
Automated Construction of a Software-Specific
Word Similarity Database

Yuan Tian1, David Lo1, and Julia Lawall2
1Singapore Management University, Singapore

2Inria/LIP6, Regal

{yuan.tian.2012,davidlo}@smu.edu.sg, julia.lawall@lip6.fr

Abstract—Many automated software engineering approaches,
including code search, bug report categorization, and duplicate
bug report detection, measure similarities between two docu-
ments by analyzing natural language contents. Often different
words are used to express the same meaning and thus measuring
similarities using exact matching of words is insufficient. To
solve this problem, past studies have shown the need to measure
the similarities between pairs of words. To meet this need, the
natural language processing community has built WordNet which
is a manually constructed lexical database that records semantic
relations among words and can be used to measure how similar
two words are. However, WordNet is a general purpose resource,
and often does not contain software-specific words. Also, the
meanings of words in WordNet are often different than when
they are used in software engineering context. Thus, there is
a need for a software-specific WordNet-like resource that can
measure similarities of words.

In this work, we propose an automated approach that builds
a software-specific WordNet like resource, named WordSimSE

DB ,
by leveraging the textual contents of posts in StackOverflow.
Our approach measures the similarity of words by computing
the similarities of the weighted co-occurrences of these words
with three types of words in the textual corpus. We have
evaluated our approach on a set of software-specific words
and compared our approach with an existing WordNet-based
technique (WordNetres ) to return top-k most similar words.
Human judges are used to evaluate the effectiveness of the two
techniques. We find that WordNetres returns no result for 55%
of the queries. For the remaining queries, WordNetres returns
significantly poorer results.

I. INTRODUCTION

During the development of software systems, developers

and other stakeholders often create natural language artifacts to

communicate with one another. Subsequently, developers often

need to analyze these natural language artifacts to perform

various software engineering tasks. Several studies have pro-

posed automated means to improve these tasks. For example,

code search takes in a natural language query and returns code

fragments that correspond to the query [16], duplicate bug

report detection identifies reports that describe the same issue

but are written in different ways by different reporters [30], etc.

The basic task involved in these techniques is measuring the

similarity among two natural language artifacts (documents).

In natural language documents, different words can be used

to express the same meaning. Thus, to measure the similarity

of two documents, exact matching of words is insufficient.

There is a need to capture the semantic distance between two

words. For example, words such as paper, pen, and pencil

are more semantically similar to one another than computer,

mountain, and Jupiter. Measuring semantic distance of words

is natural for humans, but it is much harder for machines. The

natural language processing community has long investigated

the problem of measuring the similarity of two words [14],

[15]. Understanding the similarity of words makes it possible

to better measure the similarity of documents. Measuring

word similarity has been shown to improve machine learning

tasks, e.g., information retrieval [5], text categorization [12],

etc. Many automated software engineering problems can be

mapped to these machine learning tasks, e.g., [19], [30]. These

problems can be improved by levering word similarity infor-

mation. Indeed, several research works have shown that similar

words can be used to expand or refine search queries when

applying code search [18], [29]. Thus, measuring similarity of

words is relevant to software engineering research.

To measure similarity of words, the natural language pro-

cessing community has created WordNet [20], [26]. Word-

Net is a general purpose lexical database that groups verbs,

adjectives, nouns, and adverbs into cognitive synonym sets

(aka. synsets). WordNet can be used to compute the semantic

distance between two words [23]. However, due to the general

purpose nature of WordNet, it does not contain many software-

specific words. For example, words such as “src”, “cmd”,

“WSDL”, “localhost”, etc. are not in WordNet. Furthermore,

even when software-specific words do appear in WordNet, the

semantic meaning stored in WordNet is often different. For

example, WordNet relates “Eclipse” to words having to do

with the moon, rather than to other integrated development

environments (IDEs). Indeed, the study of Sridhara et al.

showed that general English-based similarity measurements

based on WordNet could not effectively be used to suggest

similar words in software engineering context [31]. Thus, there

is a need to build a specialized word similarity resource for

the software engineering community.

There have been a number of initial efforts to build a

word similarity resource specific for the software engineering

community. Yang and Tan infer semantically related words in

software source code [36]. Howard et al. mine similar verb

pairs from comments and method signatures [11]. However,

many software related words are not in the source code itself,

but instead are in the various associated textual artifacts, such

as forum posts, bug reports, commit logs, etc. Furthermore,

many words used in a source code, especially abbreviations



used as identifiers or used in method names, are specific to

a particular project. Wang et al. infer semantically similar

tags1 in FreeCode [32]. However, they can only measure the

similarity of tags and there are not many tags in FreeCode (690

in their experiments). In this work, we want to build a more

generic word similarity resource that can be used for many

different software engineering tasks, across a wide range of

software projects.

Intuitively, two words are likely to be similar if they appear

in similar contexts. For example, “client” and “tcp” often

appear in sentences, paragraphs, or articles that describes

networking. From this, we can infer that these two words

are semantically related. Thus, we propose a new similarity

metric called WordSimSE based on the concept of word co-

occurrence [9] to measure the similarity of two words. We

characterize each word using a co-occurrence vector that cap-

tures the co-occurrence of this word with popular software tags

(primary anchors), other software tags (secondary anchors),

and other words (tertiary anchors). We then compare each pair

of words in terms of their co-occurrence vectors. Weights are

used to quantify the contribution of each contextual word (i.e.,

a word that co-occurs with the target word) to the similarity

of the word pairs.

We use our new similarity metric WordSimSE to construct

WordSimSE
DB , which is meant to be a specialized resource

that mimics WordNet for software-specific terms. We take as

input posts that appear in StackOverflow, a popular question-

answering site. These posts contain many software-specific

terms. We also leverage the phenomenon of tagging because it

is very popular and it is supported by most software informa-

tion sites including StackOverflow, FreeCode, SourceForge,

etc. These tags are used to describe the major features of

user generated contents and they are often important software-

specific terms [35]. In this project, we use tags of posts on

StackOverflow as semantic anchors to measure the similarity

of two words.

We compare our approach, which builds WordSimSE
DB , with

an existing word similarity database computed by a WordNet-

based word similarity approach [22], [23] (referred to as

WordNetres ), using a set of software-specific words. For each

such word, we use WordSimSE
DB and WordNetres to return

the top-10 most similar words. We use ten human judges to

evaluate the effectiveness of each approach by labeling the

returned words as: related (score: 3), somewhat related (score:

2), and unrelated (score: 1), where “related” means that the

two words are related in the software engineering context.
We find that many software-specific words do not exist in

WordNetres . For those that exist in both WordNetres and

WordSimSE
DB , the average score of our approach is 2.31. This

is 50.9% higher than the average score of the words returned

using WordNetres , which is 1.53.

Our contributions are as follows:

1) We build a software-specific word similarity resource

1A tag is a short text (typically a word) that is used to label similar projects
in FreeCode.

leveraging 10,000 question-answer threads in StackOver-

flow.

2) We propose a novel similarity metric that leverages the

phenomenon of tagging and characterizes a word in

terms of a co-occurrence vector leveraging three kinds

of semantic anchors: popular tags, other tags, and other

words. Similarity of words is measured by computing the

similarity of their corresponding representative vectors.

3) We have evaluated our approach on a number of software-

specific words using ten human judges, who give scores

on a 3-point Likert scale. Our experiment shows that

our approach outperforms WordNet based word similarity

significantly. Fifty-five percent of the software-specific

words do not appear in WordNet. For those that appear

in WordNet, the average Likert score of WordNetres is

1.53. On the other hand, WordSimSE can achieve an

average Likert score of 2.31.

The structure of this paper is as follows. We introduce

StackOverflow and several general text preprocessing steps in

Section II. Our new similarity metric WordSimSE is defined

in Section III. We present our proposed approach to construct

WordSimSE
DB in Section IV. Our experiment methodology and

results are presented in Section VI. We describe related work

in Section VII. We finally conclude and discuss future work

in Section VIII.

II. PRELIMINARIES

In this section, we first introduce StackOverflow which is

a popular question answering site. Next, we present several

well-known text preprocessing steps: tokenization, stop-word

removal, and stemming.

A. StackOverflow

StackOverflow2 is one of the most popular question answer-

ing sites. It provides a platform for developers to help one

another by asking and answering questions. With more than

1.7 million users and over 4,000,000 questions, StackOverflow

has become large knowledge base. Most of the contents of

StackOverflow are related to software development. In our

work, we leverage posts in StackOverflow to construct a

database that captures similarities between pairs of words.

Fig. 1: A Sample Question and its Answers in StackOverflow

Figure 1 shows a question-and-answer thread extracted from

StackOverflow. As illustrated by this example, each question in

2stackoverflow.com



StackOverflow contains four parts: (1) a title, (2) a description

of the question, (3) several tags, and (4) a set of zero or

more answers. The title of the question is usually short. The

description of the question provides more information that

elaborates the title. The tags, which are provided by users

of StackOverflow, are used to label the topics of the question

and can be used to group related questions. Users can provide

one or more answers to the question and these are recorded

in the question-and-answer thread.

B. General Text Preprocessing

In the natural language processing domain, researchers

apply several general text preprocessing steps to clean the

textual dataset before analyzing it. This process includes:

tokenization, stop-word removal, and stemming. We describe

these steps as follows:

1) Tokenization. Tokenization is the process of breaking a

paragraph (or a stream of characters) into its constituent

word tokens. Delimiters are used to separate one word

token from another. Punctuation marks and space are

commonly used as delimiters.

2) Stop-word Removal. Some words, such as “the”, “is”,

“and”, “of”, etc. carry little meaning, and are used in

almost every document. These words are referred to as

stop words. These stop words are typically removed from

a textual dataset. In this work, we use a list of 641 stop

words from an online stop word list [27].

3) Stemming. Stemming is the process of reducing a word

to its root form. For example, both “reads” and “reading”

can be reduced to “read”. In this paper, we use the well-

known Porter stemming algorithm [25].

III. WordSimSE : A SIMILARITY METRIC FOR

SOFTWARE-SPECIFIC WORDS

In this section, we describe how the similarity of two

words is measured using WordSimSE . Before we present

WordSimSE in Section III-C, we first introduce the concepts

of word co-occurrence and positive pointwise mutual informa-

tion in Sections III-A & III-B, respectively.

A. Word Co-occurrence

The concept of word co-occurrence is defined based on the

concept of “context”, which refers to the surrounding words of

a target word [9]. A sliding window is used to limit the scope

of the context of a target word. A target word should appear

in the middle of the sliding window. For instance, a sliding

window with size 5 would contain the target word itself, the

two words appearing to the left of the target word, and the two

words appearing to the right of the target word. If a target word

appears in the beginning of a document, a sliding window with

size 5 would only contain the target word and the two words

appearing to the right of the target word. The co-occurrence

frequency of a target word t with another word w is defined as

the number of sliding windows of t (i.e., with t in the middle

of the sliding window) containing w.

TABLE I: Example Document Corpus CEx

ID Content ID Content
1 NetBeans Java 4 Eclipse Java
2 Java NetBeans 5 Java Eclipse
3 Eclipse Java 6 Eclipse Java

Example. Table I shows a corpus containing six documents.

Consider a sliding window of size 3. The co-occurrence

frequency of words NetBeans and Java is 2. This corresponds

to two sliding windows: 〈NetBeans, Java〉 (Document 1),

and 〈Java,NetBeans〉 (Document 2). The co-occurrence fre-

quency of Eclipse and Java is 4. The co-occurrence frequency

of NetBeans and Eclipse is 0.

B. Positive Pointwise Mutual Information (PPMI )

Various metrics have been proposed to measure the strength

of associations (or relationships) between two words based on

their co-occurrence frequencies. One popular metric is called

pointwise mutual information (PMI ) [8]. PMI comes from

the information theory community and is used by the natural

language processing community to measure the discrepancy

between the actual co-occurrence frequency of two words and

the expected co-occurrence frequency of the words assuming

independence. If the PMI score of two words is larger than

zero, it means the co-occurrences of the two words is not by

chance and thus they are related. On the other hand, if the

value is less than or equal to zero, then the two words are not

related, even if they co-occur a large number times. Positive

pointwise mutual information (PPMI ) is a variation of PMI
which returns the PMI score if the score is greater than zero,

and zero otherwise. PPMI has been reported to be the best

co-occurrence based metric [3]. The definition of PPMI is as

follows:

Pd(i) =
fd(i)∑n
i=1 fd(i)

(1)

Pd(i, j) =
fd(i,j)∑n
i=1 fd(i)

(2)

PMId(i, j) = log Pd(i,j)
Pd(i)Pd(j)

(3)

PPMId(i, j) =

{
PMId(i, j) PMId(i, j) > 0

0 otherwise
(4)

In the above equations, Pd(i) is the probability of word i
appearing in a document corpus d.3 This probability can be

estimated from fd(i) (i.e., the frequency of word i appearing

in the corpus d) divided by the total number of words in the

corpus. n stands for the number of unique words appearing

in the corpus. Pd(i, j) is the probability that two words i
and j appear together in a sliding window in a document in

the corpus. This probability can be estimated from fd(i, j)
(i.e., the number of sliding windows containing words i and

j in the corpus d) divided by the total number of words

in the corpus. Note that the number of sliding windows is

equal to the number of words in the corpus. PMI d(i, j) and

PPMI d(i, j) are pointwise mutual information and positive

3A document corpus is simply a set of documents.



pointwise mutual information between word i and word j
given a document corpus d. They can be computed based on

Pd(i), Pd(j), and Pd(i, j).

TABLE II: Frequency of Words in Document Corpus CEx

Variable Value
f(NetBeans) 2
f(Eclipse) 4

f(Java) 6
f(NetBeans, Java) 2
f(Eclipse, Java) 4

Example. Table II shows the frequencies of various words

and pairs of words of the corpus shown in Table I.

The total number of words appearing in the corpus is

12. Based on the frequencies and the total number of

words in the corpus we can compute PCEx
(NetBeans),

PCEx
(Eclipse), PCEx

(Java), PCEx
(NetBeans, Java),

and PCEx
(Eclipse, Java), which are 0.17, 0.33, 0.5,

0.17, and 0.33 respectively. From these probabilities,

PMI (NetBeans, Java) and PMI (Eclipse, Java) are both

1. Since these two values are larger than zero, the positive

pointwise mutual information scores between NetBeans and

Java and that between Eclipse and Java are both 1.

C. WordSimSE

Next, we define our word similarity metric, WordSimSE .

To compute the similarity of two words, we represent them

as vectors and then compute the similarity between these

two vectors. Each word is represented as a feature vector

where each element in the vector is the co-occurrence weight
of that word with other (contextual) word in the corpus.

These contextual words serve as semantic anchors forming

a basis for us to compare the semantic distance of two words.

The co-occurrence weight is measured using our weighted

positive pointwise mutual information (WPPMI ), defined by

the following formula:

WPPMId(i, j) = W (j)× PMId(i, j)

where W (j) =

⎧⎨
⎩

α (if j is a popular software tag)

β (if j is a nonpopular software tag)

γ (otherwise)
(5)

In Equation 5, word i is the target word and word j is a

contextual word. If word i does not co-occur with word j,

the value of WPPMI d(i, j) is 0. W (j) is a weight parameter

used to control the contributions of different types of words

serving as semantic anchors. We consider three kinds of words:

popular software tags, other software tags, and other words.

Software tags are typically software-specific terms and thus

should be given higher weights (we treat them as primary
& secondary semantic anchors). After the above weights are

computed for each contextual word of the target word i, we

have i’s representative feature vector.

Next, to compute the similarity of two words, we compute

the cosine similarity of their representative vectors. We denote

this final similarity score as WordSimSE , which is defined as:

WordSimSE (i, j) =
∑n

k=1 WPPMId(i,k)×WPPMId(j,k)√∑n
k=1 WPPMId(i,k)2

√∑n
k=1 WPPMId(j,k)2

(6)

In the above equation, n refers to the total number of unique

words in the corpus. The rest of the notation used in Equation 6

is as defined for Equation 5.

Example. Consider the sample corpus in Table I. Let us assume

that “Eclipse” and “Java” are popular software tags, while

“NetBeans” is an unpopular software tag. Let the weights of

popular tags, unpopular tags, and other words be 2, 1, and

0.5 respectively. Based on these, WPPMI (NetBeans, Java)
and WPPMI (Eclipse, Java) are both 2. We now compute

WordSimSE (NetBeans, Eclipse). NetBeans and Eclipse both

co-occur with “Java”; thus “Java” becomes the semantic

anchor that connects the two words. “Java” is the only word

that both NetBeans and Eclipse co-occur with. By taking the

cosine similarity of the representative vectors of NetBeans and

Eclipse, we have WordSimSE (NetBeans,Eclipse) = 1.

IV. CONSTRUCTION METHODOLOGY

The previous section defines how the similarity of two

words can be computed. In this section, we describe how we

can use this information to automatically construct a database

of similar word pairs. We first describe our overall process

and then describe the key steps.

A. Overall Process

The overall process is shown in Figure 2. It contains four

main steps: data preprocessing, word co-occurrence computa-

tion, parameter tuning, and similarity computation.

Fig. 2: Overall Process

Documents from StackOverflow are taken as the input of

the data preprocessing step. Each document corresponds to

a question and its corresponding answers in StackOverflow.

The data preprocessing step cleans both the textual and code

contents inside these documents and extracts tags from the

documents. These tags are used to classify words into three

kinds of semantic anchors: popular tags, other tags, and other

words. The co-occurrence computation step counts the number

of times each word pair co-occurs in the cleaned documents



and generates a matrix to store the calculated numbers. Other

information including the frequencies of words appearing in

the document corpus and the total number of words in the

corpus is recorded at the same time.

Next, the parameter tuning step optimizes the three weight

parameters for the three types of semantic anchors, by taking

the tags extracted in the data preprocessing step and the

word co-occurrence matrix output by the co-occurrence com-

putation step as inputs. The parameter tuning step performs

this optimization by using a training set of similar word

pairs. Note that the parameter tuning step depends on the

co-occurrence matrix, and thus, for best results, it should be

repeated whenever new data is added. Finally, the optimized

weight parameters together with the co-occurrence matrix are

sent to the similarity computation step, to calculate similarities

between all pairs of word. We describe the details of these four

main steps of our construction process below.

B. Step 1: Data Preprocessing

For each document extracted from StackOverflow, we apply

the general text preprocessing steps: tokenization, stop-word

removal, and stemming introduced in Section II-B to clean

it. To clean the code segments inside a document, we have

designed a code preprocessor to extract meaningful words. We

apply code preprocessing before the general text processing.

The code preprocessor cleans the code in the following ways:

1) Removal of programming language keywords. A pro-

gramming language has its own keywords (reserved

words) with special meaning that cannot be used as

identifiers. In this work, the code preprocessor removes

all Java programming language keywords from the doc-

uments.

2) Splitting of identifiers. The code preprocessor splits

identifiers based on Camel casing and Pascal casing,

which use capitalized characters to indicate the start of

subsequent words in an identifier. The code preprocessor

detects the capital letters inside identifier names and

then splits each identifier into several words. Identifiers

containing “ ” are also broken into several words.

The data preprocessing component extracts tags from doc-

uments and ranks them in descending order based on the

number of documents in which they occur. These tags and

their usage frequencies are extracted to group words into

three categories: popular tags, other tags, and other words. By

default, the top-10% tags that are used in the most documents

are treated as popular tags.

C. Step 2: Co-occurrence Computation

Following the definition of word co-occurrence in Sec-

tion III, we first scan the cleaned documents to enumerate all

the sliding windows. While scanning, we maintain and update

a co-occurrence vector for each target word where features

inside the vector correspond to the contextual words that co-

occur with the target word. To save computation time and

memory and to reduce noise, we follow the work of Xia et

al. [35] and Wu et al. [33] by filtering words that appear less

than a threshold, as they are rarely used (in this paper, by

default, we remove words that appear fewer than 50 times in

the corpus). We also delete word pairs whose co-occurrence

frequencies are lower than a particular threshold – these word

pairs are likely to co-occur by chance. By default, we delete

word pairs whose co-occurrence frequencies are less than 5.

D. Step 3: Parameter Tuning
To tune the three weight parameters of WordSimSE , i.e.,

α, β, and γ in Equation 5, we use a greedy search method. We

use a manually labeled training set WPair containing pairs of

words that are most similar to each other. For each of the pairs,

we take the first word in the pair, and use WordSimSE with

one weight setting (α, β, and γ) to return a list of most similar

words. We then investigate the rank of the second word of the

pair in the returned list. The higher is the rank, the better it is.

Based on this, the following fitness function is used to measure

whether a weight setting can model well the contributions of

the different types of words:

fitness(α, β, γ) = 1∑
(i,j)∈WPair Ranki(j) (7)

In the above equation, Rank(j) is the rank of word j in

the list of the most similar words to i computed based on

WordSimSE with the particular weight setting under consid-

eration. A low value of the rank (i.e., a larger number) suggests

a worse weight setting. Thus, we would like to maximize

this fitness function. The pseudocode of the parameter tuning

process is shown in Figure 3.

Procedure TuneParameters
Inputs:

TagSet : A set of tag pairs used for tuning the weights.
min,max: Minimum and maximum value of the weights.
σ: A unit of weight change.

Output:
Optimized α, β, and γ values.

Methods:
// Step 1: Initialization

1 : Let α = 3, β = 2, and γ = 1
2 : Let fitV albest = fitness(α, β, γ)

// Step 2: Parameter Refinement
3 : Do
4 : Let fitV alupα = fitness((α+ σ)>max?max:α+ σ, β, γ)

5 : Let fitV aldnα = fitness((α− σ)<min?min:α− σ, β, γ)
6 : Let fitV alupβ = fitness(α, (β + σ)>max?max:β + σ, γ)

7 : Let fitV aldnβ = fitness(α, (β − σ)<min?min:β − σ, γ)
8 : Let fitV alupγ = fitness(α, β, (γ + σ)>max?max:γ + σ)

9 : Let fitV aldnγ = fitness(α, β, (γ − σ)<min?min:γ − σ)

10: Let fitV albestiter = Maxi∈{up,dn},j∈{α,β,γ}fitV alij
11: If fitV albestiter > fitV albest

12: fitV albest = fitV albestiter

13: Update α, β, or γ accordingly
14: Else
15: Break
16: While True

// Step 3: Output
17: Output α, β, γ

Fig. 3: Parameter Tuning Process

As shown in Figure 3, our algorithm consists of three steps.

The first step (Lines 1-2) simply performs some initializations.



At line 1, the three weights α, β, and γ are initialized to

3, 2, and 1, based on the intuition that popular tags are

more important than unpopular tags, which are more important

than other words. Based on the fitness function defined in

Equation 7, we compute a fitness score for this initial weight

setting (Line 2). Next, we refine the parameters (i.e., weights)

iteratively (Lines 3-16). For each iteration, we try to increment

and decrement α, β, and γ by one unit of weight change σ,

and compute new fitness scores using these weights (Lines 4-

9). By default, we set this σ to be 0.1. If a weight (α, β, or

γ) has reached the maximum (max) or the minimum (min)

value, we do not increase or decrease it any further. We record

the change in either α, β, or γ that results in the best fitness

score (Line 10). If the best fitness score for this iteration is

better than the best known fitness score, we update the best

known fitness score and the weights accordingly (Lines 11-13).

If the best score for an iteration is not better than the current

best, we have reached a local optimum, and we terminate the

refinement process (Lines 14-15). Finally, for the last step, we

output the weights that result in the best fitness score.

E. Step 4: Similarity Computation

Once the optimized weight parameters α, β, and γ have

been learned, we compute the similarities of the word pairs

that appear in the corpus. Based on the definition of our

weighted positive pointwise mutual information (WPPMI )

and similarity metric WordSimSE defined in Equations 5

and 6, we construct a database that stores the similarities

between all pairs of words.

The pseudocode for the similarity computation step is

shown in Figure 4. We first initialize an empty word simi-

larity database WordSimSE
DB (Line 1). Next, we scan the pre-

processed words and enumerate all pairs of words (Lines 2-3).

For each pair, we compute WordSimSE for the pair (Line 4).

We store the similarity score into the database (Line 5). At

the end, we output the database (Line 6).

Procedure ComputeWordSimilarity
Inputs:

Wordsall: The set of all pre-processed words in the corpus.
Output:

WordSimSE
DB : Word similarity database.

Methods:
1: Initialize an empty WordSimSE

DB

2: For each word wi in Wordsall

3: For each word wj in Wordsall

4: Compute WordSimSE (wi, wj)

5: Add the computed similarity to WordSimSE
DB

6: Output WordSimSE
DB

Fig. 4: Word Similarity Computation

V. PERFORMANCE OPTIMIZATION

The most time-consuming step of our construction process

is the word similarity computation step (Step 4). In this step,

all pairs of words are enumerated (Lines 2-3 of Figure 4).

In this section, we propose an optimized approach. First, we

describe the problems with the basic approach described in

Section IV-E. Next, we present a new algorithm that addresses

the shortcomings of the basic approach.

There are three main problems with the basic approach:

1) It is not necessary to compare each word with all other

words. For a target word, the words that have no con-

textual words in common with it have zero similarity

with the target word. Therefore, we can speed up the

process by only considering words that have common

contextual words with the target word. To address this

problem, we use a set of inverted indices. Each inverted

index corresponds to a contextual word c, and the index

stores all words that co-occur with c. Given a target word

t, these indices can be used to quickly find words that

share at least one contextual word with t. Let IdxSet
be the set of indices and let idx.W be the set of words

pointed to by an index idx in IdxSet. The set of words

that share at least one contextual word with t is then:

share context(t) =
⋃

idx∈IdxSet∧t∈idx.W

idx.W \ idx
(8)

2) There is no need to compute WordSimSE (j, i) if we

have already computed WordSimSE (i, j), where i and j
refers to any word appearing in the corpus. WordSimSE

is defined as the cosine similarity of two vectors and

therefore it is symmetric.

3) Based on the WordSimSE defined in Equation 6,

we need to compute the length of word i’s vector:√∑n
k=1 WPPMI d(i, k)2, and perform a division oper-

ation multiple times during the enumeration of all pairs,

which is a waste of time. To improve efficiency, we can

change Equation 6 to the following equivalent formula:

WordSimSE (i, j) =∑n
k=1 Nm(WPPMI d(i, k))×Nm(WPPMI d(j, k))

(9)

In the above formula, Nm(WPPMI d(i, k)) is the nor-

malized WPPMI , defined as:

WPPMI d(i, k)√∑n
k=1 WPPMI d(i, k)2

.

Using this formula, we can compute the normalized

WPPMI once and use it multiple times.

To address these three problems, we propose a new al-

gorithm, which is shown in Figure 5. First, we initialize an

empty word similarity database (Line 1). Then, an inverted

index is created for each possible contextual word (Line 2).

We also initialize a cache to store mappings between words

and their corresponding normalized WPPMI scores (Line 3).

Then we iterate through each word i in the corpus (Lines 4-

14). For each word i we compute its normalized WPPMI
scores and store them in the cache (if these scores have

not been computed before) (Lines 5-7). This addresses the

third problem. Then for word i we get the set of words

share context(i) computed by using the inverted indices

based on Equation 8 (Line 8). These are words that share



Procedure ComputeWordSimilarityOptimized

Inputs:
Wordsall: The set of all pre-processed words in the corpus.

Output:
WordSimSE

DB : Word similarity database.
Methods:
1 : Initialize an empty WordSimSE

DB

2 : Generate inverted indices L1, L2...Ln for all
possible contextual words

3 : Let Cache = Empty mapping from words to their
normalized WPPMI scores

4 : For each word i in Wordsall

5 : If i is not in Cache
6 : Compute normalized WPPMI scores for i
7 : Add the normalized scores to Cache
8 : For each word j in share context(i)
9 : If j is not in Cache
10: Compute normalized WPPMI scores for j
11: Add the normalized scores to Cache

12: Compute WordSimSE (i, j) using Equation 9

13: Add the computed similarity to WordSimSE
DB

14: Remove i from the inverted indices

15: Output WordSimSE
DB

Fig. 5: Optimized Word Similarity Computation

at least one contextual word with i. This addresses the first

problem. For each word j, we again compute its normalized

WPPMI score and store it in the cache (if the score has not

been computed before) (Lines 9-11). For such a pair i and j,

we compute word similarity using Equation 9 and add it to the

database (Lines 12-13). After, we consider all js for word i,
we delete i from the indices (Line 14). This step implies that

we will not subsequently compute the similarity between word

j and word i (which would be redundant). This addresses the

second problem.

VI. EXPERIMENTS & ANALYSIS

In this section, we first describe the dataset used to construct

WordSimSE
DB and the WordNet dataset that we use as a

baseline. Next, we describe our experimental methodology and

highlight our research questions. We answer these questions

one by one. We also describe some threats to validity.

A. Dataset and Methodology

We construct WordSimSE
DB using the question-and-answer

threads in StackOverflow. The data is provided by the MSR

2013 Mining Challenge [1]. The dataset is around 12 Gi-

gabytes and contains all the posts4 generated from August

2008-August 2012. In our work, we consider the questions

and answers posted in January 2011. Since a question and its

related answers are about the same topic, we organize the data

into documents where each document contains a question and

its corresponding answers. The title, description, and tags of

the question and the contents of its answers are extracted and

stored in the document. We have collected 83,358 documents.

Out of them, we randomly sample 10,000 documents and use

them to build WordSimSE
DB . All the experiments are performed

4A post can be a question or an answer.

on an Intel Xeon X5460 3.16GHz server with 24.0GB RAM

running Windows Server 2008 (64 bit).

For the third step of our construction methodology (see

Section IV), we use 450 word pairs obtained from previous

work to tune the weight parameters. We find that the best

weights for α, β, and γ are 2.8, 2.0, and 1.4 respectively. This

shows that indeed popular software tags are more important

than other software tags, and that software tags are more

important than other words.

We use the publicly available WordNet-based word pair

similarity dataset in [24] as the baseline. This dataset contains

the similarity of billions of word pairs, amounting to more

than 100 Gigabytes of data. Word similarities are computed

based on the Resnik metric [28]. In this work, we refer to this

WordNet-based word similarity as WordNetres .

We want to measure the effectiveness of WordSimSE and

WordNetres in measuring the similarity of software-related

words. To measure this, we follow these steps:

1) We take as input a set of N software-related words.

2) For each of the words in the set, we get the top-M
words that are deemed to be most similar to it using

WordSimSE and WordNetres . We now have a set of

2×N ×M pairs of words.

3) We randomly mix these word pairs and assign them

to P participants. Each word pair is assigned to one

participant.

4) We ask the participants to label each pair of words

using a 3-point Likert scale: 1 (Unrelated), 2 (Somewhat

Related), and 3 (Related).

5) We now have 2 × N lists of M Likert scores for

WordSimSE and WordNet. We measure the average

Likert scores of word pairs assigned by WordSimSE and

those assigned by WordNet. We also measure a standard

metric known as discounted cumulative gain (DCG) [17]

which is given by the following formula:

DCG =
∑p

i=1
2reli−1
log2(i+1)

(10)

In the above equation, reli refers to the Likert score of

the word returned at rank i.

In our experiment, we set the numbers N , M , and P to be

100, 10, and 10 respectively. Ideally, 100 words can generate

2000 word pairs if both our approach and WordNetres are

able to produce results. We manually select 100 meaningful

software related words from questions on StackOverflow. 5

These words include:

ant, css, cygwin, eclipse, gcc, git, soap, swing, ssl,

svg, tcp, tomcat, trunk, wsdl, xcode, xhtml, xml, . . . 6

The 10 participants of our user study include 9 graduate

students and 1 post-doc from Singapore Management Univer-

sity. They work on research topics in the fields of Computer

Science, and have at least 3 years of programming experience

each in Java, C++, C#, etc.

5These 100 words also appear in our sample data.
6The full list is available at: https://sites.google.com/site/wordsimdatabase/



B. Research Questions

We consider the following research questions:

RQ1 How accurate is our proposed approach as com-

pared to the baseline approach?

RQ2 How general is our proposed approach in measur-

ing the similarity of words?

RQ3 How scalable is our proposed approach?

From the information retrieval point of view, the first ques-

tion measures precision while the second measures recall [17].

Precision is a measure of soundness while recall is a measure

of completeness. The last question investigates the time it

takes to construct WordSimSE
DB from a software corpus and the

possibility to expand WordSimSE
DB by considering even more

documents from StackOverflow and other software forums.

C. RQ1: Accuracy of WordSimSE

Out of the 100 software-specific words, only 45 of them

are in WordNet. In other words, the WordNet based approach

can only return related words for 45 of the 100 selected

words, while our approach can return related words for all

100. We perform a user study following the steps described in

Section VI-A to judge whether the returned lists of words are

really related to the target word. We describe the results using

average Likert score and discounted cumulative gain (DCG)

as yardsticks in the following paragraphs.

Average Likert Score. Table III shows the average Likert

scores for our method and the baseline on the 45 words that

exist in WordNet. The result shows that the words returned

by our approach have an average Likert score of 2.31. The

average Likert score of the words returned by WordNetres is

only 1.53. Thus, we achieve a 50.9% improvement. The 2.31

average Likert score shows that WordSimSE can reasonably

capture the semantic meaning of software-specific words. The

average Likert score of our approach on the complete list of

100 words is 2.30.

TABLE III: Average Likert Score Comparison

Approach Average Likert Score
WordSimSE 2.31
WordNetres 1.53
Improvement 50.9%

Average Discounted Cumulative Gain. The effectiveness

of an information retrieval tool is impacted not only by the

relevancy of the retrieved documents, but also by the ranking

of the returned documents. More relevant documents should

be ranked first. Thus in our setting, more similar words

should be returned first. The DCG metric takes this into

consideration. The higher the DCG, the better the algorithm

performs. Table IV compares the average DCG for the 45

words on our approach and on the WordNet based approach.

Table IV shows that our method outperforms the WordNet

based approach by 66.9%. The average DCG of our approach

across the 100 words is 25.99.

TABLE IV: Average Discounted Cumulative Gain Comparison

Approach Average DCG
WordSimSE 26.27
WordNetres 15.74
Improvement 66.9%

D. RQ2: Generality of WordSimSE

Table V shows the number of word pairs (with non-zero

WordSimSE scores) in WordSimSE
DB , the number of word

pairs extracted in past studies, and the number of word pairs

in WordNet. We manage to extract more than 5 million word

pairs by analyzing 10,000 documents.

As shown in Table V, the number of word pairs in

WordSimSE
DB is much smaller than that of WordNet. However,

the number of word pairs extracted by our approach is nearly

12 times the number of word pairs extracted by Wang et al.

from FreeCode tags [32]. It is also more than 4 times the

number of word pairs extracted by Yang et al. from source

code files of a number of large software projects [36].

TABLE V: Number of Word Pairs

Approach #Word Pairs
WordSimSE

DB 5,636,534
Wang et al. [32] 476,100
Yang et al. [36] 1,382,246
WordNet [24] 22,034,553,550

In this work, we have only evaluated the results of

WordSimSE on 10,000 question-and-answer threads from

StackOverflow. The number of word pairs can be increased

by considering more question-and-answer threads from Stack-

Overflow or other software forums. Thus, we believe our

approach is more general than past proposed approaches that

also extract software-specific similar word pairs [32], [36].

E. RQ3: Scalability of WordSimSE

In this research question, we investigate the scalability of

our proposed approach before and after performance tuning.

We record the running time to process 10,000, 20,000, 30,000,

40,000, and 50,000 documents. Figure 6 shows the number of

word pairs in each document corpus.

Fig. 6: Number of Word Pairs in Each Document Corpus

We plot the runtime as a function of the number of doc-

uments and show the result in Figure 7. Note that the run-

time includes the time for data preprocessing, co-occurrence



computation, parameter tuning, and similarity computation.

The result shows that the optimized approach (described in

Figure 5) is around 4-6 times faster than the basic approach

(described in Figure 4). We also notice that the runtime grows

more or less linearly with the number of documents used to

construct WordSimSE
DB . To construct the database using 50,000

documents, using the optimized approach, we need less than

15 minutes.

1 2 3 4 5
x 104

0

1000

2000

3000

4000

5000

6000

Number of Documents

R
un

tim
e 

(s
)

Basic Approach
Optimized Approach

Fig. 7: Runtime Comparison: Before and After Performance Tuning

F. Threats to Validity

Threats to internal validity relate to experimental errors and

biases. When performing the user study, to reduce bias we do

not tell the participants which tool generated the word pairs.

Otherwise participants might be inclined to give a higher score

to pairs generated by our approach than those generated by the

baseline approach. We follow many previous studies [4], [11],

[32] by measuring the effectiveness of the approaches by using

human labeled Likert scores. Since performing a user study

is expensive, we give each word pair to only one participant.

This might cause a subjectivity bias and implies that we could

not compute inter-rater reliability. Many past studies [4], [11],

[32] also do not compute inter-rater reliability, mainly due

to the cost of performing a user study on a large number of

participants and a large number of tasks. Another threat is

the fact that the participants of our user study are graduate

students and a post-doc, rather than experts from industry.

However, it has been reported that only minor differences exist

between the performance of graduate students and professional

software developers when performing relatively small tasks of

judgement [10].

Threats to external validity relate to the generalizability

of our approach. We consider 10,000 question-and-answer

threads from StackOverflow. We use 100 software-specific

words to evaluate our approach. In the future, we would like

to reduce this threat of validity further by analyzing more

threads from StackOverflow and similar sites. We would also

like to investigate the effectiveness of our approach using more

software-specific words and more participants.

Threats to construct validity relate to the suitability of our

evaluation metrics. We use two metrics: average Likert score

and discounted cumulative gain (DCG). The first metric is very

intuitive, and the second is also well known. Thus, we believe

we have little threat to construct validity.

VII. RELATED WORK

A. Generic Word Similarity Measurements

Measuring similarity between two words is one of the basic

natural language processing (NLP) tasks. Many papers have

proposed various approaches to measure this similarity. Most

of the well-known techniques leverage a lexical database (e.g.,

WordNet) to measure similarities of words [14], [15], [28],

[34]. Pedersen et al. have created an interface to allow users to

query the semantic distance of words [23]. They have also pre-

computed the similarities of all pairs of words in WordNet and

make these similarities publicly available [24]. Similar to the

above studies, we also measure similarities of words. However,

rather than trying to leverage WordNet which is a general

purpose resource, we build a WordNet-like resource specific

to the software engineering domain that measures similarities

of words in the software engineering context.

A number of approaches have also been proposed to au-

tomatically construct a thesaurus [6], [15]. They are based

on the distributional hypothesis, which assumes that words

that co-occur in the same contexts are likely to have similar

meanings. Other co-occurrence based similarity measurements

can be found in [2], [13]. We also make use of word co-

occurrence to measure similar words in software engineering

context. Our work is different from theirs in two aspects:

we leverage the phenomenon of tagging in the software

engineering community, and we make use of a dataset unique

to the software engineering domain rather than a general

dataset. Tags in StackOverflow are typically software-specific

words and we use these as the primary and secondary semantic

anchors to measure the similarity between words.

B. Software-Specific Word Similarity

Yang and Tan infer semantically related words in software

source code files [36]. Their approach takes as input a code

base along with a list of stop words and produces a set of

semantically related pairs of words. It was able to identify se-

mantically related words with a reasonable accuracy in 9 large

and popular code bases written in C and Java. Similar with the

work of Yang and Tan, Howard et al. infer semantically similar

verbs from comments and method signatures [11]. They mined

97 similar verb pairs from 150 methods which are randomly

sampled from 36 Java programs across multiple domains.

In this work, we also generate semantically related words.

However, rather than analyzing code, we analyze software-

specific textual documents (namely posts in StackOverflow).

We also propose a different algorithm to analyze the different

dataset. Many software related words are not in source code

but in the various software textual artifacts, e.g., forum posts,

bug reports, etc.

Wang et al. infer semantically related tags from FreeCode,

a website that maintains a large index of software [32]. Each

software project on FreeCode has a document to describe

its features. Tags are used to label similar projects. Wang

et al. measure similarity of tags by considering document

similarity and textual similarity. We also measure similarity of



words and leverage software engineering contents. However,

our approach is more general than that of Wang et al., which

is only able to measure similarity between tags. There are

not so many tags in FreeCode; in their experiments, they only

measure the similarities of 690 tags. Our approach, in contrast,

measures the similarity of words that appear in many posts.

C. Other Related Studies

Falleri et al. extract a network of identifiers connected

by “is-more-general-than” or “is-a-part-of” relationships from

source code [7]. In this work, we are not interested in building

a network of terms connected by the two relationships, rather

we want to measure the similarities of words considering the

software engineering context.

VIII. CONCLUSION AND FUTURE WORK

Many automated software engineering tools analyze soft-

ware artifacts leveraging natural language processing (NLP)

tools. Measuring word similarity is one of the basic NLP

tasks and has been shown to improve various NLP tools. The

natural language processing community has released WordNet,

a lexical database, which has been leveraged to measure

similarity of words. However, WordNet is general purpose and

often does not contain software-specific terms. Furthermore,

the meanings of words in WordNet are often different than

when they are used in software engineering context. Thus,

there is a need for a domain-specific WordNet-like resource

for the software engineering community.

In this work, we propose a technique that automatically

constructs a database called WordSimSE
DB that stores the

similarity of words used in software engineering context. We

proposed a similarity metric WordSimSE leveraging question-

and-answer threads in StackOverflow to infer the similarity of

words based on their weighted co-occurrences with three kinds

of semantic anchors. We have compared our approach with a

WordNet-based approach (WordNetres ) by means of a user

study. Our user study shows that our approach outperforms

WordNetres in terms of average Likert score and average

discounted cumulative gain (DCG) by more than 50% and

66%, respectively. We have optimized the steps to construct

WordSimSE
DB . The result of the scalability test demonstrates

that our approach is around 4-6 times faster than the basic

approach. Our optimized approach can estimate the similarity

of more than 30 million word pairs in less than 15 minutes

by analyzing a 50,000 document corpus.

In the future, we plan to construct a larger WordSimSE
DB by

training it with more question-and-answer threads from Stack-

Overflow and other resources that contain software related

documents. In fact, our scalability experiment already implies

that the runtime would not drastically increase if we include

more threads from StackOverflow. We also plan to allow open

access to an expanded WordSimSE
DB as a web service.

REFERENCES

[1] A. Bacchelli, “Mining challenge 2013: Stack overflow,” in MSR, 2013.
[2] D. Bollegala, Y. Matsuo, and M. Ishizuka, “Measuring semantic simi-

larity between words using web search engines,” WWW, 2007.

[3] J. Bullinaria and J. Levy, “Extracting semantic representations from
word co-occurrence statistics: A computational study,” Behavior Re-
search Methods, 2007.

[4] R. P. Buse and W. R. Weimer, “Learning a metric for code readability,”
TSE, vol. 36, no. 4, 2010.

[5] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li, “Context-
aware query suggestion by mining click-through and session data,” in
KDD, 2008.

[6] L. Chen, P. Fankhauser, U. Thiel, and T. Kamps, “Statistical relationship
determination in automatic thesaurus construction,” in CIKM, 2005.

[7] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and
M. Dao, “Automatic extraction of a wordnet-like identifier network from
software,” in ICPC, 2010.

[8] R. Fano, Transmission of Information: A Statistical Theory of Commu-
nications. MIT Press, 1961.

[9] Z. Harris, Mathematical Structures of Language. New York, USA:
Wiley, 1968.

[10] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects: a
comparative study of students and professionals in lead-time impact
assessment,” Empirical Software Engineering, vol. 5, no. 3, 2000.

[11] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker, “Automati-
cally mining software-based, semantically-similar words from comment-
code mappings,” in MSR, 2013.

[12] S. F. Hussain and G. Bisson, “Text categorization using word similarities
based on higher order co-occurrences,” in SDM, 2010.

[13] A. Islam and D. Inkpen, “Second order co-occurrence PMI for deter-
mining the semantic similarity of words,” in LREC, 2006.

[14] J. J. Jiang and D. W. Conrath, “Semantic similarity based on corpus
statistics and lexical taxonomy,” ROCLING X, 1998.

[15] D. Lin, “An information-theoretic definition of similarity,” in ICML,
1998.

[16] E. Linstead, S. K. Bajracharya, T. C. Ngo, P. Rigor, C. V. Lopes,
and P. Baldi, “Sourcerer: mining and searching internet-scale software
repositories,” Data Min. Knowl. Discov., vol. 18, no. 2, 2009.

[17] C. Manning, P. Raghavan, and H. Schutze, Introduction to information
retrieval. Cambridge University Press Cambridge, 2008, vol. 1.

[18] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in WCRE, 2004.

[19] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in ICSM, 2008.

[20] G. Miller, “Wordnet: a lexical database for English,” Communications
of the ACM, 1995.

[21] T. Pedersen, “Information content measures of semantic similarity
perform better without sense-tagged text,” in HLT-NAACL, 2010.

[22] T. Pedersen, S. Patwardhan, and J. Michelizzi, “Wordnet: : Similarity -
measuring the relatedness of concepts,” in AAAI, 2004.

[23] T. Pederson, “Wordnet::similarity,” http://wn-similarity.sourceforge.net/.
[24] M. Porter, “An algorithm for suffix stripping,” Program, vol. 14, 1980.
[25] Princeton University, “WordNet: A lexical database for English,”

http://wordnet.princeton.edu/.
[26] Ranks.NL, “English stopwords,” http://www.ranks.nl/resources/

stopwords.html.
[27] P. Resnik, “Using information content to evaluate semantic similarity in

a taxonomy,” in IJCAI, 1995.
[28] M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails, “Conquer: A tool

for NL-based query refinement & contextualizing code search results,”
in ICSM, 2013.

[29] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in ICSE, 2007.

[30] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker, “Identifying word
relations in software: A comparative study of semantic similarity tools,”
in ICPC, 2008.

[31] S. Wang, D. Lo, and L. Jiang, “Inferring semantically related software
terms and their taxonomy by leveraging collaborative tagging,” in ICSM,
2012.

[32] L. Wu, L. Yang, N. Yu, and X.-S. Hua, “Learning to tag,” in WWW,
2009.

[33] Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” in ACL,
1994.

[34] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in MSR, 2013.

[35] J. Yang and L. Tan, “Swordnet: Inferring semantically related words
from software context,” Empirical Software Engineering, 2013.


