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Abstract—In the evolution of an operating system there is
a continuing tension between the need to develop and test
new features, and the need to provide a stable, reliable, and
secure execution environment to users. A compromise, adopted
by the developers of the Linux kernel, is to release new
versions, including bug fixes and new features, frequently, while
maintaining some older “longterm” versions. This strategy
raises the problem of how to identify bug fixing patches that are
submitted to the current version but should be applied to the
longterm versions as well. The current approach is to rely on
the individual subsystem maintainers to forward patches that
seem relevant to the maintainers of the longterm kernels. The
reactivity and diligence of the maintainers, however, varies, and
thus many important patches could be missed by this approach.

In this paper, we propose an approach that automatically
identifies bug fixing patches based on the changes and commit
messages recorded in code repositories. We compare our
approach with the keyword-based approach for identifying
bug-fixing patches used in the literature. We have applied
our approach to patches from Linux. The results show that
our approach can achieve a much higher recall (45.11%
relative improvement in recall) as compared to keyword-based
approaches, with similar precision.

I. INTRODUCTION

For an operating system, reliability and continuous evolu-
tion to support new features are two key criteria governing
its success. However, achieving one is likely to adversely
affect the other, as supporting new features entails adding
new code, which can introduce bugs. In the context of Linux
development, these issues are resolved by regularly releasing
versions that include new features, while periodically fixing
some versions for longterm support. The primary develop-
ment is carried out on the most recent version, and relevant
bug fixes are backported to the longterm code.

A critical element of the maintenance of the longterm
versions is thus the identification of bug fixing patches. In
the Linux development process, contributors submit patches
to subsystem maintainers, who approve the submissions and
initiate the process of integrating the patch into the coming
release. Such a maintainer may also forward the patch to the
maintainers of the longterm versions, if the patch satisfies
various guidelines, such as fixing a real bug, and making
only a small number of changes to the code. This process,
however, puts an extra burden on the subsystem maintainers
and thus necessary bug fixing patches could be missed. Thus,

a technique that could automatically label a commit as a bug
fixing patch would be valuable.

In the literature, there are furthermore many studies that
require the identification of links between commits and
bugs. These include work on empirical study of software
changes [20], [28], bug prediction [13], [21], bug localiza-
tion [10], [16], [19], [26], and many more. All of these stud-
ies employ a keyword-based approach to infer commits that
correspond to bug fixes, typically relying on the occurrence
of keywords such as “bug” or “fix” in the commit log. Some
studies also try to link software repositories with a Bugzilla
by the detection of a Bugzilla number in the commit log.
Unfortunately these approaches are not sufficient for our
setting because:

1) Not all bug fixing commit messages include the words
“bug” or “fix”; indeed, commit messages are written
by the initial contributor of a patch, and there are few
guidelines as to their contents.

2) Linux development is mostly oriented around mailing
lists, and thus many bugs are found and resolved
without passing through Bugzilla.

Some of these limitations have also been observed by Bird
et al. [3] who performed an empirical study that show
bias could be introduced due to missing linkages between
commits and bugs.

In view of the above limitations, there is a need for a
more refined approach to automatically identify bug fixing
patches. In this work, we perform a dedicated study on bug
fixing patch identification in the context of the Linux kernel.
The results of our study can also potentially benefit studies
that require the identification of bug fixes from commits.
We propose a combination of text analysis of the commit
log and code analysis of the change description to identify
bug fixing patches. We use an analysis plus classification
framework which consists of:

1) The extraction of basic “facts” from the text and code
that are then composed into features.

2) The learning of an appropriate model using machine
learning and its application to the detection of bug
fixing commits.

A challenge for our approach is to obtain appropriately la-
beled training data. For positive data, i.e., bug fixing patches,
we can use the patches that have been applied to previous



Linux longterm versions, as well as patches that have been
developed based on the results of bug-finding tools. There
is, however, no corresponding set of independently labeled
negative data, i.e., non bug fixing patches. To address this
problem, we propose a new approach that integrates two
learning algorithms via ranking and classification.

We have tested our approach on commits from the Linux
kernel code repository, and compare our results with those
of the keyword-based approach employed in the literature.
We can achieve similar precision with improved recall; our
approach’s precision and recall are 0.601 and 0.875 while
those of the keyword based approach are 0.613 and 0.603.
Our contributions are as follows:

1) We identify the new problem of finding bug fixing
patches to be integrated into a Linux “longterm” re-
lease.

2) We propose a new approach to identifying bug fixing
patches by leveraging both textual and code features.
We also develop a suitable machine learning approach
that performs ranking and classification to address the
problem of unavailability of a clean negative dataset
(i.e., non bug fixing patches).

3) We have evaluated our approach on commits in Linux
and show that our approach can improve on the
keyword-based approach by up to 45.11% recall while
maintaining similar precision.

The structure of the paper are as follows. In Section II,
we provide more information on Linux longterm and stable
kernels. Section III gives a bird’s eye overview of our overall
bug fixing patch identification framework. Section IV de-
scribes the data acquisition and feature extraction processes.
Section V describes the learning and application of discrim-
inative models to detect bug fixing patches. Our experiments
are discussed in Section VI. We discuss interesting issues in
Section VII. Related work is presented in Section VIII. We
conclude and discuss future work in Section IX.

II. LINUX LONGTERM AND STABLE KERNELS

Linux is an open-source operating system that is widely
used across the computing spectrum, from embedded sys-
tems, to desktop machines, to servers. From its first release
in 1994 until the release of Linux 2.6.0 in 2003, two versions
of the Linux kernel were essentially maintained in parallel:
stable versions for users, receiving only bug-fixing patches
over a number of years, and development versions, for
developers only, receiving both bug fixes and new features.
Since the release of Linux 2.6.0, there has been only a single
version, which we refer to as the mainline kernel, targeting
both users and developers, which includes both bug fixes and
new features as they become available. Since 2005, the rate
of these releases has been roughly one every three months.

The current frequent release model is an advantage for
both Linux developers and Linux users because new fea-
tures become quickly available and can be tested by the
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Figure 1. Various kinds of patches applied to the stable kernels 2.6.20
and 2.6.27 and to the mainline kernel in the same time period

Figure 2. Overall Framework

community. Nevertheless, some kinds of users value stability
over support for new functionalities. Nontechnical users may
prefer to avoid frequent changes in their working environ-
ment, while companies may have a substantial investment in
software that is tuned for the properties of a specific kernel,
and may require the degree of security and reliability that a
well-tested kernel provides. Accordingly, Linux distributions
often do not include the latest kernel version. For end users,
the current stable Debian distribution (squeeze) and the
current Ubuntu Long Term Support distribution (lucid) rely
on the Linux 2.6.32 kernel, released in December 2009. For
industrial users, the same kernel is at the basis of the current
versions of Suse Enterprise Linux, Red Hat Enterprise Linux
and Oracle Unbreakable Linux.

In recognition of the need for a stable kernel, the Linux
development community maintains a “stable” kernel in par-
allel with the development of the next version, and a number
of “longterm” kernels that are maintained over a number of
years. For simplicity, in the rest of this paper, we refer to
both of these as stable kernels. Stable kernels only integrate
patches that represent bug fixes or new device identifiers, but
no large changes or additions of new functionalities.1 Such a
strategy is possible because each patch is required to perform
only one kind of change.2 Developers and maintainers may
identify patches that should be included in the stable kernels
by forwarding the patches to a dedicated e-mail address.
These patches are then reviewed by the maintainers of the
stable kernels before being integrated into the code base.

1linux-2.6.39/Documentation/stable kernel rules.txt
2linux-2.6.39/Documentation/SubmittingPatches.txt



A comparison, shown in Figure 1 of the patches accepted
into the mainline kernel with those accepted into the stable
kernels Linux 2.6.20, maintained between February 2007
and August 2007, and Linux 2.6.27, maintained between
October 2008 and December 2010, shows a gap between
the set of bug fixing patches accepted into the mainline as
compared to the stable kernels. Specifically, we consider the
mainline patches that mention Bugzilla, or that mention a
bug finding tool (Coccinelle [22], Smatch,3 or Coverity4).
We also include the number of patches mentioning Bugzilla
that are included in the stable kernel. These amount to at best
around half of the Bugzilla patches. Fewer than 5 patches for
each of the considered bug finding tools were included in the
stable kernel in each of the considered time periods. While
it is ultimately the stable kernel maintainers who decide
whether it is worth including a bug-fixing patch in a stable
kernel, the very low rate of propagation of the considered
types of bug-fixing patches from the mainline kernel to the
stable kernels suggests that automatic identification of bug
fixing patches could be useful.

III. OVERALL FRAMEWORK

Our approach is composed of the following steps: data ac-
quisition, feature extraction, model learning, and bug-fixing
patch identification. These steps are shown in Figure 2.

The data acquisition step extracts commits from Linux
code repository. Some of these commits represent bug fixing
patches while others do not. Not all bug fixing patches are
well marked in Linux code. Furthermore, many of these bug
fixes are not recorded in Bugzilla. Thus they are hidden
in the mass of many other commits that do not perform
bug fixing. There are a variety of non bug fixing commits
including those that perform: code cleaning, feature addition,
performance enhancement, etc.

The feature extraction component then reduces the dataset
into some potentially important facets. Each commit con-
tains a textual description along with code elements that are
changed by the commit. The textual description can provide
hints whether a particular commit is fixing a bugs or is
it only trying to clean up some bad coding style or poor
programming practice. Code features also can help a lot.
Many bug fixes involve a single location change, boolean
operators in if and loop expressions, etc. Many non-bug
fixing commits involve substantially many lines of code, etc.
To obtain a good collective discriminative features we would
need to leverage both text and code based features.

Next, the extracted features are provided to a model learn-
ing algorithm that analyzes the features corresponding to bug
fixing patches and tries to build a model that discriminates
bug fixing patches from other patches. Various algorithms
have been proposed to learn a model given a sample of

3http://smatch.sourceforge.net/
4http://www.coverity.com/

its behavior. We consider some popular classification algo-
rithms (supervised and semi-supervised) and propose a new
framework that merges several algorithms together. The final
step is the application of our model on the unlabeled data
to obtain a set of bug fixing patches.

A challenge in our work is to obtain adequate training
data, consisting of known bug fixing patches and known non
bug fixing patches. As representatives of bug fixing patches,
we may use the patches that have already been applied to
Linux stable versions, as well as patches that are known to
be bug fixing patches, such as those that are derived from
the use of bug finding tools or that refer to Bugzilla. But
there is no comparable source of labeled non bug fixing
patches. Accordingly, we propose a hybrid machine learning
algorithm, that first uses a ranking algorithm to identify a
set of patches that appear to be quite distant from the set of
bug fixing patches. These patches can then be considered to
be a set of known non bug fixing patches. We then use a
supervised classification algorithm to infer a model that can
discriminate bug fixing from non bug fixing patches in the
unlabeled data.

We describe the details of our framework in the following
two sections. In Section IV, we describe our approach
to collect data and to extract features from the collected
data; this corresponds to the first two blocks in our overall
framework shown in Figure 2. In Section V, we describe our
new framework that integrates ranking (via semi-supervised
classification) and supervised classification.

IV. DATA ACQUISITION & FEATURE EXTRACTION

A. Data Acquisition

Linux development is managed using the version control
system git.5 Git makes available the history of changes that
have been made to the managed code in the form of a
series of patches. A patch is a description of a complete
code change, reflecting the modifications that a developer
has made to the source code at the time of a commit. An
example is shown in Figure 3. A patch consists of two
sections: a log message, followed by a description of the
code changes. Our data acquisition tool collects information
from both of these sections. The collected information is
represented using XML, to facilitate subsequent processing.

The log message of a patch, as illustrated by lines 1-16
of Figure 3, consists of a commit number (SHA-1 code),
author and date information, a description of the purpose of
the patch, and a list of names and emails of people who
have been informed of or have approved of the patch. The
data acquisition tool collects all of this information.

The change description of a patch, as illustrated by lines
17-29 of Figure 3, appears in the format generated by
the command diff, using the “unified context” notation
[17]. A change may affect multiple files, and multiple code

5http://git-scm.com/



1 commit 45d787b8a946313b73e8a8fc5d501c9aea3d8847
2 Author: Johannes Berg <johannes.berg@intel.com>
3 Date: Fri Sep 17 00:38:25 2010 +0200
4
5 wext: fix potential private ioctl memory content leak
6
7 commit df6d02300f7c2fbd0fbe626d819c8e5237d72c62 upstream.
8
9 When a driver doesn’t fill the entire buffer, old

10 heap contents may remain, ...
11
12 Reported-by: Jeff Mahoney <jeffm@suse.com>
13 Signed-off-by: Johannes Berg <johannes.berg@intel.com>
14 Signed-off-by: John W. Linville <linville@tuxdriver.com>
15 Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
16
17 diff --git a/net/wireless/wext.c b/net/wireless/wext.c
18 index d98ffb7..6890b7e 100644
19 --- a/net/wireless/wext.c
20 +++ b/net/wireless/wext.c
21 @@ -947,7 +947,7 @@ static int ioctl_private_iw_point(...
22 } else if (!iwp->pointer)
23 return -EFAULT;
24
25 - extra = kmalloc(extra_size, GFP_KERNEL);
26 + extra = kzalloc(extra_size, GFP_KERNEL);
27 if (!extra)
28 return -ENOMEM;
29

Figure 3. A bug fixing patch, applied to stable kernel Linux 2.6.27

fragments within each file. For each modified file the diff
output first indicates the file name (lines 17-20 of Figure 3)
and then contains a series of hunks describing the changes
(lines 21-29 of Figure 3). A hunk begins with an indication
of the affected line numbers, in the old and new versions of
the file, which is followed by a fragment of code. This code
fragment contains context lines, which appear in both the old
and new versions, removed lines, which are preceded by a -
and appear only in the old version, and added lines, which
are preceded by a + and appear only in the new version. A
hunk typically begins with three lines of context code, which
are followed by a sequence of zero or more removed lines
and then the added lines, if any, that replace them. A hunk
then ends with three more lines of context code. If changes
occur close together, multiple hunks may be combined into
a single one. The example in Figure 3 contains only a single
hunk, with one line of removed code and one line of added
code.

Given the different information in a patch, our data acqui-
sition tool records the boundaries between the information
for the different files and the different hunks. Within each
hunk, it distinguishes between context, removed, and added
code. It does not record file names or hunk line numbers.

B. Feature Extraction

1) Analysis of the text: A commit log message describes
the purpose of the change, and thus can potentially provide
valuable information as to whether a commit represents
a bug fix. To mechanically extract information from the
commit logs, we represent each commit log as a bag of
words. For each of these bags of words, we perform stop-
word removal and stemming [18]. Stop words, such as,
“is”, “are”, “am”, “would”, etc, are used very frequently

in almost all documents thus they provide little power
in discriminating if a commit is a bug fixing patches or
not. Stemming reduces a word to its root; for example,
“eating”, “ate”, and “eaten”, are all reduced to the root
word “eat”. Stemming is employed to group together words
that have the same meaning but only differ due to some
grammatical variations. This process can potentially increase
the discriminative power of root words that are good at
differentiating bug fixing patches from other commits, as
more commits with logs containing the root word and its
variants can potentially be identified and associated together
after stemming is performed.

At the end of this analysis, we represent each commit as
a bag of words, where each word is a root word and not
a stop word. We call this information the textual facts that
represent the commit.

2) Analysis of the code: To better understand the ef-
fect of a patch, we have incorporated a parser of patches
into our data acquisition tool [23]. Parsing patch code is
challenging, because a patch often does not represent a
complete, top-level program unit, and indeed portions of
the affected statements and expressions may be missing, if
they extend beyond the three lines of context information.
Thus, the parsing is necessarily approximate. The parser is
independent of the line-based - and + annotations, only
focusing on the terms that have changed. In the common
case of changes in function calls, it furthermore detects
arguments that have not changed, counting these separately
and ignoring their subterms. For example, in the patch in
Figure 3, the change is detected to involve a function call,
i.e. the call to kmalloc, which is replaced by a call to
kzalloc. The initialization of extra is not included in
the change, and the arguments to kmalloc and kzalloc
are detected to be identical.

Based on the results of the parser, we collect the numbers
of various kinds of constructs such as function headers,
loops, conditionals, and function calls that include removed
or added code. We call these the code facts that represent
the commit.

3) Feature Engineering: Based on the textual and code
facts extracted as described above, we pick interesting
features that are compositions of several facts (e.g., the
difference between the number of lines changed in the minus
and plus hunks, etc.).

Table I presents some features that we form based on the
facts. Features F1 to F52 are those extracted from code facts.
The other features (i.e., features F53-F55 and features W1

to Wn) are those extracted from textual facts.
For code features, we consider various program units

changed during a commit including, files, hunks, loops,
ifs, contiguous code segments, lines, boolean operators, etc.
For many of these program units, we consider the number
of times they are added or removed; and also, the sum
and difference of these numbers. Often bug fixing patches,



Table I
EXTRACTED FEATURES

ID Feature
F1 Number of files changed in a commit.
F2 Number of hunks in a commit.
F3 #Loops Added
F4 #Loops Removed
F5 |F3 - F4|
F6 F3 + F4

F7 F13 > F14

F8 − F12 Similar to F3 to F7 for #Ifs
F13 − F17 Similar to F3 to F7 for #Contiguous code segments
F18 − F22 Similar to F3 to F7 for #Lines
F23 − F27 Similar to F3 to F7 for #Character literals
F28 − F32 Similar to F3 to F7 for #Paranthesized expressions
F33 − F37 Similar to F3 to F7 for #Expressions
F38 − F42 Similar to F3 to F7 for #Boolean operators
F43 − F47 Similar to F3 to F7 for #Assignments
F48 − F52 Similar to F3 to F7 for #Function calls
F53 One of these words exists in the commit log {robust,

unnecessary, improve, future, anticipation, superfluous,
remove unused}

F54 One of these words exists in the commit log {must,
needs to, has to, don’t, fault, need to, error, have to,
remove}

F55 The word “warning” exists in the commit log
W1 to Wn Each feature represents a stemmed non-stop word in the

commit log. Each feature has a value corresponding to
the number of times the word appears in the commit
(i.e., term frequency).

and other commits (e.g., feature additions, performance
enhancements, etc) have different value distributions for
these code features.

For text features, we consider stemmed non-stop words
appearing in the logs as features. For each feature corre-
sponding to a word, we take its frequency or number of times
it appears in a commit log as its corresponding feature’s
value. We also consider two composite families of words
each conveying a similar meaning: one contains words that
are likely to relate to performance improvement, feature
addition, and clean up; another contains words that are likely
to relate to a necessity to fix an error. We also consider the
word “warning” (not stemmed) as a separate textual feature.

V. MODEL LEARNING & BUG FIX IDENTIFICATION

A. Model Learning

We propose a solution that integrates two classification
algorithms: Learning from Positive and Unlabeled Examples
(LPU) [15]6 and Support Vector Machine (SVM) [7]7.
These learning algorithms take in two datasets: training and
testing, where each dataset consists of many data points.
The algorithms each learn a model from the training data
and apply the model to the test data. We first describe the
differences between these two algorithms.

LPU performs semi-supervised classification.8 Given a
positive dataset and an unlabelled dataset, LPU builds a
model that can discriminate positive from negative data

6http://www.cs.uic.edu/ liub/LPU/LPU-download.html
7http://svmlight.joachims.org/
8Information on semi-supervised classification is available from [5], [36].

Figure 4. Model Learning

points. The learned model can then be used to label data
with unknown labels. For each data point, the model outputs
a score indicating the likelihood that the unlabeled data is
positive. We can rank the unlabeled data points based on
this score.

SVM on the other hand performs supervised classification.
Given a positive dataset and a negative dataset, SVM builds
a model that can discriminate between them. While LPU
only requires the availability of datasets with positive labels,
SVM requires the availability of datasets with both positive
and negative labels.

LPU tends to learn a weaker discriminative model than
SVM. This is because LPU takes in only positive and
unlabeled data, while SVM is able to compare and contrast
positive and negative data. To be able to classify well, we
propose a combination of LPU and SVM. First, we use LPU
to rank how far an unlabeled data point is from the positive
training data (in descending order). For this, we sort the data
points based on their LPU scores, indicating the likelihood
of a data point being positive. The bottom k data points,
where k is a user-defined parameter, are then taken as a
proxy for the negative data. These negative data along with
the positive data are then used as the input to SVM. The
sequence of steps in our model learning process is shown in
Figure 4.

In the problem of identifying bug fixing patches, each
data point is a commit. We have a set of positive data
points, i.e., bug fixing patches, and a set of unlabeled data
points, i.e., arbitrary commits. We first apply LPU to sort
commits such that bug fixing patches are listed first and
other patches, which may correspond to innocuous changes,
performance improvements or feature additions, are listed
later. According to this ordering, the bottom k commits are
likely to be non-bug fixing patches. We then take the bottom
k commits to be a proxy of a dataset containing non-bug
fixing patches. We use the original bug fixing patch dataset
and this data to create a model using SVM.

B. Bug Fix Identification

For bug fix identification, we apply the same feature
extraction process to a test dataset with unknown labels. We



then represent this test dataset by a set of feature values.
These feature values are then fed to the learned model as
described in Section V-A. Based on these features, the model
then assigns either one of the following two labels to a
particular commit: bug-fixing patch or non bug-fixing patch.

VI. EXPERIMENT

In this section we first describe the datasets used for our
evaluation. We then present a number of research questions.
Experimental results that answer these questions are pre-
sented next.

A. Dataset

Our algorithm requires as input “black” data that is known
to represent bug-fixing patches and “grey” data that may or
may not represent bug-fixing patches. The “grey” data may
contain both “black” data and “white” data (i.e., non bug-
fixing patches)9.

As there is no a priori definition of what is a bug-fixing
patch in Linux, we have created a selection of black data sets
from varying sources. One source of black data is the patches
that have been applied to existing stable versions. We have
considered the patches applied to the stable versions Linux
2.6.20,10 released in February 2007 and maintained until
August 2007, and Linux 2.6.27,11 released in October 2008
and maintained until December 2010. We have taken only
those patches that refer somewhere to C code, and where
the code is not in the Documentation section of the kernel
source tree. Another source of black data is the patches that
have been created based on the use of bug finding tools.
We consider uses of the commercial tool Coverity,12 which
was most actively used prior to 2009, and the open source
tools[ Coccinelle [22] and Smatch,13 which have been most
actively used since 2008 and 2009, respectively [24]. The
Coverity patches are collected by searching for patches that
mention Coverity in the log message. The Coccinelle and
Smatch patches are collected by searching for patches from
the principal users of these tools, which are the second
author of this paper and Dan Carpenter, respectively. The
Coccinelle data is somewhat impure, in that it contains some
patches that also represent simple refactorings, as Coccinelle
targets such changes as well as bug fixes. The Coverity and
Smatch patches should contain only bug fixes. All three data
sets are taken from the complete set of patches between
April 2005 and August 2011. Our final source of black data
is the set of patches that mention Bugzilla. These are also
taken from the complete set of patches between April 2005
and August 2011. Table II summarizes various properties of
these data sets.

9We use the analogy of “black”, “white” and “grey” in the remaining
parts of the paper

10http://www.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6.20.y
11http://www.kernel.org/pub/scm/linux/kernel/git/stable/linux-2.6.27.y
12http://www.coverity.com/
13http://smatch.sourceforge.net/

Table II
PROPERTIES OF THE CONSIDERED BLACK DATASETS. LOC REFERS TO

THE COMPLETE PATCH SIZE, INCLUDING BOTH THE LOG AND THE
CHANGED CODE.

Source Dates # patches LOC
Stable 2.6.20 02.2007-08.2007 409 29K
Stable 2.6.27 10.2008-12.2010 1534 116K
Coverity 05.2005-06.2011 478 22K
Coccinelle 11.2007-08.2011 825 54K
Smatch 12.2006-08.2011 721 31K
Bugzilla 08.2005-08.2011 2568 275K

Table III
PROPERTIES OF THE CONSIDERED GREY DATASET, BROKEN DOWN BY

LINUX VERSION. LOC REFERS TO THE COMPLETE PATCH SIZE,
INCLUDING BOTH THE LOG AND THE CHANGED CODE.

Source Dates # patches
2.6.20-2.6.21 02.2007-04.2007 3415
2.6.21-2.6.22 04.2007-07.2007 3635
2.6.22-2.6.23 07.2007-10.2007 3338
2.6.23-2.6.24 10.2007-01.2008 4639
2.6.24-2.6.25 01.2008-04.2008 6110
2.6.25-2.6.26 04.2008-07.2008 5069

The grey data is taken as the complete set of patches
that have been applied to the Linux kernel between version
2.6.20 and 2.6.26. To reduce the size of the dataset, we
take only those patches that can apply without conflicts to
the Linux 2.6.20 code base. Table III summarizes various
properties of the data sets.

B. Research Questions

In our study, we address the following four research ques-
tions (RQ1-RQ4). In RQ1, we investigate the effectiveness
of our approach. Factors that influence our effectiveness are
investigated in RQ2 and RQ3. Finally, RQ4 investigates the
benefit of our hybrid classification model.

RQ1: Is our approach effective in identifying bug fixing
patches as compared to the existing keyword-based method?

We evaluate the effectiveness of our approach as com-
pared with existing keyword-based method. We consider the
following two criteria:

Criteria 1: Precision and Recall on Sampled Data. We
randomly sample 500 commits and manually assign labels
to them, i.e., each commit is labeled as being either a bug
fixing patch or not. We compare human assigned labels with
the labels assigned by each bug fix identification approach,
and compute the associated precision and recall to evaluate
the effectiveness of the approach [18].

Criteria 2: Accuracy on Known Black Data. We take
commits that have been identified by Linux developers as
bug fixing patches. We split this dataset into ten equal
sized groups. We train on 9 groups and use one group to
test. We evaluate how many of the bug fixing patches are
correctly labeled. The process is iterated 10 times. For each
iteration we compute the number of bug fixing patches that
are correctly identified (we refer to this as accuracyBlack)
and report the average accuracy.



In the first criteria, our goal is to estimate the accuracy
of our approach on some sampled data points. One of
the authors is an expert on Linux development and has
contributed many patches to Linux code base. This author
manually assigned labels to these sampled data points. In the
second criteria, we would like to address the experimenter
bias existing in the first criteria. Unfortunately, we only have
known black data. Thus, we evaluate our approach in terms
of its accuracy in labeling black data as such.

RQ2: What is the effect of varying the parameter k on the
results?

Our algorithm takes in one parameter k, which specifies
the number of bottom ranked commits that we take as a
proxy of a dataset containing non-bug fixing patches. As a
default value in our experiments, we fix this value k to be
0.9 × the number of “black” data that are known bug fixing
patches. We would like to vary this number and investigate
its impact on the performance.

RQ3: What are the best features for discriminating if a
commit is a bug fixing patches?

Aside from producing a model that can identify bug fixing
patches, we are also interested in finding discriminative
features that could help in distinguishing bug fixing patches
and other commits. We would like to identify these features
out of the many textual and code features that we extract
from commits.

We create a clean dataset containing all the known black
data, the manually labeled black data, and the manually
labeled white data. We then compute the Fisher score [8]
of all the features that we have. A variant of Fisher score
reported in [6] and implemented in LibSVM14 is computed.
Fisher score and its variants have been frequently used to
identify important features [4].

RQ4: Is our hybrid approach (i.e., ranking + supervised
classification using LPU+SVM) more effective than a simple
semi-supervised approach (i.e., LPU)?

Our dataset only contains positively labeled data points
(i.e., bug fixing patches). To solve this problem, researchers
in the machine learning community have investigated semi-
supervised learning solutions. Many of these techniques
still required a number of negatively labeled data points.
However, LPU [15], which is one of the few semi-supervised
classification algorithms with an implementation available
online, only requires positively labeled and unlabeled data
points.

Our proposed solution includes a ranking and a supervised
classification component. The ranking component makes use
of LPU. Thus it is interesting to investigate if the result
of using LPU alone is sufficient and whether our hybrid

14http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools

Table IV
PRECISION AND RECALL COMPARISON

Approach Precision Recall
Ours 0.601 0.875
Keyword 0.613 0.603

approach could improve the results of LPU.

C. Experimental Results

We present our experimental results as answers to the four
research questions: RQ1-RQ4.

1) RQ1: Effectiveness of Our Approach: We compare
our approach to the keyword-based approach used in the
literature [20], [13]. The result of the comparisons using the
two criteria are discussed below.

Precision and Recall on Sampled Data. The precision
and recall of our approach as compared to those of the
keyword-based approach are shown in Table IV. We notice
that our precision is comparable with that of the keyword-
based approach. On the other hand, we increase the precision
of the keyword-based approach from 0.603 to 0.875; this is
a relative improvement of 45.11%.

To combine precision and recall, we also compute the F-
measure [18], which is a harmonic mean of precision and
recall. The F-measure is often used as a unified measure to
evaluate whether an improvement in recall outweighs the
reduction in precision (and vice versa). F-measure has a
parameter β that measures the importance of precision over
recall. The formula is:

β2 + 1)× precision× recall
(β2 × precision) + recall

In the case that precision and recall are equally important
β is set to one. This would compute what is known as F1.
If beta is set higher than 1 then recall is preferred over
precision; similarly, if beta is set lower than 1 then precision
is preferred over recall.

In the setting of bug fixing patch identification, recall (i.e.,
not missing any bug fixing patch) is more important than
precision (i.e., not reporting wrong bug fixing patch). This
is the case as missing bug fixing patch could potentially
cause system errors and even expose security holes.15 For
these cases, a standard IR book [18], recommend setting β
equals to 3 or 5. There are also other studies that recommend
setting β equal to 2, e.g. [29].

In Table V we also compute the different F-measures
using different values of β. We notice that for all values
of β our approach has better results as compared to those of
keyword-based approach. The F1, F2, F3, and F5 scores
are improved by 17.11%, 31.56%, 38.58%, and 43.33%
respectively.

15Recall is more important in other related settings. Manning et al.
describe scenarios where recall is more important than precision, e.g.,
paralegals and intelligence analysts potentially looking for violations of
a legal clause or terrorists [18].



Table V
F-MEASURES COMPARISON

Approach F1 F2 F3 F5
Ours 0.712 0.802 0.837 0.86
Keyword 0.608 0.605 0.604 0.600
Rel.Improvement 17.11% 32.56% 38.58% 43.33%

Table VI
Comparison of AccuracyBlack Scores

Approach accuracyBlack

Ours 0.945
Keyword 0.772

From the 500 randomly sampled commits, we notice
that a very small number of commits that are bug fixing
patches contains a reference to Bugzilla. Thus identifying
these patches are not trivial. Also, as shown in Table IV,
about 40% of bug fixing patches do not contain the keywords
considered in previous work [20], [13].

Accuracy on Known Black Data. Table VI shows the
accuracyBlack score of our approach as compared to that
of keyword-based approach.

From the result, we note that our approach can increase
accuracyBlack from 0.772 to 0.945, a 22.4% increase.
The above results show that our approach is effective in
identifying bug fixing patches as compared to keyword-
based approach used in existing studies.

The known black data is unbiased as we do not label it
ourselves. However, we can not compute the number of false
positives, as all our test data are black. We evaluate this in
criteria 1.

The high accuracy of the keyword-based approach is due
to the large number of Bugzilla patches in the clean our bug
fixing patch dataset. In practice, however, most bug fixing
patches are not in Bugzilla – these bug fixing patches are
hidden in the mass of other non bug fix related commits.

2) RQ2: Effects of Varying Parameter k: When we vary
the parameter k (as a proportion of the number of “black”
data), the number of false positives and false negatives
changes. The results of our experiments with varying values
for k is shown in Table VII.

We notice that as we increase the value of k the number
of false negatives (FN) increases, while the number of false
positives (FP) decreases. As we increase the value of k, the
“pseudo-white” data (i.e., the bottom k commits in the sorted
list after ranking using LPU) gets “dirtier” as more “black”
data are likely to be mixed with “white” data in it. Thus
more and more “black” data are wrongly labeled as “white”
(i.e., an increase in false negatives). However, the white data
are still closer to the “dirty” “pseudo-white” data than to the
black data. Also, more and more borderline “white” data are
“closer” to the “dirtier” “pseudo-white” data than before.
This would reduce the number of cases where “white” data
are labeled “black” (i.e., a reduction in false positives). We
illustrate this in Figure 5.

Table VII
EFFECT OF VARYING k ON PERFORMANCE. TP = TRUE POSITIVE, FN =

FALSE NEGATIVE, FP = FALSE POSITIVE, TN = TRUE NEGATIVE.
k TP FN FP TN Prec. Recall F2
0.75 176 8 186 130 0.486 0.957 0.801
0.80 172 12 166 150 0.509 0.935 0.801
0.85 168 16 146 170 0.535 0.913 0.800
0.90 161 23 107 207 0.601 0.875 0.802
0.95 133 51 68 248 0.662 0.723 0.710

Figure 5. Effect of Varying K. The pseudo white data is the bottom k
commits that we treat as a proxy to non bug fixing patches. The three
boxes corresponding to pseudo white (2 of them) and black represent the
aggregate features of the respective pseudo-white and black data in our
training set respectively. The squares and triangles represent test data points
whose labels (i.e., bug fixing patches or not) are to be predicted.

3) RQ3: Best Features: We report the top 20 features
sorted based on their Fisher scores in Table VIII.

We note that among the top-20 features there are both
textual and code features. This highlight the usefulness of
combining both textual features in commit logs and code
features in changed code to predict bug fixing patches. We
notice however that the Fisher score is low (the highest
possible value is 1), which highlights that one feature
alone is not sufficient to discriminate positive from negative
datasets (i.e., bug fixing patches versus other commits).

Some keywords used in previous approaches [20], [13],
[28], e.g., fix, bugzilla, etc., are also included in the top-
20 features. Due to tokenization some of these features
are split into multiple features, e.g., http, bug.cgi, and
bugzilla.kernel.org.

Many other features in the list are code features; these
include the number of times different program elements
are changed by a commit. The most discriminative code
element is the number of lines of code being deleted (ranked
7th). Next include features such as the number of lines
added and deleted (ranked 11th), the number of boolean
operators added (ranked 13th), the number of assignments
removed (ranked 15th), the number of assignments added
and removed (ranked 17th), the number of boolean opera-
tors added (ranked 18th), the number of loops added and
removed (ranked 19th), and the number of function calls
made (ranked 20th).



Table VIII
TOP-20 MOST DISCRIMINATIVE FEATURES BASED ON FISHER SCORE

Rank Feature Desc. Fisher Score
1 http 0.030
2 blackfin 0.023
3 bug.cgi 0.021
4 show 0.019
5 fix 0.015
6 bugzilla.kernel.org 0.014
7 F18 (i.e., # lines removed) 0.014
8 commit 0.013
9 upstream 0.012
10 unifi 0.012
11 F20 (i.e., # lines added & removed) 0.011
12 id 0.011
13 F38 (i.e., # boolean operators removed) 0.011
14 checkpatch 0.011
15 F44 (i.e., # assignments removed) 0.010
16 spell 0.010
17 F46 (i.e., # assign. removed & added) 0.009
18 F37 (i.e., # boolean operators added) 0.009
19 F6 (i.e., # loops added & removed) 0.009
20 F48 (i.e., # function calls added) 0.008

Table IX
COMPARISONS WITH LPU.

PREC. = PRECISION, ACC. = ACCURACYBlack

Approach Prec. Recall F1
Ours 0.601 0.875 0.712
LPU Only 0.650 0.283 0.400
Rel. Improv. -7.5% 209.2% 78%

Approach F2 F3 F5 Acc.
Ours 0.802 0.837 0.860 0.944
LPU Only 0.319 0.300 0.289 0.942
Rel. Improv. 151.4% 179.0% 197.6% 0.2%

4) RQ4: Our Approach versus LPU: We have run LPU
on our dataset and found that the results of using LPU alone
are not good. The comparison of our results and LPU alone
is shown in Table IX.

We notice that the precision of LPU is slightly higher than
that of our approach; however, the reported recall is much
less than ours. Our approach can increase the recall by more
than 3 times (i.e., 200% improvement). When we trade off
precision and recall using F-measure, we notice that for all β
our approach is better than LPU by 78%, 151.4%, 179.0%,
and 197.6% for F1, F2, F3, and F5 respectively.

The accuracyBlack of our approach and that of LPU
alone is comparable. Notice that the black data in
accuracyBlack are similar to one another, with many having
the terms Bugzilla, http, etc. The black data in the 500
random sample is more challenging and better reflect the
black data that are often hidden in the mass of other
commits.

The above highlights the benefit of our hybrid approach of
combining ranking and supervised classification to address
the problem of unavailability of negative data points (i.e., the
non bug fixing patches) as compared to a simple application
of a standard semi-supervised classification approach. In our
approach, LPU is used for ranking to get a pseudo-negative
dataset and SVM is used to learn the discriminative model.

VII. DISCUSSION

Threats to Validity. As with other empirical studies there
are a number of threats to the validity of our results. We
discuss threats to internal validity, threats to external validity,
and threats to construct validity.

Threats to internal validity corresponds to the relationship
between the independent and dependent variables in the
study. One relevant threat of internal validity in our study is
experimenter bias. In the study, we have personally labelled
each commits as a bug fixing patch or as a non bug fixing
patch. This labelling might introduce some experimenter
bias. However, we have tried to ensure that we label the
commits correctly, according to our substantial experience
with Linux code [14], [22], [23]. Also, we have labelled
the commits before seeing the results of our identification
approach, to minimize this bias.

Threats to external validity refers to the generalizability
of the result. We have manually checked the effectiveness
of our approach over 500 commits. Although 500 is not
a very large number, we believe it is still a good sample
size. We plan to reduce this threat of external validity in the
future by investigating an even larger number of manually
labeled commits. We have also only investigated patches in
Linux. We believe our approach can be easily applied to
identify bug fixing patches in other systems. We leave the
investigation as to whether our approach remains effective
for other systems as future work.

Threats to construct validity deals with the appropri-
ateness of the evaluation criteria. We use the standard
measures precision, recall, and F-measure [18] to evaluate
the effectiveness of our approach. Thus, we believe there is
little threat to construct validity.

Automated Tuning of k. If there exists manual user labels
on some representative samples of commits, then we could
use this information to automatically tune the value of k. As
a default initial value, k could be set as 0.9 × the number
of black data. The performance of a classifier based on this
initial value could be evaluated based on the manual user
labels. k could be reduced or increased to improve recall
and precision on the input representative sample of commits.
The best value of k is one that allows learning from the
most “white” example data points without mixing too many
“black” data points with the “white” ones.

In an additional experiment, we take half of the 500
manually labeled commits (i.e., 250 of them) and use it to
fine tune k. The best value of k to optimize F1 is again
0.9. For F2, at k = 0.9, its score is not much different with
those of other values of k in the range of 0.75-0.9 that we
try. We still notice that in terms of F2, taking either 0.75,
0.8, 0.85, or 0.9 does not impact F2 much (less than 0.03
difference).

Benefit of Including Unlabeled Data. Labeling is an expen-
sive and time consuming process; much effort needs to be



done to label a bug fixing patch as such. On the other hand,
unlabeled data could be obtained easily. As there are many
variants of bug fixing and non bug fixing patches, many
labeled data are needed to characterize all these variants.
This would cost much time and resource. Unlabeled data
contain many different variants of bug fixing and non bug
fixing patches. In this study, we leverage unlabeled data and
show that they can be used to identify bug fixing patches
well.

Characteristics of Non-Bug Fixing Patches. From the non-
bug fixing patches that we label and inspect, we notice that
they fall into several categories:

1) Performance enhancement commits. A commit of this
type often tries to make some things run faster. The
additional scalability is good but often this performance
issue is not a bug that need to be patched in a stable
version.

2) Code clean up. A commit of this type often tries to
improve the structure of the code without changing its
semantics, to make the code easier to read, etc. Stable
versions target users, not developers, so readabaility is
not a priority.

3) Feature addition and removal. A commit of this type
adds a new feature or remove an old unwanted feature.
This commit is not a patch that fixes a particular bug.

4) Warnings. Warnings are not errors. The code can still
run well even in the existence of these warnings. There
are some commits that change some minor things so
that the warnings no longer appear. These are not bug
fixing patches.

VIII. RELATED WORK

We describe some studies that are related to our approach.
We start with those that are most related, and then consider
some that are marginally related.

Identification of Bug Fixing Patches. A number of studies
have searched for keywords such as “bug” and “fix” in log
messages to identify bug fixing commits [10], [13], [20],
[28]. Our approach, on the other hand, is not based on a fixed
set of keywords. Rather, we automatically infer keywords
that are good at discriminating bug fixing patches from other
commits. Furthermore, we consider not only commit logs,
but also some features extracted from the changes made
to the source code. We then built a discriminative machine
learning model that is used to classify commits as either bug
fixing or not. Experimental results show that our approach
can identify more bug fixing patches with similar precision
but improved recall, as compared to a fixed-keyword based
approach.

Bird et al. have observed that the lack of clearly identified
bug fixing patches itself has caused potential bias in many
prior studies [3]. Thus we believe our approach could not

only benefit Linux stable release maintainers but also help
other studies involving the analysis of bug fixes.

Studies on Bug Reports. There have been a number of
studies that analyze bug reports [26], [19], [16], [1], [9], [12],
[27], [31], [32], [34], [2]. Similar to these studies we also
analyze textual data found in software artefacts. We focus on
commit logs made by developers while these studies focus
on bug reports made by users.

Bug localization tries to locate methods that are responsi-
ble for a bug given the corresponding bug report [26], [19],
[16]. Bug localization approaches require as input linkages
between code responsible for the bugs and the bug reports.
Often this is hard due to poor commit log comments. Our
approach of inferring bug fixing patches could potentially
help these studies infer these links.

Anvik et al. investigate the problem of automatic bug
triaging which tries to recommend developers suitable to fix
a bug [1]. With more bug fixing patches identified, possibly
a better recommendation of suitable developers could be
made.

Other Studies on Textual Software Engineering Data.
There have been other studies that analyze software and
its related textual artifacts. For example, Tan et al. analyze
source code comments to find concurrency bugs [33]. Zhong
et al. infer formal program specifications from API doc-
umentation [35]. Gottipati et al. build an effective search
engine over software forum posts [11]. There are also a
number of techniques that would like to trace requirements
expressed in natural language; some of these studies include
those conducted by Port et al. [25], Sultanov et al. [30], Zou
et al. [37], etc.

IX. CONCLUSION & FUTURE WORK

Linux developers periodically designate a release as being
subject to longterm support. During the support period, bug
fixes applied to the mainline kernel need to back ported to
these longterm releases. This task is not trivial as developers
do not necessarily make explicit which commits are bug
fixes, and which of them need to be applied to the longterm
releases. To address this problem, we propose an automated
approach to infer commits that represent bug fixing patches.
To do so, we first extract features from the commits that
describe those code changes and commit logs that can
potentially distinguish bug fixing patches from regular com-
mits. A machine learning approach involving ranking and
classification is employed. Experiments on Linux commits
show that we can improve on the existing keyword-based
approach, obtaining similar precision and improved recall,
with a relative improvement of 45.11%.

In the future, we plan to improve the accuracy of our
framework further. We also plan to apply our approach on
work in bug prediction and related areas that suffer from
bias due to unidentified bug fixes.
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