
Information Retrieval Based Nearest Neighbor Classification
for Fine-Grained Bug Severity Prediction

Yuan Tian1, David Lo1, and Chengnian Sun2

1Singapore Management University, Singapore
2National University of Singapore, Singapore

{yuan.tian.2012,davidlo}@smu.edu.sg, suncn@comp.nus.edu.sg

Abstract—Bugs are prevalent in software systems. Some bugs
are critical and need to be fixed right away, whereas others are
minor and their fixes could be postponed until resources are
available. In this work, we propose a new approach leveraging
information retrieval, in particular BM25-based document
similarity function, to automatically predict the severity of
bug reports. Our approach automatically analyzes bug reports
reported in the past along with their assigned severity labels,
and recommends severity labels to newly reported bug reports.
Duplicate bug reports are utilized to determine what bug report
features, be it textual, ordinal, or categorical, are important.
We focus on predicting fine-grained severity labels, namely
the different severity labels of Bugzilla including: blocker,
critical, major, minor, and trivial. Compared to the
existing state-of-the-art study on fine-grained severity predic-
tion, namely the work by Menzies and Marcus, our approach
brings significant improvement.

I. INTRODUCTION

Software systems usually contain defects that need to be
fixed after releases, and in some projects users are allowed
to feedback on these defects that they encounter through bug
reporting systems such as Bugzilla. With Bugzilla, users can
report not only the description of the bug but also estimate
the severity of the reported bugs. Unfortunately, although
guidelines exist on how severity of bugs need to be assigned,
the process is inherently manual that is highly dependent on
the expertise of the bug reporters in assigning correct labels.
Novice bug reporter might find it difficult to decide the right
severity level. Developers (aka. Bugzilla assignee) can later
adjust the severity [1] and use this severity information to
prioritize which bugs to be fixed first.

As the number of bug reports made is large, a number
of past studies have proposed approaches to help users in
assigning severity labels, and development team in validating
bug report severity [18], [14], [15]. All these approaches
combine text processing with machine learning to assign
severity labels from the textual description of the reports.
Menzies and Marcus develop a machine learning approach
to assign the severity labels of bug reports in NASA [18].
More recently, Lamkanfi et al. develop another machine
learning approach to assign severity labels of bug reports in
several Bugzilla repositories of open source projects [14]. In
a later work, Lamkanfi et al. have also tried many different

classification algorithms and investigate their effectiveness in
assigning severity labels to bug reports [15]. Menzies and
Marcus assign fine-grained labels (5 severity labels used in
NASA), while Lamkanfi et al. assign coarse-grained labels
(i.e., binary labels: severe and non-severe).

The bug severity prediction tools are not perfect though
and there is still room for improvement. Menzies and Marcus
reported F measures (i.e., harmonic mean of precision and
recall) of 14 to 86% for the different severity labels [18].
Lamkanfi et al. reported F measures of 65% to 75% on
Bugzilla reports from different software systems [14]. Thus
there is a need to improve the accuracy of the prediction
tools further.

In this work, we propose an information retrieval (IR)-
based nearest neighbor solution to predict the severity labels
of bug reports. We first measure the similarity of different
bug reports and based on this similarity we recover past bug
reports that are most similar to it. There are various mea-
sures that have been proposed in the information retrieval
community to measure the similarity between two textual
documents [22], [31], [27], [26]. Some of the popular tech-
niques are BM25 and its extensions [26]. BM25 technique
and its extensions require some parameters to be learned.
We leverage bug reports that have been marked as duplicate
to set these parameters. Our hypothesis is that duplicate bug
reports would help us to identify what features are important
and what are not to measure the similarity between two bug
reports. Based on a set of k nearest neighbors, the severity
labels of these k similar bug reports are then used to decide
the appropriate severity label for a new bug report.

In this work, we focus on predicting fine-grained bug
severity labels. We investigate the effectiveness of our pro-
posed approach and compare it with the past study by Men-
zies and Marcus [18]. Since our approach requires duplicate
bug reports, we do not use the NASA data investigated by
Menzies and Marcus. Rather, we analyze a large number of
bug reports stored in Bugzilla bug tracking systems of E-
clipse, OpenOffice, and Mozilla. We focus on predicting five
severity labels of Bugzilla namely: blocker, critical,
major, minor, and trivial. Following the work of
Lamkanfi et al. [14], [15], we do not consider the severity
label normal as this is the default option and “many

reports just did not bother to consciously assess the bug
severity” [14], [15]. Thus, we treat these reports as unlabeled
data.

Our experiments show that we could achieve a precision,
recall, and F measure of up to 72%, 76%, and 74% for
predicting a particular class of severity labels. Precision
quantifies the amount of false positives, while recall quanti-
fies the amount of false negatives. High precision and high
recall mean less number of false positives and less number
of false negatives respectively. F measure is the harmonic
mean of precision and recall. Comparing with the state-
of-the-art work on fine-grained severity level prediction by
Menzies and Marcus, we show that for most bugs and most
severity labels we could improve their approach significantly,
especially on hard-to-predict1 severity labels.

The following lists our contributions:
1) We propose an information retrieval based nearest

neighbor solution, by leveraging duplicate bug reports,
to predict fine-grained severity labels.

2) We have experimented our solution and compare it with
the state-of-the-art work over a collection of more than
65,000 bug reports from three medium-large software
systems: OpenOffice, Mozilla, and Eclipse.

3) We show that we can achieve a significant improvement
over the state-of-the-art fine-grained bug severity pre-
diction technique, especially on hard-to-predict severity
labels.

The structure of this paper is as follows. In Section II, we
describe some background material related to bug reporting
and text pre-processing. In Section III, we elaborate our
approach. We present our experiments and their results in
Section IV. We discuss related work in Section V. We
conclude and describe future work in Section VI.

II. BACKGROUND

In this section, we describe the bug reporting process,
then present standard approaches to pre-process textual
documents, and finally highlight BM25Fext to measure the
similarity between structured documents.

A. Bug Reporting

To help improve the quality of software systems, software
projects often allow users to report bugs. This is true for
both open-source and closed-source software developments.
Bug tracking systems such as Bugzilla are often used. Users
from various locations can log in to Bugzilla and report
new bugs. Users can report symptoms of the bugs along
with other related information to developers. These include
textual descriptions of the bug either in short or detailed
form, product and component that are affected by the bug,
and the estimated severity of the bug. The format of bug

1F measures of these labels are much lower than the others.

reports varies from one project to another, but bug reports
typically contain the fields described in Table I.

Developers (in particular bug triagers) would then ver-
ify these symptoms and fix the bugs. They could make
adjustment to the severity of the reported bug. There are
often many reports that are received and thus developers
would need to prioritize which reports are more important
than others – the severity field is useful for this purpose.
As bug reporting is a distributed process, often the same
bug is reported by more than two people in separate bug
reports. This is known as duplicate bug report problem. The
developer/triager would also need to identify these duplicate
bug reports so as not to waste bug fixing efforts.

B. Text Pre-Processing

Tokenization. A token is a string of characters, and includes
no delimiters such as spaces, punctuation marks, and so
forth. Tokenization is the process of parsing a character
stream into a sequence of tokens by splitting the stream at
delimiters.
Stop-Word Removal. Stop words are non-descriptive words
carrying little useful information for retrieval tasks. These
include linking verbs such as “is”, “am” and “are”, pronouns
such as “I”, “he” and “it”, etc. Our stop word list contains 30
stop words, and also common abbreviations such as “I’m”,
“that’s”, “we’ll”, etc..
Stemming. Stemming is a technique to normalize words to
their ground forms. For example, a stemmer can reduce both
“working” and “worked” to “work”. This better allows a
machine learning algorithm to capture the similarity between
two or more words. We used Porter stemming algorithm [25]
to process our text.

C. BM25F and Its Extension

We present BM25F , and BM25Fext . The first is a stan-
dard document similarity function, the latter is the extended
BM25F proposed in [26] to handle longer query documents.

BM25F Similarity Function. BM25F is a function to eval-
uate the similarity between two structured documents [21],
[32]. A document is structured if it has a number of fields. A
bug report is a structured document as it has several textual
fields, i.e., summary and description. Each of the fields in
the structured document can be assigned a different weight
to denote its importance in measuring the similarity between
two documents.

Before we proceed further, let’s define a few notations.
Consider a document corpus D consisting of N documents.
Also, each document d has K fields. Let’s denote the bag
of words in the f th field as d[f] for 1 ≤ f ≤ K.

BM25F similarity function has two primary components
which assign global and local importance to words. The
global importance of a word t is based on its inverse
document frequency (IDF). This IDF score is inversely

Table I
FIELDS OF INTEREST IN A BUG REPORT

Field Description
Summ Summary: Short description of the bug which typically contains only but a few words.
Desc Description: Detailed description of the bug. This includes information such as how to

reproduce the bug, the error log outputted when the bug occurs, etc.
Prod Product: Product that is affected by the bug.
Comp Component: Component that is affected by the bug.
Sev Severity: Estimated impact of the bug to the workings of the software. In Bugzilla, there are

several severity levels: blocker, critical, major, normal, minor, and trivial.
There is also another severity level, enhancement which we ignore in this work, as we
are not interested in feature requests but only defects.

Table II
EXAMPLES OF BUG REPORTS FROM MOZILLA BUGZILLA

ID Summary Product Component Severity

1 525359 replying to an HTML message which includes a contenteditable div leaves
Thunderbird compose unusable until restart (from incredimail for example)

Thunderbird Message
Compose
Window

major

543032 Impossible to answer a mail from thunderbird 3.01 after viewing an e-mail
sent by Incredimail

Thunderbird Message
Compose
Window

critical

2 537897 No way to select engines when setting up to use an existing account Mozilla Services Firefox Sync,
Backend

normal

543686 Everything is synced when logging in to an existing account Mozilla Services Firefox Sync, UI normal

3 538953 Using Search bar AND a proxy with password authentification ... keeps
asking the password at any key entered

Firefox Search normal

544836 Proxy authentication broken while typing in the search field Firefox Search major

proportional to the number of documents containing a word;
it is defined in Equation 1.

IDF (t) = log
N

Nt
(1)

In Equation (1), Nt is the number of documents contain-
ing the word t.

Another component prescribes the local importance of a
word t in a document d. This local importance, denoted as
TFD(d, t), is defined in Equation 2. This is the aggregation
of the local importance of the word t for each of document
d’s field.

TFD(d, t) =

K∑
f=1

wf × occurrences(d[f], t)

1− bf +
bf×sizef

avg sizef

(2)

In Equation (2), wf is the weight of field f ,
occurrences(d[f], t) is the number of times the word t
occurs in field f , sizef is the number of words in d[f],
avg sizef is the average size of d[f] for all documents
in D, and bf , which takes the value between 0 to 1, is a
parameter that controls the contribution of the size of the
fields to the overall score.

Based on the global and local term importance weights,
given two documents d and q, each of which is a bag of
words, the BM25F score of d and q is:

BM25F (d, q) =
∑

t∈d∩q

IDF (t)× TFD(d, t)

k + TFD(d, t)
(3)

In Equation (3), the word t is common in d and q, and k,
whose value is greater or equal to zero, is a parameter that
controls the contribution of TFD(d, t) to the overall score.
We notice that BM25F has a number of free parameters that
need to be tuned: wf and bf for each document’s field, and
k. Given a document containing K fields, BM25F requires
(1+2K) parameters to be tuned. An optimization technique
based on stochastic gradient descent has been used to tune
these BM25F parameters [30].

BM25Fext Similarity Function. BM25F is particularly
developed to compute similarity of a short document (i.e.,
query) with a longer document. It is typically used for
search engines, where user queries are usually short and
consist of only a few words. However, bug reports are longer
textual documents – the description field of a bug report can
contain a few hundred words. Thus, since we want to have
a similarity function that measures the similarity of two bug
reports each of which are relatively long textual documents,
there is a need to extend BM25F . Sun et al. [26] address
this need by proposing BM25Fext which considers the term
frequencies in queries; it has the following form.

BM25Fext(d, q) =
∑

t∈d∩q

IDF (t)× TFD(d, t)

k + TFD(d, t)
×WQ

where WQ =
(l + 1)× TFQ(q, t)

l + TFQ(q, t)
(4)

TFQ(q, t) =
K∑

f=1

wf × occurrences(q[f], t) (5)

In Equation (4), for each common word t appearing in
document d and query q, its contribution to the overall
BM25Fext score has two components: one is the product
of IDF and TFD inherited from BM25F ; and the other
is the local importance of word t in the document q –
denoted as WQ. WQ follows the word weighting scheme
of Okapi BM25 [16]. Parameter l, whose value is always
greater than or equal to 0, controls the contribution of the
local importance of word t in q to the overall score – if
l = 0, then the local importance of t in q is ignored, and
BM25Fext becomes BM25F .

In Equation (5), the contribution of each word t is the
summation of the product of wf , which is the weight of
field f , with the number of occurrences of t in the f th

field of q. Different from TFD , defined in Equation 2, to
compute TFQ , we do not perform any normalization. We
do not perform normalization as retrieval is being done with
respect to a single fixed query – we want to rank bug reports
based on their similarities to a given query bug report.
BM25Fext requires an additional free parameter l in

addition to those needed by BM25F . This brings the total
numbers of parameters for BM25F to (2 + 2K). These
parameters can be set by following a gradient descent
approach presented in [26].

III. PROPOSED APPROACH

In this section, we describe our proposed approach. We
first summarize our approach. We then highlight two major
components of our approach.

A. Overall Framework
Our framework assigns a severity label to a bug report

BQ in question by investigating prior bug reports with
known severity labels in the pool of bug reports BPool .
The high-level pseudocode of our approach, named IR Based
Nearest Neighbour Severity Prediction Algorithm, is shown
in Figure 1. The algorithm would first find the top-k nearest
neighbors (Line 1) and then predict the label by considering
the labels of these nearest neighbors (Lines 2-3).

Our framework thus consists of two major components:
similarity computation, which is an integral part of finding
nearest neighbors, and label assignment. In the similarity
computation component, we measure the similarity between
two bug reports. We leverage duplicate bug reports as
training data to assign features that are important to measure
how similar two reports are. We use an extended BM25
document similarity measure for the purpose. In the label
assignment component, given a bug report whose severity is
to be predicted, we take the nearest k bug reports based on
the similarity measure. These k bug reports are then used to
predict the label of the bug report.

Procedure INSPect
Inputs:
BQ : Bug report in question
BPool : Historical bug report pool
Output: Predicted bug report severity label
Methods:
1: Let NNSet = Find top-K nearest neighbors of BQ in BPool
2: Let PredictedLabel = Predict label from NNSet
3: Output PredictedLabel

Figure 1. IR Based Nearest Neighbour Severity Prediction Algorithm

B. Similarity Computation

A bug report contains more than textual features, it also
contains other information such as product, component, etc.
We want to make use of all these features, textual and non-
textual, to detect the similarity among bug reports. To do
this, given two bug reports d and q, our similarity function
REP(d, q) is a linear combination of four features, with the
following form where wi is the weight for the i-th feature
featurei .

REP(d, q) =
4∑

i=1

wi × featurei (6)

Each weight determines the relative contribution and the
degree of importance of its corresponding feature. Features
that are important to measure the similarity between bug
reports would have a higher score. Each of the four features
along with their definitions are given in Figure 2. There are
two types of features: textual and non-textual; we elaborate
them in the following paragraphs.

Textual Features. The first feature of Equation (7) is the
textual similarity of two bug reports based on the summary
and description fields as measured by BM25Fext similarity
function described in Section II. The second feature is
similar to the first one, except that summary and description
fields are represented by bags of bigrams (a bigram is two
words that appear consecutively one after the other) instead
of bags of words (or unigrams).

Non-Textual Features. The other two features have binary
values (0 or 1) based on the equality of the product and
component fields of d and q.

The similarity function REP defined in Equation (6) has
16 free parameters in total. For feature1 and feature2 , we
compute textual similarities of d and q over two fields:
summary and description. Computing each of the two fea-
tures requires (2 + 2 × 2) = 6 free parameters. Also, we
need to weigh the contributions of each of the 4 features in
Equation (6). Thus overall, REP requires (2× 6 + 4) = 16
parameters to be set. Table III lists all these parameters.

The above metric is similar to the one proposed by Sun
et al. [26] except we remove several features: one is a
binary feature that compares the types of the reports: defect,

feature1(d, q) = BM25Fext(d, q) //of unigrams (7)
feature2(d, q) = BM25Fext(d, q) //of bigrams (8)

feature3(d, q) =

{
1, if d.prod = q.prod

0, otherwise
(9)

feature4(d, q) =

{
1, if d.comp = q.comp

0, otherwise
(10)

Figure 2. Features in the Retrieval Function

Table III
PARAMETERS IN REP

Parameter Description
w1 weight of feature1 (unigram)
w2 weight of feature2 (bigram)
w3 weight of feature3 (product)
w4 weight of feature4 (component)
wunigram

summ weight of summary in feature1

wunigram
desc weight of description in feature1

bunigramsumm b of summary in feature1

bunigramdesc b of description in feature1

kunigram
1 k1 in feature1

kunigram
3 k3 in feature1

wbigram
summ weight of summary in feature2

wbigram
desc weight of description in feature2

bbigramsumm b of summary in feature2

bbigramdesc b of description in feature2

kbigram
1 k1 in feature2

kbigram
3 k3 in feature2

enhancement, etc., another is a feature that computes the
difference between the reported severities, and the other is
a feature that computes the difference between the versions.
Since we only consider defects, and we assume that severity
label is not available, we could not use the first two of the
three omitted features to compute similarity between bug
reports. We do not use the last feature as we do not have the
complete version information for all subject programs which
requires manual crawling of the web. REP parameters
are tuned using gradient descent. We take a training set
consisting of duplicate bug reports, and follow the same
approach as proposed in the work by Sun et al. [26]. We
include the above description to ensure that our paper is
self-explanatory.

C. Label Assignment

Leveraging the similarity measure, we locate the top-
k nearest neighbors of a bug report in question. We then
aggregate the contribution of each bug report to predict the
label of the bug report. We compute the weighted mean of
the labels of the neighbors as the predicted label. We map the
labels into integers and order them from the most severe to

the least severe. The labels blocker, critical, major
normal, minor, and trivial are mapped to 0, 1, 2, 3,
4, and 5 respectively.

Consider a set of nearest neighbors NNSet of a bug
report BQ. Also let NNSet [i] be the ith nearest neighbor,
NNSet [i].Label be the label of the ith nearest neighbor
(expressed in integer), and NNSet [i].Sim be the similarity
of BQ with NNSet [i]. The predicted label is computed by
the following formula:

⌊∑k
i=0(NNSet[i].Sim×NNSet[i].Label)∑k

i=0(NNSet[i].Sim)
+ 0.5

⌋
The above formula aggregates the label of each neighbor

based on its similarity with the target bug report BQ. The
higher is a neighbor similarity with BQ, the more powerful
it is in influencing the label of BQ. The formula ensures
that the label would fall into the range. We use the floor
operation and the “+ 0.5” to round the resultant label to the
nearest integer.

As bug reports with normal severity are treated as
unlabeled data, we ignore the contributions of these reports.
In case the k neighbors of a new bug report whose severity
label is to be predicted are all assigned normal label, we
simply assign label major to the new bug report.
Example. To illustrate the above, we present an example.
Consider a bug report BQ, with top-3 neighbors N1, N2,
and N3 with labels 5, 4, and 3 respectively. Let the REP
similarity scores of BQ with each of the neighbors to be:

REP(BQ ,N1) = 0.5
REP(BQ ,N2) = 0.45
REP(BQ ,N3) = 0.35

The assigned label of BQ would then be:

=
⌊∑3

i=0(REP (BQ,Ni)×Ni.Label)∑k
i=0(REP (BQ,Ni))

+ 0.5
⌋

=
⌊
(0.5×5+0.45×4+0.35×3)

(0.5+0.45+0.35) + 0.5
⌋

=
⌊
(2.5+1.8+1.05)

1.3 + 0.5
⌋

= 4

IV. EXPERIMENTS

In this section, we highlight the datasets that we use
in this study, followed by our experimental settings. We
then present the measures used to evaluate the approaches,
followed by our results. Finally, we also mention some
threats to validity.

A. Datasets

We chose the bug repositories of three large open source
projects: OpenOffice, Mozilla and Eclipse, as the three

projects have different backgrounds, implementation lan-
guages and users, which can help generalizing the conclu-
sions of our experiments. OpenOffice is a multi-platform and
multi-lingual office suite. Mozilla is a not-for-profit commu-
nity producing open-source software and technologies used
by other applications, such as the Firefox browser and Rhino
JavaScript interpreter. Eclipse is a large project aiming to
build a flexible development platform for all lifecycles of
software development.

We extract three datasets from the open source projects by
collecting reports submitted within a period of time. Each
dataset only contains defect reports, whereas feature requests
and maintenance tasks are filtered away. We use the final
assigned severity labels in the defect reports as the ground
truth. Table IV details the three datasets. We construct a
training set by selecting the first M reports of which 200
reports are duplicates, in order to tune the parameters in the
retrieval function REP , regardless of the size of the resultant
bug report set for training. Those M reports are also used to
simulate the initial bug repository for all experimental runs.
The number M for the 3 datasets are given in sub-column #
All of column Training Reports in Table IV. The rest of the
reports are used for testing the prediction approach, shown
in column Testing Reports.

B. Experimental Settings

We propose an online evaluation approach that mimics
how severity prediction could be used in practice. At each
experimental run, we iterate through the reports in the set
of testing reports in chronological order. Once we reach
a report R, we apply a severity prediction tool to predict
the severity label of R. This would be the recommendation
given to the user/developer on the severity of the bug
report. As the accuracy of all existing severity prediction
techniques are still low, humans/developers/triagers cannot
be completely taken out from the picture. At the beginning
of the next iteration, we add R and its true label (we
assume triagers make the right decision and give a correct
feedback) to the pool of bug reports BPool in Figure 1.
After the last iteration is done, we measure how good the
recommendations are. Similar online evaluation approaches
have been used in evaluating studies on the detection of
duplicate bug reports [27] and on the recommendation of
developers to fix bug reports [29].

Unfortunately, the classification based approaches em-
ployed in [18] (i.e., Severis) is slow. For around 4,000
bug reports of OpenOffice, employing the online evaluation
approach would mean re-training the classification model
for around 4,000 times – we re-train the model everytime a
new user feedback is received. This took us more than 10
hours. As the number of bug reports increases the runtime
increase in a super-linear fashion as at each step in the
online evaluation approach more bug reports need to be
investigated to train the model. Thus, we also evaluate the

existing approach in an offline manner – we take a set of
bug reports that we use to train REP to train Severis. We
then use trained Severis to assign labels to the remaining set
of bug reports.

We perform both offline and online evaluation for Severis
on OpenOffice bugs. We show that the results of these two
evaluation approaches do not differ much. We only perform
offline evaluation for Severis for the other two bug report
datasets: Mozilla, and Eclipse. As our approach is fast and
relies on nearest neighbors, we only do the online strategy.

C. Evaluation Measures

We use the standard measures of precision, recall, and F
measure for each severity label to evaluate the effectiveness
of Severis and INSPect. F measure is the harmonic mean of
precision and recall and it is often used to measure if an in-
crease in precision/recall outweighs a loss in recall/precision.
The same measures were used by Menzies and Marcus to
evaluate Severis [18]. The definitions of precision, recall,
and F measure for a severity label SL are given below2:

precision(SL) =
reports correctly labeled with SL

reports labeled with SL

recall(SL) =
reports correctly labeled with SL

reports that should be labeled with SL

F Measure(SL) = 2× precision(SL)× recall(SL)

precision(SL) + recall(SL)

D. Comparison Results

We compare INSPect with parameter k set to 1 (i.e.,
1-nearest neighbor) and Severis on the three datasets. We
present the results in the following sub-sections.

1) OpenOffice Results: The result of INSPect on bug
reports of OpenOffice is shown in Table V. Different from
the other three programs in OpenOffice there are only
five severity levels [19]. We map them to critical,
major, normal, minor, and trivial. Again we drop
normal from our analysis. We note that we can predict
the critical, major, minor, and trivial severity
labels by F measures of 36.0%, 74.0%, 39.8%, and 22.2%
respectively. The F measure is very good for major severity
label but is poorest for trivial severity label.

The result for Severis (offline) is also shown in Table V.
We note that Severis can predict the critical, major,
minor, and trivial severity labels by F measures of
25.6%, 75.1%, 20.5%, and 1.2% respectively. Comparing
these with the result of INSPect, we note that INSPect
can improve the F measure for critical, minor, and
trivial labels by a relative improvement of 41%, 94%,

2# reports refers to number of reports.

Table IV
DETAILS OF DATASETS

Dataset Period Training Reports Testing Reports
From To #Duplicate #All #All - #Normal #Duplicate #All #All - #Normal

OpenOffice 2008-01-02 2010-12-21 200 2,986 617 488 20,438 3,356
Mozilla 2010-01-01 2010-12-31 200 4,379 1,273 1,802 68,049 16,490
Eclipse 2001-10-10 2007-12-14 200 3,312 500 6,203 175,297 43,587

Table V
PRECISION, RECALL, AND F MEASURE FOR INSPECT, SEVERIS [OFFLINE], AND SEVERIS [ONLINE], ON OPENOFFICE

Severity INSpect Severis [Offline] Severis [Online]
Precision Recall F Measure Precision Recall F Measure Precision Recall F Measure

critical 33.2% 39.3% 36.0% 40.7% 18.6% 25.6% 58.5% 15.4% 24.4%
major 72.4% 75.6% 74.0% 63.9% 91.0% 75.1% 63.2% 96.2% 76.3%
minor 44.2% 36.2% 39.8% 39.0% 13.9% 20.5% 42.2% 7.7% 13.0%

trivial 26.8% 18.9% 22.2% 6.7% 0.7% 1.2% 60.0% 1.0% 2.0%

and 1748% respectively. For the major label, INSPect lose
out to Severis by only 2%. Thus for OpenOffice, in general
our proposed approach INSPect performs better than Severis.

Although expensive (in terms of runtime; it takes more
than 10 hours to complete), we also run Severis using the
online evaluation approach and present the result in Table V.
We notice that the result using the online evaluation, al-
though requires much more computation time, generally is
not better than using offline evaluation. There is a small
increase in F measure for major and trivial; However,
for critical and minor there is a small reduction in F
measure.

2) Mozilla Results: The result of INSPect on bug reports
of Mozilla is shown in Table VI. We note that we can
predict the blocker, critical, major, minor, and
trivial severity labels by F measures of 32.6%, 65.9%,
54.3%, 35.9%, and 35.8% respectively. The F measure is
very good for critical severity label but is poorest for
blocker severity label.

The result for Severis is also shown in Table VI. Note
that we only run the offline version of Severis as the online
version takes much time, and our experiment with OpenOf-
fice shows that employing online or offline evaluation does
not affect the performance of Severis. We note that Severis
can predict the blocker, critical, major, minor,
and trivial severity labels by F measures of 0.4%,
65.1%, 59.7%, 3.4%, and 2.2% respectively. Comparing
these with the result of INSPect, we note that we can
improve the F measures for blocker, critical, minor,
and trivial labels by a relative improvement of 8,038%,
1.2%, 957%, and 1,528% respectively. For the major label,
INSPect lose out to Severis by 9.0%. Thus for Mozilla, in
general our proposed approach INSPect performs better than
Severis.

3) Eclipse Results: The result of INSPect on bug reports
of Eclipse is shown in Table VII. We note that we can predict
the blocker, critical, major, minor, and trivial
severity labels by F measures of 26.0%, 29.0%, 57.8%,

40.3%, and 26.5% respectively. The F measure is very
good for major severity label but is poorest for blocker
severity label.

The result for Severis is also shown in Table VII. We note
that Severis can predict the blocker, critical, major,
minor, and trivial severity labels by F measures of
0.0%, 28.5%, 56.0%, 0.2%, and 0.0% respectively. The F
measures of Severis are zeros for blocker and trivial
as it does not assign any bug report to those severity
labels. Comparing these with the result of INSPect, we
note that we can improve the F measure for blocker,
critical, major, minor, and trivial labels by a
relative improvement of infinity, 1.7%, 3.2%, 20,055%, and
infinity, respectively. INSPect does not lose out to Severis
for any label. Thus for Eclipse, clearly INSPect performs
better than Severis.

E. Varying parameter k

Our proposed approach INSPect takes in one user defined
parameter k. In the previous experiments we set k to 1. We
want to investigate the effect of changing the parameter k on
the overall effectiveness of our solution. We plot the effect
of varying k (k = 1, 5, 10, 20) on F measure for OpenOffice,
Mozilla, and Eclipse datasets in Figures 3, 4, & 5 respective-
ly. When we increase k, we consider more nearest neighbors.
This might increase accuracy as in effect we are tapping
more to the “wisdom of the masses”. However, this might
also reduce accuracy as the additional neighbors might not
be that similar anymore to the target bug report.

From the figures, for OpenOffice, the F measure of
critical increases as we increase k. However, the F
measures of minor and trivial decrease as we increase
k. For Mozilla, the F measure of major slightly increases as
we increase k, however, for three severity labels, blocker,
minor, and trivial, their F measures decrease as we
increase k. For Eclipse, the F measure of critical
increases as we increase k. However, the F measures of three
severity labels, blocker, minor and trivial decrease

Table VI
PRECISION, RECALL, AND F MEASURE FOR INSPECT AND SEVERIS [OFFLINE] ON MOZILLA

Severity INSpect Severis [Offline]
Precision Recall F Measure Precision Recall F Measure

blocker 33.9% 31.3% 32.6% 100% 0.2% 0.4%
critical 64.0% 67.8% 65.9% 82.6% 53.7% 65.1%

major 53.5% 55.2% 54.3% 43.9% 93.1% 59.7%
minor 38.9% 33.4% 35.9% 50.5% 1.8% 3.4%

trivial 38.4% 33.6% 35.8% 19.7% 1.1% 2.2%

Table VII
PRECISION, RECALL, AND F MEASURE FOR INSPECT AND SEVERIS [OFFLINE] ON ECLIPSE

Severity INSpect Severis [Offline]
Precision Recall F Measure Precision Recall F Measure

blocker 25.2% 27.0% 26.0% 0.0% 0.0% 0.0%
critical 28.2% 29.8% 29.0% 22.3% 39.7% 28.5%

major 58.0% 57.5% 57.8% 48.2% 66.8% 56.0%
minor 42.4% 38.4% 40.3% 7.6% 0.1% 0.2%

trivial 28.2% 25.0% 26.5% 0.0% 0.0% 0.0%

1 5 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

F
 m

e
a

s
u

re

critical

major

minor

trivial

Figure 3. OpenOffice: Varying k and Its Effect on F Measure

1 5 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

F
 m

e
a

s
u

re

blocker

critical

major

minor

trivial

Figure 4. Mozilla: Varying k and Its Effect on F Measure

as we increase k.

F. Threats to Validity & Discussion

We consider three threats of validity: threats to construct
validity, threats of internal validity, and threats of external
validity.

Threats to construct validity relates to the suitability of

1 5 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

F
 m

e
a

s
u

re

blocker

critical

major

minor

trivial

Figure 5. Eclipse: Varying k and Its Effect on F Measure

our evaluation metrics. We use standard metrics used in
classification and prediction namely: precision, recall, and F
measure. These measures have been used before by Menzies
and Marcus to evaluate Severis [18].

Threats of internal validity refers to errors in our ex-
periments. We extract the severity labels from the various
Bugzilla bug tracking systems. We assume that except the
normal label, the severity labels recorded in Bugzilla are
the final severity labels that are deemed correct. We use these
ground truth labels to measure how good our predictions are.
A similar assumption and experimental setting were also
made in prior studies [14], [15].

Threats of external validity refers to the generalizability
of our findings. We consider repositories of three medium-
large software systems: Eclipse, OpenOffice, and Mozilla.
We consider a total of more than 65,000 bug reports. This
is larger than the number of bug reports considered in
prior studies [18], [14], [15]. Furthermore, the three projects
are written in different programming languages, and have
different background and user groups. Also, all our studies
make use of open source repositories where data is publicly

available. We do not use the datasets from NASA used
in [18] and made available in the Promise repository as they
do not have information on duplicate bug reports. Note that
duplicate bug reports are common phenomenon, and many
of them are found in many open source Bugzilla tracking
systems, c.f., [22], [31], [13], [27], [26].

V. RELATED WORK

In this section, we highlight related studies on bug severity
prediction, bug report analysis, and text mining for software
engineering.

A. Past Studies on Bug Severity Prediction

There are a number of studies that predict the severity of
bug reports [15], [14], [18]. We highlight these studies in
the following paragraphs.

Menzies and Marcus predict the severity of bug reports
in NASA [18]. They first extract word tokens from bug
reports, and then perform stop word removal and stemming.
Important tokens are then identified using the concept of
term frequency-inverse document frequency, and informa-
tion gain. These tokens are then used as features for a
classification approach named Ripper rule learner [6]. Their
approach is able to identify fine grained bug report labels,
which are the the 5 severity levels used in NASA.

More recently, Lamkanfi et al. predict the severity of
bug reports from various projects’ Bugzilla bug tracking
systems [14]. They first extract word tokens and pre-process
them. These tokens are then fed to a Naive Bayes classifier
to predict the severity of the corresponding bug. Differ-
ent from the work by Menzies and Marcus, they predict
coarse grained bug severity labels: severe, and non-severe.
Three of the six classes of severity in Bugzilla (blocker,
critical, and major) are grouped as severe, two of the
six classes (minor, and trivial) are grouped as non-
severe, and normal severity bugs are omitted from their
analysis.

Extending the above work, Lamkanfi et al. also try out
various classification algorithms to predict the severity of
bug reports [15]. They show that Naive Bayes performs
better than other mining approaches on a dataset of 29,204
bug reports.

Our approach extends the above research studies. Similar
to Menzies and Marcus’s work, we detect fine grained bug
report labels. Similar to the work by Lamkanfi et al. we
consider bug reports on Bugzilla repositories of various
open source projects. We compare our approach with that
of Menzies and Marcus on a dataset containing more than
65,000 bug reports and show that we could gain significant
F measure improvements.

B. Other Studies Analyzing Bug Reports

In a related research area, recently a number of techniques
are proposed for duplicate bug report retrieval [22], [31],

[13], [27], [26]. Many of these approaches propose various
ways to measure the similarity of bug reports to help
developers in assigning bug reports as either duplicate or
not. Runeson et al. propose a formula that considers the
frequency of common words appearing in both documents
as a similarity measure [22]. Wang et al. use both term
frequency and inverse document frequency as a similarity
measure [31]. They also consider a special situation where
runtime traces are available and could be used to compute
the similarity between bug reports. In practice, however, only
a small minority of bug reports come with runtime traces.
Jalbert and Weimer propose yet another term frequency
based similarity measure [13]. Sun et al. propose a technique
that leverages SVM for duplicate bug report detection [27].
In their later work, Sun et al. propose an approach to measur-
ing the similarity of bug reports using an enhanced BM25F
document similarity measure [26]. These recent advances
in bug report similarity measurement could potentially be
leveraged to categorize bug reports into various severity
classes. Our work shows that they are indeed useful for this
purpose.

Another line of research is categorization of bug reports
to reduce maintenance effort. Anvik et al. [2], Cubranic and
Murphy [7], Tamrawi et al. [28] propose various techniques
to automatically assign the right developer for a new report.
Huang et al. categorize bug reports into those related to
capability, security, performance, reliability, requirement,
and usability [12]. Pordguski et al. [20] and Francis et al. [8]
propose approaches to group reported software failures, by
analyzing the corresponding execution traces. Gegick et al.
identify security bug reports using text mining [9]. The
approach to some extent is similar to the work of Lamkanfi
et al. [14], in that it categorizes bugs into two categories.
However rather than categorizing bug into: severe and not-
severe, it categorizes bug into: security-related and non-
security-related.

Previous work also conducts empirical studies on bug
repositories. Anvik et al. study the characteristics of bug
repositories and show interesting findings on the number of
reports that a person submit and the proportion of various
resolutions [3]. Sandusky et al. study the nature, impact and
extent of a bug report network in one large open source de-
velopment community[23]. Hooimeijer and Weimer predict
the quality of bug reports by a novel descriptive model built
based on surface features of over 27,000 bug reports from
several open source projects [11]. Bettenburg et al. describe
characteristics of good bug reports by surveying Eclipse,
Mozilla and Apache developers [4].

C. Text Mining for Software Engineering

There are many studies that utilize various forms of
text analysis and mining for software engineering purposes.
Haiduc et al. propose a method to summarize source code
to support program comprehension [10]. The work proposes

an approach to extract informative yet succinct text to
characterize source code entities so that developers can
better understand a large piece of code. Sridhara et al.
propose an approach to detect code fragments implementing
high level abstractions and describe them in succinct textual
descriptions [24].

Marcus and Maletic propose an approach to link doc-
umentation to source code using Latent Semantic Index-
ing [17]. Chen et al. proposed an approach to link textual
documents to source code by combining several techniques
including regular expression, key phrases, clustering and
vector space model [5].

Similar to the above studies, we also extend a text mining
approach to solve problem in software engineering. Different
from the above studies, we investigate a different problem
namely the prediction of fine-grained bug report severity
label from its text. Our approach combines nearest neighbor
classification and an extension of BM25 document similarity
function.

VI. CONCLUSION AND FUTURE WORK

Severity labels are important for developers to prioritize
bugs. A number of existing approaches have been proposed
to infer these labels from textual fields of bug reports. In
this work, we propose a new approach to infer severity labels
from various information available from bug reports: textual,
and non-textual. We make use of duplicate bug reports to
weigh the relative importance of each piece of information
or features to determine the similarity between bug reports.
This similarity measure is then used in a nearest-neighbor
fashion to assign a severity label to a bug report. We
have compared our approach to the state-of-the-art approach
on fine-grained severity label prediction, namely Severis.
Extensive experiments on tens of thousands of bug reports
taken from three medium-large software systems: Eclipse,
OpenOffice, and Mozilla, have been performed. The result
shows that we can improve the F measure of the state-of-
the-art approach significantly, especially on hard-to-predict
severity labels.

As future work, we plan to improve the accuracy of
the proposed approach further. We also plan to embed our
solution into Bugzilla to let it be used by many people.

REFERENCES

[1] http://wiki.eclipse.org/WTP/Conventions of
bug priority and severity#How to set Severity and Priority.

[2] J. Anvik, L. Hiew, and G. Murphy, “Who should fix this bug?” in pro-
ceedings of the International Conference on Software Engineering,
2006.

[3] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” in ETX, 2005, pp. 35–39.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann, “What makes a good bug report?” in SIGSOFT
FSE, 2008, pp. 308–318.

[5] X. Chen and J. C. Grundy, “Improving automated documentation to
code traceability by combining retrieval techniques,” in ASE, 2011,
pp. 223–232.

[6] W. Cohen, “Fast effective rule induction,” in ICML, 1995.
[7] D. Cubranic and G. C. Murphy, “Automatic Bug Triage Using Text

Categorization,” in SEKE, 2004, pp. 92–97.
[8] P. Francis, D. Leon, and M. Minch, “Tree-based methods for classi-

fying software failures,” in ISSRE, 2004.
[9] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports

via text mining: An industrial case study,” in MSR, 2010, pp. 11–20.
[10] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program com-

prehension with source code summarization,” in ICSE (2), 2010, pp.
223–226.

[11] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in ASE,
2007, pp. 34–43.

[12] L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian, “AutoODC:
Automated generation of orthogonal defect classifications,” in ASE,
2011.

[13] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in DSN, 2008.

[14] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in MSR, 2010.

[15] A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in
CSMR, 2011.

[16] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Informa-
tion Retrieval. New York, NY, USA: Cambridge University Press,
2008, pp. 232–233.

[17] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in ICSE, 2003,
pp. 125–137.

[18] T. Menzies and A. Marcus, “Automated severity assessment of
software defect reports,” in ICSM, 2008.

[19] Www.openoffice.org/qa/ooQAReloaded/Docs/QA-Reloaded-
ITguide.html#priorities.

[20] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun,
and B. Wang, “Automated support for classifying software failure
reports,” in Proceedings of the 25th International Conference on
Software Engineering, 2003, pp. 465–475.

[21] S. Robertson, H. Zaragoza, and M. Taylor, “Simple BM25 Extension
to Multiple Weighted Fields,” in Proceedings of the thirteenth ACM
international conference on Information and knowledge management,
2004, pp. 42–49.

[22] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,” in ICSE,
2007, pp. 499–510.

[23] R. J. Sandusky, L. Gasser, and G. Ripoche, “Bug report networks:
Varieties, strategies, and impacts in a f/oss development community,”
in International Workshop on Mining Software Repositories, 2004,
pp. 80–84.

[24] G. Sridhara, L. L. Pollock, and K. Vijay-Shanker, “Automatically
detecting and describing high level actions within methods,” in ICSE,
2011, pp. 101–110.

[25] Www.ils.unc.edu/∼keyeg/java/porter/PorterStemmer.java.
[26] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate

retrieval of duplicate bug reports,” in ASE, 2011.
[27] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative

model approach for accurate duplicate bug report retrieval,” in ICSE,
2010.

[28] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set-based automatic bug triaging,” in ICSE, 2011, pp. 884–887.

[29] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen,
“Fuzzy set-based automatic bug triaging,” in ICSE, 2011.

[30] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and C. Burges,
“Optimisation methods for ranking functions with multiple param-
eters,” in Int. Conf. on Information and Knowledge Mgmt (CIKM),
2006.

[31] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in ICSE, 2008, pp. 461–470.

[32] H. Zaragoza, N. Craswell, M. J. Taylor, S. Saria, and S. E. Robertson,
“Microsoft cambridge at trec 13: Web and hard tracks,” in TREC,
2004.

