
Automatic Classification of Software Related Microblogs

Philips K. Prasetyo, David Lo, Palakorn Achananuparp, Yuan Tian and Ee-Peng Lim

School of Information Systems

Singapore Management University, Singapore

{pprasetyo,davidlo,palakorna,yuan.tian.2012,eplim}@smu.edu.sg

Abstract—Millions of people, including those in the soft-
ware engineering communities have turned to microblogging
services, such as Twitter, as a means to quickly disseminate
information. A number of past studies by Treude et al., Storey,
and Yuan et al. have shown that a wealth of interesting
information is stored in these microblogs. However, microblogs
also contain a large amount of noisy content that are less
relevant to software developers in engineering software systems.
In this work, we perform a preliminary study to investigate
the feasibility of automatic classification of microblogs into
two categories: relevant and irrelevant to engineering software
systems. We extract features from the textual content of the
microblogs and the titles of any URLs mentioned in the mi-
croblogs. These features are then used to learn a discriminative
model used in classifying relevant and irrelevant microblogs.
We show that our trained model can achieve a promising
classification performance.

I. INTRODUCTION

Microblogging has recently become a popular means for

people to exchange opinions and disseminate information.

Microblogs often highlight recent or even real time contents

that are of interest to many. One of the most popular

microblogging services to date is Twitter. Due to its vast

user base and popularity, we focus on microblog messages

published by Twitter users in this work.

In Twitter, a microblog message, also known as tweet,

may contain up to 140 characters. In addition, a tweet

can be embedded with URLs and media, such as images,

videos, etc. Users can also subscribe to or follow other

users’ message feeds, forming a network of users. Whenever

a Twitter user publishes a tweet, it will be automatically

transmitted to their followers’ subscribed feeds. Thanks to

the realtime and informal nature of Twitter, more than 340

million tweets are generated by over 140 million active users

every day1.

People in the software engineering community also pub-

lish tweets regularly. Guzzi et al., Begel et al., and Treude

and Storey propose ways to integrate social media and

microblogging with software development and IDEs [6],

[3], [18]. Bougie et al. and Tian et al. investigate what

kinds of microblogs are generated by users [4], [16]. By

subscribing to others’ message feeds, developers could learn

1http://thenextweb.com/socialmedia/2012/03/21/twitter-has-over-140-
million-active-users-sending-over-340-million-tweets-a-day

about various kinds of information useful to their software

engineering activities, for example, new tools, sample code

snippets, tips, etc.

Unfortunately, the majority of tweets are neither infor-

mative [11] nor related to software engineering topics.

Moreover, many software-related microblogs are neither

relevant nor helpful to engineering software systems. Tian

et al. [16] manually classified software-related microblogs

and found that many of them are about job advertisement.

Thus, interesting microblogs that are relevant to engineering

software systems are often buried among a plethora of

irrelevant ones.

In this work, we propose a preliminary framework to

identify relevant microblogs (those that could be helpful

in engineering software systems) from irrelevant ones. Our

framework consists of three components: Webpage crawler,

text processor, and machine-learning classifier. For any

tweets with embedded URLs, we crawl the content of the

URLs mentioned in them. Next, we process the contents of

the tweets and the embedded URLs to construct the feature

sets used to train the classifier. Then, we train the classifier

using the feature sets to build a discriminative model. The

model is then used to classify the relevancy of unlabeled

tweets.

We perform a preliminary evaluation on a set of 300

software-related tweets previously studied by Tian et al. [16].

These tweets contain hashtags (i.e., user-defined tags that are

embedded in tweet content, mostly for specifying the tweet’s

topics) related to software development. Still, only 47%

of the tweets are relevant to engineering software systems.

Our trained model, on the other hand, achieves a promising

performance for the same set of tweets.

The contributions of this work are as follows:

1) We propose a new problem of automatic categoriza-

tion of tweets as relevant or irrelevant to engineering

software systems.

2) We propose a text processing framework that extracts

textual features from both tweets and embedded web-

pages. These features are then used to train a discrim-

inative model that can be used to classify relevant and

irrelevant tweets.

3) We have conducted a preliminary experiment on a set

of 300 tweets. Our tweet classifier performs reason-

ably well, achieving 74.67% accuracy, 76% precision,

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

2012 28th IEEE International Conference on Software Maintenance (ICSM)

596

67.38% recall, and 71.43% F-measure.

The structure of this paper is as follows. First, we elabo-

rate our proposed framework in Section II. Then, we present

the experiment results in Section III and discuss the related

work in Section IV. Lastly, we conclude the paper and

mention future work in Section V.

II. PROPOSED APPROACH

The proposed framework, shown in Figure 1, consists of

three major components: Webpage crawler, text processor,

and tweet classifier. In the training stage, we process a set of

manually-labeled tweets as either relevant or irrelevant and

use them to train a classifier. A discriminative model is an

output of the training phase. Then, we use the discriminative

model to classify unlabeled tweets at the testing phase.

���������

��	��

�
�	����
����� ✁ ✂ ✄ ✄ ☎ ✆ ☎ ✝ ✞
�
�	���	��

����	������
����
���	���	��

✟ ☎ ✄ ✠ ✞ ☎ ✡ ☎ ☛ ✂ ☞ ☎ ✌ ✝✍ ✎ ✏ ✝ ✁
�

� �

��
���	���

���������
✟ ✝ ✑ ✁ ✎ ✒ ✡ ✝ ☛ ☞

Figure 1. Proposed Framework

A. Webpage Crawler

As a tweet can only contains at most 140 characters,

Twitter users often use URL shortener services, such as

bit.ly, to encode the original URLs before embedding them

in the tweet content. The content of these URLs could

be helpful in classifying the relevancy of the tweet itself.

Therefore, we create a crawler to detect a shortened URLs

(using a simple regular expression) in the tweet content,

expand it by checking HTTP headers so as to derive the

original URL, and collect its textual content.

B. Text Processor

The text processor component is used to pre-process the

contents of tweets and embedded webpages so as to extract

a set of textual features to be used in the classification. For

each tweet, we remove common stopwords from its content

using NLTK2 stopword list. Next, we stem (reduce a word

to its root form, for example, both “reading” and “reads”

2http://nltk.org/

share a common root form “read”) each word in the tweet

using the Porter stemmer algorithm [13]. For each embedded

webpage, we apply the same pre-processing steps to its

title. Finally, we extract single-word tokens from the pre-

processed tweet and webpage texts and combine them as a

feature set.

C. Classifier and Discriminative Model

We represent each labeled (and unlabeled) tweet as a

feature vector where each feature is a single-word token

having its frequency in the tweet as its weight. Given a set

of feature vectors of the training data, various classifiers can

used to train a discriminative model. In this study, we use

Support Vector Machine (SVM) as it has been commonly

used in other text mining studies in software engineering,

e.g., [9], [15]. The trained discriminative model is then used

in the deployment phase to classify unlabeled tweets.

III. PRELIMINARY EXPERIMENTS

In this section, we describe our dataset, research ques-

tions, preliminary results, and threats to validity.

A. Dataset

Tian et al. [16] collected 300 tweets containing either

one of the following 9 hashtags: #csharp, #java, #javascript,

#.net, #jquery, #azure, #scrum, #testing, and #opensource.

They then manually classified the tweets into 10 categories:

commercials, news, tools & code, Q&A, events, personal,

opinions, tips, jobs, and miscellaneous. In this study, we

use Tian et al.’s dataset in our experiment. Since the goal is

different in our study, we manually re-label the 300 tweets

as either relevant or irrelevant. If a tweet is potentially

interesting to a developer for his/her task of engineering a

software system, we label it as relevant, otherwise we label

it as irrelevant. We find that 141 (47%) of the microblogs

are relevant while 159 (53%) of them are irrelevant.

B. Research Questions

We would like to answer the following research questions:

RQ1 How effective is the proposed framework in

classifying the tweets as relevant or irrelevant?

RQ2 Given the categories of software engineering

tweets in Tian et al., how many tweets in each

category is relevant and how many are irrele-

vant? How many tweets of each category are

correctly classified?

RQ3 What is the sensitivity of the proposed frame-

work when less training data is available?

2012 28th IEEE International Conference on Software Maintenance (ICSM)

597

Table I
OVERALL EFFECTIVENESS

Accuracy 74.67%
Precision 76%
Recall 67.38%
F1-Measure 71.43%

C. RQ1: Overall Effectiveness

To measure the accuracy of the proposed framework, we

perform a 10-fold cross validation. We divide 300 tweets

into 10 folds containing 30 tweets each. We use 9 of them

for training and 1 for testing. We repeat the process 10 times

considering different group as the test set.

We measure the effectiveness of the proposed framework

using the standard measures in text classification: accuracy,

precision, recall, and F-measure. Accuracy measures the

percentage of correctly classified tweets. It is defined as

tp+ tn

tp+ tn+ fp+ fn

where tp, tn, fp, and fn are true positive, true negative,

false positive, and false negative, respectively. Precision is

the fraction of true relevant tweets among predicted relevant

tweets, is defined as
tp

tp+ fp

Recall measures the percentage of relevant tweets captured

by the model. It is defined as

tp

tp+ fn

F-measure is the harmonic mean of precision and recall and

is defined as
2× precision× recall

precision+ recall

Table I shows the overall effectiveness of our proposed

framework. The results look promising. Our discriminative

model achieves 74.67% accuracy, 76% precision, 67.38%

recall, and 71.43% F-Measure given that only the contents

of tweets and webpages’ title are used to train the classifier.

D. RQ2: Effectiveness per Tweet Category

We summarize the distribution of tweets across Tian et

al.’s categories [16] in Table II. As we can see, over 85%

of tweets in tools & code, tips, and Q&A are relevant to

engineering software systems while no tweet in personal,

jobs, and miscellaneous is relevant.

We also investigate the effectiveness of our framework on

each category of tweets. Table III shows the per-category

performance of the proposed framework.

The results show that our framework achieves high F-

measure in the two highly relevant category, i.e., tools &

code, and Q&A. On the other hand, it does not perform

as well in the other highly relevant category, i.e., tips.

Although the model achieves 100% recall when classifying

Table II
RELEVANCE PER CATEGORY OF TWEETS

Category % Relevant

Commercials 40%
News 29.5%
Tools & Code 100%
Q&A 86.4%
Events 45.5%
Personal 0%
Opinions 42.9%
Tips 100%
Jobs 0%
Misc. 0%

Table III
ACCURACY PER CATEGORY OF TWEET CLASSIFICATION

Category Accuracy Precision Recall F-Measure

Commercials 60% 50% 50% 50%
News 54.5% 61.5% 34.8% 44.4%
Tools & Code 79.5% 79.5% 100% 88.6%
Q&A 79.6% 84.2% 91.4% 87.7%
Events 45.5% 20% 33.3% 25%
Personal 93.8% 0% 0% 0%
Opinions 76.2% 55.6% 83.3% 66.7%
Tips 48.5% 48.5% 100% 65.3%
Jobs 100% 0% 0% 0%
Misc. 72% 0% 0% 0%

tips-related tweets, the overall performance suffers from low

precision. Furthermore, our framework also performs very

well in classifying tweets in highly irrelevant categories,

i.e. personal, jobs, and miscellaneous. The most difficult

category to classify is events because many tweets in this

category are ambiguous. We expect that the classification

performance in this category can be further improved by

incorporating more textual features from the URL contents.

E. RQ3: Sensitivity Analysis

We also investigate the sensitivity of our framework on

the number of training data. Since we have a small dataset,

we perform k-fold cross validation using different k values

from 2 to 9. Smaller k values use fewer data points for

training. The performances of k-fold cross validations for

different values of k, shown in Table IV, suggests that our

framework is robust on different numbers of training data.

F. Threats to Validity

Threats to internal validity relates to experimenter bias. In

our study, to create the ground truth, we manually assign the

Table IV
RESULTS OF K-FOLD CROSS VALIDATIONS FOR DIFFERENT K

k Accuracy Precision Recall F-Measure

9 75.43% 75.19% 70.92% 72.99%
8 74.29% 74.62% 68.79% 71.59%
7 73.98% 74.05% 68.79% 71.32%
6 74.33% 73.88% 70.21% 72%
5 73.67% 74.22% 67.38% 70.63%
4 75% 75.78% 68.79% 72.12%
3 74.67% 74.44% 70.21% 72.26%
2 75% 75.78% 68.79% 72.11%

2012 28th IEEE International Conference on Software Maintenance (ICSM)

598

tweets to two categories: relevant (to engineering software

systems) and irrelevant. As with any other manual labeling

tasks, human judgment can be biased or inconsistent.

Threats to external validity relates to the generalizability

of our findings. In this study, we only evaluate our frame-

work on 300 microblogs in Twitter. In the future, we plan

to reduce this threat of external validity by conducting an

experiment using a larger dataset.

Threats to construct validity refers to the suitability of

our evaluation measures. We use the standard 10-fold cross

validation and evaluate the effectiveness of our framework

using the standard evaluation measures used in text classi-

fication, namely, accuracy, precision, recall, and F-measure.

Thus, we believe there is little threat to construct validity.

IV. RELATED WORK

Social Media and Software Engineering. Recently, a num-

ber of studies highlight an interesting direction of research

on how social media could help software development.

Storey highlights the roles that various social media, rang-

ing from question and answer sites, microblogging sites,

social coding sites, etc., could play in improving software

development [14]. A number of studies by Guzzi et al.,

Begel et la., and Treude et al. have proposed various ways

of integrating social media to software development and

integrated development environments [6], [3], [18]. Pagano

and Maalej investigate how developers blog [12]. Treude

et al. investigate and manually categorize a few hundreds

questions in StackOverflow [17]. Gottipati et al. build a

search engine over software question and answer forums

by inferring semantic tags [5]. Bougie et al. and Tian

et al. investigate a few hundred microblogs and manually

categorize them [4], [16]. Achananuparp et al. build an

observatory of software microblog trends [1]. In this study,

we extend the prior work by Bougie et al. and Tian et

al. by proposing a framework to automatically categorize

software microblogs into two classes: relevant and irrelevant

to engineering software systems.

Text Classification for Software Engineering. A number

of existing studies employ text classification for various soft-

ware engineering tasks. Antoniol et al. use text classification

to predict if a change requests is a bug report or a feature

request [2]. A number of studies use text classification to

predict the severity of bug reports. These include the study

by Menzies and Marcus [10] and Lamkanfi et al. [8], [9].

Other studies use text classification to identify duplicate bug

reports, e.g., [15]. In this work, we use text classification

to automatically identify relevant and irrelevant microblogs.

We extract the content of both the microblogs and URLs

embedded in the microblogs (we only use the URL’s title in

this preliminary study) to form textual features that are used

to train a microblog classifier.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a text mining framework to

automatically categorize microblogs into those that are either

relevant or irrelevant to engineering software systems. We

extract a set of features from the content of the tweets as

well as the ULRs embedded in them. Then, we train a

discriminative model using support vector machine (SVM)

as the classifier. The discriminative model is used to classify

unlabeled microblogs as either relevant or irrelevant. The

preliminary evaluation on a set of 300 tweets suggests that

the proposed framework is promising.

In the future, we plan to extract more features from

URL contents and conduct a larger scale evaluation using

a finer grained categories, e.g., the 10 categories proposed

by Tian et al. [16]). Moreover, we would like to investigate

other classifiers that produce human readable models, e.g.,

decision tree [7], or a spam-filter-like Bayesian approach.

ACKNOWLEDGEMENT

This research/project is supported by the Singapore Na-

tional Research Foundation under its International Research

Centre @ Singapore Funding Initiative and administered by

the IDM Programme Office.

REFERENCES

[1] P. Achananuparp, I. Lubis, Y. Tian, D. Lo, and E.-P. Lim, “Observatory of
trends in software related microblogs,” in ASE (Tool Paper), also available at:
http://research.larc.smu.edu.sg/papers/observatory.pdf, 2012.

[2] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is it a
bug or an enhancement?: a text-based approach to classify change requests,”
in CASCON, 2008.

[3] A. Begel, R. DeLine, and T. Zimmermann, “Social media for software
engineering,” in Workshop on Future of Software Engineering Research, 2010.

[4] G. Bougie, J. Starke, M.-A. Storey, and D. German, “Towards understanding
Twitter use in software engineering: Preliminary findings, ongoing challenges,
and future questions,” in International Workshop on Web 2.0 for Software
Engineering, 2011.

[5] S. Gottipati, D. Lo, and J. Jiang, “Finding answers in software forums.” in
ASE, 2011.

[6] A. Guzzi, M. Pinzger, and A. van Deursen, “Combining micro-blogging and
ide interactions to support developers in their quests.” in ICSM, 2010.

[7] J. Han and M. Kamber, Data Mining Concepts and Techniques, 2nd ed.
Morgan Kaufmann, 2006.

[8] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity
of a reported bug,” in MSR, 2010.

[9] A. Lamkanfi, S. Demeyer, Q. Soetens, and T. Verdonck, “Comparing mining
algorithms for predicting the severity of a reported bug,” in CSMR, 2011.

[10] T. Menzies and A. Marcus, “Automated severity assessment of software defect
reports,” in ICSM, 2008.

[11] M. Naaman, J. Boase, and C.-H. Lai, “Is it really about me?: message content
in social awareness streams,” in Proceedings of CSCW ’10, 2010.

[12] D. Pagano and W. Maalej, “How do developers blog? an exploratory study,”
in MSR, 2011.

[13] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp.
130–137, 1980.

[14] M.-A. Storey, “The evolution of the social programmer: Social media and
software engineering (keynote speech),” in MSR, 2012.

[15] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative model
approach for accurate duplicate bug report retrieval,” in ICSE (1), 2010, pp.
45–54.

[16] Y. Tian, P. Achananuparp, I. N. Lubis, D. Lo, and E.-P. Lim, “What does
software engineering community microblog about?” in MSR, 2012.

[17] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web?” in ICSE, 2011.

[18] C. Treude and M. Storey, “How tagging helps bridge the gap between social
and technical aspects in software development?” in ICSE, 2009.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

599

	Automatic Classification of Software Related Microblogs
	Philips K. Prasetyo
	David Lo
	Palakorn Achananuparp
	Yuan Tian
	Ee-Peng Lim

