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Elevator Pitch

When scheduling ads for breaks of unknown lengths,

be flexible (greedy > knapsack)

with an eye to the future (forward looking > myopic)
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Introduction
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Figure: Growth in investment in cricket broadcasts over 2002 - 2007

Cricket is big business:

Ad volumes in cricket show a growth of more than three times from

2002 - 2007 (TAM Media research)

Cricket tournaments such as IPL T-20 earn approx. US $150M for

the broadcaster, with per-second rate approx. US $1100 (WSJ 2010)

October 4, 2011 Living Analytics Research Centre Slide 4 / 37



Introduction

Figure: A game of cricket

Challenge in live broadcasting: stochastic break lengths, mainly:

Breaks between overs

Breaks after a wicket has fallen
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Literature Review

Random Yield / Capacity

Ciarallo et al. (1994), Yano and Lee(1995), Wang and

Gerchak (1996)

Stochastic Knapsack

Kleywegt and Papastavrou (1996), Witchakul, Ayudhya,

Charnsethikul(2008)

Stochastic Cutting Stock / Recourse

Gilmore and Gomory (1961), Scull (1981), Birge and

Louveaux (1997)

Advertisement Scheduling

Bollapragada and Garbiras(2003), Kimms and

Muller-Bungart(2007)
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Approaches

Two approaches:

1 Analytical approach: Find the optimal solution with minimal

constraints

2 Heuristic approach: Find a near optimal solution with constraints
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Model
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Assumptions Breaks {b1, b2, . . . , bn} occur sequentially, 1 ≤ n ≤ N

Ads of two types, of size S and L = 2S , of infinite number

and decreasing value

Ads that are not fully aired do not earn any revenue
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Cases

Schedulers either know the duration of the current break, or they do not.

We discuss Optimal Policy for each scenario under four cases:

Breaks
of size

S,2S,..,MS

Base Case
Breaks of size S,2S

Breaks
of size
0,S,2S

Breaks of size 
0, S, 2S,...,MS

Figure: Four cases
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Known Break Size

The scheduler knows the size of the break which he is currently

scheduling, but the sizes of the subsequent breaks are unknown

Corresponds to cases where the on-field director can predict the

duration of the break
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Base Case : Known Break Size

If the b1 = S , then the Optimal Policy is to schedule s1.

Theorem

When n breaks remain, and b1 = L, the optimal policy is to:

select l1 if l1 ≥ sn + sn+1

select (s1, s2) otherwise
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Base Case : Known Break Size

Intuition The Optimal Policy decides on a minimum threshold for l1

by minimizing the loss incurred if breaks b2, . . . , bn are all

small, since
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Stochastic number of breaks : Known Break Size

Breaks of size zero can occur with probability p0

Breaks of size S and L occur with probabilities p1 and p2 respectively

p0 + p1 + p2 = 1

Theorem

When n breaks remain, p0 > 0, and b1 = L, the optimal policy is to:

select l1 if (p0 + p1)
n−1l1 ≥

n−1
∑

i=0

[(

n − 1

i

)

p
(n−1)−i

0 pi1 (si+1 + si+2)

]

select (s1, s2) otherwise
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Stochastic number of breaks : Known Break Size

Intuition
[

(

n−1
i

)

p
(n−1)−i

0 pi1

]

is the probability that of the

remaining n − 1 breaks, i breaks are of size S and the

others are of size zero.

The Optimal Policy shifts the threshold for l1 based on

the probability distribution; as p0 increases, l1 is

compared to a value closer to (s1 + s2) than (sn + sn+1)
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Multiple break sizes : Known Break Size

Maximum break size possible is MS , and size of b1 is mS , 1 ≤ m ≤ M

Breaks of size i can occur with probability pi ,
∑

M

i=1 pi = 1

Theorem

If b1 = mS and n breaks remain, then the Optimal Policy is to select

(l1, . . . , lλ, s1, . . . , sm−2λ), where λ is the largest index such that 2λ ≤ m

and:

lλ ≥ sm−2λ+n + sm−2λ+n+1
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Multiple break sizes : Known Break Size

Intuition As index i decreases, li becomes more likely to be

selected in the ⌊m2 ⌋ breaks, since its value increases and

the threshold sm−2i+n + sm−2i+n+1 decreases.

Compared to the Greedy Policy, which looks at all

possible combination of ads to select the highest earning

combination, the Optimal Policy is less complex and

scales well
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Stochastic number of breaks of multiple sizes : Known

Break Size

Maximum break size possible is MS , and size of b1 is mS , 1 ≤ m ≤ M

Breaks of size i can occur with probability pi ,
∑

M

i=0 pi = 1

Theorem

If b1 = mS, p0 > 0, and n breaks remain, then the Optimal Policy is to

select (l1, . . . , lλ, s1, . . . , sm−2λ), where λ is the largest index such that

2λ ≤ m and:

(p0 + p1)
n−1lλ ≥

n−1
∑

i=0

[(

n − 1

i

)

pn−1−i

0 pi1(sm−2λ+i+1 + sm−2λ+i+2)

]
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Stochastic number of breaks of multiple sizes : Known

Break Size

Intuition The Optimal Policy for stochastic number of breaks of

multiple sizes is a combination of policies for stochastic

number of breaks and breaks of multiple sizes.
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Unknown Break Size

Each break begins without the schedulers knowing its duration

Schedulers only use the break size distribution to decide on ad

selection
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Base Case : Unknown Break Size

Breaks can be of size S with probability p, and size L with probability

1− p

Theorem

When n breaks remain, and the break size is unknown, the Optimal Policy

is to:

1 select l1 if (1− p)l1 ≥ ps1 + (1− p)(s1 + s2)

2 select (s1, s2) if (1− p)l1 < psn + (1− p)(sn + sn+1)

3 select either l1 or (s1, s2) otherwise
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Base Case : Unknown Break Size

Intuition The threshold for selecting l1 is based on myopic

comparison of expected values since each break is IID

Region of indifference (Case 3) exists because both l1

and (s1, s2) are guaranteed to be scheduled at some

point during the match

indifference

l
1
 →

R
l
 −

 R
s
 

→

1

1−p
(sn + sn+1)

1

1−p
(s1 + s2)

(s1, s2)
preferable

l1
preferable
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Stochastic number of breaks : Unknown Break Size

Breaks of size zero can occur with probability p0

Breaks of size S and L occur with probabilities p1 and p2 respectively

p0 + p1 + p2 = 1

Theorem

When k = n, p0 ≥ 0, and break sizes are unknown, the Optimal Policy is

to:

1 select l1 if p2l1 ≥ p1s1 + p2(s1 + s2)

2 select (s1, s2) otherwise
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Stochastic number of breaks : Unknown Break Size

Intuition Region of indifference no longer exists - there is no

guarantee that both l1 and (s1, s2) will be scheduled

since subsequent breaks need not be of size S or L

indifference

l
1
 →

R
l
 −

 R
s
 

→

l1
preferable

1

1−p
(s1 + s2)

(s1, s2)
preferable
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Larger breaks of unknown size

With larger breaks of unknown size, the problem becomes intractable!

The optimal policy should give the ideal permutation of ads to be

scheduled

Number of permutations exponentially increases with break size

M Number of ad schedules

4 5

5 8

6 13

7 21
...

...

Table: Number of possible ad schedules for each value of M
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Heuristics

Consider:

three ad lengths

multiple break lengths

break length known when scheduling

need to satisfy service level guarantees, or be penalized
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Parameters

Parameter Value

Ad lengths 10, 20, 30

Number of ads of each type ∼ U(1, 3)

Break lengths ∼ U(10, 70)

Mean Break Length 40

Number of advertisers 20

Number of breaks / match 50

Number of matches (trials) 100

Revenue / Second / Advertiser ∼ U(3500, 5500)

Target service level 80%

Service level penalty $1000 per sec
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Description of heuristics

Greedy Algorithm (foolish)

For each break, while there is time remaining,

Find max ad length that can be fit in time remaining

Find ad with max revenue of that length s.t:

◮ It is available in the inventory

◮ It has not been scheduled in this break

If no ad found of this length, go to lower length and

repeat until one is found or none available

Certainty Equivalent

We solve an IP and generate buckets of ads before the

start of the match

Bundle size based on expected break size

Includes penalty for not meeting service level
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Description of heuristics

Modified Certainty Equivalent

IP same as for CE, but bucket size distribution based on

break size distribution

Fit the scheduled bins of closest matching into the

breaks once break length is known

Dynamic Modified Certainty Equivalent

Buckets are generated dynamically, whenever we run out

of buckets

IP same as for MCE, but number of buckets matches

number of breaks left

Perfect Information

Buckets are generated at the start but break sizes are known

at the time of generation
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Performance

Greedy CE MCE DMCE Perfect Info
5

 

6

 

7

 

8

 

9

A
ve

ra
g

e
 R

e
ve

n
u

e
 (

x1
0

0
,0

0
0

)

Figure: Performance of heuristics

Performance of greedy is better than bundling strategies!

Adaptive sub-modular systems (Golovin / Krause (2010))
◮ Greedy within 1− 1

e
of perfect information!
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Numerical Results

Aims Compare the Optimal Policy to the Greedy Policy, to

find conditions where the Optimal Policy most

outperforms the Greedy Policy.

Study the impact of service level commitments and the

impact of uncertainty on the performance of the

Optimal Policy.
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Deterministic number of breaks

Parameters Number of breaks: 50

Break size (sec) : ∼ B(10, 20)

Number of large ads : 50

Number of small ads : 100

Large ads values ($) : ∼ U(1000, 1200)

Small ads values ($) : ∼ U(200, 1000)

Explanation T-20 cricket has 50 breaks on average: 40 overs + 10

wickets

Values of large and small ads reflect real world data

Air time sold is equally split between small and large ads
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Revenues and Service Levels
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Figure: Average total revenue versus air time sold

Greedy Policy prefers to schedule small ads more than Optimal Policy

At ≈ 800s (service level is ∼ 80%), the Greedy Policy lets almost one short

break unused since it runs out of short ads to schedule
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Value of Flexibility
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Optimal Policy
Greedy Policy

Randomly selected large ads are split into two equally valued small ads, and

performance is observed as the ratio of large and small ads changes

Optimal Policy earns more than Greedy Policy when ratio is ≈ 1:1

Greedy Policy approaches Optimal Policy as ratio of small ads to large ads

increases; Optimal Policy does not show significant deviation
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Impact of Uncertainty

Parameters Break lengths : ∼ U(µ− δ, µ+ δ) where

µ = 60, 0 ≤ δ ≤ 50

Number of large ads : 100

Number of small ads : 200

Explanation The performance of the Optimal Policy is observed

when break sizes have a Uniform Distribution with mean

60 and the support is varied

Expected air time has increased =⇒ increase in the

size of our inventory
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Impact of Uncertainty
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Greedy Policy

Neither Optimal Policy nor Greedy Policy are significantly affected by

uncertainty, since large breaks and small breaks occur equally on average
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Break Sizes
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Mean 68.4 sec

Mode 69 sec

Standard Deviation 23 sec

Count 1231 breaks
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Ad Sales

Linear revenues:

◮ Mean = $4,120

◮ Standard deviation : $533

Ad format: 10, 15, 20 and 30 secs
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