
IEE
E P

ro
of

TopicSketch: Real-Time Bursty Topic
Detection from Twitter

Wei Xie, Feida Zhu, Jing Jiang, Ee-Peng Lim, and Ke Wang

Abstract—Twitter has become one of the largest microblogging platforms for users around the world to share anything happening
around them with friends and beyond. A bursty topic in Twitter is one that triggers a surge of relevant tweets within a short period of
time, which often reflects important events of mass interest. How to leverage Twitter for early detection of bursty topics has therefore
become an important research problem with immense practical value. Despite the wealth of research work on topic modelling and
analysis in Twitter, it remains a challenge to detect bursty topics in real-time. As existing methods can hardly scale to handle the task
with the tweet stream in real-time, we propose in this paper TopicSketch, a sketch-based topic model together with a set of techniques
to achieve real-time detection. We evaluate our solution on a tweet stream with over 30 million tweets. Our experiment results show
both efficiency and effectiveness of our approach. Especially it is also demonstrated that TopicSketch on a single machine can
potentially handle hundreds of millions tweets per day, which is on the same scale of the total number of daily tweets in Twitter, and
present bursty events in finer-granularity.

Index Terms—TopicSketch, tweet stream, bursty topic, realtime

Ç

1 INTRODUCTION

WITH 320 million active users and 1 billion tweets per
month,1 Twitter has become one of the largest infor-

mation portals that provides an easy, quick and reliable
platform for users to share anything happening around
them with friends and other followers. In particular, it has
been observed that, in certain life-critical disasters, Twitter
is the most important and timely source from which people
find out and track the breaking news before any mainstream
media picks up on them and rebroadcast the footage. For
example, in the March 11, 2011 Japan earthquake and subse-
quent tsunami, the volume of tweets sent spiked to more
than 5,000 per second when people post news about the sit-
uation along with uploads of mobile videos they had
recorded.2 We call such events which trigger a surge of a
large number of relevant tweets bursty topics.

Fig. 1 shows an example of a bursty topic on November
1st, 2011. A 14-year-old girl from Singapore named Adelyn
(not her real name) caused a massive uproar online after
she was unhappy with her mother’s incessant nagging and
resorted to physical abuse by slapping her mother twice,
and boasted about her actions on Facebook with vulgarities.
Within hours, it soon went viral on the Internet, trending
worldwide on Twitter and was one of the top Twitter trends
in Singapore. For many bursty events like this, users would

like to be alerted as early as it starts to grow viral. However,
it was only after almost a whole day that the first news
media report on the incident came out. In general, the sheer
scale of Twitter has made it impossible for traditional news
media, or any other manual effort, to capture most of such
bursty topics in real-time even though their reporting crew
can pick up a subset of the trending ones. This gap raises a
question of immense practical value: Can we leverage Twit-
ter for automated bursty topic detection in real-time?

Unfortunately, this real-time task has not been addressed
by the existing work on Twitter topic analysis. First,
Twitter’s own trending topic list does not help much as it
reports mostly those all-time popular topics, instead of the
bursty ones that are of our interest in this work. Second,
most prior research works define a bursty topic as a set
which consists of few bursty words [8], [17], [25], [28], [29],
[32]. As only bursty words are captured, the represented
bursty topic is far from informative to reflect what the topic
really is. Third, most topic modelling based works study the
topics in Twitter in a retrospective off-line manner, e.g., per-
forming topic modelling, analysis and tracking for all tweets
generated in a certain time period [11], [30], [31], [35]. While
these findings have offered interesting insights into the
topics, it is our belief that the greatest value of Twitter
bursty topic detection has yet to be brought out, which is to
detect the bursty topics just in time as they are taking place.
This real-time task is challenging for existing algorithms
because of the high computational complexity inherent in
the topic models as well as the ways in which the topics are
usually learnt, e.g., Gibbs Sampling [14] or variational infer-
ence [5]. The key research challenge is how to solve the fol-
lowing two problems in real-time: (I) How to efficiently
maintain proper statistics to trigger detection; and (II) How
to model bursty topics without the chance to examine the
entire set of relevant tweets as in traditional topic modeling.
While some work such as [28] indeed detects events in real-
time, it requires pre-defined keywords for the topics.

1. https://about.twitter.com/company
2. http://blog.twitter.com/2011/06/global-pulse.html

! W. Xie, F. Zhu, J. Jiang, and E. Lim are with the Living Analytics
Research Centre, Singapore Management University, Singapore 178902.
E-mail: {wei.xie.2012, fdzhu, jingjiang, eplim}@smu.edu.sg.

! K. Wang is with Simon Fraser University, BC V5A 1S6, Canada.
E-mail: wangk@cs.sfu.ca.

Manuscript received 4 Aug. 2015; revised 7 Apr. 2016; accepted 9 Apr. 2016.
Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by J. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2016.2556661

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. X, XXXXX 2016 1

1041-4347! 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://about.twitter.com/company
http://blog.twitter.com/2011/06/global-pulse.html
mailto:
mailto:


IEE
E P

ro
ofWe propose a new detection framework called

TopicSketch. It can be observed from Fig. 1 that
TopicSketch is able to detect this bursty topic soon after the
very first tweet about this incident was generated, just
when it started to grow viral and much earlier than the first
news media report.

We summarize our contributions as follows.
First, we proposed a two-stage integrated solution

TopicSketch. In the first stage, we proposed a small data
sketch which efficiently maintains at a low computational
cost the acceleration of two quantities: the occurrence of
each word pair and the occurrence of each word triple.
These accelerations provide as early as possible the indica-
tors of a potential surge of tweet popularity. They are also
designed such that the bursty topic inference would be trig-
gered and achieved based on them. The fact that we can
update these statistics efficiently and invoke the more com-
putationally expensive topic inference part only when nec-
essary at a later stage makes it possible to achieve real-time
detection in a data stream of Twitter scale. In the second
stage, we proposed a sketch-based topic model to infer both
the bursty topics and their acceleration based on the statis-
tics maintained in the data sketch.

Second, we proposed dimension reduction techniques
based on hashing to achieve scalability and, at the same
time, maintain topic quality with robustness.

Finally, we evaluated TopicSketch on a tweet stream con-
taining over 30 million tweets and demonstrated both the
effectiveness and efficiency of our approach. It has been
shown that TopicSketch on a single machine is able to poten-
tially handle over 150 million tweets per day which is on the
same scale of the total number of tweets generated daily in
Twitter. We also presented case studies on interesting bursty
topic examples which illustrate some desirable features of
our approach, e.g., finer-granularity event description.

This work follows the framework of our previous work
[33]. While in this work, we provide (I) more sophisticated
sketch structure, which captures not only the information of
word pairs as in [33], but also the word triples; (II) more
effective inference algorithm, i.e., tensor decomposition,
which is an important contribution on top of [33]; and (III)
more comprehensive evaluations.

2 RELATED WORK

Event detection has been studied for decades, with evolving
interests on news [2], [34], blogs [27] and recently social
media [25], [28]. As there are numerous research works
focusing on it, here we categorised the ones most related to
ours, i.e., bursty topic detection in Twitter, along two

dimensions: the way of defining a topic and the way of
processing data (as shown in Table 1).

Clustering based versus topic modelling based. There are dif-
ferent ways to define the topic of an event. In the early work
First Story Detection [2], [34] and their successors [7], [26], a
topic is represented as a cluster of related documents. By
exploiting the temporal proximity of news stories discus-
sing a given event, Yang et al. [34] use refined hierarchical
and online document clustering algorithms to detect events
from a news stream. In [2] each document is represented as
a point in a vector space (e.g., TF-IDF vector), and for each
new incoming document, compare it against earlier points.
If the new point is close enough to its nearest neighbour, it
is absorbed by its nearest neighbour. Otherwise, this new
document is labelled as a new event. Brants et al. [7] extend
[2] by using incremental TF-IDF model, sophisticated simi-
larity score normalisation etc. However, this approach does
not scale to the overwhelming data volume like that of Twit-
ter, as a nearest neighbour search is costly on large data set.
Petrovic et al. [26] use locality sensitive hashing (LSH) [20]
to scale this approach for Twitter streams. While in other
works, a topic is defined as a coherent set (or cluster) of key
words [8], [17], [25], [28], [29], [32], hashtags [3], [13], phrases
[23] or segments [24]. In such works, usually a collection of
bursty terms are detected from the document stream based
on some criteria, and possibly later these bursty terms are
grouped into several clusters which represent the bursty
topics. For instance, the state-of-the-art solution SigniTrend
[29] first detects the significant trending terms (words and
word cooccurrences) based on its proposed statistic which
measures the significances of the terms. With little memory,
this statistic can be efficiently updated in an incremental
way. What’s more, by using hashing techniques, it makes it
possible to track all the keyword pairs under a fixed amount
of memory. Finally, an end-of-day analysis is performed,
which aggregates the detected keywords into larger topics
by using clustering approaches.

On the other hand, using a probability distribution over
words to represent a topic has been quite common in topic
modelling [5], [18]. Especially, the words with high proba-
bilities would characterise the topic well. It is straightfor-
ward to learn the topics in the document stream using topic
models, and then find the bursty ones by considering their
temporal information, such as [11], [30]. Takahashi et al.
[30] first use DTM (dynamic topic model) [6] to learn the
topics from news stream, and then applies Kleinberg’s
model [22] to detect the bursty topics. Similarly, Diao et al.
[11] build a topic model which simultaneously considers
both the temporal information of tweet and user’s personal
interests to learn the topics from tweet stream, and then
Kleinberg’s model is used to find the bursty ones. Other

Fig. 1. The tweet volume of each of the top three keywords of the topic:
“adelyn”, “slap”, and “siri”.

TABLE 1
The Related Work is Categorized Along Two Dimensions: The

Way of Defining a Topic and the Way of Processing Data

Clustering Based Topic Modelling Based

Retrospective [34] [35][30][11][31]

Online /
Real-time

[34][2][7][26]
[28][29][3][24]

[25][8][32][17][13]

our work

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. X, XXXXX 2016



IEE
E P

ro
of

related work includes [31] which builds a topic model to
find correlated bursty topics from coordinated text streams,
and [35] which creates a unified model to distinguish tem-
poral topics from stable topics. In recent works [19], [36]
topic models are built to discover geographical topics from
Twitter. Although the direct focuses of these works are not
on bursty topics, using the similar way as above, geographi-
cal bursty topics could be found.

Besides, Ahmed et al. [1] propose a time-dependent
topic-cluster model, which combines LDA [5] and clustering
to learn the topic of each storyline, and at the same time, to
cluster documents into storylines. And similar to [1], in lat-
est work [12] Du et al. cluster continuous-time document
streams by proposed Dirichlet-Hawkes Process. Although
their model are built on general document streams, they can
be potentially adopted to detect bursty topics in Twitter.

Retrospective versus online/real-time. In early work [34]
Yang et al. propose methods for both retrospective and
online event detection. In the former case, it is assumed that
there is a retrospective view of the data in its entirety. On
the other hand, in the case of online event detection, the sys-
tem processes current document before looking at any sub-
sequent documents. It is not surprising that [34] shows the
results of retrospective detection are much better than the
online one, as more information is available from a retro-
spective way. As we summarised in Table 1, most topic
modelling based methods [11], [30], [31], [35] fall into this
category. The complexity of their models makes them good
at learning topics from the data in a retrospective way, but
at the same time lose the flexibility to respond to any new
incoming data. In contrast, methods like [29] only need to
maintain a statistic for each term, and report the terms
when their statistics exceed the significance level. Under
such a framework, online detection is a natural choice.
However, the detected topic which consists of few key-
words is far less informative than the topic learned from
topic modelling, which is a distribution over all the words.

Besides, real-time detection is quite similar to online
detection. The subtle difference between them is that in
real-time detection, time is crucial, so much so that no fixed
time window for detection should be assumed. The only
works we are aware of that achieve real-time detection are
[28] and [29]. While [28] does detect events in real-time, it
needs pre-defined keywords for the topic, making it inap-
plicable to general bursty topic detection where no prior
knowledge of the topic keywords is available. By incremen-
tally updating the statistic in an efficient way, SigniTrend
[29] can detect bursty keywords in real-time, but before it
aggregates keywords into larger topics, it needs to wait until
the end-of-day (or a fixed time period).

In this work, we aim to achieve real-time bursty topic
detection from the perspective of topic modelling, which
distinguishes us from most existing works in taxonomy (as
shown in Table 1). Considering the learning power of topic
modelling, we expect our method provide more informative
bursty topics than other existing online detection solutions.

3 SOLUTION OVERVIEW

3.1 Problem Formulation
A topic in this work is represented as a distribution over
words. Particularly, in defining a bursty topic, we evaluate

the following two criteria: (I) There has to be a sudden surge
in the topic’s popularity which is measured by the total
number of relevant tweets. Those all-time popular topics
therefore would not count; (II) The topic must be reasonably
popular. This would filter away the large number of trivial
topics which, despite the spikes in their popularity, are
considered as noises because of the negligible number of
relevant tweets.

For criterion (I), we measure how bursty a topic is by the
acceleration of its popularity. Mathematically speaking,
acceleration captures the change in the rate of the popular-
ity of a topic. The more sudden the change is, the larger the
acceleration is. In Section 4.2, we explain how to estimate
the acceleration of a topic without even knowing which
tweets are associated to it. For criterion (II), once we found
bursty topic candidates, we simply count the relevant
tweets of them, and filter out the trivial ones.

Our task in this paper is, given a tweet stream, to detect
bursty topics from it as early as possible.

3.2 Solution Overview
Our solution, called TopicSketch, is based on two main
techniques—a sketch-based topic model and a hashing-
based dimension reduction technique. Our sketch-based
topic model provides an integrated two-step solution. In the
first step, it maintains as a sketch of the data the acceleration
of two quantities: (1) every pair of words, and (2) every triple
of words, which are early indicators of popularity surge and
can be updated efficiently at a low cost, making early detec-
tion possible. In the second step, based on the data sketch, it
learns the bursty topics by tensor decomposition. To perform
the detection efficiently in large-scale real-time setting, we
propose a dimension reduction technique based on hashing
which provides a scalable solution to the original problem
without compromisingmuch the quality of the topics.

Fig. 2 gives the overview of our proposed TopicSketch
framework. The real-time detection flow is as follows: (1)
Upon the arrival of each tweet, the sketch is updated, which

Fig. 2. TopicSketch framework overview.

XIE ET AL.: TOPICSKETCH: REAL-TIME BURSTY TOPIC DETECTION FROM TWITTER 3



IEE
E P

ro
of

is an efficient step as detailed in Section 5.2, (2) Once the
sketch is updated, the change is sent to the monitor, (3) The
monitor tracks the data sketch, compares it with historical
average, and triggers the estimator for potential bursty topic
detection if the difference is larger than pre-determined
threshold. (4) Upon notification, the estimator takes a snap-
shot of the sketch and infers the bursty topics as described in
Sections 4.3 and 5.3, and (5) The inferred bursty topics are
sent to the reporter to evaluate and report. TopicSketch is
designed such that steps (1) to (3) are computationally cheap
to enable real-time response and early detection. Step (4),
which is expensive if done naively, is greatly expedited by
dimension reduction techniques as described in Section 5.1.

4 SKETCH-BASED TOPIC MODEL

4.1 Intuition
Actually, as mentioned in [17], the term “bursty topic” is
very ambiguous, and can be viewed in very different ways.
Various intuitions and corresponding definitions on it lead
to diverse solutions [3], [17], [22], [29]. The intuition behind
this work comes from the observation that, the whole tweet
stream is full of large amount of tweets about general topics
such as car, music and food. Although they take a large pro-
portion in the whole tweet stream, they are not helpful for
our bursty topic detection task. Therefore, we try to separate
the bursty topics from them. We found that, following daily
routine, people usually tweet about general topics in a
steady pace. In contrast, bursty topics are often triggered by
some events such as some breaking news or a compelling
basketball game, which get a lot of attention from people,
and “force” people to tweet about them intensely. In phys-
ics, this “force” can be expressed by “acceleration”, which in
our setting describes the change of “velocity”, i.e., arriving
rate of tweets. Bursty topics can get significant acceleration
when they are bursting, while the general topics usually get
nearly zero acceleration. So the “acceleration” trick can be
used to preserve the information of bursty topics but filter
out the others. However, as the topics are hidden, we can
not calculate their accelerations directly. A possible way is
to estimate them by calculating the accelerations of words
instead. Equation (1) shows how we calculate the “velocity”
v̂ðtÞ and “acceleration” âðtÞ of words.

v̂DT ðtÞ ¼
X

ti%t

Xi &
expððti ' tÞ=DT Þ

DT
;

âðtÞ ¼
v̂DT2ðtÞ ' v̂DT1ðtÞ

DT1 ' DT2
:

(1)

In Equation (1),Xi is the frequency of a word (or a pair of
words, or a triple of words) in the i-th tweet, ti is its time-
stamp. The exponential part in v̂DT ðtÞ works like a soft mov-
ing window, which gives the recent terms high weight, but
gives low weight to the ones far away, and the smoothing
parameter DT is the window size. To capture the change of
velocity, acceleration âðtÞ is defined as the difference of
velocities with different window size DT1 and DT2. (Similar
to the divergence of 5 day average and 10 day average in
stock market, which is used to estimate the stock trend.)

We use real data to demonstrate the above intuition in
Figs. 3a1, 3b1 and 3c1, respectively present the daily

volume, velocity and acceleration of three keywords over
time, each of which represents a topic. At that day, there
was a compelling basketball game between San Antonio
Spurs and Oklahoma City Thunder. At the beginning, this
event got a big surge in Twitter, and at the end it got another
even bigger wave of discussion on this Western Conference
final. The daily volume in (a1) shows the popularity of each
topic. We can see that, till at the end of the day, “spurs”
reaches the same scale as “obama” and “car”. However, it
will be too late if we wait till we observe the surge in vol-
ume to report this bursty topic. As shown in (b1), an earlier
indicator is velocity, i.e., the arriving rate of a topic. Our
idea of early detection is to monitor the acceleration of a
topic which, compared against volume and velocity, gives
an even earlier indicator of the popularity surge. The dash
line in the plot shows the time when our detection system
could be triggered. It is clear that at this time point, the daily
volume in (a1) and the velocity in (b1) of “spurs” are not sig-
nificant enough for identifying this event. In contrast, as
“obama” and “car” nearly get zero acceleration in (c1), it is
easy to distinguish “spurs” from them under the measure-
ment of acceleration. If we maintain these statistics (i.e., vol-
ume, velocity and acceleration) on word pairs instead of
single words (use the same formula in Equation (1)), we
will get three dynamic matrices over time. (a2), (b2) and (c2)
show the heat maps of these matrices at the detection time
point respectively. In (a2), the information of all the topics
are kept; in (b2) more information are kept for higher veloc-
ity topics; and in (c2) only the information of bursty topics
are kept, while others are filtered out.

4.2 Sketch-Based Topic Model
Denote D ¼ fdig as the set of all tweets generated in the
tweet stream, where di is a tweet in the stream D, and ti is
its timestamp. Also denote Ci;w as the number of appear-
ance of word w in tweet di, and Ci as the total number of
words in tweet di. w 2 ½N), where N is the number of dis-
tinct words in the vocabulary.

We consider the following single topic model (shown in
Fig. 4). There are K topics ffkg

K
k¼1, where each topic fk is a

distribution over words. Here the key assumption is each

Fig. 3. (a1), (b1), and (c1) show the daily volume, velocity, and accelera-
tion of different keywords over time, respectively; (a2), (b2), and (c2)
show the heat maps of these statistics on word pairs at time point 18:15.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. X, XXXXX 2016



IEE
E P

ro
oftweet di is only associated to one latent topic zi. (This

assumption is based on the fact that the length of each tweet
is very short, limited by 140 characters.) And each word in
di is drawn fromMultinomialðfzi

Þ.
Assume topics ffkg

K
k¼1 and topic indicator zi are

unknown but fixed, for the frequency of a word w in di,

denoted as f1;i½w) ¼ Ci;w
Ci

, we have

E½f1;i½w)) ¼ fzi
½w):

It means the single word frequency f1;i reflects the topic
fzi

. However, as the topic indicator zi is unknown, we can
not directly infer topic from it. As shown in Fig. 3, word
pairs are useful to group different words into topics, such
as the “spurs”-“game” block in the heat maps. We consider
calculating the frequency of each word pair. Particularly,
with the exchangeability of the words in tweet di (based on
the single topic model above), we define the frequency of a
word pair ðw1; w2Þ in a tweet di as follows,

f2;i½w1; w2) ¼
P ðCi;w1

;2Þ
P ðCi;2Þ

; w1 ¼ w2

Ci;w1
Ci;w2

P ðCi;2Þ
; w1 6¼ w2;

8
<

: (2)

where P ðC; 2Þ counts the two-permutations of C. The
denominator is the number of all possible cases choosing
two out of Ci words in tweet di, while the numerator is the
number of cases choosing two specific words. Notice thatP

w22½N ) f2;i½w1; w2) ¼ f1;i½w1), which means f2;i actually

keeps all the information in f1;i. As the words in di are
drawn from the same distribution Multinomialðfzi

Þ, it can
be proven that

E½f2;i½w1; w2)) ¼ fzi
½w1) & fzi

½w2):

For simplicity’s sake, we adopt the notation of tensor prod-
uct *3, and denote f2;i as a matrix in which the ½w1; w2) ele-
ment is f2;i½w1; w2). So we have an equivalent equation.

E½f2;i) ¼ fzi
* fzi:

As shown in the intuition part 4.1, we calculate the accel-
eration of word pairs to preserve most of the information
for bursty topics, and at the same time filter other general
topics out. Set Xi ¼ f2;i½w1; w2) and apply Equation (1), we
can calculate the acceleration of any word pair ðw1; w2Þ.
Notice that the acceleration âðtÞ in Equation (1) is indeed a

weighted sum of sequence fXig, and the weight only
depends on ftig. In other words, âðtÞ can be defined as a lin-
ear function Atð&Þ on fXig. Explicitly we denote AtðfXigÞ as
the acceleration âðtÞ on fXig.

For each tweet di, we calculate the word pair frequency
matrix f2;i, so that we have a sequence of matrices, i.e.,
ff2;ig. Based on ff2;ig, we calculate the acceleration of each
word pair frequency, i.e., Atðff2;i½w1; w2)gÞ. So that we have
a matrix Atðff2;igÞ in which the ½w1; w2) element is At

ðff2;i½w1; w2)gÞ. Fig. 3c2 illustrates what the matrix Atðff2;igÞ
looks like. From the linearity of expectation, we have

E½Atðff2;igÞ) ¼ AtðfE½f2;i)gÞ;
¼ Atðffzi

* fzi
gÞ;

¼ Atð
[

k
f1kðziÞ & fk * fkgÞ;

¼
X

k

Atðf1kðziÞgÞ & fk * fk:

(3)

where 1kð&Þ is the indicator function such that if zi ¼ k,
1kðziÞ ¼ 1, otherwise, 1kðziÞ ¼ 0. On the left side of Equa-
tion (3), Atðff2;igÞ is observable; while on the right side,
Atðf1kðziÞgÞ is in fact the acceleration of tweets about topic k.
Thus Equation (3) gives us away to link the observable accel-
eration of word pair frequency to the unknown acceleration
of topic kwithout even knowing which tweets are associated
to it. More importantly, Equation (3) actually implies that by
maintaining the acceleration of word pair frequency, i.e.,
Atðff2;igÞ, we can preserve the information of the topics with
high accelerations (i.e., bursty topics), and at the same time
filter out the topics with nearly zero acceleration (i.e., stable
general topics). That is exactly what wewant.

If for any two topics k1 6¼ k2, fk1
and fk2

are orthogonal,
i.e., hfk1

;fk2
i ¼ 0, all the topics ffkg will be the eigenvectors

of Atðff2;igÞ. If so, we can just perform one single SVD (Sin-
gular Value Decomposition) on Atðff2;igÞ to infer these
topics. However, hfk1

;fk2
i ¼ 0 means topics k1 and k2 have

no any common words, which is far from reality. Thus we
consider even higher order information, i.e., the frequency
of each word triple. Similar to f2;i, the frequency of a word
triple ðw1; w2; w3Þ in a tweet di is defined as follows:

f3;i½w1; w2; w3) ¼

P ðCi;w1
;3Þ

P ðCi;3Þ
; w1 ¼ w2 ¼ w3

P ðCi;w1
;2ÞCi;w3

P ðCi;3Þ
; w1 ¼ w2 6¼ w3

P ðCi;w2
;2ÞCi;w1

P ðCi;3Þ
; w2 ¼ w3 6¼ w1

P ðCi;w3
;2ÞCi;w2

P ðCi;3Þ
; w3 ¼ w1 6¼ w2

Ci;w1
Ci;w2

Ci;w3
P ðCi;3Þ

; otherwise:

8
>>>>>>>>>><

>>>>>>>>>>:

(4)

Similarly, it can be proven that

E½f3;i) ¼ fzi
* fzi

* fzi;

and

E½Atðff3;igÞ) ¼
X

k

Atðf1kðziÞgÞ & fk * fk * fk: (5)

Based on Equations (3) and (5), we transform our prob-
lem into a standard tensor decomposition problem [4], i.e.,
given sketches M2 ¼ Atðff2;igÞ and M3 ¼ Atðff3;igÞ, infer

Fig. 4. Single topic model.

3. For vectors v1, v2, v3 2 RN , the tensor product of v1 and v2,
m ¼ v1 * v2, is defined as a N +N matrix, where m½i; j) ¼ v1½i)v2½j),
i; j 2 ½N). And the tensor product of v1, v2 and v3, m ¼ v1 * v2 * v3, is
defined as a N +N +N matrix, where m½i; j; k) ¼ v1½i)v2½j)v3½k),
i; j; k 2 ½N).

XIE ET AL.: TOPICSKETCH: REAL-TIME BURSTY TOPIC DETECTION FROM TWITTER 5



IEE
E P

ro
of

topics ffkg. In Section 4.3 we present the tensor decomposi-
tion algorithm in detail.

So by now, we have two sketches: M2 and M3. And each
cell in these two matrices is an acceleration. For instance,
the ðw1; w2Þ cell in M2, i.e., M2½w1; w2), is Atðff2;i½w1; w2)gÞ.
Notice that all these accelerations are easy to compute and
update upon the arrival of every tweet (as shown in Section 5),
which is critical for scalability in real-time setting.

As M3 could be huge (a N +N +N matrix), we do not
really store the M3, but project it to a N +N matrix
M3ðhÞ ¼

P
w M3½:; :; w) & h½w), where h 2 RN , is a random

vector. However a N +N matrix is still huge, in Section 5,
we discuss more about reducing the space complexity.

4.3 Topic from Sketch
To identify bursty topics from the data sketch, which con-
sists of two matrices M2 and M3ðhÞ, we employ a tensor
decomposition algorithm in [4]. This algorithm first per-
forms a SVD on M2 to find a whitening matrix W . After-
wards, whiten M3ðhÞ, then perform another SVD on
whitened M3ðhÞ to find its eigenvectors, from which the
topic vectors can be recovered. The detail is presented in
Appendix A. Here we give the procedure in Algorithm 1. It
has three parts: (I) Whitening, which transform M3ðhÞ from
a N +N matrix to a K +K matrix T3; (II) SVD, which gets
the generalized vectors fvkg of T3; (III) Reconstruction,
which recovers the topics ffkg and their corresponding
accelerations fakg. As K , N , the time consuming part
here is part (I), which takes time in the order of OðK &N2Þ.

Algorithm 1. TensorDecompose

Input:K: the number of topics.
M2: the second order tensor power.
M3ðhÞ: the reduced third order tensor power.

Output: topics ffkg and their corresponding accelerations
fakg.

1 /* Whitening */
2 /* eigsðM2; KÞ returns the largest K largest magnitude
eigenvalues and corresponding eigenvectors. */

3 ðU;LÞ ¼ eigsðM2;KÞ;
4 W ¼ UL'1

2; /*W may be a complex matrix */
5 T3 ¼ W>M3ðhÞW
6 /* SVD */
7 Compute generalised vectors fvkg of T3;
8 /* Reconstruction */
9 for k ¼ 1 toK do

10 fk ¼
WðW>WÞ'1vk

1>
N
WðW>WÞ'1vk

;

11 ak ¼ 1
ðW>fkÞ>ðW>fkÞ

;
12 end
13 returnffkg; fakg.

5 REALTIME DETECTION TECHNIQUES

In this section, we present the technique details to achieve
real-time efficiency for bursty topic detection in the huge-
volume tweet stream setting.

5.1 Dimension Reduction
The first challenge is the high dimension problem as a result
of the huge number of distinct words N in the tweet stream,

which could easily reach the order of millions or even larger
(see the experiments in Section 6.1). What’s more, user-
generated new words or hashtags always appear in Twitter.
This results not only in an enormous data sketch (recall M2

and M3ðhÞ in the sketch are N +N matrices) but also a very
high dimension input to Algorithm 1.

Since the problem is mainly because N is too large, one
natural solution is to keep only a set of active words encoun-
tered recently, e.g., in the last 15 minutes. When a burst is
triggered, consider only the words in this recent set. How-
ever, it turns out that the size of this reduced active word
set for tweet stream is still too large (see Section 6.1) to infer
the topics efficiently.

To handle large number of words, another common way
is hashing [29]. We hash these distinct words into B buckets,
where B is a number much smaller than N , and treating all
the words in a bucket as one “word”. Consequently, the
size of the sketch becomes OðB2Þ, which are significantly
smaller than OðN2Þ as in the original problem. However,
after hashing, what we obtain is the distribution over buck-
ets, rather than the distribution over words. It means we
would need to recover the probabilities of words from the
probabilities of buckets. To solve this problem, we adapt the
Count-Min algorithm [10], [21] to our setting, by using H
hashing functions instead of one. In particular, it works as
follows. Given H hash functions (H1;H2; . . . ;HH) which
map words to buckets ½1:::B) uniformly and independently.
For a topic k with word distribution fk, we first estimate its

distribution over buckets ffðhÞ
k ½j) ¼

P
ijHhðiÞ¼j fk½i)g

B
j¼1 for all

the hash functions. Then we recover the probability of each

word i asmin1%h%HffðhÞ
k ½HhðiÞ)g.

The sketch after hashing is illustrated in Fig. 5. As shown
in Fig. 5, for each arriving tweet,H different bucket-pair fre-
quencies are calculated, and H matrices are updated corre-
spondingly. After the dimension reduction, the memory
cost for the sketch is OðH & B2Þ, and the time complexity for
tensor decomposition is OðH &B2 &KÞ, which are small
enough to be practically feasible.

We also maintain a pool of active words, so that we esti-
mate the probability of words only in this set rather than all
the words in whole vocabulary. The procedure is presented
in Algorithm 2. This algorithm will estimate the probability
of each word with error no greater than e

B with a probability

of e'N=eH . The details of the proof can be found in [21].

5.2 Efficient Sketch Maintenance
The core part of sketch maintenance in our solution is accel-
eration calculation. As presented in Section 4.1, we adopt
Equation (1) to calculate acceleration. However, directly
applying Equation (1) is far from efficient. Observed that

Fig. 5. New sketch after dimension reduction.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. X, XXXXX 2016



IEE
E P

ro
of

the velocity v̂ðtÞ in Equation (1) can be calculated in an
incremental way as in the following Equation (6),

v̂DT ðtÞ ¼
v̂DT ðti'1Þ & e

ðti'1'tÞ
DT ; t 2 ðti'1; tiÞ

v̂DT ðti'1Þ & e
ðti'1'tÞ

DT þ Xi
DT ; t ¼ ti:

(

(6)

where ti is the timestamp of the ith tweet. So instead of
directly storing one acceleration, we incrementally maintain
two velocities v̂DT1ðtÞ and v̂DT2ðtÞ, from which the accelera-
tion can be derived on the fly. Both the space complexity for
maintaining one acceleration and the time complexity for
updating one acceleration are therefore Oð1Þ.

Algorithm 2. TopicRecover

Data: active words : the pool of active words.

fHhgHh¼1 :H hash functions.

threshold : pre-defined threshold.

Input: ffðhÞ
k gHh¼1 :H distributions over ½B).

Output: topick : a topic which is represented as a set of words.
1 initialise topick as a empty set.;
2 for each word w in active_words do

3 ifmin1%h%HffðhÞ
k ½HhðwÞ)g . threshold then

4 add word to topick;
5 end
6 end
7 return topick

Another issue is that, there are OðN2Þ accelerations to be
updated when each tweet arrives, and OðH &B2Þ for the
dimension reduced case. We take lazy maintenance strategy
to reduce the computing cost. In fact, for each acceleration,
take the ðw1; w2Þ cell inM2 as an example, we store a velocity
pair ðv̂DT1ðtÞ; v̂DT2ðtÞÞ and a timestamp t

$
representing the

last modification time. When a tweet di arrives, if
Ci;w1 & Ci;w2 > 0, we update the pair ðv̂DT1ðtÞ; v̂DT2ðtÞÞ accord-
ing to Equation (6) and update timestamp t

$
to ti, otherwise

we adopt lazy strategy and simply do nothing. When a
bursty topic is triggered at time t, take a snapshot of the
sketch (copy on write), then recover all the velocity pairs up
to time t by deriving the accelerations from the velocity pairs
according to Equation (6). Fig. 2 illustrates this updating pro-
cedure: When a tweet arrives, its word vector is shown. The
gray cells in the word vector denotes the occurrence of rele-
vant words in the tweet. In this example, three words occur
in the current tweet. The gray cells in sketch represents the

updated elements in the sketch. Oðjdj2Þ cells are updated in
total. Fig. 5 illustrates this updating procedure for dimension
reduced case. After hashing, threewords in the current tweet
aremapped into two buckets for three hash functions respec-

tively. In total,OðH & jdj2Þ cells are updated.

5.3 Topic Inference
Once our system is triggered, we take a snapshot of the
sketch, and then infer the bursty topics from the sketch as
shown in Section 4.3. As discussed in Section 5.1, instead of
directly maintaining a sketch with size of N +N , we main-
tainH sketches with size of B+B, where B is much smaller
than N . Here we show how to infer the bursty topics from
the sketch after dimension reduction. First, we get topics

from the H different sketches by TensorDecompose (Algo-
rithm 1). Note this step can be implemented in parallel. One
subtle problem here is that a bursty topic may have different
topic indexes in different sketches (recall we have H differ-
ent sketches now). For instance, sketch h ¼ 1 may capture a

bursty topic in topic fð1Þ
1 with index 1, however sketch h ¼ 2

may capture the same bursty topic in topic f
ð2Þ
3 with index

3. To align the topics which represent the same bursty topic,

we sort these topics ffðhÞ
k gKk¼1 by their corresponding accel-

erations faðhÞk gKk¼1, and then re-index them according to the
order. At last, we get the topics recovered by TopicRecover
(Algorithm 2). An overview of this procedure is given in
Algorithm 3. For the purpose of robust, we also propose a
variant of this algorithm by using the second minimum
value instead of the minimum value in Line 3 in Algorithm
2. We will discuss this more in the experiment part.

Algorithm 3. BurstyTopicsDiscover

Data: active words : the pool of active words.
fHhgHh¼1 :H hash functions.
threshold : pre-defined threshold.

Input:K: the number of topics

Input: fMðhÞ
2 gHh¼1fM3ðhÞðhÞgHh¼1:H sketches.

Output: ftopickg : a list of topics.
1 /* get topics fromH different sketches */;
2 for h = 1 toH do
3 /* in parallel */;

4 ffðhÞ
k gKk¼1; fa

ðhÞ
k gKk¼1 ¼ TensorDecomposeðK;MðhÞ

2 ;M3ðhÞðhÞÞ
5 end
6 /* aligning topics*/;
7 for h = 1 toH do

8 sort ffðhÞ
k gKk¼1 by their corresponding faðhÞk gKk¼1;

9 end
10 /* topic discovering */;
11 for k = 1 toK do
12 topick ¼ TopicRecoverðffðhÞ

k gHh¼1Þ;
13 end
14 returnftopickg

After getting the topics from Algorithm 3, we would like
to add a heuristic step to refine the topics, due to the follow-
ing reasons. First, because of the original acceleration based
design, our solution is fragile when facing spam accounts.
They usually inject a lot of duplicate or similar tweets very
intensively in a short period of time, which would produce
words with significant acceleration, and therefore trigger
our system. Second, due to hashing collision, it is possible
that some rare words appear in the recovered topic. The
refining process is as follows:

! Trivial topic filtering: filter out the topics with small
number of relevant tweets.

! Noisy topic filtering: filter out the topics with high
entropy, in which there are no high probability
words. Such topics look like noises.

! Spam filtering: check the related tweets of a topic in
recent 5 minutes. If there is an account which posts a
significant number of tweets, filter out this topic.

! Rare word pruning: prune the words which do not
appear in the recent tweets.

XIE ET AL.: TOPICSKETCH: REAL-TIME BURSTY TOPIC DETECTION FROM TWITTER 7



IEE
E P

ro
ofAn inverted index of recent tweets is implemented, so

that this step can be performed efficiently.

6 EVALUATION

In this section, we present the evaluation of our TopicSketch
system for both efficiency and effectiveness. We use two dif-
ferent Twitter data sets: one consists of tweets from Singa-
pore, the other consists of tweets from San Francisco. These
tweets are crawled from the Twitter users whose profile
locations are Singapore and San Francisco, respectively.
The Singapore based data set contains 32,479,134 tweets,
and the San Francisco based data set contains 99,586,724
tweets. These tweets are used to simulate live tweet streams.
We implemented our prototype system in Python 2.74 using
64-bit addressing, and executed on multiple cores of an Intel
Xeon 3.06 GHz machine. To demonstrate how TopicSketch
detects bursty topics on the fly, a demo is presented at
http://topicsketch.appspot.com/ for exploration
(best use Chrome browser).

6.1 Efficiency Evaluation
In this section, we evaluate the performance of the sketch
maintenance by the throughput on the tweet stream. We
also evaluate the performance of the estimator by the topic
inference time. In our tweet set, after removing stop words,
the average number of words in a tweets is 8 (evidence for
small jdj). The total number of the distinct words is
8,470,180 (evidence for high dimensions). The number of
distinct words in the 15 minutes active word set is between
10,000 and 20,000.

6.1.1 Sketch Maintenance

Before each incoming tweet goes to the component of
sketch maintenance, we conduct standard preprocessing
on it, including tokenizing,5 stemming, and stop words
removing. After preprocessing, calculate word pair fre-
quency f2;i and word triple frequency f3;i as shown in
Equations (2) and (4). Then update the accelerations in
sketch according to Equation (6) and our lazy mainte-
nance strategy in Section 5.2.

According to Equations (2) and (4), the time complexity of
frequency matrix computation is OðH & jdj3Þ. And the time

complexity for sketch maintenance is OðH & jdj2Þ for each
incoming tweet, according to the analysis in Section 5.2.

It is not hard to maintain the sketch in parallel on multi-
ple cores in one machine. Partition the stream D into S
parts, i.e., D ¼ [S

s¼1fDsg. For each sub-stream Ds, we can

maintain a sketch, which consists of two matrices MðsÞ
2 ¼

Atðff2;igdi2Ds
Þ and MðsÞ

3 ¼ Atðff3;igdi2Ds
Þ. As At is in fact a

linear function, the sketch on stream D is equal to the sum
of the sketch on each sub-stream Ds, i.e., M2 ¼ Atðff2;igÞ ¼
Atð[S

s¼1ff2;igdi2Ds
Þ ¼

PS
s¼1 Atðff2;igdi2Ds

Þ ¼
PS

s¼1 M
ðsÞ
2 . The

same, M3 ¼
PS

s¼1 M
ðsÞ
3 . According to this, we maintain the

sketch on multiple cores on a single machine. In particular,
we build a process pool of size S, and each process in the
pool is in charge of a sub-sketch. Notice that we do not par-
tition the stream in advance. Instead, for each arriving
tweet, randomly send it to one process in the pool on the fly.

To evaluate the throughput of the sketch maintenance
and its scalability, we set the number of processes in the
process pool from 1 to 6, respectively. Fig. 6 shows the
throughput for process pool of different sizes. Notice that
when the number of the processes is 6, the throughput is
1,830 tweets per second (over one hundred and fifty mil-
lions tweets per day), which is on the same scale of the total
number of tweets generated daily in the whole Twitter net-
work. We can observe that the throughput linearly increases
as the number of processes increases, which shows the scal-
ability of TopicSketch. Also observe that the curve is a little
away from the ideal case – linear speedup (the dashed line
in Fig. 6). It may be because of the additional cost for com-
munication between processes.

6.1.2 Topic Inference

As described in Section 5.3, we can infer the bursty topics
from H different sketches in parallel. In particular, we built
a process pool and each process in the pool is in charge of
performing TensorDecompose for one sketch under hash
function Hh. We set the size of process pool to 1 and 5,
which represent the sequential version and fully parallel
version respectively. We vary the number of topics K from
15 to 75. Fig. 7 shows the performance of the algorithm. The
result shows that although the sequential version gives
an affordable running time (less than half minute), the par-
allel version provides significant improvement (10 seconds
for 75 topics). Also observe that for both versions, as the

Fig. 6. Comparison between throughputs for TopicSketch and Linear
Speedup for varying numbers of processes.

Fig. 7. The inference time for varying numbers of topics.

4. For the reason of efficiency, some core part such as sketch mainte-
nance was implemented in C++.

5. The Tweet NLP tool (http://www.ark.cs.cmu.edu/TweetNLP) is
used.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. X, XXXXX 2016

http://topicsketch.appspot.com/
http://www.ark.cs.cmu.edu/TweetNLP


IEE
E P

ro
ofnumber of topics increases, the inference time linearly

increases, which supports our analysis about the time com-
plexity of Algorithm 1, and shows the scalability of the
inference algorithm.

6.2 Effectiveness Evaluation

6.2.1 Evaluation on Synthetic Data

We first use synthetic data to verify the correctness of our
solution. As mentioned in Section 4.2, we model the tweet
stream as a mixture of tweets of different topics, and each
tweet is only associated to one topic. We assign a temporal
point process [15] and a distribution over words to each
topic, then sample time stamps based on its point process,
and sample tweets according to its distribution. We con-
sider three types of topics: 1) the general topics (e.g., sport,
education, car) which have steady arriving rates and take a
large proportion in the whole stream; 2) the bursty topics
which have highly intensive arriving rates after they go
viral; 3) the noisy topics which are the small spikes in the
stream. For general topics, the homogeneous Poisson point
process is used to simulate the arriving rates of their tweets.
And we draw the Poisson parameter ! from log-normal dis-
tribution to model different arriving rates for different
topics. The Hawkes process [16] is used to simulate the
arriving rates for bursty and noisy topics. Specifically, we
adopt the following equation to calculate the arriving rate.

!ðtÞ ¼ !0e
'ðt't0Þ=w þ a

X

ti < t

e'ðt'tiÞ=w;

where t0 is when the topic is generated, !0 is the initial
intensity parameter and w is the decaying parameter. The
second part in above equation mimics the self-enforcing
phenomenon in Twitter, and exponential term models the
waning of popularity over time.

In the synthetic data stream, we simulate 50 general
topics, one bursty topic and five noisy topics. For each gen-
eral topic, draw ! / logN ð1; 1Þ=60 as its parameter. For
bursty topic, the initial intensity !0 is set to 2.0. For the five
noisy topics, !0 is set to 0.1, 0.2, . . . , 0.5, respectively. For
both bursty topic and noisy topics, w ¼ 100 and a ¼ 0:009.
All the topics are drawn from Dirichlet distribution. Particu-
larly, we choose such noisy topics that the inner product of
any noisy topic and the bursty topic is at least 0.01. And the
vocabulary size is 5,000.

KL-divergence is used to compare the uncovered bursty
topic with the ground-truth bursty topic. The precision at
top 25 words in the bursty topic is also calculated. We set
different thresholds for detection. All experiments are
repeated 500 times.

We compare the following methods.

! Baseline: the topic is estimated based on the accelera-
tion vector of single word frequency, i.e., Atðff1;igÞ.

! SVD: perform a SVD on the acceleration matrix of
word pair frequency Atðff2;igÞ, and return the pri-
mary eigenvector.

! TD: perform the tensor decomposition in Algorithm
1, and return the topic with highest acceleration.

! TD-CM: tensor decomposition together with the
dimension reduction technique Count-Min as shown
in Algorithm 3.

! TD-CM*: a variant of TD-CM, the subtle difference
is that TD-CM* uses the second minimum value
instead of the minimum value in Line 3 in Algorithm
2 for the purpose of robustness.

Notice that for the evaluation on synthetic data, no addi-
tional refining step is added. For TD-CM and TD-CM*, we
use H ¼ 5 hash functions, set the bucket size B ¼ 1;000 and
pick the number of topics K ¼ 6. Figs. 8a and 8b show the
average performances for each of above methods. Fig. 8c
shows the recall of our acceleration based detection method
for varying thresholds. As expected, higher threshold leads
to better performance, but lower recall. The same as many
other threshold based solutions, we need to find a good
trade-off between recall and precision.

To our surprise, we found that, after dimension reduction,
TD-CM and TD-CM* even have better performances than the
original TD. The reason is that the tensor decomposition
method in Algorithm 1 relies on a “good” random vector h,
such that for any k1 6¼ k2, hh;fk1

i 6¼ hh;fk2
i (See Appendix

A). In high dimension space, there is higher chance to
“violate” this condition than in lower dimension space. To
verify this, on one synthetic data stream,we generate 200 ran-
dom vectors, and see howdifferent choices of h affect the per-
formances. Fig. 8d illustrates that, although in average TD
can get good performance, TD has much more outliers than
TD-CM and TD-CM*. Considering the risk of failure due to a
“bad” choice of h, in TD-CM*we always assume theremaybe
one copy of sketch in H fails to recover the bursty topic, and
modify Count-Min by using the second minimum value
instead of the minimum value in Line 3 in Algorithm 2.
Fig. 8d shows TD-CM* has themost robust performance.

6.2.2 Evaluation on Real Data

In this section, we examine our solution on two real Twitter
data sets: Singapore based data set and San Francisco based
data set. Unlike synthetic data, Twitter data set does not
come with ground truth, i.e., the bursty topics. For evalua-
tion, one indirect way is to identify bursty word pairs from

Fig. 8. (a)-(b) Comparison of KL Divergence and Precision at top 25 words for varying thresholds. (c) Recall for varying thresholds. (d) KL Divergence
for 200 different random vector h.

XIE ET AL.: TOPICSKETCH: REAL-TIME BURSTY TOPIC DETECTION FROM TWITTER 9



IEE
E P

ro
oftweet stream first (in a retrospective way), and then use

these bursty word pairs as “ground truth” to measure the
performance of our solution. The underlying logic is as fol-
lows. For each bursty word pair, we expect our solution can
detect some bursty topic which contains this bursty word
pair in its top words. On the other hand, for each detected
bursty topic, we expect it contains some bursty word pair.

First, we count every word pair by day. Then for each
word pair, we find the date when its daily count is far
beyond its average. Particularly, we employ the following
equation proposed in [29] to calculate the significant score
for each word pair.

sigbðcÞ ¼
c'maxfm;bg

s þ b
;

where c is the daily count of a word pair, m is the average, s
is the standard deviation and b serves as a noise filter.
sigbðcÞ here works like the z-score in the case of normal dis-
tribution. For a word pair ðw1; w2Þ on some date, if its
sigbðcÞ > 3, then it is a bursty word pair on that date, and
we generate a tuple ½date : ðw1; w2Þ). After processing all the
word pairs, we get a list of tuples. Based on this list, we
measure the precision of our solution by the fraction of
detected bursty topics that are “supported” by at least one
tuple ½date : ðw1; w2Þ), i.e., the bursty topic should contain
ðw1; w2Þ in its top 10 words, and it must be detected on date.
For the recall, we get the top 1,000 bursty word pairs accord-
ing to their daily counts, and calculate the recall as the frac-
tion of these bursty word pairs that are “reflected” in some
detected bursty topic, which contains ðw1; w2Þ in its top 10
words, and is detected on date.

In this experiment, we conduct the following baseline:
once our detection system is triggered, train the LDA model
using the recent 15 minutes tweets, and after Gibbs sam-
pling, return the topic with largest number of assigned
words. We use 15 days tweets to tune parameters (e.g.,
threshold and number of topics) for both LDA and our solu-
tions. Fig. 9 shows the performances of different methods
on both Singapore based tweets and San Francisco based
tweets. TD-CM, TD-CM* are the same as Section 6.2.1. R-
TD-CM* is the solution of TD-CM* followed by a refining
step presented in Section 5.3. It shows that, overall our solu-
tions outperform LDA. Further more, TD-CM, TD-CM* and
R-TD-CM* have roughly the same recall, and because of the
refining step, R-TD-CM* gets higher precision than TD-CM
and TD-CM*.

The above precision which is measured by bursty word
pairs actually cannot fully reflect the quality of detected
topics. A topic which contains some bursty word pair may

also have other irrelevant words as its top words. To mea-
sure the coherence of the detected bursty topics, we adopt
the word intrusion task proposed in [9]. In this task, the sub-
ject is presented with six randomly ordered words, in which
five words are from a detected bursty topic and the other
one is a intruding word. The task of the user is to identify
the intruding word which is not related to this bursty topic.
Different from the task in [9], if only presented with the
words, it is not easy for human user to find out the intrud-
ing word. For instance, when presented with {“spurs”,
“horse”, “thunder”, “99-107”, “game”, “fisher”}, without
exploring the related tweets, a human user, who is not
familiar with USA basketball, may not know this set of
words (except the intruder “horse”) actually is about a bas-
ketball match, consequently, she may identify a wrong
intruder. So in our task, the words are presented together
with an interactive plot which shows the counts of each
word over time, and the tweets contains these words, within
a time window around the detection time. (See a demo
here.6) After exploring all the above information, if the pre-
sented set of words lacks coherence, the human user would
be still confused, and just pick an intruder at random.

For each detected bursty topic, we first select five words
with highest probabilities from it. Then the intruding word
is selected at random from a pool of words which are popu-
lar in the tweet stream on the detection date. We chose 50
bursty topics randomly for each method. Three human
users are asked to perform this task. We calculate the coher-

ence score as
P50

i¼1

P3
j¼1 1ðintruderi ¼ wordijÞ=150, where

intruderi is the intruding word for the ith bursty topic,
wordij is the chosen word from human user j for the ith
bursty topic. Fig. 10 shows the comparison between differ-
ent methods in terms of coherence score.

6.2.3 Parameter Analysis

Here we study the effect of bucket size B. Fig. 11 shows the
performances of TD-CM* for different bucket sizes on syn-
thetic data. We can observe the improved performance as
bucket size B increases. From B ¼ 500 to B ¼ 1;000, the
improvement is significant, while from B ¼ 1;000 to
B ¼ 1;500, the improvement is little. Fig. 12 shows how the
bucket size B affects the performance of TD-CM* on real
data. As expected, it shows that better performance can be
achieved when we set bigger bucket size B. However,

Fig. 9. Performance on (a) San Francisco data and (b) Singapore data.

Fig. 10. The coherence scores of the detected bursty topics from
different methods.

6. http://topicsketch.appspot.com/

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. X, XXXXX 2016

http://topicsketch.appspot.com/


IEE
E P

ro
of

bigger bucket size means higher computational cost. Fig. 7
shows the computational cost is acceptable when B ¼ 5;000.
So in the paper, rather than explore other even bigger
bucket size, we empirically set B ¼ 5;000.

We also check the effect of smoothing parameters DT1

and DT2 on synthetic data. Figs. 13a, 13b show how different
settings of DT1 and DT2 affect the performance of TD-CM* in
terms of KL divergence and recall. Basically, bigger smooth-
ing parameters leads to higher precision but lower recall. In
practice, we test different settings of smoothing parameters,
and choose the one which provides a good balance between
precision and recall.

6.3 Comparison with Other Solutions

6.3.1 Comparison with Twevent

We compare TopicSketch to previous Twitter event detec-
tion system Twevent [24] by case studies. We adopt the
same dataset as used in the original paper [32]. We present
in Table 2 an event detected by both algorithms7—Apple
WWDC 2010, to show the differences between TopicSketch
and Tewent. We manually group together sub-events
belonging to a single larger event. Table 2 demonstrates
TopicSketch’s ability to describe events at a finer granular-
ity. On June 7, 2010, Steve Jobs announced the release of the
fourth generation iPhone, causing huge wave in Twitter. At
this WWDC, several new features of this new generation
iPhone were introduced, including farmville client, retina
display and iMovie. As shown in Table 2, TopicSketch not
only detected the big event of Apple WWDC 2010 as a
whole, it also detected a sequence of sub-events. In particu-
lar, each sub-event in the table which triggers our system
indeed corresponds to a highlight of the WWDC event,
from which we can tell those new features of iPhone that
users find more interesting than others.

6.3.2 Comparison with SigniTrend

SigniTrend is the state-of-the-art emerging topics detection
solution [29]. SigniTrend performs a two-stage detection: first
detects the burstywords (andword-pairs) whose significance
score exceed a pre-defined threshold on the fly, and then per-
forms end of day analysis to cluster the bursty words into
larger topics. Similarly, TopicSketch also first detects the
bursty word-pairs according to their accelerations on the fly,
and once the system is triggered immediately infer the bursty
topics from the sketch. As the detail of clustering step is not
presented in [29], we do not directly compare the results from
these two solutions. Instead, we check how different triggers
affect the performance of our solution. Particularly, we use
the significance score from SigniTrend instead of the accelera-
tion in our paper as the trigger, and the inference part after
triggering remains the same. We also use 15 days tweets to
tune the parameters. Figs. 14 and 15 show the performances
of TD-CM* and R-TD-CM* for different triggers respectively.
(SIGNI stands for significance score and ACCEL for accelera-
tion). It can be observed that, roughly, using significance
score as the trigger can achieve higher precision while using
acceleration as the trigger can achieve higher recall.

6.3.3 Limitation of TopicSketch

Compared with Twevent and SigniTrend, TopicSketch is
fragile when facing spam accounts. For instance, some
spam account may abuse key word “music” by injecting a
lot of tweets about some music album into tweet stream in a
very short period of time. This would produce words with
significant acceleration, and therefore trigger our detection
system. After the topic inference step, our system would
report a topic about this music album, which is not popular
at all. Thus in Section 5.3, a refining step is proposed to rem-
edy this situation.

Besides, we also found that, due to the single topic
assumption, TopicSketch is not suitable for stream of docu-
ments with multiple topics.

7 CONCLUSIONS

In this paper, we proposed TopicSketch a framework for real-
time detection of bursty topics from Twitter. Due to the huge
volume of tweet stream, existing topic models can hardly
scale to data of such sizes for real-time topic modeling tasks.
We developed a “sketch of topic”, which provides a “snap-
shot” of the current tweet stream and can be updated effi-
ciently. Once burst detection is triggered, bursty topics can be
inferred from the sketch efficiently. Compared with existing
event detection system, from a different perspective—the

Fig. 11. Varying bucket size B, performances on synthetic data: (a) KL
Divergence and (b) Precision at top 25.

Fig. 12. Varying bucket size B, performances on (a) San Francisco data
and (b) Singapore data.

Fig. 13. Varying smoothing parameters DT1 and DT2, performances on
synthetic data: (a) KL Divergence and (b) Recall.

7. We referred the results listed in Table 2 from [24].

XIE ET AL.: TOPICSKETCH: REAL-TIME BURSTY TOPIC DETECTION FROM TWITTER 11



IEE
E P

ro
of

“accelerations of topics”, our solution can detect bursty topics
in real-time, and present them in finer-granularity.

APPENDIX A
INFER TOPICS FROM SKTECH

The tool we use to infer topics from sketch is tensor decompo-
sition [4]. Consider we have the following sketchM2 andM3.

M2 ¼
XK

k¼1

ak & fk * fk ¼
XK

k¼1

ak & fkf
>
k

M3 ¼
XK

k¼1

ak & fk * fk * fk

where ak 2 R, fk 2 RN ,
PN

w¼1 fk;w ¼ 1. And assume that

ak 6¼ 0 and ffkg
K
k¼1 are linear independent. Note that here ak

can be negative, which is weaker than the non-degeneracy
assumption in [4]. ProjectM3 to a matrix as follows:

M3ðhÞ ¼
X

k

ak & fkf
>
k hh;fki;

where h 2 RN , is a random vector.
First rankðM2Þ ¼ K. Short proof here. For any x 2 RN , if

M2x ¼
PK

k¼1 ak & hx;fkifk ¼ 0, as ffkg
K
k¼1 are linear indepen-

dent, ak & hx;fki ¼ 0, ak 6¼ 0, so for all the k, hx;fki ¼ 0. It

means the null space of M2, NullðM2Þ ¼ spanðffkg
K
k¼1Þ

?,

where spanðffkg
K
k¼1Þ

? is the orthogonal complement of the

spanðffkg
K
k¼1Þ. So the dimension of NullðM2Þ, nullity

ðM2Þ ¼ N 'K. So rankðM2Þ ¼ N ' nullityðM2Þ ¼ K.
As M2 is a real symmetric matrix, and rankðM2Þ ¼ K, so

that M2 has k nonzero real eigenvalues f!kgKk¼1, and

M2 ¼
PK

k¼1 !k & uku>
k , where fukgKk¼1 are corresponding

eigenvectors, and they are orthonormal. It is easy to show that

NullðM2Þ ¼ spanðfukgKk¼1Þ
?, which means spanðffkg

K
k¼1Þ ¼

spanðfukgKk¼1Þ.
Whitening. LetW ¼

!
u1=

ffiffiffiffiffi
!1

p
; . . . ; uK=

ffiffiffiffiffiffiffi
!K

p #
, we have

W>M2W ¼ IK+K:

Note that W is a complex matrix, because !k may be a nega-
tive value. So

W>M2W ¼
XK

k¼1

ak & ðW>fkÞðW>fkÞ
> ¼ IK+K:

It implies for any k1 6¼ k2, ðW>fk1
Þ>ðW>fk2

Þ ¼ 0, and

ðW>fkÞ
>ðW>fkÞ ¼ a'1

k .
WhitenM3ðhÞ as follows:

T3 ¼ W>M3ðhÞW ¼
X

k

ak & hh;fkiðW>fkÞðW>fkÞ
>:

Tensor Power Method

T3ðW>fkÞ ¼
X

k

ak & hh;fkiðW>fkÞðW>fkÞ
>ðW>fkÞ;

¼ hh;fkiðW>fkÞ:

Under the strict condition of distinction, i.e., for any k1 6¼ k2,

hh;fk1
i 6¼ hh;fk2

i, T3 has different eigenvalues fhh;fkig
K
k¼1

and corresponding eigenvectors fW>fkg
K
k¼1. Denote the

generalized eigenvectors of T3 as fvkgKk¼1, so vk ¼ ckW>fk,
where ck is some complex number.

Reconstruction. As spanðffkg
K
k¼1Þ ¼ spanðfukgKk¼1Þ, fk 2

spanðfukgKk¼1Þ, it means exists some bk 2 RK such that

fk ¼ Wbk. So vk ¼ ckW>fk ¼ ckW>Wbk, ckbk ¼ ðW>WÞ'1vk,

ckfk ¼ ckWbk ¼ W ðW>WÞ'1vk. Denote ~vk ¼ WðW>WÞ'1vk.

As
PN

w¼1 fk;w ¼ 1, ck ¼
PN

w¼1 ~vk, i.e., ck ¼ 1>NWðW>WÞ'1vk.

Fig. 14. For different triggers, performances of TD-CM* on (a) San Fran-
cisco data and (b) Singapore data.

Fig. 15. For different triggers, performances of R-TD-CM* on (a) San
Francisco data and (b) Singapore data.

TABLE 2
List of Events Detected by TopicSketch and Twevent

Event Sub-Event TopicSketch Twevent

WWDC2010

Farmville client for iPhone 4 was demonstrated. #wwdc, farmville, iphone, zynga, netflix,
god, ipad, wwdc, comes, soon

Retina display of iPhone 4 was introduced. iphone, #wwdc, retina, display, pixels, steve jobs,
crystal, clear, 326, space, interesting imovie,

iMovie for iPhone 4 was demonstrated. iphone, #wwdc, imovie, 720p, sensor wwdc,
3gs, apple, 30fps, gonna, illuminated iphone,

New iPhone 4 was available in Singapore in July. iphone, singapore, july, launching, coming, wifi,
4g, available, release, #wwdc, early

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. X, XXXXX 2016



IEE
E P

ro
of

At last, we have,

fk ¼
W ðW>WÞ'1vk

1>NWðW>WÞ'1vk
;

ak ¼
1

ðW>fkÞ
>ðW>fkÞ

:

ACKNOWLEDGMENTS

This research is supported by theNational Research Founda-
tion, Prime Minister’s Office, Singapore, under its Interna-
tional Research Centres in Singapore Funding Initiative. The
author would like to thank Professor Alexander J. Smola for
suggestions that greatly improved themanuscript.

REFERENCES

[1] A. Ahmed, Q. Ho, C. H. Teo, J. Eisenstein, A. J. Smola, and E. P.
Xing, “Online inference for the infinite topic-cluster model: Story-
lines from streaming text,” in Proc. 14th Int. Conf. Artif. Intell. Stat-
ist., 2011, pp. 101–109.

[2] J. Allan, R. Papka, and V. Lavrenko, “On-line new event detection
and tracking,” in Proc. 21st Annu. Int. ACM SIGIR Conf. Res.
Develop. Inform. Retrieval, 1998, pp. 37–45.

[3] F. Alvanaki, S. Michel, K. Ramamritham, and G. Weikum, “See
what’s enblogue: Real-time emergent topic identification in social
media,” in Proc. 15th Int. Conf. Extending Database Technol., 2012,
pp. 336–347.

[4] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky,
“Tensor decompositions for learning latent variable models,” J.
Mach. Learn. Res., vol. 15, no. 1, pp. 2773–2832, 2014.

[5] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[6] D. M. Blei and J. D. Lafferty, “Dynamic topic models,” in Proc.
23rd Int. Conf. Mach. Learn., 2006, pp. 113–120.

[7] T. Brants and F. Chen, “A system for new event detection,” in
Proc. 26th Annu. Int. ACM SIGIR Conf. Res. Develop. Inform.
Retrieval, 2003, pp. 330–337.

[8] M. Cataldi, L. D. Caro, and C. Schifanella, “Personalized emerging
topic detection based on a term aging model,” ACM Trans. Intell.
Syst. Technol., vol. 5, no 1, 2013, Art. no. 7.

[9] J. Chang, J. L. Boyd-Graber, S. Gerrish, C. Wang, and D. M. Blei,
“Reading tea leaves: How humans interpret topic models,” in
Proc. Adv. Neural Inform. Process. Syst. 23rd Annu. Conf. Neural
Inform. Process. Syst. Meeting, 2009, pp. 288–296.

[10] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: The count-min sketch and its applications,” J. Algo-
rithms, vol. 55, no. 1, pp. 58–75, 2005.

[11] Q. Diao, J. Jiang, F. Zhu, and E. Lim, “Finding bursty topics from
microblogs,” in Proc. 50th Annu. Meeting Assoc. Comput. Linguistics,
2012, pp. 536–544.

[12] N. Du, M. Farajtabar, A. Ahmed, A. J. Smola, and L. Song,
“Dirichlet-hawkes processes with applications to clustering con-
tinuous-time document streams,” in Proc. 21th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2015, pp. 219–228.

[13] W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang, C. Aggarwal, and J.
Huang, “STREAMCUBE: Hierarchical spatio-temporal hashtag
clustering for event exploration over the twitter stream,” in Proc.
31st IEEE Int. Conf. Data Eng., 2015, pp. 1561–1572.

[14] T. Griffiths and M. Steyvers, “Finding scientific topics,” Proc. Nat.
Academy Sci. United States Am., vol. 101, pp. 5228–5235, 2004.

[15] P. Guttorp, “An introduction to the theory of point processes (D. j.
daley andd. vere-jones),” SIAMRev., vol. 32, no. 1, pp. 175–176, 1990.

[16] A. G. Hawkes, “Spectra of some self-exciting and mutually excit-
ing point processes,” Biometrika, vol. 58, no. 1, pp. 83–90, 1971.

[17] D. He and D. S. P. Jr., “Topic dynamics: An alternative model of
bursts in streams of topics,” in Proc. 16th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2010, pp. 443–452.

[18] T. Hofmann, “Probabilistic latent semantic indexing,” in Proc.
22nd Annu. Int. ACM SIGIR Conf. Res. Develop. Inform. Retrieval,
1999, pp. 50–57.

[19] L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsiout-
siouliklis, “Discovering geographical topics in the twitter stream,”
in Proc. 21st World Wide Web Conf., 2012, pp. 769–778.

[20] P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in Proc. 13th
Annu. ACM Symp. Theory Comput., 1998, pp. 604–613.

[21] C. Jin, W. Qian, C. Sha, J. Yu, and A. Zhou, “Dynamically main-
taining frequent items over a data stream,” in Proc. 12th Int. Conf.
Inform. Knowl. Manag., 2003, pp. 287–294.

[22] J. Kleinberg, “Bursty and hierarchical structure in streams,” Data
Mining Knowl. Discovery, vol. 7, no. 4, pp. 373–397, 2003.

[23] J. Leskovec, L. Backstrom, and J. M. Kleinberg, “Meme-tracking
and the dynamics of the news cycle,” in Proc. 15th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2009, pp. 497–506.

[24] C. Li, A. Sun, and A. Datta, “Twevent: Segment-based event
detection from tweets,” in Proc. 21st ACM Int. Conf. Inform. Knowl.
Manag., 2012, pp. 155–164.

[25] M. Mathioudakis and N. Koudas, “Twittermonitor: Trend detec-
tion over the twitter stream,” in Proc. ACM SIGMOD Int. Conf.
Manag. Data, 2010, pp. 1155–1158.

[26] S. Petrovic, M. Osborne, and V. Lavrenko, “Streaming first story
detection with application to twitter,” in Proc. Human Language
Technol.: Conf. North Am. Chapter Assoc. Comput. Linguistics, 2010,
pp. 181–189.

[27] M. Platakis, D. Kotsakos, and D. Gunopulos, “Searching for events
in the blogosphere,” in Proc. 18th Int. Conf. World Wide Web, 2009,
pp. 1225–1226.

[28] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter
users: Real-time event detection by social sensors,” in Proc. 19th
Int. Conf. World Wide Web, 2010, pp. 851–860.

[29] E. Schubert, M. Weiler, and H. Kriegel, “Signitrend: Scalable
detection of emerging topics in textual streams by hashed signifi-
cance thresholds,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2014, pp. 871–880.

[30] Y. Takahashi, T. Utsuro, M. Yoshioka, N. Kando, T. Fukuhara, H.
Nakagawa, and Y. Kiyota, “Applying a burst model to detect
bursty topics in a topic model,” in Proc. Adv. Natural Language Pro-
cess. 8th Int. Conf., 2012, pp. 239–249.

[31] X. Wang, C. Zhai, X. Hu, and R. Sproat, “Mining correlated bursty
topic patterns from coordinated text streams,” in Proc. 13th ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining, 2007, pp. 784–793.

[32] J. Weng and B. Lee, “Event detection in twitter,” in Proc. 5th Int.
Conf. Weblogs Soc. Media, 2011, pp. 401–408.

[33] W. Xie, F. Zhu, J. Jiang, E. Lim, and K. Wang, “Topicsketch: Real-
time bursty topic detection from twitter,” in Proc. IEEE 13th Int.
Conf. Data Mining, 2013, pp. 837–846.

[34] Y. Yang, T. Pierce, and J. G. Carbonell, “A study of retrospective
and on-line event detection,” in Proc. 21st Annu. Int. ACM SIGIR
Conf. Res. Develop. Inform. Retrieval, 1998, pp. 28–36.

[35] H. Yin, B. Cui, H. Lu, Y. Huang, and J. Yao, “A unified model for
stable and temporal topic detection from social media data,” in
Proc. 29th IEEE Int. Conf. Data Eng., 2013, pp. 661–672.

[36] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. Magnenat-Thalmann,
“Who, where, when and what: Discover spatio-temporal topics
for twitter users,” in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2013, pp. 605–613.

Wei Xie received the bachelor’s of mathematics
degree from Wuhan University, and the master’s
of computer software and theory degree from
East China Normal University. He is currently
working toward the PhD degree in the School of
Information Systems, Singapore Management
University. His primary research interests include
social network mining, as well as text mining.

Feida Zhu received the BS degree in computer
science from Fudan University, and the PhD
degree in computer science from the University of
Illinois, Urbana-Champaign. He is an assistant pro-
fessor in the School of Information Systems, Singa-
pore Management University. His current research
interests include large-scale graph pattern mining
and social network analysis, with applications on
web, management information systems, business
intelligence, and bioinformatics.

XIE ET AL.: TOPICSKETCH: REAL-TIME BURSTY TOPIC DETECTION FROM TWITTER 13



IEE
E P

ro
of

Jing Jiang received the BS and MS degrees in
computer science from Stanford University,
and the PhD degree in computer science from
the University of Illinois, Urbana-Champaign.
She is an assistant professor in the School of
Information Systems, Singapore Management
University. Her research centers on text mining,
which uses techniques from natural language
processing, machine learning and data mining
to uncover useful information, and knowledge
from textual data.

Ee-Peng Lim received the BSc degree in com-
puter science from the National University of Sin-
gapore, and the PhD degree from the University
of Minnesota, Minneapolis, in 1994. He is a pro-
fessor in the School of Information Systems, Sin-
gapore Management University. He is the co-
director of the Living Analytics Research Center
(LARC) jointly established by SMU and Carnegie
Mellon University. He is currently an associate
editor of the ACM Transactions on Information
Systems (TOIS), ACM Transactions on the Web

(TWeb), IEEE Transactions on Knowledge and Data Engineering
(TKDE), Information Processing and Management (IPM), Social Net-
work Analysis and Mining, Journal of Web Engineering (JWE), IEEE
Intelligent Systems, International Journal of Digital Libraries (IJDL), and
International Journal of Data Warehousing and Mining (IJDWM). He was
a member of the ACM Publications Board until December 2012. He
serves on the Steering Committee of the International Conference on
Asian Digital Libraries (ICADL), Pacific Asia Conference on Knowledge
Discovery and Data Mining (PAKDD), and International Conference on
Social Informatics (Socinfo). His research interests include social net-
work and web mining, information integration, and digital libraries.

Ke Wang received PhD degree from the Georgia
Institute of Technology. He is currently a profes-
sor in the School of Computing Science, Simon
Fraser University. Before joining Simon Fraser,
he was an associate professor at the National
University of Singapore. He has taught in the
areas of database and data mining. He is particu-
larly interested in combining the strengths of
database, statistics, machine learning, and opti-
mization to provide actionable solutions to real
life problems. He has published in database,

information retrieval, and data mining conferences, including SIGMOD,
SIGIR, PODS, VLDB, ICDE, EDBT, SIGKDD, SDM and ICDM. He is
currently an associate editor of the ACM TKDD journal and he was
an associate editor of the IEEE TKDE journal and an editorial board
member for Journal of Data Mining and Knowledge Discovery. He was a
general co-chair for the SIAM Conference on Data Mining 2015, and is a
general co-chair for the SIAM Conference on Data Mining 2016. He was
a PC co-chair for the SIAM Conference on Data Mining 2008 and a PC
co-char for the IEEE International Conference on Intelligence and Secu-
rity Informatics (ISI) 2010. His research interests include database tech-
nology, data mining and knowledge discovery, with emphasis on
massive datasets, graph and network data, and data privacy.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. X, XXXXX 2016


