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Abstract

Data recovery for malicious committed transactions af-
ter attacks increasingly becomes an important issue. Dam-
age assessment for data recovery requires a transaction
log which record data items read or written by all mali-
cious and benign transactions. Unfortunately, conventional
undo/redo log could not record read operations for trans-
actions; and existing auditing mechanisms in DBMS could
not capture operations for data items. In this paper, we
introduce a concept of “Extended Read Operations” and
illustrate how the Extended Read Operations would cause
the damage spreading, and then a Fine Grained Transac-
tion Log (FGTL) is proposed. The log records all the data
items of the read only and update-involved operations (read
and write) for the committed transactions, and even extracts
data items read by the subqueries in the SQL statements. A
prototype system denoted FGTL Generator is developed to
generate the FGTL. Experiments based on TPC-W Bench-
mark show the availability for FGTL Generator.

1. Introduction

Traditional security mechanisms such as authentication
& authorization, access control, and data encryption in
modern database systems are mainly preventive. These
measures sometimes are penetrated by malicious attacks
and may cause damages in database systems [2, 3]. So
data recovery after damage becomes an important issue
[16]. In modern database systems, the survivability and
availability are becoming key criterions. More and more
database systems are devoted to protect themselves against
syntactically correct and semantically damaging transac-
tions, which could arise because of malicious attacks (for
example, SQL injection, cross-site script attack). The com-
plexity for recovery from malicious attacks is caused by
damage spread: the results of malicious transactions can

affect the execution of some other transactions [8, 9]. In-
formally, when a transaction Ti reads a data item x updated
by another transaction Tj (we say Ti reads x from Tj), Ti

is directly dependent on Tj (Ti is an affected transaction).
If a third transaction Tk is dependent on Ti, but not directly
dependent on Tj , then Tk is indirectly dependent on Tj . It
is easy to see that, when a (relatively old) transaction Bi

that updates x is identified malicious, the damage on x can
spread to every data item updated by a transaction that is
dependent on Bi directly or indirectly. The goal of damage
recovery is to locate each affected transaction and recover
the database from the damage caused on the data items up-
dated by every malicious or affected transaction (damage
assessment and data recovery).

Approaches for damage assessment in existing recovery
models [1, 4, 12]are based on dependencies between trans-
actions. In order to obtain the dependencies, we should
generate a log which records data items read or written by
transactions. For each data item that are manipulated by
transactions, the row number, column number, before im-
age (the value before modified) and after image (the value
after modified), and operate time should be recorded in the
log. Existing mechanisms in DBMS could not provide the
functions:

1) Conventional undo/redo log is only for write opera-
tions, and can not capture read operations for transactions;

2) Existing auditing mechanisms are designed to audit
database statements, privileges, or schema objects. The au-
dit is over the “table level”. Namely, when an operation
is executed on a table, information about user, privilege,
operate time, SQL statement etc. for the operation can be
logged. Unfortunately, the audit can not obtain data items
that are manipulated by the operation.

In order to record data items that are read or written by a
transaction, we must record the data items that are operated
by every SQL statements inside the transaction. That is not
an easy work:

1) In common cases, we could not calculate data items



that are read or written by a SQL statement until the state-
ment is executed. We should record the data items in the
executing period of the statement;

2) The damage assessment locates damage data items
based on read-write dependencies between transactions:
Suppose a transaction T reads a data item which is modi-
fied by a malicious transaction before, damage may spread
while T writes some other data items latter [1, 4, 12]. Es-
pecially, if T executes a statement with subqueries, it could
be inferred that T would read the data items involved in
subqueries impliedly. If a data item involved in subqueries
of the statement was modified by another malicious trans-
action before, the read operation in the subqueries for T
would also cause the spread of damages if T writes some
other data items latter. Therefore, for each SQL statement
in a transaction, it is indicated that not only the outer SE-
LECT sub-clause but also the nested subqueries in the SE-
LECT statements should be recorded as read operations, so
should subqueries in the UPDATE, DELETE, or INSERT
statements. Unfortunately, existing approaches could not
record data items read by subqueries inside a SQL state-
ment. So damage spread caused by read operations in the
subqueries of the statement could not be captured by dam-
age assessment (see Example 1).

In this paper: 1) We propose a concept of “Extended
Read” operation which could represent subqueries inside a
SQL statement. It is proved that extend read may cause
damage spread. 2) Based on the concept of extend read, a
“Fine Grained Transaction Log” (FGTL) is proposed which
could record data items manipulated by all write and ex-
tended read operations for transactions. A prototype system
FGTL Generator is established to obtain correct FGTL effi-
ciently. 3) In the prototype system FGTL Generator, FGTL
is put in the database system (denoted Transaction Log ta-
ble). For security, it is indicated that the Transaction Log
table should not be modified by user transactions. There-
fore, the problem of protection for FGTL is discussed.

The rest of this paper is organized as follows. In Section
2 we discuss related work. Section 3 is devoted to FGTL.
Section 4 provides the results of a detailed performance
study of the prototype system FGTL Generator based on
the TPC-W Benchmark. Section 5 summarizes this paper
with its main contributions and an outline of future work.

Example 1 malicious transaction B: UPDATE item SET
i id = 15 WHERE i cost = 100; benign transaction G: UP-
DATE order line SET ol qty =200 WHERE ol i id IN (SE-
LECT i id FROM items WHERE i cost =100); The benign
transaction G would like to modify the quantities of the
products whose price is 100, and set the quantities to 200 in
the table order line. Now before G is executed, malicious
transaction B modified i id of the products whose price is
100, and then G modifies ol qty for these products. After G
is executed, damage spreads from i id of table item to ol qty

of table order line. Existing methods could not record the
data item i id read by the subquery “SELECT i id FROM
items WHERE i cost =100”, so the damage spread could
not be captured by damage assessment.

2. Related Work

There are several models for data recovery: Ammann
[1] first introduced the read-write dependency method to
database systems, and proposed an “on-the-fly” recovery
model based on the transaction dependency. The model
logged transaction history in executing period of trans-
actions, and established the dependencies of transactions
based on the history, after that undoes all the malicious and
affected transactions. [5, 13] described the architecture of
the “on-the-fly” recovery model and [7, 15] illustrated a
prototype system ODAR which provides recovery for com-
mercial database systems. Evaluations towards the perfor-
mance of ODAR are given in [14].

P.Liu adopted the approach of extracting read informa-
tion from the transaction profiles [1]. The approach ana-
lyzes the source code of each type of transaction off line
and gets the read set template of that type. When a trans-
action T is submitted to the database, the read set template
is materialized for T ’s type. The approach of transaction
profiles has some limitations: 1) It could only be applied to
specific applications and can only capture read data items
for certain SELECT statements in the read set template. 2)
Subqueries in SELECT and write operations could not be
recorded, either. [10] proposed an extended data depen-
dency log to classify read and write operations. A new def-
inition of transaction is given to represent “if-else” state-
ment. With this log, data recovery could be robust. This
log is proposed in the level of application, but in the level
of databases, we can not obtain the semantics such as if-
else clause presented in application level. The log could not
be applied to real application systems. [6, 11] illustrated a
transaction log which rewrites the transaction history. The
prefix of the rewritten history serializes exactly the set of
benign transactions, and the suffix of the rewritten history
includes special state information to describe affected trans-
actions as well as malicious transactions. In data recovery,
only the suffix of the transaction history needs to be undone.
The log is applied to keep more benign operations, and con-
structing the log is also based on recording data items for
read and write operations. The problem on how to construct
the transaction log is not mentioned.

3. Fine Grained Transaction Log (FGTL)

In order to define the fine grained transaction log, we
propose some definitions as follows:



Definition 1 Write Operation
Given a SQL statement t, if t is a statement for update-
involved operation, such as INSERT, UPDATE, and
DELETE, then t is a write operation.
Definition 2 Extended Read Operation
Given a SQL statement t, if t satisfies one of the following
recursive conditions, then t is an extended read operation:
1) t is a SQL statement SELECT;
2) t is a subquery statement of the “WHERE” sub-clause in
a write operation;
3) t is a subquery statement in an extended read operation.
Definition 3 Association Degree for a SQL statement
Given a SQL statement t, the Association Degree of t is the
number of the extended read operations involved in t.
In the following discussion, for simplification, we use “read
operation” to substitute “extended read operation”. The fine
grained transaction log is defined as follows.
Definition 4 Fine Grained Transaction Log
A Fine Grained Transaction Log is a set of log entries and
it satisfies the following conditions:
1) a log entry is a five-tuple: [TRASATIONID, OPTYPE,
ITEM, BEFOREIMG, AFTERIMG, TIME] 1 , and each log
entry is built according to a data item which a transaction
reads or writes;
2) when a transaction is committed, entries for write and
read operations involved in the transaction are added to the
log.

3.1. Architecture of the Fine Grained
Transaction Log Generator

In this section, a prototype system Fine Grained Trans-
action Log Generator (FGTL Generator) is introduced,
which generates the FGTL. The architecture of the FGTL
Generator is illustrated in Figure 1. There are several com-
ponents in the FGTL Generator: DB Monitor, Read Log
Generator, and a database (including Transaction Log ta-
ble, Triggers and Temporary Tables). Transaction Log table
records all log entries for read and write operations. In or-
der to generate log entries for read operations, firstly we
should capture the SQL statements submitted by a Client
user before they are sent to the database, and then analyze
and rewrite the statements to obtain the read log entries. DB
Monitor is introduced to obtain SQL statements submitted
by the Client user. The tasks for DB Monitor are: 1) extract
a SQL statement and send it to Read Log Generator; 2) after

1TRANSATIONID denotes the transaction that reads or writes the data
item. OPTYPE is an item of SELECT, UPDATE, INSERT, DELETE: for
read operation, OPTYPE = SELECT. ITEM involves tablename, rownum-
ber, and column. BEFOREIMG represents the value before the data item
is modified, and AFTERIMG denotes the value after modified. Especially,
if OPTYPE = DELETE, AFTERIMG = null; if OPTYPE = INSERT, BE-
FOREIMG = null. TIME is the timestamp when the operation on the data
item executes.
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Figure 1. Architecture of FGTL Generator

the statement is processed by Read Log Generator, receive
the statements from Read Log Generator and sends them to
the database (a single SQL statement may be divided into
several statements); 3) if there are return results from the
database, sends the results to the Client user.

Read Log Generator generates read log entries. Based
on the DB Monitor, Read Log Generator records data items
read by transactions in the Temporary Tables by using a “Di-
vide and Combination algorithm”, and then read log entries
are written to the Transaction Log table. Triggers are used
to generate write log entries: for each user table, a trigger
is created. If a write operation happens on a data item for a
user table, the trigger write a log entry to Transaction Log
table in the database.

3.2. Logging Read Operations for a SQL
Statement

The work for Read Log Generator is to log all read
operations in SQL statements sent from the DB Monitor.
These statements include SELECT statements (may have
subqueries) and UPDATE/ INSERT/ DELETE statements
with subqueries. It’s difficult to log the read operation
which is a subquery of a SQL statement. In order to solve
this problem, a “Divide and Combination algorithm” is
proposed to log the read operations. The algorithm divides
a statement into several SELECT . . . INTO. . . statements
to record read data items in temporary tables and then
combines the generated statements into a SQL sequence,
which has the same execution results with the initial SQL
statement. The process is described as follows: 1) For a
SELECT statement whose Association Degree is n, (n+1)
statements are created: the former n statements are SE-
LECT . . . INTO. . . statements. They are created according
to the order from the inner to the outer subqueries. A
SELECT . . . INTO . . . statement stores several records in a
temporary table. One record represents a data item read by
a relative subquery. The last SELECT statement is created



Input: a SQL statement (Association Degree = n) sent from DB Monitor.

Output: a sequence of SQL statements sent back to DB Monitor which logs all read operations for the input 

SQL statement.

STEP1: if it is a SELECT statement (all subqueries are marked with a Layer Number, from the inner to the 

outer denoted 1, 2, …, n. Suppose the statement is ”SELECT column1, …, columnn… FROM…”)

from the most inner subquery to outer (Layer Number from 1 to n), for each subquery i, create 

SELECT … INTO TMPTABLEi…. The temporary table TMPTABLEi records the intermediate 

results for subquery i (each row of TMPTABLEi denotes one data item read by the subquery, 

and involves the value of the primary key for the data item. The primary key identifies the 

rownumber of the data item). If the outer subquery i+1 uses the results subquery i returns, let 

it read from TMPTABLEi derectly; 

after n SELECT … INTO… statements are created, create a statement SELECT column1,…,

columnn FROM TMPTABLEn… to return results to the Client user;

send (n+1) SELECT statements to DB Monitor;

STEP2: if it is a write operation with subqueries (all subqueries are marked with a Layer Number, from the

inner to the outer denoted 1,2,…,n)

for subqueries 1 to n, create n SELECT…INTO… statements using the method for a SELECT

statement with subqueries mentioned in the STEP 1;

after n SELECT … INTO… statements are created, create a write operation according to initial 

SQL statement for modification. If it needs to use results of subquery i returns, let it read 

from TMPTABLEn directly;

send (n+1) SQL statements to DB Monitor;

Figure 2. Divide and Combination Algorithm

to return results to the Client user. In the whole process, if
the outer subquery uses results of inner subquery, it reads
from the temporary table which records the intermediate
results for the inner subquery; 2) If the statement is an (a)
UPDATE/ INSERT/ DELETE statement with subqueries
(Association Degree = n). (n + 1) statements are created.
For each subquery, a SELECT . . . INTO. . . statement is
created to store read data items in a temporary table using
methods in 1), and the (n + 1)th statement is an (a)
UPDATE/ INSERT/ DELETE statement for modification.
After all generated SQL statements are executed success-
fully in the database, temporary tables which record all
data items read by the initial SQL statement are created.
The “Divide and Combination” algorithm is described in
Figure 2.

We give two examples to illustrate the “Divide and Com-
bination” process.

Example 2 For the statement: SELECT ol qty
FROM order line WHERE ol i id IN (SELECT i id
FROM item WHERE i cost >100), the Association De-
gree is 2. According to the Divide and Combina-
tion Algorithm, 3 SELECT statements are generated:
1) SELECT i id INTO TMPTABLE1 FROM item
WHERE i cost>100; 2) SELECT ol id, ol qty INTO
TMPTABLE2 FROM order line where ol i id IN (SE-
LECT i id from TMPTABLE1); 3) SELECT ol qty from
TMPTABLE2; The three SQL statements are sent to

database orderly.
Example 3 For the statement: UPDATE order line SET

ol qty =200 WHERE ol i id IN (SELECT i id FROM items
WHERE i cost >100), the Association Degree is 2. Ac-
cording to the Divide and Combination Algorithm, two
SQL statements are generated: 1) SELECT i id INTO
TMPTABLE1 FROM item WHERE i cost>100; 2) UP-
DATE order line SET ol qty = 200 WHERE ol i id IN (SE-
LECT i id from TMPTABLE1); The two SQL statements
are sent to the database orderly.

The correctness of the Divide and Combination Algo-
rithm is proved in the following.

Theorem 1 For an input SELECT statement with Associa-
tion Degree=1, the sequence of SQL statements generated
by the Divide and Combination Algorithm has the same ex-
ecution results with the input SQL statement.

Proof We denote the input SQL statement as SELECT Tar-
getList FROM TableList WHERE Condition. the Divide and
Combination Algorithm divides the statement into 2 state-
ments:
1) SELECT TargetList modified INTO TMPTABLE
FROM TableList WHERE Condition;
2) SELECT TargetList FROM TMPTABLE.
Here TargetList denotes the set of target columns for the
enquiry, and TargetList modified denotes the set of target
columns as well as the column of primary key. Obviously:
TargetList ⊂ TargetList modified.



Suppose the execution results set for the input statement
is u input, the execution results set for the sequence
of 1) 2) which are generated by the Divide and Com-
bination Algorithm is u division, and the intermediate
results set for TMPTABLE in divided statement 1) is
u TMPTABLE. In the following we prove that u input
= u division. According to the relational algebra, we have:
1)u input = πTargetList(δCondition(TableList));
2)u TMPTABLE = πTargetList modofied (δCondition

(TableList));
3)u division = πTargetList(TMPTABLE).
From2) and 3), we conclude that:
u division = πTargetList(πTargetList modified(δCondition

(TableList))).
According to the Divide and Combination Algorithm,we
have TargetList ⊂ TargetList modified. So
u division = πTargetList(δCondition(TableList)) =
u input.

Theorem 2 For an input SQL statement with Association
Degree=n, the sequence of SQL statements generated by the
Divide and Combination Algorithm has the same execution
results with the input SQL statement.

Proof 1)if the input statement is a SELECT statement, we
denote the statement as:
SELECT TargetListn FROM TableListn WHERE
Coditionn SELECT TargetListn−1 FROM
TableList(n−1) WHERE Condition(n−1). . . SELECT
TargetList1 FROM TableList1 WHERE Condition1

According to the Divide and Combination Algorithm,
the SQL statement is divided into (n + 1) statements:
(1) SELECT TargetList modified1 INTO TMPTABLE1

FROM TableList1 WHERE Condition1;
(2) SELECT TargetList modified2 INTO TMPTABLE2

FROM TMPTABLE1 WHERE Condition2;
. . . . . . . . . . . . . . . . . . . . . . . .
(i) SELECT TargetList modifiedi INTO TMPTABLEi

FROM TMPTABLE(i−1) WHERE Conditioni;
. . . . . . . . . . . . . . . . . . . . . . . .
(n) SELECT TargetList modifiedn INTO TMPTABLEn

FROM TMPTABLE(n−1) WHERE Conditionn;
(n+1) SELECT TargetListn FROM TMPTABLE(n−1).

The divided SQL statement (i) is corresponding to a sub-
query with the Layer Number = i. Some properties of a
nested SELECT statement is described as follows:
(1) It could be considered that all subqueries of the state-
ment are executed independently in the order from 1 to n
for the Layer Number, namely, the ith subquery should be
executed after the (i-1)th subquery;
(2) The subquery with the Layer Number i returns results to
the outer subquery with The Layer Number (i + 1) (here,
i = 1, 2, . . . , n − 1).The subquery with the Layer Number
n returns results to the Client user.

According to the properties above and Theorem 1, we
can conclude that for each subquery with the Layer Numer
i, the ith statement in the sequence of statements generated
by the Divide and Combination Algorithm keep the results
in TMPTABLEi which involves the intermediate execu-
tion results of the subquery with the Layer Numer i for the
input statement (i = 1, 2, . . . , n). The (n + 1)th statement
in the sequence of statements generated by the Divide and
Combination Algorithm returns the same execution results
with the input SQL statement.
2) if the statement is a INSERT/ UPDATE/ DELETE state-
ment with Association Degree n, similarly to 1), we con-
clude that for each subquery with the Layer Numer i, the
ith statement in the sequence of statements generated by
the Divide and Combination Algorithm keep the results in
TMPTABLEi which involves the intermediate execution
results of the subquery with the Layer Numer i for the input
statement (i = 1, 2, , n), and the same results are affected
by the (n + 1)th statement with the input statement.

From 1) and 2), we can conclude that the sequence of
SQL statements generated by the Divide and Combination
Algorithm has the same execution results with the input
SQL statement.

Theorem 3 the Divide and Combination Algorithm logs all
read operations for a SQL statement.

Proof According to Definition 2, the read operations in-
volve two categories: subqueries in SELECT statements
and subqueries in write operations. For a SQL state-
ment with Association Degree equals n, after the n SE-
LECT...INTO... is executed in the Divide and Combination
Algorithm, TMPTABLE1 to TMPTABLEn are cre-
ated which record all data items read by the input statement.
So all read operations for the statement are logged.

3.3. Fine Grained Transaction Log Genera-
tion Algorithm

The Divide and Combination Algorithm generates read
log entries for read operations. Based on Algorithm 1, the
Fine Grained Transaction Log Generation Algorithm is
proposed. The algorithm works as follows: DB Monitor
captures statements of user transactions. For each SQL
statement with read operations, the statement is sent to
Read Log Generator. The Read Log Generator divides
the statement into several statements and combines the
statements into a sequence, and then sends the sequence
back to DB Monitor. DB Monitor submits the sequence of
SQL statements to the database. After all statements in the
sequence are executed, read log entries based on temporary
tables are generated. For write operations, triggers capture
the modification on data items and then write log entries are
generated. The Fine Grained Transaction Log Generation



Input: user transactions consist of SQL statements.
Output: the Fine Grained Transaction Log.
DB Monitor captures statements of user transactions;
for each statement

if the statement is a write operation without subqueries
DB monitor submits it to database;

else 
     send it to Read Log Generator;
     using the Divide and Combination Algorithm , Read Log Generator produces a sequence of SQL 

statements and sends them back to DB Monitor;
DB monitor submits the SQL statements to the database. After the statements are executed 

successfully, temporary tables which record data items for read operations are created;
     based on the temporary tables, store records with fields TRASATIONID, OPTYPE, ITEM, and TIME  

in Transaction Log table;
the triggers capture the write operations and records with fields TRASATIONID, OPTYPE, ITEM, 

BEFOREIMG, AFTERIMG, and TIME  are stored in Transaction Log table in database;

Figure 3. Fine Grained Transaction Log Generation Algorithm

Algorithm is as Figure 3:

Theorem 4 The Fine Grained Transaction Log Genera-
tion Algorithm logs each write and read operation for user
transactions.

Proof 1) For the write operations in transactions, triggers
capture the modifications on data items and write log en-
tries to the Transaction Log table.
2) the Divide and Combination Algorithm captures all read
operations in a SQL statement. Using the Divide and Com-
bination Algorithm, the Fine Grained Transaction Log Gen-
eration Algorithm logs read operations for all transactions,
and log entries are written to the Transaction Log table, too.

From 1) and 2), we conclude that all write and read op-
erations for user transactions are logged in the Transaction
Log Table.

3.4. Protection for the Transaction Log

The transaction log is generated to record data items
which are read or written by user transactions, and it is the
data source for damage assessment. It is indicated that the
transaction log should not be modified by any user transac-
tion. In FGTL Generator, DB Monitor could protect trans-
action log from being modified by user transactions: Before
a SQL statement of a user transaction is sent to the database
system, DB Monitor captures the statement and checks if
the statement would attempt to access the Transaction Log
table. If so, DB Monitor would discard the statement and
do not submit it to the database. Therefore, only statements
which do not attempt to access the Transaction Log table
can be executed for user transactions. In this way, the secu-
rity of the transaction log could be guaranteed.

4. Experiment results and analysis

In this section, we give two experiments to examine the
performance of FGTL Generator. In the first experiment,
we build a test environment to examine the throughputs
varying under several Association Degrees. The Associ-
ation Degrees is used to quantify read operations for test
transactions. In the second experiment, we use TPC-W plat-
form to compare throughputs of with and without FGTL
Generator. TPC-W is a transactional web e-commerce
benchmark introduced by the Transaction Processing Per-
formance Council. TPC-W specifies an e-commerce work-
load that simulates the activities of a retail website which
produces workload on the backend databases. An EB (Em-
ulated Broswer) simulates a concurrent Client user. In the
second experiment, the numbers of EBs in TPC-W plat-
form are set from 100 to 500. For each number of EBs, we
test the values of WIPS, WIPSb, WIPSo with and without
FGTL Generator. WIPSb measures throughput under a test
collection with 5% write transactions and 95% read trans-
actions; WIPS measures throughput under a test collection
with 20% write transactions and 80% read transactions; and
WIPSo measures throughput under a test collection with
50% write transactions and 50% read transactions. Over-
heads for FGTL Generator for each EBs are also analyzed.
In TPC-W, number of EBs and parameter NUM ITEM af-
fect the size of the database.

4.1. Test Environment

We use SQL Server 2000 as the underlying DBMS.
FGTL Generator, TPC-W platform (used in the second
experiment) and the database system are deployed in two
distributed PCs. The database is running on a PC with
Windows NT, Pentium R 2.8GHZ CPU, 2GB main mem-
ory. The FGTL Generator and TPC-W platform is run-
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ning on a PC with Windows NT, Pentium R 2.8GHZ CPU,
1GB main memory. These two PCs are connected by a
10/100Mbps switch LAN. FGTL Generator is implemented
using Eclipse on JAVA platform.

4.2. NUM of Transactions per Second vs.
Association Degree

The objective of this experiment is to study throughput
of FGTL Generator under different amounts of read oper-
ations (quantified with Association Degree). To show the
varying of the throughput (measured with numbers of trans-
actions per second) under different Association Degrees, we
construct 5 collections of transactions. The collections’ As-
sociation Degrees equals 1 to 5 separately. (a collection
C’s Association Degree equals i means that for each SQL
statement s of each transaction in collection C, the Associ-
ation Degree of s equals i). Each collection has 1,000 short
transactions, and each transaction consists of a SELECT
and an UPDATE statements with the same Association De-
gree. The number of Concurrent User is 1, Database Size
(records) is 5,000, and Record Size (bytes) is 160. We com-
pare throughputs with and without FGTL Generator (see
Figure 4).

From Figure 4 we can see that throughput decreases by
20.7%, 5.4%, 54.5%, 69.5%, 81.7% when Association De-
grees increase from 1 to 5 when FGTL Generator runs. We
conclude that a high Association Degree leads to a sharp de-
crease of throughput for FGTL Generator. This can be ex-
plained that high Association Degree indicates that a large
amount of read operations is generated, and a large amount
of SQL statements are sent to Read Log Generator. For a
test collection of transactions with the Association Degree
equals i, each SQL statement of a transaction inside the col-

lection is divided into (i+1) statements by Algorithm 1. So
additional i statements would be submitted to the database
for each SQL statement with subqueries. The total number
of SQL statements executed for the test collection increases
sharply. The dividing process and the executing process for
so large amount of additional statements are time consum-
ing. Therefore, the higher Association Degree would cause
lower throughput for FGTL Generator.

4.3. Throughput in TPC-W Benchmark

The reason we choose TPC-W Benchmark for our ex-
periment is: 1) TPC-W simulates a e-commerce workload
which produces workload on the backend database, and the
availability of FGTL Generator can be shown; 2) TPC-
W provide three web interaction patterns and use WIPSb,
WIPS, WIPSo to measure performances under different
web interaction patterns. In the three patterns, amounts of
read transactions and write transactions can be controlled.
So it is possible for us to calculate which operations would
lead to larger decrease of performance.

The objective of this experiment is to study throughput
of FGTL Generator under different amounts of EBs. The
numbers of EBs are set 100, 200, 300, 400, and 500. In
TPC-W platform, the size of database and test collection
of transactions could considerable large. So if each read or
write operation is logged, the size of Transaction Log ta-
ble should be large and the test would consume a very long
time. In order to simplify the test, we set some “sensitive
columns” for user tables in the database for TPC-W plat-
form (if a column is set “sensitive”, it means that only read
and write operations on that column would be logged in
the Transaction Log table, and operations on other column
would not be logged). In the experiment, we set the column
ol qty in table order line, the column i cost in table item,
the column addr id in table address and column scl qty in
table shopping cast line as sensitive columns. So that the
size of Transaction Log table could be reduced. The param-
eter NUM ITEM is set 10K for the test. For each number of
EBs, we compare the throughputs of WIPSo, WIPS, WIPSb
of with and without FGTL Generator. The overheads of
throughputs for FGTL Generator are listed in Figure 5.

From Figure 5, we can see that: 1) With the number
of EBs increasing, the overhead of FGTL Generator be-
come large. This could be explained that a large amount
of EBs indicates that a large amount of user transactions
is being processed in the database system. Therefore, the
amount of read and write operations which are being pro-
cessed by FGTL Generator is also large, so that the Fine
Grained Transaction Log Generation Algorithm would gen-
erate a large amount of log entries in the Transaction Log
table. Creating such a large size transaction log is consid-
erable time consuming. We conclude that larger size of the



Throughput(WIPSo) EBs=100 EBs=200 EBs=300 EBs=400 EBs=500
without FGTL Generator 14 28 35 39 42

with FGTL Generator 13 23 27 30 32
Overhead 7.14% 17.86% 22.86% 23.08% 23.81%

Throughput(WIPS) EBs=100 EBs=200 EBs=300 EBs=400 EBs=500
without FGTL Generator 14 30 41 55 70

with FGTL Generator 13 24 32 40 49
Overhead 7.14% 20.00% 21.95% 27.27% 30.00%

Throughput(WIPSb) EBs=100 EBs=200 EBs=300 EBs=400 EBs=500
without FGTL Generator 14 32 42 56 71

with FGTL Generator 13 25 32 40 49
Overhead 7.14% 21.88% 23.81% 28.57% 30.99%

Figure 5. Throughput vs. NUM of EBs

transaction log leads to lower throughput for FGTL Gen-
erator. The decrease of throughput for FGTL Generator is
mainly due to the time cost of logging read and write op-
erations. For write operations, log entries are generated by
triggers, and for read operations, log entries are temporarily
stored in temporary tables and then written to the Transac-
tion Log table. Either of the two processes is time consum-
ing. 2) In WIPSo, the overhead of throughput for FGTL
Generator is the lowest and in WIPSb is the highest. This
can be explained that WIPSb measures throughput under a
test set with 5% write transactions and 95% read transac-
tions. The proportion of read operations is the largest, and
in contrast, proportion of read operations for WIPSo is the
smallest (50%). Compared the read with the write opera-
tions, logging read operations consumes more time. The
cause may be due to the complexity for logging read op-
erations: for each SQL statement with Association Degree
equals i, additional i statements are generated, and i tempo-
rary tables are created to store read data items. The process
of division for SQL statements and writing read log entries
from temporary tables to Transaction Log table would con-
sume much time. In contrast, for write operations, triggers
only capture modifications on data items and log the write
operations in the transaction log directly. This process con-
sumes much less time.

5. Conclusions and Future Work

In this paper, we propose a concept of Extended Read
Operations and illustrate how the Extended Read Opera-
tions would cause the damage spreading in database sys-
tems. Then a Fine Grained Transaction Log (FGTL) which
logs all data items read or written by transactions is intro-
duced. FGTL makes up for the limitations of conventional
undo /redo log and auditing mechanisms, and provides a
correct and fine-grained transaction history for the data re-
covery. Compared with existing transaction logs, FGTL

could keep record of the data items read by subqueries in-
side SQL statements. A prototype system FGTL Generator
is also established to generate the fine grained transaction
log. FGTL Generator also provides a protection mecha-
nism for the transaction log. Experiment based on TPC-
W Benchmark indicates that the throughput decreases by
7.14% to 30.99% with FGTL Generator (the number of
EBs from 100 to 500). Now based on FGTL Generator,
a dynamic data recovery system is being developed, and the
recovery would provide continues but maybe degraded ser-
vices while damage is being repaired. The constraint of data
integrity in database system is considered in the dynamic
recovery system.
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