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We can frame the stochastic ad scheduling problem when the break size of the current break
is known, as an adaptive submodular system following the description given in Golovin and
Krause(2010) [2].

Our aim is not to provide a rigorous theoretical proof that the system satisfies adaptive
submodularity, rather it is to describe the problem and intuitively explain how the features of
the system satisfy these conditions. If we succeed, we can conclude that the intractability of
the problem when scheduling ads with no prior knowledge of break lengths may be addressed
by using the adaptive greedy, which is proved to perform near optimally in such systems.

Case 0: Consider the ad scheduling problem when all breaks are of equal (or known) lengths
and of fixed number. Let A be the set of ads available in the inventory, and let f : 2A Ñ R�

be the revenue earned from scheduling ads from A. For any A1 � A, and ad a R A,

fpAY tauq � fpAq ¤ fpA1 Y tauq � fpA1q (1)

Equation (1) can be understood intuitively: set A offers a greater choice of (possibly higher
value) ads to schedule, therefore the marginal gain from scheduling a (if at all) from set A is
lower than the marginal gain from scheduling a from a smaller set A1. This system is thus
submodular.

Case 1: Consider the stochastic ad scheduling problem. In the first case, break length of only
the (current) break for which we are going to schedule ads is known, but break lengths (and
number) of future breaks are unknown and are distributed according to some distribution Φ.
At the start of each break of known length, we pick a set of ads to schedule, then wait for the
next break, select another set of ads accoring to the next break’s length, and so on. The policy
tree π in this case consists of as many levels as there are breaks, each node is a set of ads that
can be scheduled for that break, with as many child nodes as there are outcomes in Φ . Let
O be the set of ads that have been shown. Let utility function f : 2A � OE Ñ R� be the
utlity that depends on what ads we pick and what ads have been successfully shown. We define
favgpπq :� EΦrfpEpπ,Φq,Φqs as the expected utility of policy π. Let PpΦq be the probability
distribution over realizations.

We can show adaptive monotonicity as defined in Golovin and Krause(2010) by noting that
for any two policies π and π1 with policy trees T π and T π
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, the concatenated policy tree T π@T π
1

does not have a lower expected utility than T π, because subsequent layers in a policy tree offer
more scheduling opportunities that only help to increase the expected utility of π.

Also, for any policy π with policy tree T π, and for any 0 ¤ i   j,

favgpT
π
rjsq � favgpT

π
rj�1sq ¤ E

�
favgpT

π
risYtjuq � favgpT

π
risq

�
(2)

Equation (2) can be intuitively explained. Layer i � 1 of T πrisYtju is a distribution of items of
layer j of T πrjs, and our definition of favg ensures that the expected utility of policy π does not
decrease for each additional layer added to the tree. In fact, expected utility of policy π takes
into account breaks of small lengths (or zero lengths) in subsequent layers into account, therefore
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additional layers where breaks of larger lengths occur only serve to increase the expected utility
favg for a tree pruned at that layer. Thus the system can be shown to be adaptive submodular
over PpΦq.

While we have already found the optimal policy for this problem setting, we did find that
the Greedy performed almost on par with the Perfect Information case (§5.2 in my thesis [1]).
This is consistent with Golovin and Krause(2010), which proves that in adaptive submodular
systems, Greedy attains a value at least

�
1� 1

e

�
of the best policy.

Case 2: Finally, we consider stochastic ad scheduling problem when break lengths are unknown
before scheduling, but where we can observe the ex-post realization. A key challenge here is
that the sequence of ads in each item e will decide the state o for each break realization. We
could redefine e to be a permutation of a subset of ads of O, however, it is hard to find an exact
optimal policy because the number of such permutations may be intractable.

The definition of adaptive submodularity frees us from having to find the optimal policy if
we could prove that such a system is adaptive submodular for any policy, along the lines of
Case 1. We could then conclude that the adaptive Greedy performs near optimally, and hence
is a viable policy for ad scheduling under uncertainty.
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