A Comparative Study on the Effectiveness of
Part-of-Speech Tagging Techniques on Bug Reports

Yuan Tian and David Lo
School of Information Systems,
Singapore Management University, Singapore
{yuan.tian.2012,davidlo} @smu.edu.sg

Abstract—Many software artifacts are written in natural
language or contain substantial amount of natural language
contents. Thus these artifacts could be analyzed using text
analysis techniques from the natural language processing (NLP)
community, e.g., the part-of-speech (POS) tagging technique that
assigns POS tags (e.g., verb, noun, etc.) to words in a sentence. In
the literature, several studies have already applied POS tagging
technique on software artifacts to recover important words in
them, which are then used for automating various tasks, e.g.,
locating buggy files for a given bug report, etc.

There are many POS tagging techniques proposed and they
are trained and evaluated on non software engineering corpus
(documents). Thus it is unknown whether they can correctly
identify the POS of a word in a software artifact and which
of them performs the best. To fill this gap, in this work, we
investigate the effectiveness of seven POS taggers on bug reports.
We randomly sample 100 bug reports from Eclipse and Mozilla
project and create a text corpus that contains 21,713 words. We
manually assign POS tags to these words and use them to evaluate
the studied POS taggers. Our comparative study shows that the
state-of-the-art POS taggers achieve an accuracy of 83.6%-90.5%
on bug reports and the Stanford POS tagger and the TreeTagger
achieve the highest accuracy on the sampled bug reports. Our
findings show that researchers could use these POS taggers to
analyze software artifacts, if an accuracy of 80-90% is acceptable
for their specific needs, and we recommend using the Stanford
POS tagger or the TreeTagger.

I. INTRODUCTION

In recent years, software engineering researchers have
analyzed textual information in software artifacts, such as
source code, bug reports, and requirements, to build automated
solutions that help developers in program comprehension,
software development and evolution tasks. For instance, by
analyzing textual contents in bug reports, researchers have
built various bug report management tools, e.g., bug report
assignment tools [2], [3], [23], duplicate bug report detection
tools [19], [20], bug report localization tools [14], [22], [13],
etc.

To analyze textual contents in software artifacts, software
engineering researchers have often made use of off-the-shelf
text analysis tools borrowed from the natural language pro-
cessing (NLP) community. One such tool is a part-of-speech
(POS) tagger. A POS tagger assigns part-of-speech tags (e.g.,
noun, verb, etc.) to words in a sentence. POS tagging is a
well studied problem in the NLP community and has been
widely used in tasks such as information retrieval, word sense
disambiguation, text parsing, etc.

978-1-4799-8469-5/15 © 2015 IEEE 570

In the software engineering community, POS taggers have
shown their power in increasing the informativeness of source
code identifiers [5], [9], [10], and in identifying important
words from software artifacts such as bug reports [8], [18].
However, despite the increasing usage of POS taggers in
software engineering domain, there exists no evaluation of
the performance and applicability of such taggers for software
engineering domain. Such study will shed light on whether
POS taggers are accurate when applied on software artifacts,
and which of the POS taggers perform the best for software
artifacts. The evaluation of taggers’ accuracy is important
considering that off-the-shelf POS taggers are often trained
on general English text (e.g., news article) that might contain
little (if any) software engineering contents. Results of this
study help future researchers to make an informed decision on
whether to use POS taggers in their work and which of the
POS taggers they should use.

To address the above mentioned need, in this work, we
conduct a comparative analysis of seven state-of-the-art POS
tagging techniques on software artifacts. We use popular off-
the-shelf implementations of these taggers that have been
trained on general English text. We choose bug reports as the
target software artifact since a POS tagger has been applied
to build an automated bug report management tool [18]. To
compare the different POS taggers, we sample 100 bug reports
from Eclipse and Mozilla projects and create a ground truth set
by manually tagging the words in the bug reports. For each bug
report, we extract and preprocess textual information from its
summary, description and comment fields. This process results
in a text corpus that contains a total of 21,713 words. We apply
seven POS taggers on the sampled bug reports and evaluate
their performance by comparing the tags assigned by these
POS taggers and our ground truth set. We also evaluate the
performance of the POS taggers for various word types.

Our comparative study finds that:

e The state-of-the-art POS taggers achieve an accuracy
of 83.6%-90.5% when applied on bug reports. The
Stanford POS tagger performs the best, followed by
the TreeTagger. The accuracies of the studied POS
taggers on bug reports are worse than their accuracies
on regular English corpus — which could be as high
as 97%.

e The TreeTagger performs the best in assigning tags to

nouns and verbs, while the Stanford tagger performs
the best in assigning tags to adjectives and adverbs.

SANER 2015, Montréal, Canada

Accepted for publication by IEEE. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

II. STATE-OF-THE-ART POS TAGGERS

In this section, we introduce the state-of-the-art POS tag-
gers that could be applied on bug reports.

A. Overall View

In the NLP community, various techniques have been
proposed to assign POS tags to words in a sentence. These
approaches could be categorized into two types: rule-based and
stochastic-based. The former one assigns tags based on rules
while the later one assigns tags based on probability mod-
els. Both rule-based and stochastic-based approaches can be
supervised or unsupervised. Supervised taggers typically learn
models (or rules) from human-tagged textual corpus and apply
them on unseen sentences. In contrast, unsupervised taggers do
not require a pre-tagged corpus but instead use computational
methods to automatically generate word groupings (i.e., tag
sets). Those word groupings are then used to either calculate
the probabilistic information needed by stochastic taggers or
generate the rules needed by rule-based systems. Therefore,
unsupervised taggers are usually integrated as preprocessing
tools for system that build upon them [4], rather than be
directly used to assign POS tags. In this work, we consider
four types of widely used and well evaluated supervised POS
taggers that have been trained on a tagged regular English
corpus, given the fact that most of the bug reports analyzed
in the previous software engineering studies are written in
English.

B. POS Taggers

1) Unigram Tagger: A unigram POS tagger simply assigns
to a word, the tag that is most likely for the word, based on
a tagged corpus (i.e., training corpus). For instance, it assigns
“verb” to the word “fix” if “fix” is more often tagged as a
“verb” in the training corpus. To find the most likely tag for
each word, a unigram POS tagger computes and stores the
frequency of tags used for each word based on the tagged
training corpus. For those words that do not appear in the
training corpus, a unigram tagger assigns ‘“noun” to them as
the default tag. The unigram POS tagger is simple and fast, and
achieves an acceptable accuracy if the training corpus is large
enough. However, it ignores the surrounding (i.e., context) of
a word when it assigns a POS tag to it.

2) Hidden Markov Model (HMM) Based Tagger: Similar
to the unigram tagger, a hidden Markov model (HMM) based
tagger assigns POS tags by searching for the most likely tag for
each word in a sentence. However, a HMM based tagger finds
a tag sequence for a sentence as a whole, rather than finding
a tag for each word separately. Given a sentence wj ... Wy,
a HMM based tagger chooses a tag sequence t;...t, that
maximizes the following joint probability:

P(tl...tn,wl...wn) :P(t1...tn)P(wl...wn|t1...tn)

In practice, it is often impractical to compute P(¢1 .. .1¢,).
Therefore many different taggers have been proposed to
simplify this probability computation. 7nT, one of the most
commonly used HMM based tagger, uses second order Markov
models to simplify the computation; it assumes that the tag of
a word is determined by the POS tags of the previous two
words [6]. Tree tagger is another popular HMM based tagger,

571

which leverages decision trees to get more reliable estimates
of parameters in Markov models [17].

3) Maximum Entropy Based Tagger: The unigram and
HMM based taggers are easy to build, however given the
nature of their probability models, it is hard to incorporate
more complex features into them. The maximum entropy (ME)
based tagger is introduced to provide a principled way of
incorporating complex features into probability models [16].
Given a sentence wj ...w,, an ME based tagger models the
conditional probability of a tag sequence t¢1,...%, as:

N
P(ty, .. ta|wy ... w,) = [[P(t:]Ci)
i=1

where C1, ... C,, are the corresponding contexts for each word
appearing in the sentence. The context C' of a word w includes
the previous assigned tags before w.

An ME based tagger introduces the concept of features
which encode elements of a context C' useful for predicting
the tag ¢ of a word w. Features are binary valued functions
that represent constraints. An ME based tagger will use the
features to compute P(¢;|C;). It will learn the weights of the
features that can maximize the entropy of the probability model
using the training corpus. Different ME based POS taggers that
make use of different features have been proposed. The NLTK
natural language toolkit contains a ME based POS tagger that
is implemented by Loper and Chichkov' (referred to as NLTK
tagger in this paper). Stanford POS tagger is another popular
ME based tagger that improves the original maximum entropy
based tagger [16] by considering two more types of features
related to the writing style of letters (e.g., whether the first
letter is capitalized or not) [21].

4) Transformation based Tagger: A transformation based
POS tagger assigns POS tags to words based on linguistic
knowledge, expressed as rules, that are automatically learned
from a training corpus. In particular, the transformation based
tagger first uses a simple stochastic based tagger to get an
initial tag for a word and then go back to fix the error if the
word is wrongly tagged. In this way, the rules that could turn
a badly tagged text into a good one are automatically learned.
TBT tagger is the POS tagger proposed by Brill, who first
introduced the idea of transformation based tagger [7]. The
TBT tagger uses a unigram tagger to get the initial tags. Annie
tagger is another popular transformation based tagger [12].

III. METHODOLOGY

In this section, we describe the methodology to collect and
preprocess bug reports, and build a ground truth set. We also
present the POS taggers that we compare in this study and
their implementations.

A. Bug Report Collection

Bug tracking systems, such as Bugzilla, Jira, etc., are often
used by developers to collect and maintain bug reports. Each
bug report contains information that could help developers to
reproduce and fix the bug. A bug report also contains related
discussion on the reported bug. Table I describes the fields in
a bug report that are of interest to us.

Uhttp://www.nltk.org/modules/nltk/classify/maxent.html

TABLE I: Textual fields in a bug report

Field

Summary

Description |

A short description of the bug that is written by the bug
reporter.

A long description of the bug that is written by the bug
reporter. It typically includes information such as error mes-
sage, steps to reproduce the bug, stack traces, etc.
Discussions about the bug that are contributed by developers.
Typically these discussions include information such as the
root cause of the bug, review of a patch, etc.

Description

Comments

In this work, we consider bug reports from Eclipse and
Mozilla project that are both stored in a Bugzilla> bug track-
ing system. Eclipse is a popular multi-language integrated
development environment (IDE). Mozilla is a large non-profit
organization that hosts and develops products such as Firefox,
Thunderbird, etc. We crawl bug reports from the Bugzilla
websites of these projects. Given the fact that it’s hard to
manually label all words in all existing bug reports of Eclipse
and Mozilla, we randomly select 50 bug reports from each
project and generate a sample set that contains 100 bug reports.
Table II shows the basic statistics of our dataset.

TABLE II: Dataset

Project Period #Bug #Sample | #Sentences #Words
Report Bug
Report
Eclipse Jan-Dec 2012 | 29,589 50 832 8,313
Mozilla | Jan-Dec 2012 | 95,696 50 1,291 13,400
Total Jan-Dec 2012 125,285 100 2,123 21,713

B. Bug Report Preprocessing

Some pieces of information extracted from the summary,
description and comments fields of a bug report might be
hard to be preprocessed directly using the existing English
POS taggers. These include non natural language contents
such as code segments and stack traces. These two kinds of
information require other techniques, e.g., the code POS tagger
proposed by Binkley et al. [5], to help in the assignment
of POS tags. Therefore, in this work, we manually remove
code segments and stack traces from the sampled 100 bug
reports. Note that method names, class names, and variable
types appearing in text segments are still included. We also
remove quoted sentences inside comments (since they are
duplicate text) and fix format errors inside bug reports (e.g.,
relink broken sentences).

C. Ground Truth Construction

We ask six participants, which include five PhD students
and one postdoc with more than five years of experience in
programming, to assign tags to words in the sampled bug
reports. We ask participants to assign to each word inside a
bug report one of the tags in a predefined tag set. Since nouns
contain the most important information in a bug report [8],
[18], and verbs, adjectives and adverbs could also potentially
be helpful [5], we have the following tag set:

e Noun

e Verb

Zhttp://www.bugzilla.org/

572

e Adverb & adjective

e Others (e.g., determiner, conjunction, etc.)

We merge adverbs and adjectives into the same group
because they perform a similar function (i.e., describe a
noun/verb). Name of a method, class or type of a variable
appearing in text segments is regarded as noun.

To increase the confidence in the assigned POS tags, we
make sure that each bug report is assigned by two different
people. We then check whether the two people give the same
POS tag for each word in the bug report and ask them to
discuss and make a decision if their assigned tags are different.

TABLE III: Selected POS taggers

[Tagger [Type [Tool |
Unigram Tagger Unigram NLTK toolkit
TnT Tagger Hidden Markov Model | NLTK toolkit
TreeTagger Hidden Markov Model TreeTagger 1
NLTK Tagger Maximum Entropy NLTK toolkit
Stanford Tagger Maximum Entropy Stanford Tagger s
TBT Tagger Transformation NLTK toolkit
Annie Tagger Transformation Gate toolkit °

D. POS Tagger Selection and Implementation

We select seven commonly used POS taggers to represent
the four types of POS taggers that are introduced in Section II.
The seven selected POS taggers include the Annie tagger, the
TreeTagger, and the Stanford tagger, which have been applied
on software artifacts in previous studies [5], [8], [9], [10],
[18]. Table IIT shows the seven POS taggers and the tools that
implement them. These POS taggers are all supervised taggers
and thus they require a pre-tagged training corpus. We use a
commonly used tagged regular English corpus, i.e., the Wall
Street Journal (WSJ) corpus [15] as the training corpus.

IV. PRELIMINARY EXPERIMENT

In this section, we first introduce two research questions.
We then present and analyze the results of our preliminary
experiments. Finally, we describe several threats to validity.

A. Research Questions

We compare the state-of-the-art POS taggers by answering
the following two research questions:
RQ1l How effective are the POS tagging techniques on
bug reports, compared with their performance on a
general English corpus?
Which POS tagging technique performs the best for
various word types, i.e., all non stop-words7, nouns,
verbs, adjectives and adverbs?

RQ2

3http://www.nltk.org/
“http://www.cis.uni-muenchen.de/~schmid/tools/Tree Tagger/
Shttp://nlp.stanford.edu/software/tagger.shtml

Shttps://gate.ac.uk/

7Stop words are frequently occurring words that have little semantic value,

e.g., “is”, “are”, etc.

B. Performance of POS Taggers on Bug Reports (RQI)

We use accuracy (i.e., the ratio of the number of correctly
tagged words to the total number of tagged words) to measure
the performance of a POS tagger on a text corpus. Table IV
shows the accuracy of each POS tagger on our created ground
truth set and their accuracy on a regular English corpus, i.e.,
the WSJ corpus. Note that the accuracy on the regular English
corpus is computed by training a POS tagger on a part of
the WSJ corpus and applying it on a different part of the
WSJ corpus. From Table IV, we observe that the studied
POS taggers could achieve an accuracy of 83.6% to 90.5% on
the sampled bug reports. The Stanford POS tagger performs
the best followed by the TreeTagger, while the unigram POS
tagger performs the worst. The taggers performance on the
bug reports are all worse than their performance on the regular
English corpus. The last column in Table IV shows the ratio
of the accuracy of a POS tagger on the bug reports and
its accuracy on the regular English corpus. Although the
unigram tagger performs the worst, the difference between its
performance on bug reports and that on the regular English
corpus is small. For the other POS taggers, the accuracy of
the TnT HMM-Based and NLTK ME-Based taggers decrease
the most when they are applied on bug reports.

TABLE IV: Performance of the POS taggers on bug reports and a regular
English news corpus. Values in column “Ratio” are the ratios of the
values in column “Bug Reports” and the values in column “Regular
English Corpus”.

[Tagger | Bug Reports | Regular English Corpus | Ratio |
Unigram 83.6% 86% 97.2%
TnT 84.9% 96% 88.4%
Tree 90.4% 97% 93.2%
NLTK 85.1% 97% 87.7%
Stanford 90.5% 97% 93.3%
TBT 87.2% 97% 89.9%
Annie 88.6% 97% 91.3%

C. Comparative Analysis of the Seven POS Taggers for Vari-
ous Word Types (RQ2)

In this research question, we investigate the performance
of the selected POS taggers under four different settings: 1) on
tagging all non stop words; 2) on tagging nouns; 3) on tagging
verbs; and 4) on tagging adjectives and adverbs. Performance
on the first setting is evaluated using accuracy, while the
performance on the other three settings are evaluated using
F-measure. We do not use F-measure to evaluate results on
non stop words, because non stop words contains words with
various tag type while we can only compute F-measure for
each tag type. We compute the F-measure as the harmonic
mean of precision and recall, where precision is the number
of correctly tagged nouns divided by the number of all words
tagged as noun, and recall is the number of correctly tagged
nouns divided by the number of nouns. Table V shows the
performance of the seven POS taggers. The table shows that
the TreeTagger performs the best for the first three settings,
i.e., on tagging non stop-words, nouns, and verbs, while the
Stanford tagger performs the best on the last setting, i.e., on
tagging adjectives and adverbs. Overall, the performance of the
TreeTagger and the Stanford tagger is close to each other and
these two taggers perform better than the other POS taggers
for all settings.

573

TABLE V: Performance of POS taggers on bug reports

Tagger Non Stop-words | Noun Verb Adj. & Adv.
(Accuracy) (F-measure) (F-measure) (F-measure)

Unigram 77.8% 83.4% 69.0% 73.5%

TnT 79.6% 84.7% 73.2% 74.8%

Tree 89.2% 92.7% 90.0% 81.0%

NLTK 80.0% 84.8% 78.7% 71.7%

Stanford 88.9% 92.3% 88.9% 82.7%

TBT 84.2% 88.3% 82.4% 76.7%

Annie 85.5% 89.4% 84.2% 80.6%

D. Threats to Validity

Threats to internal validity relates to experimental errors
and biases. Our tag set contains four types of POS tag, which
software engineers might be interested in. However, it ignores
many of the errors in tagging, e.g., a word being tagged as
an adverb instead of an adjective. We would like to consider
a more fine-grained tag set in the future. To build the ground
truth dataset, we ask six participants, who have more than
five years of programming, to assign POS tags to words that
appear in the sampled bug reports. These participants are fluent
English speakers and writers, but might still wrongly label
some of the words because they are not experts in English.
To reduce bias introduced by the human labeling process, we
assign each bug report to two different participants. These two
participants will discuss and make a final decision on the POS
tag of a word when they give different tags to the word.

Threats to external validity relates to the generalizability
of our approach. We use 100 randomly sampled bug reports
from Mozilla and Eclipse to evaluate POS tagging techniques.
Although these bug reports contain 21,713 words, results
on these bug reports might not represent the results on all
bug reports or other types of software artifacts (e.g., source
code comments). In the future, we plan to expand this study
by including more bug reports from additional open source
projects and other software artifacts.

Threats to construct validity relates to the suitability of
our evaluation metrics. Similar with a previous work [5], we
use the percentage of correctly tagged words (i.e., accuracy)
to measure the performance of a POS tagger. To measure the
performance of a POS tagger for different types of words (i.e.,
nouns, verbs, adjectives and adverbs), we compute F-measure,
which is a well-known evaluation metric [11].

V. RELATED WORK
A. POS Tagging for Identifying Important Words

Capobianco et al. use a POS tagging technique (i.e.,
TreeTagger) to improve the performance of information re-
trieval (IR) based traceability recovery approaches [8].% In
particular, they apply the TreeTagger to identify noun terms
and non-noun terms (terms with other part-of-speech tags,
e.g., verbs, adjectives, etc.) from high-level textual artifacts
(e.g., user cases), and show that by only retaining the noun
terms in the textual artifacts, the accuracy of various IR-
based traceability recovery approaches significantly improves.

8Traceability recovery is the task of reconstructing the links between
software artifacts. Usually the links are between source code and other
artifacts, e.g., use cases, test cases, requirements, etc.

Similarly, Shokripour et al. integrate a POS tagger (i.e., Annie
tagger) into their proposed automated bug report assignment
approach to identify noun terms in software artifacts (i.e., bug
reports and source code identifiers) [18]. The above two studies
directly apply POS tagging techniques on software artifacts
without checking their accuracy in assigning part-of-speech
tags to terms in software artifacts, which might impact the final
performance of their approaches. Additionally, it is unknown
whether the POS taggers used in their studies are the best
ones for software artifacts, among existing state-of-the-art POS
taggers. To complement these existing studies, we perform this
comparative study.

B. POS Tagging for Program Comprehension

Abebe and Tonella apply natural language parsing to
sentences generated from source code identifiers for better
program comprehension [1]. Following the work of Abebe and
Tonella, Binkley et al. investigate the performance of a POS
tagging technique (i.e., Stanford tagger) on source code iden-
tifiers [5]. They first form sentences from identifiers following
Abebe and Tonella’s approach and then pass the sentences
to the Stanford POS tagger. They find that the POS tagger
applied on the sentences has an accuracy of 81.7%. Falleri et
al. propose an automated approach to extract identifiers from
source code and organize them in a network to give insight on
the software architecture [9]. Their generated network captures
the relations (i.e., synonymy, hyponymy and hyperonymy)
between identifiers with their constitutent terms tagged by a
POS tagger (i.e., TreeTagger). Gupta et al. propose a new POS
tagger for program identifiers [10]. They use WordNet’ to
assign POS tags to terms splitted from identifiers, and then use
a set of rules based on common naming conventions to correct
the initial POS tags. The above studies focus on applying or
customizing POS taggers for source code identifiers rather than
bug reports that are considered in our study.

VI. CONCLUSION AND FUTURE WORK

Previous textual analysis work on bug reports and code
identifiers show the potential power of part-of-speech tagging
in supporting software engineering tasks, such as program
comprehension and bug assignment. In this work, we compare
the effectiveness of seven state-of-the-art POS taggers on bug
reports. We build a ground truth set that contains 21,713 tagged
words from 100 sampled bug reports from Eclipse and Mozilla
project. Our preliminary experiment results show that the state-
of-the-art POS taggers could achieve a reasonable accuracy on
bug reports (83.6%-90.5%), although worse than its accuracy
on a regular English corpus (97%, for most taggers). We also
investigate the performance of POS taggers for different types
of words. Generally, the Stanford and TreeTagger perform the
best.

In the future, it would be interesting to increase the number
of tagged bug reports and train POS taggers using tagged bug
reports, rather than using regular English corpus. It would
also be interesting to perform a qualitative study on the cases
in which different types of taggers produce wrong tags. This
might help us create an improved POS tagging technique that
performs better than off-the-shelf POS taggers when apply on
bug reports.

9http://wordnet.princeton.edu/

574

(1]

[4]

[3]

[6]

(71

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

REFERENCES

S. L. Abebe and P. Tonella. Natural language parsing of program
element names for concept extraction. In Program Comprehension
(ICPC), 2010 IEEE 18th International Conference on. IEEE, 2010.

M. Alenezi, K. Magel, and S. Banitaan. Efficient bug triaging using
text mining. Journal of Software, 8(9):2185-2190, 2013.

J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In
ICSE. ACM, 2006.

C. Biemann, C. Giuliano, and A. Gliozzo. Unsupervised part-of-speech
tagging supporting supervised methods. In RANLP, 2007.

D. Binkley, M. Hearn, and D. Lawrie. Improving identifier informa-
tiveness using part of speech information. In MSR, 2011.

T. Brants. Tnt: a statistical part-of-speech tagger. In Proceedings of the
sixth conference on Applied natural language processing, pages 224—
231. Association for Computational Linguistics, 2000.

E. Brill. Transformation-based error-driven learning and natural lan-
guage processing: A case study in part-of-speech tagging. Computa-
tional Linguistics, pages 543-565, 1995.

G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichel-
la. Improving IR-based traceability recovery via noun-based indexing
of software artifacts. Journal of Software: Evolution and Process,
25(7):743-762, 2013.

J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and
M. Dao. Automatic extraction of a wordnet-like identifier network
from software. In Program Comprehension (ICPC), 2010 IEEE 18th
International Conference on. IEEE, 2010.

S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker. Part-of-
speech tagging of program identifiers for improved text-based software
engineering tools. In ICPC, 2013.

J. Han and M. Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., 2000.

M. Hepple. Independence and commitment: Assumptions for rapid
training and execution of rule-based POS taggers. In ACL. Association
for Computational Linguistics, 2000.

P. S. Kochhar, Y. Tian, and D. Lo. Potential biases in bug localization:
Do they matter? In ASE, pages 803-814. ACM, 2014.

T.-D. B. Le, S. Wang, and D. Lo. Multi-abstraction concern localiza-
tion. In Software Maintenance (ICSM), 2013 29th IEEE International
Conference on, pages 364-367. IEEE, 2013.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a
large annotated corpus of english: The penn treebank. Computational
linguistics, 19(2):313-330, 1993.

A. Ratnaparkhi et al. A maximum entropy model for part-of-speech
tagging. In Proceedings of the conference on empirical methods in
natural language processing, volume 1, pages 133—142. Philadelphia,
PA, 1996.

H. Schmid. Improvements in part-of-speech tagging with an application
to german. In ACL SIGDAT Workshop, 1995.

R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation. In MSR, 2013.

C. Sun, D. Lo, S.-C. Khoo, and J. Jiang. Towards more accurate retrieval
of duplicate bug reports. In ASE. IEEE, 2011.

Y. Tian, C. Sun, and D. Lo. Improved duplicate bug report identification.
In CSMR, pages 385-390. IEEE, 2012.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-
rich part-of-speech tagging with a cyclic dependency network. In
Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language
Technology-Volume 1, pages 173-180. Association for Computational
Linguistics, 2003.

S. Wang and D. Lo. Version history, similar report, and structure:
putting them together for improved bug localization. In ICPC, pages
53-63. ACM, 2014.

X. Xia, D. Lo, X. Wang, and B. Zhou. Accurate developer recommen-
dation for bug resolution. In WCRE, pages 72-81. IEEE, 2013.

