
Observatory of Trends in Software Related
Microblogs

Palakorn Achananuparp, Ibrahim Nelman Lubis, Yuan Tian, David Lo, Ee-Peng Lim
Singapore Management University, Singapore

palakorna@smu.edu.sg, lubisnelman@smu.edu.sg, yuan.tian.2011@exchange.smu.edu.sg,
davidlo@smu.edu.sg, eplim@smu.edu.sg

Abstract—Microblogging has recently become a popular means
to disseminate information among millions of people. Interest-
ingly, software developers also use microblog to communicate
with one another. In Twitter, many developers microblog or
tweet about bugs, new IDEs, new programming languages, etc.
Different from traditional media, microblog users tend to focus
on recency and informality of content. Many tweet contents are
relatively more personal and opinionated, compared to that of
traditional news report. Thus, by analyzing microblogs, one could
get the real-time information about what people are interested
in or feel toward a particular topic. In this paper, we describe
our microblog observatory that aggregates more than 58,000
Twitter feeds, captures software-related tweets, and computes
trends from across topics and time points. Finally, we present
the results to the end users via a web interface available at
http://research.larc.smu.edu.sg/palanteer/swdev.

I. INTRODUCTION

Microblogging services, such as Twitter, provide a conve-
nient way for millions of people to communicate with one
another thanks to their informal and timely natures. Twitter
users typically compose a short microblog (up to 140 charac-
ters in length), also known as tweet, to express their thoughts
on various subjects. Because of the sheer sizes and scopes
of tweets, Twitter is a great venue for studying information
diffusion among the networks of users.

Interestingly, software developers and users of software sys-
tems also tweet. One could potentially learn many interesting
things from their tweets. Information such as: new features
of a software system, new programming methodology, new
conferences, new bugs, new issues, new solutions, new feature
requests, etc., could be disseminated via the tweets. These
provide a rich source of information well suited for software
development where many new “events” happen periodically
– new releases, new features, new bugs, etc. If these tweets
could be distilled into knowledge, one could in effect learn
from the wisdom of the crowd. Moreover, given that informal
communication plays an important role in software develop-
ment projects [3], [4], [7], a study of how microblogs facilitate
communications in software development activities may help
uncover valuable insights into many software development
processes.

There have been a number of studies that analyze mi-
croblogs in general and Twitter [8]. However, all of these
studies focus on general Twitter users. Unfortunately, there
has been little study on investigating the behavior of a partic-
ular sub-community of Twitter users. In a related study, we

manually investigate what types of information content are
contained in software engineering community microblogs, e.g.,
commercials, opinion, tips, etc [11]. In this study, different
from the above, we build a visual analytics observatory that
computes trends (both across topics and time points). We also
investigate the different purposes of tweeting among software
developers in another study[11].

In the software engineering front, recently a number of
studies analyze social media sources such as: blogs, forums,
etc. Pagano and Maalej investigated how software developers
and other members of open source communities blog [7].
Gottipati et al. built a search engine to leverage information
available in software forums [4]. Guzzi et al., Begel et al., and
Treude and Storey proposed the integration of social media
into software development processes [5], [2], [12]. However,
there has been no study that provides a solution that is able
to aggregate and analyze the wealth of software engineering
information available in microblogs.

It is challenging to analyze Twitter data. First, information
available in Twitter about a particular topics is distributed in
many tweets made by many users. Second, the amount of
information is gigantic – there are millions of users producing
millions of tweets daily. As such, storing all tweets is practi-
cally infeasible. Third, many Twitter users tweet about various
subjects, not necessarily limited to software development, thus
filtering out the irrelevant tweets is not trivial. Fourth, the
massive number of tweets may contain useful software-related
trends which are neither apparent nor readily available to
Twitter users. Although one can search for tweets mentioning
software-related terms using the default interface in Twitter,
the search results only contain the recent tweets published in
the past week. Furthermore, it is difficult to analyze or make
sense of the trends from those results.

To address the above challenges, there is a need for an
approach that could aggregate tweets made by various Twitter
users, in particular those that are likely to tweet about software
development. The approach needs to be scalable enough to
handle a large number of tweets. The approach needs to allow
users to perform visual analytics to better understand recent
trends and developments from the mass of data. Furthermore,
it should allow for periodic updates as new tweets are made
daily. In this study, we present a system that satisfies the above
criteria.

We build a visual analytics observatory that capture topical



trends and longitudinal trends. Topical trends capture relative
popularity of various related topics, e.g., relative popularity of
various programming languages. Longitudinal trends capture
relative popularity of a topic at various points in time, e.g.,
time periods where people microblog more about Javascript.
We believe these trends could provide various insights to
developers, e.g., to find important emerging topics that other
developers care about, such as an important release, etc.

We took a user-centric approach of gathering the tweet data
to be used by such an observatory. The basic idea is to find
a balance way of maximizing the number of tweets to be
collected and maximizing the relevancy and completeness of
the tweet data pertaining to software engineering topics. To
that end, we first build a sizable set of candidate users that
are more likely to tweet about software engineering related
topics. Next, we periodically download tweets made by these
users, pre-process such tweets, store, and index them in a
database. This database is later processed to compute topical
and longitudinal trends which are later presented to the end
users via a web interface. The prototype of our web application
is accessible via a following URL:

http://research.larc.smu.edu.sg/palanteer/swdev

We have also performed a preliminary study on approxi-
mately 58,000 Twitter users for tweets published between June
2011 through November 2011. The contributions of this study
are as follows:

1) We propose a solution that aggregates and processes
software engineering related microblogs into topical and
longitudinal trends and present them to the end users for
visual analytics.

2) We have performed a preliminary analysis on several
interesting trends that we capture from 58,000 Twitter
feeds. We have also implemented our solution as a
publicly accessible web application.

The structure of this paper is as follows. In Section II, we
present our proposed framework. In Section III, we present our
preliminary study and highlight some interesting topical and
longitudinal trends. In Section IV, we present related studies.
We conclude and describe future work in Section V.

II. PROPOSED FRAMEWORK

Our framework is illustrated in Figure 1; It is composed
of three blocks: User Base Creator, Tweet Processor, and
User Interface. The User Base Creator block extracts a set
of Twitter users that are likely to post software engineering
related contents. The Tweet Processor block extracts tweets
produced by the selected set of users. It also pre-processes,
indexes, and stores the tweets. The User Interface block
presents an web interface for the users to query and analyze
various topics.

A. User Base Creator

Among the millions Twitter users, not everyone tweets about
software engineering topics. Thus, we would need to create a

Fig. 1. Proposed Framework

sizable user base that is likely to produce software engineering
related tweets.

To accomplish this, our system takes in a set of seed users
(SEED). The seed users are well-known Twitter users that
actively tweet about software topics. These users are manually
identified; for example, Jeff Atwood, Jason Fried, and John
Resig. We assume that any Twitter users who follow at least
n popular developers are interested in software development
and likely to tweet about the topic. Given the assumption, we
proceed to expand our software-centric user base by traversing
the seed users’s friend and follower networks.

We make use of the follow links in Twitter. If Bob follows
Alice in Twitter, any tweets published by Alice will be
automatically broadcast to Bob. We could traverse the follow
links of these seed users to substantially expand the user base.
Our strategy is to obtain the following set of users:

UBase = SEED
⋃
{u|u follows ≥ n users in SEED}

By default, we set the value n in the above equation to 5.
That is, we include a Twitter user to UBase if she follows at
least 5 seed users.

B. Twitter Data Processor

Our Twitter data processor block consists of three steps:
tweet and follow links download, tweet pre-processing and
indexing, and trend analysis.

Tweet & Follow Link Download. After the initial user base
is identified, we automatically download all the latest tweets
published by these users using the Twitter REST API and a
Twitter whitelisted account. A whitelisted account is permitted
to make 20,000 API calls per hour, as opposed to 350 calls per
hour of a non-whitelisted one. Because of an API limitation1,
up to 3,200 tweets of any user can be retrieved at a given
time. Thus, at the initial tweet download, the completeness
of the tweet data are constrained by the API functionality.
However, after polling data for the first time, we continue to
collect UBase’s tweets on a daily basis. This guarantees a near
complete snapshot of the subsequent tweet data as no users
in UBase publishes more than 3,200 tweets in a single day.
In addition, we also download the follow links for all users
in UBase everyday using the API. After which, the set of
users in UBase are updated according to the newly inserted or

1https://dev.twitter.com/docs/rate-limiting



removed friends and followers of UBase. On average, 177K
tweets and 100K follow links are downloaded in one day.

Tweet Pre-Processing & Indexing. We then perform com-
mon text pre-processing steps namely: tokenization, stopword
removal, and stemming. We use whitespace and punctuations
as the delimiters for tokenization, remove common English
language stop words, and utilize Porter stemmer to reduce a
word to its root form [9]. We manually mark some technical
synonyms and jargons that should not be stemmed e.g., C#
vs. CSharp, C++, etc. Finally, we index all processed tweets.
To accomplish these tasks, we employ an open source search
platform Apache Solr2. Our tweet processor can be re-run at
various points in time such that new tweets could be included
into the repository.

Trend Analysis. Next, we process the tweets to compute
both topical and longitudinal trends. To compute topical trend,
we manually select a set of 100 software-related topics, e.g.,
JavaScript, Scrum, etc., from relevant Wikipedia pages and
popular StackOverflow.com’s tags. We further divide them
into three groups namely: 1. Programming Languages, 2.
Frameworks, Libraries, and Systems, and 3. Programming
Concepts and Methodologies. We then compute for each topic
the number of tweets mentioning the topic at a specific
time period. Topics that are more frequently mentioned are
more popular than others. To compute longitudinal trend of a
particular topic or keyword, we compute the number of tweets
containing it at various points in time. We thus could compute
the popularity of various topics and the popularity of a topic at
various time points. Note that although Twitter has officially
published a list of trending topics for a specific locale, these
topics are extracted from all tweets. We believe the Twitter
trending topics are not particularly useful to us since they are
not categorized and likely dominated by many non-software
related topics.

C. User Interface

A snapshot of our user interface is shown in Figure 2. The
main user interface shows the four topic groups. For each
group, we show topical trend; topics that are more frequently
tweeted in the repository are shown using a larger text size.

A user can click any topics in the four groups. After this,
a line chart showing the number of tweets containing the
topic over time would be shown. This chart represents the
longitudinal trend of the topic. An example of this chart for
“JavaScript” is shown in Figure 3. Users could also investigate
the actual tweets made at various points in time by clicking at
the various points in the line chart. An example of the resultant
UI showing actual tweets made at September 1, 2011 is shown
in Figure 4. Aside from clicking the topics, one can also enter
any free-text queries in the top right text box. A similar line
chart would also be plotted for this query. Multiple queries can
also be submitted together to generate multiple trend lines for
comparison.

2http://lucene.apache.org/solr/

Fig. 2. User Interface & Topical Trends

Fig. 3. Longitudinal Trend on “JavaScript”

Fig. 4. Tweets on “JavaScript” made at September 1, 2011

III. PRELIMINARY STUDY

We have conducted a preliminary study on a reasonably
large number of Twitter feeds. In this section, we briefly
describe our dataset followed by some interesting trends that
we find in this preliminary study.

A. Dataset

Our framework takes in a number of parameters: a set of s
seed users, a set of t topics, and the parameter n that we use
to expand the seed users to our user base. For the set of seed
users, we utilize the list provided in [1] which identifies top-
100 software developers that tweet. As described in Section II,
we include 100 software-related topics and divide them into
3 main categories. In this work, the values of s, t, and n are
100, 100, and 5, respectively. As of November 23, 2011, the
whole dataset comprises approximately 58,000 unique users,
18 million follow links, and 76 million tweets in total.

B. Interesting Trends

With the topical trend analysis, users can visually inspect
the topics in which software engineering community in Twitter



are interested. For example, we find that JavaScript, Ruby,
and Java are the three most popular programming languages
mentioned by Twitter users during the last 24 hours of
November 25, 2011, respectively. The corresponding topical
trend interface is shown in Figure 2. Similarly, by comparing
different software engineering concepts and methodologies,
we find that Agile, Collection, and Open Source, are the
three most popular software-related concepts, respectively.
Interestingly, since we perform a simple term frequency count,
the popularity of terms with multiple meanings like Collection
may be grossly overestimated as the counting includes tweets
mentioning Collection as a data structure as well as those using
it generically, e.g. DVD collection, etc.

With longitudinal trend analysis, uses can capture the popu-
larity of a topic across time points. For example, from Figure 3,
we can see that an interest in JavaScript goes up and down
periodically. We can also identify events which correspond
to the unusual peaks or dips in the trend line. For example,
we notice that there is an unusual peak in the number of
tweets on October 10, 2011. Upon further inspection, we find
that Google unveiled a new programming language Dart on
that day. Figure 5 shows another longitudinal trend for the
Scrum software development methodology. We notice that its
popularity is again periodic. The peaks and dips however look
much alike and there is not much anomaly.

Fig. 5. Longitudinal Trend on “Scrum”

IV. RELATED WORK

Social Media for Software Engineering. There have been a
number of studies that proposed the integration of social media
with IDE and software development [5], [2], [12]. Pagano
and Maleej analyzed how open source communities blog [7].
Gottipati et al. built a semantic search engine to effectively
find answers in software forums [4]. In this study, we build an
analytics engine that downloads, pre-processes, indexes, and
stores microblog data. It also computes trends from the data,
and presents them to the end users for insights.
Social Network Mining in Software Engineering. There
have also been a number of studies in software engineering
domain that analyzed socio-technical network and utilized
social network mining techniques. Bird et al. analyzed social
network created from email communications among develop-
ers [3]. Surian et al. and Hong et al. analyzed developer socio-
technical network in SourceForge.Net [10], [6].
Twitter Analytics There have been a few Twitter Analytics
applications that allow the users to explore trends and insights
extracted from the tweet data. In particular, our solution can

be contrasted with the Archivist3. Unlike the Archivist, which
is not domain-specific, our tweet observatory specifically fo-
cuses on the software engineering domain. Through domain
knowledge, we only keep track of a specific community of
users who likely tweet about software-related topics. More-
over, our interface encourages more serendipitous discovery
of other interesting software engineering topics through a
topical trend browsing. Since we use the Twitter REST API
and a whitelisted account to periodically collect the tweet
and follow-link data, we are able to capture a much larger
volume of tweets and these tweets are also less prone to noise
than those collected by the Archivist. For instance, given a
programming language topic Java, the tweets collected by the
Archivist for this query are mostly about ”Java, Indonesia”
while our system’s are mostly about the programming lan-
guage. As a result, the Archivist’s aggregated visualizations
may not accurately depict the trend for Java programming
language. This is due to the fact that the Archivist includes
the tweets from all Twitter users while our system selectively
collect the tweets from the relevant users only.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a system that captures trends
in software related microblogs from Twitter. It collates a
pool of Twitter users that are likely to tweet about software
development based on a seed set of popular developers. It
then collects, processes, and presents the data to the end
users as trends via the topical and longitudinal trend analysis
interface. The system is implemented as a publicly available
web application. We have also found some interesting trends
in our preliminary experiments.

In the future, we plan to perform more analysis on what
software engineering community microblogs about. We would
also like to improve our visual observatory by incorporating
additional features. Furthermore, we plan to build a system that
could automatically summarize microblog contents, identify
important events, and allow users to discover more nuggets of
knowledge from the masssive microblog data.

REFERENCES
[1] http://www.noop.nl/2009/02/twitter-top-100-for-software-developers.html.
[2] A. Begel, R. DeLine, and T. Zimmermann, “Social media for software engineer-

ing,” in Workshop on Future of Software Engineering Research, 2010.
[3] C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and A. Swaminathan, “Mining email

social networks,” in MSR, 2006, pp. 137–143.
[4] S. Gottipati, D. Lo, and J. Jiang, “Finding answers in software forums.” in ASE,

2011.
[5] A. Guzzi, M. Pinzger, and A. van Deursen, “Combining micro-blogging and ide

interactions to support developers in their quests.” in ICSM, 2010.
[6] Q. Hong, S. Kim, S. Cheung, and C. Bird, “Understanding a developer social

network and its evolution,” in ICSM, 2011.
[7] D. Pagano and W. Maalej, “How do developers blog? an exploratory study,” in

MSR, 2011.
[8] B. Poblete, R. Garcia, M. Mendoza, and A. Jaimes, “Do all birds tweet the same?:

characterizing twitter around the world,” in CIKM, 2011.
[9] M. Porter, “An algorithm for suffix stripping,” Program, 1980.

[10] D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, and C. Faloutsos, “Recommending
people in developers’ collaboration network,” in WCRE, 2011.

[11] Y. Tian, P. Achananuparp, I. Lubis, D. Lo, and E.-P. Lim, “What does software
engineering community microblog about?” in Under submission, also available
at: http://research.larc.smu.edu.sg/papers/tweet-analysis.pdf, 2011.

[12] C. Treude and M. Storey, “How tagging helps bridge the gap between social and
technical aspects in software development?” in ICSE, 2009.

3http://archivist.visitmix.com/


