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Abstract—One of the most important features of microblog-
ging services such as Twitter is how easy it is to re-share
a piece of information across the network through various
user connections, forming what we call a “cascade”. Business
applications such as viral marketing have driven a tremendous
amount of research effort predicting whether a certain cascade
will go viral. Yet the rarity of viral cascades in real data poses
a challenge to all existing prediction methods. One solution is
to simulate cascades that well fit the real viral ones, which
requires our ability to tell how a certain cascade grows over
time. In this paper, we build a general time-aware cascade
model for each particular cascade, in which the chance of
one user’s re-sharing behaviour over time is modelled as a
hazard function of time. Based on two key observations on
user retweeting behaviour, we design an appropriate hazard
function specifically for Twitter network. We evaluate our
model on a large real Twitter dataset with over two million
retweeting cascades. Our experiment results show our proposed
model outperforms other baseline models in terms of model
fitting. Further, we make use of our model to simulate viral
cascades, which are otherwise few and far in-between, to
alleviate the imbalance issue in cascade data, offering a 20%
boost in viral cascade discovery.

I. INTRODUCTION

Social network services nowadays have made it all too
easy for everyone to pass a piece of information to someone
else. In this paper, we call such a user a “re-sharer” and the
entire diffusion process of a piece of message through users
a cascade. For example, in the case of Twitter, to re-share
is simply to retweet a tweet. The size of a cascade refers
to the total number of users that the piece of information
eventually reaches.

Not surprisingly, the fact that the size of a cascade often
translates into the influence of a message (e.g. the business
impact of a marketing campaign) has driven a great deal
of research to answer questions like: “How many users will
a given tweet eventually reach?” Prediction of the size of a
cascade, especially at the early stage of its growth, is critical
in identifying among billions the truly viral messages, so that
we can monitor, trace and leverage their impact.

As a result, most of the research work devoted to this task,
e.g., [3] [18] [20] [15] and [1], have focused on predicting
the cascade size, especially the size of viral one. Despite the
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different approaches in their solutions, one thing in common
is that all of them must have real viral cascade instances
as input, the more the better. Unfortunately, however, in
real life truly viral cascades are few and far in between
as compared to the whole set of tweets (in our experiment
only 1‰ re-tweeting cascades grow over 35), resulting in a
challenge for all existing solutions to further enhance their
prediction accuracy. One solution to alleviate the rarity of
viral cascades is to be able to simulate cascades that well fit
the real viral ones. This motivates us to answer how a certain
cascade grows over time, and integrate the time dimension
into cascade modelling for each particular cascade.

There has been several cascade models, including the
well-known Threshold Model [14], Cascade Model [11] in
which the time fact is not a concern, and recent works
such as [12] [23] [13] [7], which focus on integrating the
time dimension into the model. Particularly, in these recent
works a hazard function of time is used to model how
information diffuse over time in networks. In this paper,
we call them time-aware cascade models. Following this
line, we build a general time-aware cascade model for
each particular cascade to depict its development over time
in the social network. What’s more, we make two key
observations on user retweeting behaviour and developed
four constraints based on which we designed an appropriate
hazard function for the model. We present an illustrative
example as well as extensive experiments to demonstrate
how our model fits to the real data. We would like to
point out that, although hazard function has been used to
model information propagation in general, in this work we
make effort to design customised hazard functions based
on properties of information diffusion in microblogging
services.

Finally, we propose a strategy to make use of the sim-
ulations of our model to remedy the imbalance issue in
cascade data. We show with experiments that the prediction
performance improves as a result of the strategy with more
viral cascades successfully identified.

II. PRELIMINARIES

Since we are going to use hazard function in survival
analysis [22] to model time in cascade, we first give a brief
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introduction the basic concepts of survival analysis in this
section.

Survival analysis focuses on time-to-event data, especially
the survival time until an event of failure. While typical
examples of events of interest are biological death and the
failure in mechanical systems [16], survival analysis is in
fact generic and can be applied to model any time-to-event
data.

Consider as a random variable T the time when an event
of interest (e.g., when a Twitter user retweets one particular
tweet) happens . The probability that the event happens
before a certain time t is P (T ≤ t) = F (t), which is
the cumulative distribution function (CDF). Without loss
of generality, suppose F (0) = 0. The probability density
function (PDF) f(t) is defined as the derivate of F (t), i.e.
f(t) = dF (t)

dt .
When processing time-to-event data, given that the event

has not happened by time t, the probability that this event
happens in the next time slice (t, t+ dt] is usually of great
interest, i.e., P (t < T ≤ t+ dt|T > t). For example, when
we observe a Twitter user has not retweeted one particular
tweet by time t, it is highly critical to estimate the probability
this Twitter user retweets it in the next time slice (t, t+dt).
The hazard function (or hazard rate) [22] is defined as

h(t) = lim
dt→0

P (t < T ≤ t+ dt|T > t)

dt
=

f(t)

1− F (t)
.

The hazard function h(t) reflects the chance that the event
happens immediately after time t. By integrating h(t), we

have the cumulative hazard function H(t) =
t∫

0

h(u)du =

t∫
0

F ′(u)
1−F (u)du = −log(1 − F (u))|t0 = −log(1 − F (t)). It

reveals the essential relationship between the cumulative dis-
tribution function F (t) and the cumulative hazard function
H(t) in the following equation

F (t) = 1− e−H(t).

In practice, it is usually impossible to know the exact
formula of CDF F (t). However, by studying the hazard
rate, we can design the formula of hazard function h(t)
or cumulative hazard function H(t), and further derive
the formula of F (t) to approximate the real distribution.
One example is simply to set H(t) as a linear term, i.e.
H(t) = t

λ . Its corresponding CDF is F (t) = 1 − e−
t
λ ,

which is in fact the exponential distribution with mean λ.
Another slightly complicated example is H(t) = ( tα )β . Its
corresponding CDF is F (t) = 1− e−( tα )β , which is simply
the Weibull distribution [27] with scale parameter α and
shape parameter β. It turns out that the different choices of
hazard functions lead to different probability models. In this
work, our job is to construct the proper hazard function to
approximate the real cascade development in social network.

III. TIME-AWARE CASCADE MODEL

In this section, we describe a general time-aware cascade
model from the aspect of one particular cascade, which is
based on previous time-aware cascade models such as [12]
[23] [13]. Particularly here we focus on the hazard function.

We consider a general social network G =< U,E >,
where U represents the set of users, and E is a set of directed
links between users of U (See Figure 1), each representing
the channel through which information in a cascade could
flow in the directions as indicated. For example in Twitter,
if ui follows uj , there is a directed link going from uj to ui,
denoted as (uj , ui). To study cascades, given any user ui,
we are interested in the set of users whose information can
potentially reach ui in cascades, which we call ui’s followee
set and denote as Followee(i) = {uj |(uj , ui) ∈ E}. Simi-
larly, we also care about the set of users who can potentially
receive information from ui, which we call ui’s follower
set, and denote as Follower(i) = {uj |(ui, uj) ∈ E}. For
a cascade of any message, we denote as u0 the original
source and use a random variable Ti to denote the timestamp
when user ui re-shares the message. Correspondingly, ti is
the observation of random variable Ti. As a trivial case,
T0 = t0 with probability 1 and ti =∞ if ui never re-shares
the message.

u0 u1

u2
u3

u5

u4

t1
t0

t3t2

t t + dt

u0 u1

u2
u3

u5

u4

t1
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t3t2
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Figure 1. A snapshot in the development of a cascade (from timestamp t
to t+ dt).

As illustrated in Figure 1, at any timestamp in the cascade
development, we identify three types of nodes: (I) Black
Nodes: the users who have already re-shared the informa-
tion, with their re-share timestamps; (II) Grey Nodes: the
users who are exposed to the information, yet have not re-
shared it; and (III) Blank Nodes: the users who yet to be
exposed to the information. As the cascade develops, Blank
Nodes could become Grey Nodes (e.g., u5), which in turn
could become Black Nodes (e.g., u4).

Intuitively, we model the development of a cascade as a
stochastic process as follows. Suppose at timestamp t0, the
information source u0 posts a piece of information. At each
following timestamp t, we take a probabilistic point of view
similar to Cascade Model toward the growth of the cascade.
The key is to focus on the Grey Nodes as they are the only
ones to potentially re-share the information in the next small
time slice (t, t + dt]. We denote the Grey Nodes as X(t).
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At time t+ dt, X(t) can be divided into two parts: (I) those
who have shared the information by t+dt (i.e., they become
Black Nodes), which is denoted as X(1)(t), and (II) the rest,
which is denoted as X(2)(t), i.e., they remain Grey Nodes,
X(2)(t) = X(t) \ X(1)(t).

At any timestamp t, a cascade can be represented by a
set of pairs C(t) = {< ui, ti > |ti ≤ t}, e.g., C(t) = {<
u0, t0 >,< u1, t1 >,< u2, t2 >,< u3, t3 >} in Figure 1.
Similarly, C(t, t+ dt) = {< ui, ti > |t < ti ≤ t+ dt}, e.g.,
C(t, t + dt) = {< u4, t4 >} in Figure 1. Denote Pi(t) as
the probability that user ui re-shares the information in time
slice (t, t+dt] given she has not re-shared the information by
time t. (It is worth noting that Pi(t) is information specific,
see Equation 2 below.) Then the probability that the cascade
grows from C(t0) into C(t) can be defined as the following
recursive equation.


P (C(t+ dt)) = P (C(t+ dt)|C(t)) · P (C(t))
P (C(t0)) = 1
P (C(t+ dt)|C(t)) =

∏
ui∈X(1)(t)

Pi(t) ·
∏

ui′∈X(2)(t)

(1− Pi′(t))

(1)

Equation 1 defines the entire stochastic process of a
growing cascade, which only depends on the probability
Pi(t). From previous analysis, it is not hard to see that Pi(t)
depends on the users in her followee set who have already
shared this piece of information by time t, which is denoted
as Followee(i)(t) = {uj |tj ≤ t, uj ∈ Followee(i)}. It
follows that Pi(t) = P (t < Ti ≤ t + dt|Ti > t, {Tj =
tj}uj∈Followee(i)(t)). We model this probability using the
following hazard function.

Pi(t) = hi(t, {tj}uj∈Followee(i)(t);Θ) · dt (2)

where Θ are the parameters which are related to the original
information posted by u0 and, reflect how tensely this piece
of information gets the interest of public and how quickly
users react to it. If at time t for user ui, Followee(i)(t) is
an empty set (e.g. the blank node u5 at time t in Figure 1),
then just let hi(t, {tj}uj∈Followee(i)(t);Θ) = 0.

To apply this general time-aware cascade model to any
particular social network, one only has to identify the
appropriate hazard function in Equation 2 and the parameters
Θ, after which the stochastic process would be fully defined.
So the crucial thing here is to design a proper formula for
the hazard function in Equation 2, which really fits the real
cascades.

IV. MODEL APPLICATION: TWITTER

In this section, we show how the general time-aware
model in Section III can be applied to the concrete setting
of Twitter to model cascades of tweets. As mentioned in
Section III, the key issue is to design the appropriate hazard
function in Equation 2. For this, we first observe how a

tweet is retweeted in Twitter, then give criteria for the hazard
function, at last propose the the appropriate hazard function
in Twitter.

A. Observations

In Twitter, we identify the following two observations
which affect how a tweet would be retweeted in a cascade,
and accordingly provide us the clues to design the appropri-
ate hazard function in Equation 2.

Observation 1. Only the first re-sharer matters. For any
user, only the tweet from the re-sharer who first re-shares
it would appear in the user’s home timeline. For example,
in Figure 1, suppose u1 re-shares the tweet from u0 earlier
than u2, i.e., t1 < t2. Then although both u1 and u2 are
in the followee set of u3, only the tweet re-shared by u1

appears in u3’s home timeline at time t1. Based on this
observation, we conclude that only the first re-sharer in a
user’s followee set would affect her subsequent retweeting
behaviour. Consequently, we have the following simpler
formula (Equation 3) instead of the general formula in
Equation 2.

Pi(t) = hi,j?(t, tj? ;Θ) · dt (3)

where j? = argminj{tj |uj ∈ Followee(i)(t)}.

Observation 2. The chance of a tweet to be retweeted
decreases as time goes by. As more recent tweets appear
higher in a user’s home timeline and is more likely to
attract user’s attention, the chance of a tweet to be retweeted
decreases as it sinks down along the timeline. Based on
this observation, we further refine the formula as follows
in Equation 4.

Pi(t) = hi,j?(t− tj? ;Θ) · dt (4)

where hi,j?(τ,Θ) is a decreasing function of τ (τ = t −
tj? > 0). It is worth noting that not all the hazard functions
are decreasing. Take the risk of death as an example, as
people become older and older, the risk of death in fact
becomes higher and higher.

Besides, as a trivial case, when t ≤ tj? , ui is not exposed
to the tweet from the original user u0, so there is no chance
for ui to retweet this tweet. And when t > tj? , ui have a
chance to read the tweet from her own home timeline, and
it is always possible for ui to retweet it. Naturally we have
the following constrains in Equation 5.

hi,j?(τ ;Θ) = 0, (τ ≤ 0)

hi,j?(τ ;Θ) > 0, (τ > 0)
(5)

B. Hazard Function Design

The analysis in Subsection IV-A leads to the intuition
that the appropriate hazard function in Twitter setting should
be a decreasing function hi,j?(τ ;Θ). In this subsection, we
develop the concrete formula of hi,j?(τ ;Θ). First, we make
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Figure 2. A Real Cascade Example.
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Figure 4. Hazard Rate Comparison.

a simplification to replace hi,j?(τ ;Θ) by h(τ ;Θ), which
means no matter who ui is and who is the first re-sharer
uj? , their hazard functions share the same formula h(τ ;Θ).
Without misunderstanding, we just omit the parameter set
Θ, and the hazard function is simply denoted as h(τ).

As H(τ) is the integration of h(τ), according to Equation
5, we have H(0) = 0 and H(τ) should be a increasing
function of τ . Besides, another fact is that if user ui hasn’t
retweeted the tweet from u0, ui’s home timeline will be full
of other new incoming tweets, and ui will never re-share it.
It means F (∞) < 1, and consequently H(∞) = −log(1−
F (∞)) <∞. Based on all the analysis in Subsection IV-A
and IV-B, we list the constrains for H(τ) in Table I.

I) H(0) = 0.
II) H(∞) = −log(1− F (∞)) <∞.

III) H(τ) is an increasing function of τ .
IV) h(τ) =

dH(τ)
dτ

is a decreasing function of τ .

Table I
HAZARD FUNCTION CONSTRAINTS FOR TWITTER.

Denote λ = H(∞) as one of the parameters. According to
these constrains, our observations from the data (see Figure 4
below) and the insight of human behaviour from other work
[2], we eventually propose the following heavy-tail hazard
functions H(τ) and h(τ) for Twitter setting.

Hazard Function For Twitter Cascades:

H(τ) = λ · (1− (
τ

α
+ 1)−β) (6)

h(τ) =
dH(τ)

dτ
= λ · β

α
· ( τ
α

+ 1)−(β+1) (7)

where λ > 0, α > 0, β > 0. Here the parameter set Θ =
{λ, α, β}. In fact, our experiment shows that the probability
that one user who is exposed to one tweet actually retweets
it at last is quite small (around 0.01), which means F (∞)
is near to 0 and F (∞) ≈ H(∞) = λ. So the parameter
λ describes the eventual re-tweeting probability. The larger

λ is, the larger is the proportion of users who re-tweet one
particular tweet in the users who are exposed to it. According
to Equation 7, the parameter α describes the scale of hazard
function h(τ), and the parameter β describes the shape of
h(τ), which are similar to the scale parameter and shape
parameter of Weibull distribution.

C. Hazard Rate Illustration
We use a real cascade example here to illustrate how

the proposed hazard function fits the hazard rate in real
data. Section VI presents more comprehensive evaluation
including how different choices of hazard function affect
the fitting performance of the model.

Figure 2 shows the growing process of a real cascade of a
local news tweet — The tweet was initiated from node A the
original source, and passed through node B before reaching
node C which has the largest degree and has played the
most important role in triggering the dramatic growth of the
cascade. This is also demonstrated by Figure 3 which shows
the retweeting rate of this cascade, i.e., the number of users
who have retweeted per minute. The spike corresponding
to the greatest drive to the retweeting rate happened at
timestamp tC , after user C retweeted the message.

We calculate the empirical hazard rate of this cascade as
follows. Two sets of users are involved: (I) the set of users
who have retweeted the tweet by time T , i.e., C(T ) and (II)
the set of users who have been exposed to the tweet but
haven’t retweeted it yet, i.e., X(T ), where T is long enough
for estimating the empirical hazard rate. For user ui in C(T ),
we calculate τi = ti − tj? , where j? = argminj{tj |uj ∈
Followee(i)(t)}. τi measures how long it takes for ui to
retweet the tweet after being exposed to it. For user ui in
X(T ), we calculate τi = T − tj? , which measures how long
ui has been exposed to the tweet. According to the definition
of hazard rate in Section II, the empirical hazard rate of this
cascade is calculated by using the following Equation 8.

ĥ(τ) =
P̂ (τ < T ≤ τ + dt|T > τ)

dt

=
|{ui|ui ∈ C(T ), τ < τi ≤ τ + dt}|+ 1

|{ui|ui ∈ C(T ) ∪ X(T ), τ < τi}|+ 2
· 1
dt

(8)
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Figure 4 shows the empirical hazard rate and the esti-
mated hazard rate based on our proposed hazard function
in Equation 7. It is clear that the estimated hazard rate fits
the empirical hazard rate quite well, which means that our
proposed hazard function is an appropriate one giving a good
approximation to the real hazard rate. It can also be observed
that the real hazard rate does decrease as the longer users
are exposed to the tweet.

V. MODEL IMPLEMENTATION

In this section, we give detailed algorithms for model
implementation. In particular, we show the parameter es-
timation algorithm and the cascade simulation algorithm.

Input : social network G, cascade C(T ), time interval dt,
hazard function h(t;Θ)

Output : estimated parameters Θ̂
1: set log likelihood function ll(Θ) = 0
2: set type II users X = {}
3: set Current Sharers = {u0}
4: for t = 0 to T step dt :
5: for ui ∈ Current Sharers
6: add Follower(i)\C(t) into set X
7: endfor
8: for ui ∈ X
9: if ui ∈ C(t, t+ dt)

10: ll(Θ) = ll(Θ) + log(Pi(t;Θ))
11: else
12: ll(Θ) = ll(Θ) + log(1− Pi(t;Θ))
13: endif
14: endfor
15: for ui ∈ C(t, t+ dt)
16: remove ui from set X
17: endfor
18: set Current Sharers = C(t, t+ dt)
19: endfor
20: Θ̂ = argmaxΘll(Θ)

21: return Θ̂

Table II
THE PARAMETER ESTIMATION ALGORITHM.

A. Parameter Estimation

Given a cascade C(T ), based on Equation 1, maximum
likelihood estimation is used to estimate the unknown pa-
rameters,

Θ̂ = argmaxΘlog(P (C(T );Θ)).

The detailed algorithm is shown in Table II.
The key part is to calculate the log-likelihood function

ll(Θ) = log(P (C(T );Θ)), then optimisation techniques
such as gradient ascent can be used to estimate the best
parameter Θ̂. At each time step t (line 4), users who are
just exposed to the information by time t are added into the
set of type II Grey Node users X (line 5-7). For all the users
in X, the log-likelihood of their re-sharing behaviour at t is
calculated (line 8-14). Finally, we have the log-likelihood
function ll(Θ), and obtain the estimated parameters Θ̂ by
optimising it (line 20).

Input : social network G, cascade C(T0) by time T0,
simulation duration ∆T ,time interval dt,parameters Θ,
hazard function h(t;Θ)

Output : simulated cascade C̃(T0 + ∆T )
1: set type II users X = {}
2: set Current Sharers = C(T0)
3: for t = T0 to T0 + ∆T step dt :
4: for ui ∈ Current Sharers
5: add Follower(i)\C(t) into set X
6: endfor
7: for ui ∈ X
8: draw a random number r from U(0, 1)
9: if r < Pi(t;Θ)

10: add pair < ui, t+ dt > into C̃(t, t+ dt)
11: endif
12: endfor
13: for ui ∈ C̃(t, t+ dt)
14: remove ui from set X
15: endfor
16: set Current Sharers = C̃(t, t+ dt)
17: endfor
18: return C̃(T0 + ∆T )

Table III
THE CASCADE SIMULATION ALGORITHM.

B. Cascade Simulation

Once the parameters Θ are known, based on Equation
2, Monte Carlo simulation is used to simulate the cascade
from time T0 to time T0 + ∆T . The detailed algorithm is
presented in Table III.

In this algorithm, the key part is to simulate the re-sharing
behaviour of each user at each time step t. Similar to the
estimation algorithm, at each time step t (line 3), users who
are just exposed to the information by time t are added into
the set of type II Grey Node users X (line 4-6). For all
the users in X, their re-sharing behaviour at t are simulated
(line 7-12). Finally at time T0 + ∆T , we have the simulated
cascade C̃(T0 + ∆T ) (line 18).

VI. EXPERIMENT

In this section, we conduct extensive experiments to
evaluate our proposed model, in the following aspects: (I)
probabilistic model fitting, (II) prediction of cascade growth,
and (III) virality prediction. In all the experiments, the length
of time slice dt is set to 0.1 minute.

A. Dataset

We use a Singapore based Twitter data set which contains
more than 3 million users [28]. We crawl these users from a
seed set of Singapore local celebrities and active users in a
snowball-style way. The follow links between them and their
tweets are periodically crawled. In this work, we use the
subset of tweets from January 1st, 2010 to December 31th,
2012. From these tweets, we get all the retweets to construct
retweeting cascades (see Figure 1). In all these cascades,
we only consider the cascades in which the original tweet
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posters are the Singapore users we crawled, so that we have
the information about the root users of the cascades.

In all, we get 2,425,348 cascades which have at least one
retweeter. Figure 5 (a) presents the cumulative distribution
of the sizes of these cascades. It shows the large cascades are
rare, which implies the difficulty in predicting the cascade
growth, as most cascades do not grow anymore when they
are in small sizes. Figure 5 (b) presents the cumulative
distribution of the retweeting time delays of users after they
are exposed to the tweets. From this figure, we can see
even after long time, it is still possible for one tweet to be
retweeted. This observation confirms our choice of hazard
function in Equation 7, which is heavy tailed.
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Figure 5. (a) Cumulative distribution of the cascade sizes. (b) Cumulative
distribution of the time delays.

B. Probabilistic Model Fitting

First, we evaluate the validity of our model. As the
common way to check a probabilistic model, perplexity,
which is a measurement of how well a probability model
predicts a held-out sample, is used to measure the model
validity. Given a set of cascades with size n, {Ci(t)}ni=1,
for each cascade Ci(t), we first observe it by time T0,
then ∆T later, based on a model M, the probability
PM(Ci(T0 + ∆T )|Ci(T0)) is calculated. The formula of
perplexity is defined in the Equation 9. The smaller the
perplexity is, the better fitting the model is.

Perplexity(M) = e
−

n∑
i=1

1
n ·log(PM(Ci(T0+∆T )|Ci(T0)))

(9)

In this experiment, we examine: first whether the time-
aware cascade model (TCM) is better than the traditional
ones such as Threshold Model (TM) in terms of mod-
elling information cascade over time; secondly whether our
proposed hazard function in Equation 7 is more suitable
in Twitter setting than others. As in TM, time is not a
factor of concern, we adapt the models by projecting the
growing cascade on the time dimension according to its
original idea. In order to study how the different choices of
hazard functions affect the time-aware model, we examine
the following different choices of hazard functions – our
proposed long tail hazard function (TCM-LH) in Equation
7, constant hazard function (TCM-CH) in Equation 12 and
exponential hazard function (TCM-EH) in Equation 14. All

these models are expressed in terms of hazard function,
hi(t), which represents user ui’s re-sharing chance at time
t. And all the parameters in these models are estimated
by using maximum likelihood estimation algorithm listed
in Table II.
• TMt: Threshold Model proposed the key concept

“threshold”, which in the setting of Twitter network
is such a value: if the number of a user’s followees
who have retweeted one tweet exceeds this value, then
this user retweets this tweet. In TM, the key point is
threshold rather than time. In order to integrate time
into this baseline TMt, we use sigmoid function as
the continuous thresholding function [9] and the hazard
function is given in the following Equation 10.

hi(t) = λ · s(|Followee(i)(t)|) (10)

where s(x) = 1
1+e−a(x−b)

, and λ, a and b are parameters
to be estimated.

• TCM-CH: Constant hazard in Equation 12 is the
easiest way to define a hazard function, which is also
considered in [13]. However, in this case lim

τ→∞
H(τ) =

∞, which does not satisfy the constrains listed in Table
I.

H(τ) = λ · t (11)

h(τ) =
H(τ)

dτ
= λ (12)

where parameter set Θ = {λ}.
• TCM-EH: As some works such as [20] reported, the

exponential function may be a proper function to model
the time delay of retweeting. In this baseline, we use the
exponential hazard function in the following Equation
13 and 14, which also satisfy the constrains in Table I.

H(τ) = λ · (1− e−k·τ ) (13)

h(τ) =
H(τ)

dτ
= λ · k · e−k·τ (14)

where parameter set Θ = {λ, k}.
In this experiment, T0 is set to 30 minutes, and ∆T is

set to 30, 60 and 90 minutes respectively. We evaluate these
models on all the cascades which has a size larger than 10
at T0 in year 2010, 2011 and 2012. Figure 6 shows the
perplexities of different models. We can see for different
year and ∆T the time-aware cascade models outperforms
threshold model, and our model TCM-LH performs best
among these time-aware cascade models , which means
TCM-LH is a proper model for growing retweeting cascades
in Twitter. One interesting observation is that performances
of different time-aware cascade models are very different,
which implies that the choice of hazard function is critical
for fitting model to real cascade data. The other observation
is that the perplexities of all the models in year 2010 are
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Figure 6. Perplexities of different models.
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Figure 7. Fitting performances of our proposed model (TCM-LH) and other baseline models for two Twitter cascades (a) and (b). In each plot, the red
curve shows how the number of users of the real cascade increases over time. Based on the real cascades, each model learns the parameters and then
simulates 100 cascades. The black curve shows the average number of users of these 100 simulated cascades over time, and the error bars around it are
the corresponding standard deviations. The blue curve represents the simulated cascade that is closest to the real one.

much smaller than the perplexities in year 2011 and 2012,
which is due to the smaller sizes of cascades in year 2010.

We also study the following two representative retweeting
cascades: cascade (a) triggered by a tweet which promotes
a music festival; cascade (b) triggered by a tweet about a
local breaking news. For each cascade, each model learns
the parameters and then simulates 100 cascades using the
estimating algorithm and simulating algorithm in Section V.
Figure 7 shows the fitting performances of our proposed
model (TCM-LH) and other baseline models for these two
retweeting cascades (a) and (b). In each plot of Figure 7,
the red curve shows how the number of users of the real
cascade increases over time. The black curve shows the
average number of users of the 100 simulated cascades over
time, and the error bars around it are the standard deviations.
The blue curve shows the simulated cascade which is nearest
to the real cascade. We can see that: cascade (a) has a high
initial retweeting rate, but its rate dramatically decreases;
different from cascade (a), cascade (b) has a relatively slow
initial retweeting rate, however, the tweet continually gets
the interest of users and the cascade keeps growing over
time. It can be observed that for both cascades our proposed
model TCM-LH performs the best — the black and blue

curves are close to the red curves. TCM-EH is worse than
TCM-LH. Especially for cascade (b), TCM-EH can not
generate a similar cascade to it. For other baseline models,
it seems that they can not fit the real cascade well — the
simulated cascades are far from the real cascades. Due to
missing the effect of time in TCM-CH (constant hazard
rate) and TMt (threshold based hazard rate), the simulated
cascades keep growing with roughly the same rates all the
time. Another interesting observation is that the results of
TCM-CH and TMt are similar. We examined these two
cascades and found that for most retweeter, only one of their
followees is in the cascade. It makes the learned threshold
parameter b in TMt close to 1, so that there is no significant
difference between TCM-CH and TMt.

Besides, using our proposed model TCM-LH, the learned
parameters for these two cascades are as follows: for cascade
(a) λ(a) = 0.0082, α(a) = 1.35, β(a) = 0.50; for cascade
(b) λ(b) = 0.0140, α(b) = 4.78, β(b) = 0.45. Although
cascade (a) has more retweeters at the early stage, based
on the learned parameters above we make the following
interpretations: λ(b) > λ(a) means cascade (b) is more
attractive in terms of the eventual retweeting probability;
α(b) > α(a) means the “life time” of cascade (b) is longer.
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C. Predicting Cascade Growth

The other way to verify our proposed model is to evaluate
its prediction performance. As mentioned in several existed
works [3] [20], the initial information of a growing cascade
in social networks can make the prediction much more
accurate. It would be more practical to predict the cascade
size after observing how the cascade grows initially, rather
than to predict the cascade size from the very beginning.
Here we conduct a prediction task, in which a cascade is
tracked over time, and a sequence of predictions are made
as the cascade grows. Rather than predict the final cascade
size, each time we predict the cascade growth after a fixed
time period (e.g. one hour), which is more practical.

Given n cascades {Ci(t)}ni=1, the prediction time T0,
and fixed time period ∆T , denoting the growth of cascade
Ci(t) as ∆i(T0, T0 + ∆T ) = |Ci(T0 + ∆T )|− |Ci(T0)|, the
following evaluation measures are considered:
• Mean Absolute Error (MAE)

MAE =

n∑
i=1
|∆i(T0,T0+∆T )−∆̂i(T0,T0+∆T )|

n
• Relative Absolute Error (RAE)

RAE =

n∑
i=1
|∆i(T0,T0+∆T )−∆̂i(T0,T0+∆T )|

n∑
i=1

∆i(T0,T0+∆T )

where ∆̂i(T0, T0 + ∆T ) is the estimation of ∆i(T0, T0 +
∆T ).

Based on the algorithms in Section V, TCM-LH predicts
the cascade growth as follows. (I) Estimate the parameters
based on C(T0); (II) Simulate the cascade from time T0 to
T0 + ∆T for a large number of times, then take the median
size of simulated cascades at time T0 + ∆T .

We first compare TCM-LH with other baseline models
in Section VI-B. We found that with big prediction errors,
these baseline models are not suitable for this prediction
task. We then compare TCM-LH to linear regression, which
is widely applied in many prediction tasks such as popularity
prediction in social media. We summarize most proposed
factors [15] [1], which may drive the cascades grow or
be relevant to the sizes of cascades in Twitter, including
original tweeter features, tweet content features, social graph
topological features and temporal features. And in the exper-
iment, we found the temporal features are the most important
predictors. These features of one tweet are denoted as a
feature vector f . We conduct the following two baselines.
• LR1 In this baseline, the growth of a cascade is directly

estimated. The regression formulation is given in the
Equation 15. For some cascades, the increased cascade
size is zero, so we use log(∆̂i(T0, T0+∆T )+1) instead
of log(∆̂i(T0, T0 + ∆T )).

log(∆̂i(T0, T0 + ∆T ) + 1) = k0 + kT · f (15)

• LR2 Some existing works such as [26] reported that
there is a strong linear relationship found between

the log-transformed popularities at different times. And
log(S(T0)) is indeed one feature included in the feature
vector f . So in this baseline, the cascade size at time
T0 + ∆T , i.e. S(T0 + ∆T ), is first estimated. The
regression formulation is given in the Equation 16.

log(Ŝ(T0 + ∆T )) = k0 + kT · f
∆̂i(T0, T0 + ∆T ) = Ŝ(T0 + ∆T )− S(T0)

(16)
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Figure 8. (a) Mean Absolute Error (MAE). (b)Relative Absolute Error
(RAE).

We randomly choose 10,000 cascades from our data set.
These cascades are tracked over time (when T0 = 5, 10, 15,
20, 25, 30 minutes), and at each time we predict the cascade
growth one hour later (∆T = 60 minutes). 10-fold cross
validation is used. The prediction of TCM-LH is based on
the median of 100 simulations. Figure 8 (a) and (b) show the
Mean Absolute Error (MAE) and Relative Absolute Error
(RAE) of TCM-LH, LR1 and LR2 respectively. We observe
that: (I) In Figure 8 (a), the MAE decreases for all these three
methods as longer we observe the cascades. One possible
reason is that as time goes by, most cascades do not grow
or only grow a little, so that MAE decreases over time. (II)
However, in Figure 8 (b), we can see a very different trend:
RAE does increase for LR1 and LR2 over time. One possible
reason is that as time goes by, the correlation between
the features and the cascade growth becomes smaller and
smaller. (III) In Figure 8 (b), RAE does decrease for our
model TCM-LH. Different from the feature based methods,
TCM-LH models the retweeting process in Twitter network
and predict the cascade growth based on the simulations of
this process. So the longer we observe the cascades, the more
accurate the estimations of the parameters in our model are,
and the better the performance is.

D. Improving Virality Prediction Using TCM Simulation

Virality prediction at early stage is very useful for many
applications such as viral marketing and breaking news de-
tection. A straightforward method is learning the parameters
of a cascade at early stage, and then predicting based on
the simulations of TCM-LH (the same as Section VI-C).
We found in practice this method doesn’t work. Because
TCM-LH only works when enough data is observed (as
shown in Figure 8), but at the early stage, the sizes of most



685

Threshold Measure Random Without With
Guessing Simulation Simulation

20
Recall 0.4817 0.4535 0.6254
Precision 0.0034 0.7285 0.5678
F1 0.0068 0.5590 0.5952

25
Recall 0.5764 0.4716 0.5808
Precision 0.0026 0.7500 0.6215
F1 0.0053 0.5791 0.6005

30
Recall 0.4600 0.4333 0.5667
Precision 0.0014 0.6915 0.6071
F1 0.0027 0.5328 0.5862

35
Recall 0.4653 0.3762 0.5446
Precision 0.0009 0.6909 0.5612
F1 0.0019 0.4872 0.5528

40
Recall 0.4545 0.2424 0.4697
Precision 0.0006 0.6667 0.4247
F1 0.0012 0.3556 0.4460

Table IV
THE RESULTS OF VIRALITY PREDICTION FOR DIFFERENT SOLUTIONS

ON DIFFERENT THRESHOLDS.

cascades are very small, which makes it hard to estimate
the proper parameters of cascades at early stage. However,
we can make use of the simulations of our model TCM-LH
to improve vitality prediction by remedying the imbalance
issue in cascade data.

In particular, we conduct the following virality prediction
task: at time T0 = 5 minutes, predict whether one cascade
goes viral in the future, which means its cascade growth
exceeds a prefixed threshold. The skewness of distribution
of the cascade sizes (See Figure 5 (a)) is a challenge of
this prediction task. In our data set, only 1‰ cascades grow
over 35. Our TCM-LH model can be used to make this
data set less skew by adding several simulated viral cascades
into it. In this experiment, we randomly choose 100,000
cascades from our data set. 10-fold cross validation are used.
There are two types of training sets : (I) original training
set without simulated viral cascades, (II) training set with
simulated viral cascades: we choose the top 100 cascades
from training set, then the parameters of these cascades are
learned and each of them are simulated 100 times, and at last
in all 10,000 simulated cascades are added into this training
set. We use the features in Section VI-C to learn the logistic
regression classifier. Table IV presents the prediction results
of different solutions, from which we can observe that, after
adding the simulated viral cascades into the training set,
although the precision is not as good as before, the higher
recall and F1 score are achieved. It shows that benefiting
from the simulated viral cascades, the classifier can identify
around 20% more viral cascades.

VII. RELATED WORK

Information diffusion or information cascade in networks
has been studied for a long time. Especially after the boom
of online social networks, it gets a lot of attention from
the computer science researchers. We summarise the related
works as follows.

Cascade Modelling The most influential cascade models
are Threshold Model[14], Cascade Model [11] and tons of
their extensions (e.g. [19], [17], [25], [21]). In the original
Threshold Model and Cascade Model, time is not a factor
of concern. In recent years, many works have integrated
the time dimension into the cascade model for different
purposes. We call them time-aware cascade models. [23]
models how information diffuse in networks when external
out-of-network sources exist. [12] and [13] infer the un-
observed networks. [7] uncovers topic-sensitive information
diffusion networks. [6] studies scalable methods for influ-
ence estimation in diffusion networks. What is common in
these works is that a hazard function of time is used to
model how information diffuse over time in networks. We
follow this line – using a general time-aware cascade model
to describe how each particular cascade grows over time.
However, different from these existing works, we focus on
the possible choices of hazard functions in the setting of
Twitter and make effort to fit model to real cascade data.
Particularly based on our observations on user retweeting
behaviour, we design a specific hazard function for Twitter
network.

Cascade Prediction There is also a branch of works on
cascade prediction, including cascade size prediction (e.g.
[15], [20], [29], [3]), and viral (or outbreaking) cascade
prediction (e.g. [18], [4]). In most of these works, the
prediction is based on the features learned from the training
cascades. Due to lack of data at the early stage, our model
is not suitable to do the cascade prediction task directly.
However, we improve the prediction performance in an
“orthogonal” direction – making use of the simulations of
our model to remedy the imbalanced cascade data, which can
potentially benefit these feature based prediction solutions.

Others Works such as [24] presents the differences in
the mechanics of information diffusion across topics, [10]
gives an empirical study on the structure of online diffusion
networks, [5] studies characteristics of large Facebook cas-
cades, [8] empirically studies rumour cascades on Facebook.
These works provide us all kinds of insights about how
cascades develop in networks. In this paper, we focus on
the effect of time.

VIII. CONCLUSIONS

In this paper, we used a general time-aware cascade model
to describe the dynamic process of growing cascades in
social networks over time. Based on this general model, a
concrete model TCM-LH was designed for the retweeting
cascades in Twitter. We conducted extensive evaluations
based on a large real Twitter data set with over two mil-
lion retweeting cascades. Our experiment results show our
proposed TCM-LH fits the real cascade data better than
other baselines in terms of model fitting. We also empirically
showed that our proposed TCM-LH could benefit applica-
tions such as virality prediction.
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