
able to infer that there exists a tuple whose primary 
key is the same as the primary key of t1. In this 
situation, a covert channel would be exploited to 
transfer sensitive information. To avoid the covert 
channel, we permit the insertion of tuple t1 and the 
security level of t1 is fc(s). The t1 and t2 in the same 
table are different tuples with the same primary key, 
but they are at different security levels. Then the covert 
channel is eliminated.  

reference-integrity property: State v=(B, M, F, S, O) 
satisfies the Reference-Integrity Property, if and only if 
for the state v, and there exist objects o1 and o2, the 
condition below should be satisfied: 

If o1 , o2 are tuples and the table which contains o1 is 
referenced by the table which contains o2, then the 
value of the primary key of o1 equals to the value of the 
foreign key of o2 and fol(o1)=fol(o2.). 

In the property above, we specified that the security 
level of tuple o1 and o2 should be equal. Otherwise, if a 
subject deletes the tuple o1 which referenced by a tuple 
o2 in a higher security level, the delete operation would 
be rejected. Therefore, the subject at lower security 
level could infer that there is a tuple at higher security 
level referencing o1. That would cause information 
leakage and covert channels.  

Although there may be several foreign keys in a 
table, the notations of the property for several foreign 
keys are similar. Therefore, we only denote one 
foreign key without loss of generalization. 

Entity-integrity property and reference-integrity 
property above are modified based on the SeaView 
Model. Integrity constraints are important in database 

systems. They define a correct database state after an 
operation is complete in database systems.  

 
3.2.2. Security Axioms. The BLP model defines a 
security state and security system by simple-security 
property, star-property, and discretionary property. We 
modified the Star-Property, and Discretionary Property 
according to different types of objects. Our model 
should conform to these properties. 

simple-security property: the simple-security 
property in our model is the same as the simple 
security property in BLP model.  

The simple-security property indicates that no 
subject is allowed to read from an object with a 
classification higher than the subject’s clearance. 
Therefore, information flows from high security level 
to low security level are controlled and no illegal 
information flow would occur. 

star-property: State v = (B, M, F, S, O) satisfies the 
Star-Property, if and only if for the state v and any 
subject s, one of the conditions below should be 
satisfied. 
i) when s accesses o in mode r, fc(s) ≥ fol(o); 
ii) when s accesses o in mode a, foh(o)≥ fc(s) ≥ fol(o); 
iii) when s accesses o in mode w, fc(s)=fol(o). 
iv) when s accesses o in mode c or e, state v satisfies 

the Star-Property.  
We use star-property to control the updated-

involved access to objects in database systems.  
discretionary property: State v=(B, M, F, S, O) 

satisfies the Discretionary Property, if and only if for 
the state v and any subject s accessing an object o in 
mode x, either of the conditions below should be 
satisfied:  

i) if the object o is a tuple, s has the privilege of the 
table which contains the tuple o;  

ii) if the object o is not a tuple, s has the privilege to 
access object o in mode x. 

 
3.3 State transition rules 

 

re1 = query; 
If [oj∈O /\ (si, oj, r) ∈M /\ fc(si) ≥fol (oj)  

/\ o'j ∈ InvolvedO(oj) /\ fc(si) ≥fol (o'j)] 
Then ρ1(re1 =query, vi) = 

 (yes, vj=(b (si, o'j, r)), M, f, H) ∪
Else ρ1(re1 =query, vi) = (no, vj) 

Figure 1. The formal description of query rule 

We defined nine state transition rules according to 
nine important operations in databases, including: 
query, insert, update, alter, execute, delete, drop, grant, 
and revoke. We take the query as an typical example. 



In the following query rule, only one object (table) 
is concerned because the access to several objects is 
actually the composition of several accesses. Therefore, 
the access to one object is the basis and we only 
analyze the query rule for one object in the following.  

In Figure 1, InvolvedO(oj) denotes the set of tuples 
involved in oj and o'j∈InvolvedO(oj) denotes o'j is one 
of the tuples. 

The query rule: Under state vi, a subject si can 
query an object oj in a database system, when the 
following conditions are satisfied: 

i) oj exists in the database;  
ii) si has the privilege to access oj in mode r;  
iii) fc(si)≥ fol(oj). 
If the response is “yes”, vi is changed into vj. For 

any tuple o'j involved in oj, fc(si) ≥ fol (o'j), the (s, o'j, r) 
should be added into the accessible set B in the state vi 
to obtain a new B in vj . The other four elements of vj, 
M, S, F, O are the same as the elements in vi and are 
not changed by the query operation.  

However if any condition in i), ii) and iii) above is 
not satisfied, the decision would be “no” and the state 
of the database system is still vi. 
 
4. The Method for Verification 

 
4.1  The Extended Security Theorems 
 

Before we verify the extended model, we should 
define the security invariants. The security invariants 
should describe the security policy accurately and 
could be preserved during the state transitions. If the 
security invariants are not consistent with the security 
policy, the system is not secure even if the invariants 
could be preserved during the state transition. In our 
extended model, the security policy is that no illegal 
information flow between subjects with different 
security levels. Namely, no information in high 
security level would be transferred to the subjects with 
low security level. Therefore, the security invariants 
could partly be insured by the three security axioms in 
our model. 

The difference between database systems and other 
systems is the requirements for data integrity. For 
example, the ignorance of the entity integrity 
constraint would cause covert channels. Therefore, in 
order to forbid the illegal information flow in our 
model, we should preserve the integrity constraints in 
the database systems. In addition, during our proof 
when we specify the security invariants, the security 
invariants should be extended to include integrity 
constraints in our model. Namely, the integrity 
constraints should be preserved in every reachable 

state in a database system. Otherwise, the operations 
from a subject would not return the correct results and 
the security would be violated. Therefore, when we 
verify the security of a state in the system, we should 
verify the integrity of the state first. 

The extended security theorems for verification are 
defined as follows. Theorem-1, Theorem-2 and 
Theorem-5 are extended theorems, Theorem-3, 
Theorem-4, inference-1 and Theorem-6 are modified 
from BLP model. 

Theorem-1:A state vi satisfies the integrity 
constraints if and only if the state satisfies the Object-
Compatibility Property, the Entity-Integrity Property 
and the Reference-Integrity Property. 

Theorem- 2: A state vi is secure if and only if the 
state satisfies the integrity constraints, the Simple-
Security property, the Star Property and the 
Discretionary Property. 

Theorem-3: A state vi is a reachable state if and 
only if it is the initial state v0 or it is transferred from 
the initial state v0 by a sequence of state transition rules 
ρi1, ρi2,…, ρin .  

Theorem-4: A state transition rule ρi∈ω is secure if 
for any secure state vi, a state vi+1, which is changed 
from vi by a request re under the state transition rule ρi, 
is also secure. 

Theorem-5: Suppose state vi+1 is changed from vi by 
a request re, and ρi is secure,  

i) If vi satisfies the integrity constraints, then vi+1 
satisfies the integrity constraints, 

ii) If vi satisfies the Simple-Security Property and 
vi+1 satisfies the integrity constraints, then vi+1 satisfies 
the Simple-Security Property, 

iii) If vi satisfies the Star-Property and vi+1 satisfies 
the integrity constraints, then vi+1 satisfies the Star 
Property. 

iv) If vi satisfies the Discretionary Property and vi+1 
satisfies the integrity constraints, then vi+1 satisfies the 
Discretionary Property. 

Inference-1: A sequence of state transition rules is 
secure if and only if every rule in the sequence is 
secure.  

Theorem-6: A system Sys is secure if and only if all 
the reachable states in the system are secure.  
 
4.2 The Verification Method 
 

According to Theorem-6, in order to verify the 
system is secure, we should verify that every state of 
the system is secure. The first step is verifying that the 
initial state is secure.  

Different systems have different definitions of the 
initiate state. In our model for secure database system, 



we assume that there are only untrusted subjects in the 
system. So both the set B and set S are empty in the 
initiate state v0 = (B, M, F, S, O). Also there is no 
object created by untrusted subjects in set O in v0. 
Therefore, we should verify that the initiate state 
satisfies the integrity constrains as well as the security 
axioms first. Then we should prove that any state vi+1, 
which is changed from a secure state vi by a state 
transition rule ρi, is also secure. Therefore, the state 
transition rule ρi is secure. From the steps above, we 
can obtain that any reachable state is secure if it is 
transferred from the initial state v0 by a sequence of 
state transition rules ρi1, ρi2,…, ρin. 

We have following steps when we verify that the 
model is secure. 

Step 1 Verify v0 is secure. 
All the other states are transferred from v0 according 

to a sequence of state transition rules. After verifying 
that v0 is secure, we should verify all the other states v1, 
which are transferred from v0, are also secure by any 
state transition rule ρi.  

Then we should prove that any state vi+1, which is 
changed from a secure state vi by a state transition rule 
ρi, is also secure. Therefore, the state transition rule ρi 
is secure. 

Step 2 Verify vi+1 satisfies the integrity constraints 
according to Theorem-1; 

Step 3 Verify vi+1 satisfies the Simple-Security 
property, the Star Property and the Discretionary 
Property; 

Step 4 Verify vi+1 is secure according to Theorem-2; 
Step 5 Verify any ρi  is secure according to 

Theorem-4  
Step 6 Verify any sequence of the state rules is 

secure according to Inference -1. 
Step 7 Verify that any reachable state is secure if it 

is transferred from the initial state v0 by a sequence of 
state transition rules ρi1, ρi2,…, ρin. 

Step 8 Verify the system is secure according to 
Theorem-6. 

We applied the steps above to verify our extended 
model by using Coq in section 5. In addition, this 
method is able to be applied in verifying other security 
models for secure database systems. 
 
5. Formal Specification and Verification  
 
5.1 The Coq Proof Assistant 
 

Coq Proof Assistant is a flexible theorem proving 
tool. It allows interactively constructing formal proofs 
and supports specification of static data, functions and 
definitions which can be developed using the basic 

specification language Gallina in Coq. Conveniently, 
the reasoning is at the same platform with the 
specification. What’s more, Coq provide various 
tactics to prove the goals interactively. All above 
strong points of Coq make us to use it to finish our 
specification and verification work.   

 
5.2 The Formal Specification of the Security 
Model in Coq 
 

We applied the method and the steps presented in 
section 4 to verify our model in Coq. Before we 
verified the model, we specify our model in the Gallina 
language in Coq.  

A formal specification in Gallina consists of a 
sequence of declarations and definitions. There are 
basically three kinds of specifications in Coq: logical 
propositions, mathematical collections, and abstract 
types. They are classified by the three basic sorts of the 
system, called Prop, Set, and Type respectively. Every 
valid expression e in Gallina is associated with a valid 
expression, called type E. We write e:E for the 
judgment that e is type E. Arrow in Coq has two 
usages: i) function constructor ((A → B) means a 
function expecting one arguments of type A in order to 
get type B); ii) the arrow symbol can be used as well as 
propositional connective in implication.  

 
5.2.1. Definition of Elements’ Type. In Coq an 
element with type U is defined by keyword Variable. 
A set consisting of elements with type U is defined by 
using Sets in Coq library (shown in Figure 2. line (1)). 
Moreover, S, O, B, M in our model are all sets in 
mathematics. In order to define such sets we should 
first define the type of the element in these sets. 



 
Figure 2. Definitions of elements’ type in Coq 

When the elements of some sets is simple and 
undetermined, like s in set S, the type of the element is 
simply defined as Type (e.g. shown in line (1) and line 
(2) in Figure 2). While the elements are easy to list, for 
example the kinds of objects and the access mode, we 
use inductive way. As shown in line (3) and (4) in 
Figure 2, all the elements listed with its type 
ObjectType_element are defined inductively. However 
when the type of the elements is complex, such as the 
state of the system, the security level (e.g. shown in 
line (5) and (6) in Figure 2), the type of their elements 
is Cartesian product. ((_*_) %type) is one of the ways 
in Coq to define the type of Cartesian product. 
Accessible set B and authorization set M should be 
defined in this way (e.g. shown in line (7) and (8) in 
Figure 2). 

In the Figure 3, we define four functions. Fs, Fc, 
Fol and Fol are functions need one parameter (e.g. 
subject or object) and return the type of SecurityLevel 
of the input parameter. 

 
 

Figure 3. Definitions of functions in Coq 

5.2.2. Definitions of Proposition. We use predicate to 
specify the security invariants and integrity constrains 
of a system state. 

 
 

Definition Simple_Security (v: State) : Prop := 
forall (s :Subject_element) (o : Object_element) (x:op), 
 s∈v.S /\ o∈v.O/\ (s, o, x) ∈v.Accessible_B  
→ (( (x=r \/ x=w) /\v.Fs(s)≥v.Fol( o) 

\/(x=a\/x=c\/x=e)). 

(1)   Variable Subject_element: Type.  
Definition Subject:= Sets Subject_element. 

(2)   Variable Object_element:Type. 
Definition Object:= Sets Object_element. 

(3)   Inductive ObjectType_element:Type:= 
       | tuple : ObjectType_element  

| table : ObjectType_element 
| database :ObjectType_element  
| view : ObjectType_element  
| procedure_trigger : ObjectType_element.  

(4)   Inductive op : Type:= 
      | r : op |  a: op | w: op | c : op | e : op. 
(5)   Definition SecurityLevel:= 

((Classification*Category)%type). 
(6)   Definition State : Type:= 

((Accessable_B*M*F*Subject*Object)%type). 
(7)   Definition Access := 

((Subject_element*Object_element*op)%type). 
(8)  Definition Accessable_B := Sets Access. 

Definition M:=Sets Access. 

Figure 4. Definition of Security_Simple Property in Coq 

 
 

 

  

(1) Definition Star_Security ( v : State) : Prop := 
(2) forall (s :Subject_element) 
(3)          (o : Object_element) (x:op), 
(4) s∈v.S /\ o∈v.O /\ (s, o, x) ∈v.Accessible_B 
(5) → (x=r/\ v.Fc(s)≥v.Fol(o) 
(6)     \/ (x=a/\ v.Foh(o)≥v.Fc(s)≥v.Fol(o) 
(7)     \/ (x=w/\v.Fc(s)= v.Fol(o) ) 
(8)     \/(x=c\/x=e)). 
 
(9) Definition Security_Discretionary (v: State) := 
(10) forall (s :Subject_element) 
(11)          (o : Object_element) (x:op), 
(12)  s∈v.S /\ o∈v.O /\ (s, o, x) ∈v.Accessible_B 
(13) → ((o∈v.Tuple/\ ( s ,(Parentof o), x) ∈v.M) 
(14) \/ ((o∈v.Table \/ o∈v.Databse \/ o∈v.View 
(15)     \/ o∈v.Procedure_trigger ) 
(16)       /\ ( s ,o, x) ∈v.M )). 

Figure 5. Definitions of Star-Property and Discretionary 
Property in Coq 

The simple-security property is defined as a 
predicate with parameter v in Figure 4. The proposition 
that Simple_Security (v) is true indicates that state v 
satisfies the Security-Simple Property. v.S denotes set 
S of state v, so does v.O, and so on. The star-property 
and the discretionary property are specified in the same 
way in the Figure 5. 

The three integrity constrains are also defined as 
predicates. The proposition that Object-Compatibility 
(v) in Figure 6 is true indicates that State v satisfied the 
object-compatibility property. For two objects o1,o2 
that have parent-and-son relationship, if the son is a 
stored object, the lowest security level of the son must 
dominate the lowest security level of his parent, and 
the highest security level of the son must be dominated 
by the highest security level of his parent. Definition Fs := Subject_element→SecurityLevel. 

Definition Fc:= Subject_element→SecurityLevel. 
Definition Fol := Object_element→SecurityLevel. 
Definition Foh := Object_element →SecurityLevel. 

In Figure 6, the entity-integrity property and 
reference-integrity property are defined in the same 
way. Function Parentof in line 12 returns the parent of 
the object parameter. The function KeyLevelof in line 
13 returns the security level of the object parameter. 
The function Pkeyvalueof in line 14 returns the value 
of primary key of the tuple. 

The proposition that Entity-Integrity (v) is true 
indicates that state v satisfied the Entity-Integrity 
Property. The proposition that Reference-Integrity (v) 



is true indicates that state v satisfied the Reference-
Integrity Property. 

Figure 7. Definitions of Security 

5.3 The Formal Verification   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 (1) Definition Object-Compatibility(v : State) := 
(2) forall (o1 o2: Object_element),  
(3) o1∈v.O /\ o2∈v.O/\ o2 =Parentof (o1 ) 
(4)→( (o1∈v.Table \/o1∈v.Tuple) 
(5)   /\ v.Fol(o1)≥v. Fol(o2))/\ v.Foh(o2)≥v. Foh(o1)) 
(6)\/ ( (o1∈v.View \/ o1∈v.Procedure_trigger) 
(7)    /\ v.Fol(o1)≥v. Fol(o2)).  
 
(8) Definition Entity_Integrity (v : State) := 
(9) forall (o1 o2 : Object_element) 
(10),o1∈v.O /\ o2∈v.O 
(11) →((o1∈v.Tuple/\ o2∈v.Tuple 
(12)      /\Parentof o1 = Parentof o2 
(13)     /\KeyLevelof o1 <> KeyLevelof o2 
(14)     /\ Pkeyvalueof o1 <> null 
(15)     /\ Pkeyvalueof o2 <> null) 
(16) \/ ( o1∈v.Table \/ o1∈v.View  
(17)     \/ o1∈v.Procedure_trigger 
(18)     \/ o1∈v. Database) ). 
 
(19) Definition Referrence_Integrity (v: State) := 
(20) forall (o1: Object_element) o1∈v.O 
(21)→ ((o1∈v.Table 
(22)     /\(exists o2:Object_element, 
(23)    o2∈v.O /\ o2∈v.Table  
(24)   /\ o2=Referrenceof o1 /\Fkeyof o1=Pkeyof o2))      
(25)\/ (o1∈v.Tuple 
(26)  ∧(exists o2:Object_element, o2∈v.O 
(27)   /\ (Parentof o2) =Referenceof (Parentof o1) 
(28)   /\ Fkeyof (Parentof o1)=Pkeyof (Parentof o2) 
(29)   /\ o2∈v.Tuple/\( v.Fol (o1)= (v.Fol(o2)) 
(30)   /\(Fkeyvalueof o1=Pkeyvalueof o2) 
(31)\/ (o1∈v.View\/o1∈v.Database 
(32 )    \/ o1∈v.Procedure_trigger)). 
 
 

We verified the model following the steps presented 
in section 4.2. We take one state transition rule query 
as a typical example to illustrate our formal analysis of 
the model, which is accordant with the definition in 
section 3.3. As the key procedure above for 
verification is verifying that any rule in our extended 
model is secure, we describe the important procedure 
in detail. 

Firstly, the rule query was defined as a predicate 
with two parameters: subject and object (shown in 
Figure 8). If the proposition (query s o) is true, s 
queries o and the state is changed from vi to vj. 

In the query rule shown in Figure 8, if o exists and s 
has the privilege to query o, a query request is 
permitted. The returned objects for the query rule are 
tuples no matter what type of o is. InvolvedTule(o) is a 
function which returns a set of tuples involved in o. 
For every tuple t in o, if fc(s)≥fol(t) and t is in the 
results of the query rule, then (s, t, r) should be added 
into the set B. Other elements of vj, M, S, F and O are 
the same as that of vi since they are not changed by the 
query rule. 

AddB (v: State) describes the relationship between vj 
and vi, because new elements are added to vi.B. 

Figure 6. Definitions of integrity properties in Coq 

 
5.2.3. Definition of Security Proposition. We define 
the security proposition in Figure 7. The proposition 
that Secure (v) is true indicates state v is secure, when 
a state v satisfies the three integrity constrains and the 
three security invariants. 

 

 
 

Definition Query (s:Subject_element) 
(o:Object_element):Prop :=  

((o∈vi.O /\ (s,o,r) ∈vi.M 
/\(forall t : Object_element, 

         (t∈vi. Tuple/\t∈ InvolvedTule(o) 
 /\ vi.Fc (s) ≥vi.Fol(t) /\ vj=AddB vi (s,t,r))) 

Figure 8. The definition of query rule in Coq 

Secondly we define the propositions needed to be 
verified by using the keyword Lemma in Coq. We 
should verify that the state vj satisfies the object-
compatibility property, the entity-Integrity property 
and the reference-integrity property respectively. Then 
we can conclude that vj satisfies the integrity 
constraints according to Theorem-1. In the following, 
we should prove that vj satisfies the simple-security 
Property, star property and discretionary property 
respectively in order to prove state vj is secure. We 
take the verification of discretionary property in Figure 
9 as an typical example. 

Definition Integrity_State (v : State) : Prop := 
Entity_Integrity v /\Referrence_Integrity v 
/\Object_Compatibility v. 

Definition Security_State (v : State) : Prop := 
Security_Discretionary v /\ Security_Simple v 
 /\ Security_Star v. 

Definition Secure (v : State) : Prop := 
Integrity_State v/\ Security_State v. 

 

Lemma Query_Discretionary: 
 forall (s : Subject_element) (o : Object_element),  
Secure vi/\Integrity_State vj 
->Query s o ->Security_Discrestionary vj. 



Figure 10.  The modifed query rule in Coq Figure 9.  Lemma Query_Discretionary 

In Figure 9, Query_Discrestionary is the name of 
the Lemma to be proved for the Discretionary Property 
of the query rule. Under a secure state vi, when s 
queries o, then the state is changed from vi to vj. We 
only need to prove that vj satisfies the Discretionary 
Property. In the description of Query_Discretionary, 
(Secure vi ) is a proposition that indicates vi is secure. 
Another condition (Integrity_State vj ) indicates that 
the state vj should satisfy the integrity constrains. 
Therefore, before we prove the Query_Discrestionary, 
we should first prove that state vj satisfies the integrity 
constrains and then we have (Integrity_State vj). The 
last condition (Query s o) indicates s queries o 
successfully. The Lemma Query_Discretionary 
illustrates that vj satisfies Discretionary Property only 
after the three conditions above are obtained. 

The mistake in the query state transition rule made 
us verify the Lemma Query_Discretionary 
unsuccessfully. Then we modified the definition of the 
query rule in Figure 2 and obtained the modified query 
rule in Figure 4. From the verification, mistakes and 
imprecise description which seems quite right 
intuitively in our mind could be found out. Because the 
Coq tool operates on the current proving goal by 
attempting to construct a proof of the current goal from 
corresponding conditions (Secure vi, Integrity_State vj 
and Query s o), if one condition was missing, the 
current goal would not be proved. This proving logic 
makes our verification sure stricter and more precise. 
The analogous mistakes could be corrected and our 
model could be improved. 

The query rule in Figure 1 in section 3.3 should be 
modified in the following: Thirdly, we prove the Lemma Query_Discretionary 

in Coq. During verification the Discretionary Property, 
we found that objects should be processed according to 
their types. If o is a tuple, we should verify that s 
should have the privilege to read the parent of o. 
However, we don’t have this condition from the 
definition of the query rule in Figure 8. Therefore there 
may be something wrong in the query state transition 
rule in Figure 8. After we analyzed the query rule 
carefully, we found that if o is a table the returned 
results for the query rule are actually tuples, and if o is 
a view the returned objects are also the tuples in the 
table(s) deriving the view. As a result, we should 
describe the query rule according to different types of 
the extended objects. The parent-and-son relationships 
are different in different structures because of the 
extension of the object structure. Tuple can not be the 
son of derived objects. 

 
 
 
 
 
 
 
 

 

However if any condition in i), ii) and iii) above is 
not satisfied, the decision would be “no” and the state 
of the database system is still vi. 

 

 
 

re1 = query; 
If  [oj Table∈ (s∧ i,oj,r) M  f∈ ∧ s(si) ≥fol (oj) 

 o∧ j=parentof (o'j)  f∧ s(si) ≥fol (o'j)] 
\/  [oj View∈ (s∧ i,oj,r) M f∈ ∧ s(si)≥fol(oj) 

∧oi DerivedSO(o∈ j)  o∧ i=parentof (o'j) 
 f∧ s(si) ≥fol (o'j)] 

Then ρ1(re1 =query, vi) =  
(yes，vj=(b (s∪ i, o'j, r)), M, f, H) 

Else ρ1(re1 =query, vi) = (no, vi). 

Figure 11. The modified formal description of query rule 

The query rule: Under state vi, a subject si can query 
a table or a view oj in a database system, when the 
following conditions are satisfied: 

i) oj is a table or a view existing in the database;  
ii) si has the privilege to access oj in mode r;  
iii) fc(si)≥ fol(oj). 
If the response is “yes”, vi is changed into vj.  
When oj is a table, for any tuple o'j whose parent is 

oj, fc(si) ≥ fol (o'j), the (s, o'j, r) should be added into 
the accessible set B in the state vi to obtain a new B in 
vj . The other four elements of vj, M, S, F, O are the 
same as the elements in vi and are not changed by the 
query operation.  Definition Query (s: Subject_element) 

 (o:Object_element) :Prop := 
 ((o∈vi.Table /\ o∈vi.O /\ (s,o,r) ∈vi.M  
/\ vi.Fc (s) ≥vi.Fol(o)  /\ (forall t : Object_element, 
    (t∈vi. Tuple/\o=Parentof (t) 
 /\ vi.Fc (s) ≥vi.Fol(t) /\vj=AddB vi (s, t, r))) 

\/  ((o∈vi.View/\ o∈vi.O /\ (s,o,r) ∈vi.M) 
 /\ vi.Fc (s) ≥vi.Fol(o) /\(forall t : Object_element, 
 (t∈vi. Tuple/\(Parentof t) ∈DerivedSO 

/\ vi.Fc (s) ≥vi.Fol(t)) /\( vj=AddB vi (s,t,r))). 
 

When oj is a view, for any tuple o'j whose parent 
derived oj, fc(si) ≥ fol (o'j), the (s, o'j, r) should be 
added into the accessible set B in the state vi to obtain 
a new B in vj . The other four elements of vj, M, S, F, O 
are the same as the elements in vi and are not changed 
by the query operation.  



In Figure 11, the formal description of modified 
query rule is illustrated. oj=parentof (o'j) represents 
that o'j is the son of oj, if oj is a derived object, 
oi DerivedSO(o∈ j) represents that oi is a stored object 
from which oj is derived. 

The verification procedure that verifies the state vj 
satisfies simple-security property and star property are 
almost the same as the proof of the Lemma 
Query_Discretionary.  

Finally, the state vj is secure according to Theorem-
2 and the query rule is secure according to Theorem-4. 

Other eight state transition rules in our model could 
be also formally verified secure analogously. 
According to inference-1, any sequence of the state 
transition rules is secure. 

Suppose a sequence is Seqi=ρ i1, ρi2,…, ρin, and v0 is 
secure. If any state vi is secure, the successive state vi+1 
of vi , which is transferred by transition rule ρi1, 
satisfies the integrity constraints according to 
Theorem-5 and the state vi+1 satisfies the Simple-
Security property, the Star Property and the 
Discretionary Property according to Theorem-5. 
Therefore, the state vi+1 is secure according to 
Theorem-2. Analogically, the successive state of vi+1 
transferred by transition rule ρi2 is secure. Therefore, a 
reachable state vj transferred from vi by Seqi is also 
secure. 

Since v0 is secure, any state vi is secure, state vj 
transferred from vi by Seqi is also secure. Finally, the 
system is secure according to Theorem-6. 
 

6. The Result of the Work 
 

Both the formal specification and verification were 
developed in Coq proof assistant. We spent two 
months to finish the formal proof, and 72 lemmas and 
2100 lines Coq code were written to verify the nine 
state transition rules. The verification of the extended 
security model costs 20 minutes. The whole 
verification of our model is executed in the computer 
with Intel Core 2 Duo processor (1.86GHz), 2G 
memory and Microsoft Windows xp operating system. 

During the formal analysing, four ambiguities and 
imprecise description for the model have been found 
out and modified. Our model has been improved. 
Moreover, Coq proofing assistant has been used in a 
new field for specifying and verifying the security 
model for database systems. 
 
7. Conclusion and Future Work 

 

A formal security model is vital for high secure 
DBMS development. In this study, an extended BLP 
model is presented to model the complex relationships 
between objects in modern database systems. It is 
based on the BLP model, the security properties and 
state transition rules are also extended.  

Also, a method for verifying a formal security model 
for database systems is proposed. The integrity 
constraints are the premises of security axioms. 
Several mistakes have been identified during the 
verification process and have been corrected 
accordingly. This work demonstrated that our 
verification method is effective and sufficient. 

In the future, we plan to extend our security model 
into a more specific level and closer to the 
implementation of database systems. We also plan to 
develop techniques to verify that all the SQL 
operations in database systems are accordant with our 
security model. 
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