It Is Not Just What We Say, But How We Say Them: LDA-based Behavior-Topic Model Supplementary Material

Minghui Qiu * Feida Zhu *

Jing Jiang *

1 The Task

In this paper, we propose an LDA-based [1] behaviortopic model (B-LDA) which jointly models user topic interests and behavioral patterns for micro-blogs like Twitter. Our model is an extendition of Twitter-LDA [2] which is catered for Twitter setting. This document presents the model and discusses related inference details. Note that this is a supplementary material for our paper entitled "It Is Not Just What We Say, But How We Say Them: LDA-based Behavior-Topic Model".

2 Model

Table 1 summarizes the set of notations and descriptions of our model parameters.

Notations	Descriptions
U	the total number of users
N_u	the total number of tweets in user u
$L_{u,n}$	the total number of words in u 's n -th tweet
T	the total number of topics
b	a behavior in $\mathcal{B} = \{post, retweet, reply, mention\}$
y	a switch
z	a topic label
w	a word label
ϕ_t	topic-specific word distribution
ψ_t	topic-specific behavior distribution
ϕ'	background word distribution
$ heta_u$	user-specific topic distribution
φ	Bernoulli distribution
$lpha,\eta,eta^\prime,eta,\gamma$	Dirichlet priors

Table 1: Notations and descriptions.

We now present our B-LDA model. First, we assume each topic t $(1 \le t \le T)$ has a multinomial word distribution ϕ_t and a multinomial behavior distribution ψ_t . Each tweet has a single hidden topic which is sampled from the corresponding user's topic distribution θ_u $(1 \le u \le U)$. We further assume that given a tweet with hidden topic t, the words in this tweet are

Figure 1: LDA-based behavior-topic model (B-LDA)

- For $1 \le t \le T$, draw $\psi_t \sim \text{Dir}(\eta)$, $\phi_t \sim \text{Dir}(\beta)$
- Draw $\phi' \sim \text{Dir}(\beta'), \, \varphi \sim \text{Dir}(\gamma)$
- For each user $u = 1, \cdots, U$
 - Draw topic distribution $\theta_u \sim \text{Dir}(\alpha)$
 - For *u*'s *n*-th tweet, $n = 1, \dots, N_u$
 - Draw a topic $z_{u,n}$ from θ_u
 - For each word $l = 1, \cdots, L_{u,n}$
 - Draw $y_{u,n,l}$ from Bernoulli (φ)
 - Draw $w_{u,n,l} \sim \phi'$ if $y_{u,n,l} = 0$, otherwise draw $w_{u,n,l} \sim \phi_{z_{u,n}}$
 - Draw a posting behavior $b_{u,n} \sim \psi_{z_{u,n}}$

Figure 2: The generative process for all posts in B-LDA.

generated from two multinomial distributions, namely, a background model and a topic specific model. The background model ϕ' generates words commonly used in many tweets. The topic specific model ϕ_t generates words related to topic t. When we sample a word w $(1 \leq w \leq V)$, we use a switch $y \in \{0,1\}$ according to Bernoulli distribution φ , to decide which word distribution the word comes from. Specifically, if y = 0, the word w is sampled from ϕ' ; otherwise, it is sampled from ϕ_t . We also assume the behavior pattern b ($b \in \mathcal{B}$) is sampled from the behavior distribution ψ_t . Lastly, we assume θ_u , ψ_t , ϕ' , ϕ_t and φ have Dirichlet priors α , η , β' , β and γ respectively. The plate notation and the generative process of the model are shown in Figure 1

^{*}School of Information System, Singapore Management University

and Figure 2.

2.1 Inference

We use Gibbs Sampling to estimate the parameters in the model. The Gibbs Sampling process is described in Algorithm 1.

Algorithm 1 (Gibbs	Sampling	for	B-LDA.
---------------	-------	----------	-----	--------

1:	: procedure GibbsSampling				
2:	for each user $u = 1, \cdots, U$ do				
3:	for u's n-th tweet, $n = 1, \dots, N_u$ do				
4:	Randomly assign a topic to $z_{u,n}$				
5:	for each word $l = 1, \cdots, L_{u,n}$ do				
6:	Randomly assign 0 or 1 to $y_{u,n,l}$				
7:	end for				
8:	end for				
9:	end for				
10:	for each Gibbs Sampling iteration do				
11:	for each user $u = 1, \cdots, U$ do				
12:	for u's n-th tweet, $n = 1, \dots, N_u$ do				
13:	Draw a topic $z_{u,n}$ according to Eqn. 2.1				
14:	for each word $l = 1, \cdots, L_{u,n}$ do				
15:	Draw $y_{u,n,l}$ according to Eqn. 2.2				
16:	end for				
17:	end for				
18:	end for				
19:	end for				
20:	Estimate model parameters θ , φ , ϕ' , ϕ and ψ				
21:	end procedure				

Hence, the problem is to compute the following two updating rules.

To sample topic $z_{u,n}$, we use the following equation:

(2.1)
$$p(z_{u,n}|\mathbf{Z}_{\neg\{u,n\}}, \mathbf{W}, \mathbf{Y}, \mathbf{B}) = \frac{p(\mathbf{Z}, \mathbf{W}, \mathbf{Y}, \mathbf{B}|\eta, \beta, \beta', \gamma, \alpha)}{p(\mathbf{Z}_{\neg\{u,n\}}, \mathbf{W}, \mathbf{Y}, \mathbf{B}|\eta, \beta, \beta', \gamma, \alpha)} \\ \propto \frac{p(\mathbf{Z}, \mathbf{W}, \mathbf{Y}, \mathbf{B}|\eta, \beta, \beta', \gamma, \alpha)}{p(\mathbf{Z}_{\neg\{u,n\}}, \mathbf{W}, \mathbf{Y}, \mathbf{B}_{\neg\{u,n\}}|\eta, \beta, \beta', \gamma, \alpha)},$$

where $\mathbf{Z}_{\neg\{u,n\}}$ denotes the set of all the topics in the data sets not including the topic of user *u*'s *n*-th tweet.

Similarly, to sample label $y_{u,n,l}$, we use the following equation:

(2.2)
$$p(y_{u,n,l}|\mathbf{Y}_{\neg u,n,l}, \mathbf{Z}, \mathbf{W}, \mathbf{B}) \\ \propto \frac{p(\mathbf{Z}, \mathbf{W}, \mathbf{Y}, \mathbf{B}|\eta, \beta, \beta', \gamma, \alpha)}{p(\mathbf{Z}, \mathbf{W}_{\neg_{\{u,n,l\}}}, \mathbf{Y}_{\neg_{\{u,n,l\}}}, \mathbf{B}|\eta, \beta, \beta', \gamma, \alpha)}.$$

After this process, we can obtain model parameters $\phi', \phi, \varphi, \psi$ and θ .

2.2 Sampling topic $z_{u,n}$

We discuss how to derive Eqn. 2.1 for sampling topic $z_{u,n}$ in this section.

The problem is to compute $p(\mathbf{Z}, \mathbf{W}, \mathbf{Y}, \mathbf{B} | \eta, \beta, \beta', \gamma, \alpha)$. According to the model, we derive it as:

$$p(\mathbf{Z}, \mathbf{W}, \mathbf{Y}, \mathbf{B} | \eta, \beta, \beta', \gamma, \alpha)$$

= $p(\mathbf{W} | \mathbf{Z}, \mathbf{Y}, \beta, \beta') p(\mathbf{Y} | \gamma) p(\mathbf{B} | \mathbf{Z}, \eta) p(\mathbf{Z} | \alpha).$

We further derive $p(\mathbf{Z}|\alpha)$ as:

$$p(\mathbf{Z}|\alpha) = \int_{\theta} p(\mathbf{Z}|\theta) p(\theta|\alpha) d\theta = \prod_{u=1}^{U} \frac{\Delta(n_u^{\mathbf{t}} + \alpha)}{\Delta(\alpha)},$$

where $n_u^{\mathbf{t}}$ is a vector in which each element denotes number of times that the corresponding topic occurs in user *u*'s tweets, and $\Delta(.)$ is a "Dirichlet delta function" which can be seen as a multidimensional extension to beta function [3].

Similarly, we can derive $p(\mathbf{B}|\mathbf{Z},\eta)$ and $p(\mathbf{Y}|\gamma)$ as follows:

$$\begin{split} p(\mathbf{B}|\mathbf{Z},\eta) &= \int_{\psi} p(\mathbf{B}|\mathbf{Z},\psi) p(\psi|\eta) d\psi = \prod_{t=1}^{T} \frac{\Delta(n_{t}^{\mathbf{b}} + \eta)}{\Delta(\eta)}, \\ p(\mathbf{Y}|\gamma) &= \frac{\Delta(n_{(.)}^{\mathbf{y}} + \gamma)}{\Delta(\gamma)}, \end{split}$$

where $n_t^{\mathbf{b}}$ is a vector in which each element denotes number of times the corresponding posting behavior co-occurs with topic t, $n_{(.)}^{\mathbf{y}}$ has two elements denoting number of time y = 0 and y = 1 occurs.

We assume each word has a corresponding label y that indicates which model it is sampled from. Specifically, if y = 0, the word is sampled from the background model; if y = 1, it is from a topic specific model. To derive $p(\mathbf{W}|\mathbf{Z}, \mathbf{Y}, \beta, \beta')$, we then need to consider two types of word distributions ϕ and ϕ' . Specifically, we derive it as follows:

$$p(\mathbf{W}|\mathbf{Z}, \mathbf{Y}, \beta, \beta') = \int_{\phi} \int_{\phi'} p(\mathbf{W}|\mathbf{Z}, \mathbf{Y}, \phi, \phi') p(\phi|\beta) p(\phi'|\beta') d\phi d\phi$$
$$= \frac{\Delta(n_{y=0}^{\mathbf{w}} + \beta')}{\Delta(\beta')} \cdot \prod_{t=1}^{T} \frac{\Delta(n_{t,y=1}^{\mathbf{w}} + \beta)}{\Delta(\beta)},$$

where $n_{y=0}^{\mathbf{w}}$ is a count vector in which each value denotes number of times the word is sampled and its label is y = 0, and each element in $n_{t,y=1}^{\mathbf{w}}$ means number of time the word is sampled when its topic is t and label is y = 1.

Given the above formulas, we can compute $p(\mathbf{Z}, \mathbf{W}, \mathbf{Y}, \mathbf{B} | \eta, \beta, \beta', \gamma, \alpha)$:

$$(2.3) \qquad p(\mathbf{Z}, \mathbf{W}, \mathbf{Y}, \mathbf{B} | \eta, \beta, \beta', \gamma, \alpha) \\ = p(\mathbf{Y} | \gamma) p(\mathbf{W} | \mathbf{Z}, \mathbf{Y}, \beta, \beta') p(\mathbf{B} | \mathbf{Z}, \eta) p(\mathbf{Z} | \alpha) \\ = \frac{\Delta(n_{(.)}^{\mathbf{y}} + \gamma)}{\Delta(\gamma)} \cdot \frac{\Delta(n_{y=0}^{\mathbf{w}} + \beta')}{\Delta(\beta')} \cdot \prod_{t=1}^{T} \frac{\Delta(n_{t,y=1}^{\mathbf{w}} + \beta)}{\Delta(\beta)} \\ \cdot \prod_{t=1}^{T} \frac{\Delta(n_{t}^{\mathbf{b}} + \eta)}{\Delta(\eta)} \cdot \prod_{u=1}^{U} \frac{\Delta(n_{u}^{\mathbf{t}} + \alpha)}{\Delta(\alpha)}.$$

With Eqn 2.3, we are ready to derive 2.1. Let c

denote $\{u, n\}$, we can derive it as follows.

$$(2.4) \qquad p(z_{c}|\mathbf{Z}_{\neg_{c}}, \mathbf{W}, \mathbf{Y}, \mathbf{B}) \\ \propto \qquad \frac{p(\mathbf{Z}, \mathbf{W}, \mathbf{Y}, \mathbf{B}|\eta, \beta, \beta', \gamma, \alpha)}{p(\mathbf{Z}_{\neg_{c}}, \mathbf{W}, \mathbf{Y}, \mathbf{B}_{\neg_{c}}|\eta, \beta', \beta, \gamma, \alpha)} \\ = \qquad \frac{\Delta(n_{(.)}^{\mathbf{y}} + \gamma)}{\Delta(n_{(.)}^{\mathbf{y}} + \gamma)} \cdot \frac{\Delta(n_{y=0}^{\mathbf{w}} + \beta')}{\Delta(n_{y=0}^{\mathbf{w}} + \beta')} \cdot \prod_{t=1}^{T} \frac{\Delta(n_{t,y=1}^{\mathbf{w}} + \beta)}{\Delta(n_{t,y=1,\neg_{c}}^{\mathbf{t}} + \beta)} \\ \cdot \prod_{t=1}^{T} \frac{\Delta(n_{t}^{\mathbf{b}} + \eta)}{\Delta(n_{t,\gamma_{c}}^{\mathbf{t}} + \eta)} \cdot \prod_{u=1}^{U} \frac{\Delta(n_{u}^{\mathbf{t}} + \alpha)}{\Delta(n_{u,\neg_{c}}^{\mathbf{t}} + \alpha)} \\ = \qquad \prod_{t=1}^{T} \frac{\Delta(n_{t,y=1}^{\mathbf{w}} + \beta)}{\Delta(n_{t,y=1,\neg_{c}}^{\mathbf{w}} + \beta)} \cdot \prod_{t=1}^{T} \frac{\Delta(n_{t}^{\mathbf{b}} + \eta)}{\Delta(n_{t,\gamma_{c}}^{\mathbf{t}} + \eta)} \\ \cdot \prod_{u=1}^{U} \frac{\Delta(n_{u}^{\mathbf{t}} + \alpha)}{\Delta(n_{u,\gamma_{c}}^{\mathbf{t}} + \alpha)}.$$

Note that, when we sample a topic for z_c , we assume **Y**, \mathbf{Z}_{\neg_c} and background words in **W** will not be affected.

To estimate the probability of assigning topic z to z_c , we need to compute $p(z_c = z | \mathbf{Z}_{\neg_c}, \mathbf{W}, \mathbf{Y}, \mathbf{B})$, which can be derived as follows.

(2.5)
$$p(z_c = z | \mathbf{Z}_{\neg_c}, \mathbf{W}, \mathbf{Y}, \mathbf{B}) = \frac{\Delta(n_{z,y=1}^{\mathbf{w}} + \beta)}{\Delta(n_{z,y=1,\neg_c}^{\mathbf{w}} + \beta)} \cdot \frac{\Delta(n_z^{\mathbf{b}} + \eta)}{\Delta(n_{z,\neg_c}^{\mathbf{b}} + \eta)} \cdot \frac{\Delta(n_u^{\mathbf{t}} + \alpha)}{\Delta(n_{u,\neg_c}^{\mathbf{t}} + \alpha)},$$
where the first component is computed as the following

where the first component is computed as the following
$$\Delta(n_{z,y=1}^{\mathbf{w}} + \beta)$$

$$(2.6) \qquad \frac{\overline{\Delta}(n_{z,y=1}^{w} + \beta)}{\overline{\Delta}(n_{z,y=1,\neg_{c}}^{w} + \beta)} \\ = \frac{\prod_{w=1}^{V} \Gamma(n_{z,y=1,\neg_{c}}^{w} + \beta)}{\prod_{w=1}^{V} \Gamma(n_{z,y=1,\neg_{c}}^{w} + \beta)} \cdot \frac{\Gamma(\sum_{w=1}^{V} n_{z,y=1,\neg_{c}}^{w} + V\beta)}{\Gamma(\sum_{w=1}^{W} n_{z,y=1}^{w} + V\beta)} \\ = \frac{\prod_{w=1}^{W} \prod_{i=1}^{n_{c,y=1}^{w}} (n_{z,y=1,\neg_{c}}^{w} + \beta + i - 1)}{\prod_{i=1}^{i=1} (\sum_{w=1}^{W} n_{z,y=1,\neg_{c}}^{w} + V\beta + j - 1)},$$

where $n_{c,y=1}^{w}$ denotes the number of times word w occurs as topical words and $n_{c,y=1}^{w}$ is the total number of topical words in user u's n-th tweets.

For the rest two components, we can derive them similarly:

(2.7)
$$\frac{\Delta(n_{z}^{\mathbf{b}}+\eta)}{\Delta(n_{z,\neg_{c}}^{\mathbf{b}}+\eta)} = \frac{n_{z,\neg_{c}}^{b_{c}}+\eta}{\sum_{b=1}^{B}n_{z,\neg_{c}}^{b}+B\eta}$$

(2.8)
$$\frac{\Delta(n_u^{\mathbf{t}} + \alpha)}{\Delta(n_{u,\neg_c}^{\mathbf{t}} + \alpha)} = \frac{n_{u,\neg_c}^{z_c} + \alpha}{\sum_{t=1}^T n_{u,\neg_c}^t + T\alpha}$$

where n_{z,\neg_c}^b denotes number of times topic z co-occurs with behavior b without considering the current tweet, n_{u,\neg_c}^z denotes number of times topic z is sampled in user u's tweets without considering the current tweet.

Given Eqn. 2.5, 2.6, 2.7 and 2.8, we can then compute Eqn. 2.1.

9)
$$p(z_{c} = z | \mathbf{Z}_{\neg_{c}}, \mathbf{W}, \mathbf{Y}, \mathbf{B})$$
$$= \frac{\prod_{w=1}^{V} \prod_{i=1}^{n_{c,y=1}^{w}} (n_{z,y=1,\neg_{c}}^{w} + \beta + i - 1)}{\prod_{j=1}^{n_{w,y=1}^{w}} (\sum_{w=1}^{V} n_{z,y=1,\neg_{c}}^{w} + \gamma + j - 1)} \cdot \frac{n_{z,\gamma_{c}}^{b_{c}} + \eta}{\sum_{b=1}^{B} n_{z,\gamma_{c}}^{b_{c}} + B\eta} \cdot \frac{n_{u,\gamma_{c}}^{z} + \alpha}{\sum_{t=1}^{T} n_{u,\gamma_{c}}^{t} + T\alpha}.$$

2.3 Sampling label $y_{u,n,l}$

(2.

We discuss how to derive Eqn. 2.2 to update $y_{u,n,l}$ for each word in the tweet in this section.

Let d be $\{u, n, l\}$, similar to Eqn. 2.4, we have the following equation.

$$\begin{split} & p(y_d | \mathbf{Y}_{\neg_d}, \mathbf{Z}, \mathbf{W}, \mathbf{B}) \\ \propto & \frac{\Delta(n_{(.)}^{\mathbf{y}} + \gamma)}{\Delta(n_{\neg_d}^{\mathbf{y}} + \gamma)} \cdot \frac{\Delta(n_{y=0}^{\mathbf{w}} + \beta')}{\Delta(n_{y=0,\neg_d}^{\mathbf{w}} + \beta')} \cdot \prod_{t=1}^{T} \frac{\Delta(n_{t,y=1}^{\mathbf{w}} + \beta)}{\Delta(n_{t,y=1,\neg_d}^{\mathbf{w}} + \beta)} \\ & \cdot \prod_{t=1}^{T} \frac{\Delta(n_t^{\mathbf{b}} + \eta)}{\Delta(n_t^{\mathbf{b}} + \eta)} \cdot \prod_{u=1}^{U} \frac{\Delta(n_u^{\mathbf{t}} + \alpha)}{\Delta(n_u^{\mathbf{t}} + \alpha)} \\ & = & \frac{\Delta(n_{(.)}^{\mathbf{y}} + \gamma)}{\Delta(n_{\neg_d}^{\mathbf{y}} + \gamma)} \cdot \frac{\Delta(n_{y=0}^{\mathbf{w}} + \beta')}{\Delta(n_{y=0,\neg_d}^{\mathbf{w}} + \beta')} \cdot \prod_{t=1}^{T} \frac{\Delta(n_{t,y=1}^{\mathbf{w}} + \beta)}{\Delta(n_{t,y=1,\neg_d}^{\mathbf{w}} + \beta)} \end{split}$$

where to derive each component is similar to Eqn. 2.6, 2.7 and 2.8.

We show the derived results as follows:

(2.10)
$$p(y_{d} = 0 | \mathbf{Y}_{\neg_{d}}, \mathbf{Z}, \mathbf{W}, \mathbf{B}) = \frac{n_{\neg_{d}}^{y_{d}=0} + \gamma}{\sum_{y=0}^{1} n_{\neg_{d}}^{y} + 2\gamma} \cdot \frac{n_{y=0,\neg_{d}}^{w_{d}} + \beta'}{\sum_{w=1}^{V} n_{y=0,\neg_{d}}^{w} + V\beta'}.$$

(2.11)
$$p(y_{d} = 1 | \mathbf{Y}_{\neg_{d}}, \mathbf{Z}, \mathbf{W}, \mathbf{B}) = \frac{n_{\neg_{d}}^{y_{d}=1} + \gamma}{\sum_{y=0}^{1} n_{\neg_{d}}^{y} + 2\gamma} \cdot \frac{n_{z_{c},y=1,\neg_{d}}^{w_{d}} + \beta}{\sum_{w=1}^{V} n_{z_{c},y=1,\neg_{d}}^{w} + V\beta}.$$

With Eqn. 2.9, 2.10 and 2.11, we can perform Gibbs Sampling for B-LDA as in Algorithm 1.

2.4 Parameter estimation

With Gibbs sampling, we can make the following estimation:

(2.12)
$$\phi'_{w} = \frac{n_{w=0}^{w} + \beta'}{\sum_{w=1}^{V} n_{w=0}^{w} + V\beta'} + \frac{n_{w}^{w}}{n_{w}^{w}} + \beta}$$

(2.13)

(2.14)

$$\phi_{t,w} = \frac{\nabla_{t,y=1} + \nabla}{\sum_{w=1}^{V} n_{t,y=1}^{w} + V\beta}$$

$$\psi_{t,b} = \frac{n_{t}^{b} + \eta}{\sum_{t=1}^{E} n_{t}^{b} + B\eta},$$

(2.15)
$$\varphi_y = \frac{n_{(.)}^y + \gamma}{\sum_{y=0}^1 n_{(.)}^y + 2\gamma},$$

(2.16)
$$\theta_{u,t} = \frac{n_u^t + \alpha}{\sum_{t=1}^T n_u^t + T\alpha},$$

where $n_{y=0}^{w}$ is the number of times w appears as background word, $n_{t,y=1}^{w}$ is the number of times w is sampled as topical word specific to topic t, n_{t}^{b} is number of time posting behavior b co-occurs with topic t, $n_{(.)}^y$ is number of times y appears, where n_u^t is, when given the user u, number of times t is sampled.

3 Time Complexity

We compare the training time of our proposed B-LDA model against LDA in Table 2 on different number of users.

Model	Number of users				
model	1k	2k	5k	All	
LDA	1.73	2.73	6.00	10.00	
B-LDA	2.20	3.07	6.27	10.61	
B-LDA/LDA	1.26	1.12	1.05	1.06	

Table 2: Comparison of training time of B-LDA model against LDA on 1k, 2k, 5k and all the users in terms of hour. Note that 1k, 2k, 5k users are randomly selected from all the users.

Table 2 shows the running time ratio of B-LDA over LDA is from 1.05 to 1.26, which means our proposed model B-LDA has a comparable time complexity with LDA.

References

- D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," *Journal of Machine Learning Research*, vol. 3, pp. 993–1022, 2003.
- [2] W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li, "Comparing twitter and traditional media using topic models," in *ECIR*, 2011, pp. 338– 349.
- [3] G. Heinrich, "Parameter estimation for text analysis," Tech. Rep., 2004. [Online]. Available: http://www.arbylon.net/publications/text-est.pdf