
A Pervasive Synchronization Middleware for
Mobile Devices

Puneet Gupta, Zalak Dedhia, Atanu Roy Chowdhury, Kartik Muralidharan
Convergence Research Group,

Software Engineering and Technology Labs
Infosys Technologies Ltd, Bangalore 560 100, India

{Puneet Gupta,Zalak Dedhia, Atanu Chowdhury & Kartik Muralidharan}@infosys.com

Abstract— The evolution of wireless communication, and the
protocols built around them, has empowered a significant propor-
tion of computer users to go cable-less. However there seems to be
ample opportunity to improve upon its promises of flexibility and
seamlessness. Moreover as computing devices become abundant,
they intrude into several facets of our life, bringing with it a
deluge of possibly redundant information. Being aware of the
decreasing probability of the end user being a computer wizard,
it becomes necessary to isolate system complexity from the end
user. So here in this work we discuss our architecture for a
synchronization solution, to keep the data on a mobile device
fresh. A context aware middleware, plays a crucial component
of the architecture.

I. INTRODUCTION

A simple walk through an electronic gadget shop today
is sure to overwhelm you with a plethora of acronyms on
wireless access technologies. A non-exhaustive list would
possibly include Wi-Fi, Wi-Max, BlueTooth, FireWire, GPRS,
ZigBee, and the list continues to grow. However most of these
technologies are not interoperable. This invariably leads to a
partitioning of wireless devices into various ’worlds’ which
are accessible by only a particular technology. Thus a group
of devices in a BlueTooth scatternet will remain oblivious of
a spatially collocated WLAN environment!

Fig. 1. Diversity in the Wireless World

The two worlds cannot intercommunicate unless there exists
a translator device (or gateway) with the physical capabilities
to access multiple worlds. Interestingly most hardware manu-
factures have begun to incorporate this necessary implication
of the above mentioned scenario, in their latest products like

Palm Treo 6501, HP iPaq h4350 2 and iPaq 4155 3. Although
we are progressively transposing towards a convergent ambi-
ence, as of date mobile devices continue to exist in multiple
’worlds’. Equally disparate are their form factors, computa-
tional capabilities, memory constraints, battery backup and
even their displays.

Moreover, in the context of seamless computation, there
is also a pressing need to interact between multiple data
source types, distributed across various domains. Thus we
observe that advanced wireless access techniques empower
us with greater mobility and flexibility, but also curtails the
performance of mobile devices. Some of these limitations are
highlighted in Table I.

In today’s context, mobile computing is more about ex-
tended cable-less operations rather than being truly pervasive.
Pervasive computing aims provide an user with a completely
transparent environment where he cannot even perceive the
existence of non-trivial computing in his surroundings, let
alone imagine its complexities.

Since this work was done in context of an enterprise IT
solution, the next section showcases a roadmap for enterprises
to acquire pervasive capabilities. The penultimate section
delves on the evolution and architecture of our pervasive
synchronization middleware.

II. PERVASIVE IT

The concept of pervasive computing is a paradigm

1http://www.palm.com/us/products/smartphones/treo650/
2http://www.bargainpda.com/default.asp?newsID=1620&showComments=true
3http://www.mobiletechreview.com/ipaq4150.htm

TABLE I
LIMITATIONS IN MOBILE DEVICES

Packet Loss Due To Transmission Errors
Frequent Disconnections/Partitions

Wireless Limited Communication Bandwidth
Medium Broadcast Nature Of The Communications

Security Concerns
Half Duplex Transmissions

Dynamically Changing Topologies/Routes
Mobility Lack Of Mobility Awareness By System/Applications

Short Battery Lifetime
Lightweight Transmission Ranges
Terminals Processing Capacity



Fig. 2. Roadmap for attaining Pervasiveness in IT

shift [1] [2] from a traditional IT point of view, including
to a large extent mobile IT. However, from an enterprise
point of view, treating pervasive IT as a radical departure
from the traditional IT presents a dilemma. While on the
one hand, there is an opportunity to derive productivity and
business benefits from an intelligent IT infrastructure built on
the pervasive computing paradigm, on the other hand, there
is a need to protect investments already made in the existing
IT infrastructure, including mobile IT. It is in this context that
we suggest the enterprise pervasive IT model (EPIM) [3] as
a gradual evolution from an existing IT infrastructure point of
view. This evolution is captured in Fig 24.

A. The Mobile User:Today and Tomorrow

Recent research findings from leadings analysts like For-
rester and Gartner point out that market leaders across almost
every business vertical are migrating to some form of mobile
solution. We also observe that the migratory patterns can be
classified as client facing mobile solutions (eg SMS notifica-
tion of a banking transactions) or solutions to improve internal
agility (eg connectivity with field force).

Whereas the first group of solutions allow an informed
end user to choose a mobile device, the second category
proactively places complicated technology with inept hands.
If this trend continues, and we have no reason to believe
otherwise, in future only an insignificant proportion of users
can actually comprehend the computational complexity of
the processes in their device. In fact this transparency must
necessarily remain so as to ensure the mass acceptance of the
devices as well as the processes in them.

B. Need for a Pervasive Synchronization Middleware

Synchronization is backbone of the mobile applications
due to simultaneous existence of data at multiple ends. It

4The EPIM model forms the basis of convergence research at Infosys.
Our Synchronization middleware is a result of implementing technology
components, which in turn realize pervasive computing characteristics in the
enterprise (fourth) block of EPIM

has made a dream, of data availability anytime anyplace,
come true. But it doesn’t come without consequences such
as complexity, redundancy, failures, security, and validation,
supporting disparate technologies, data stores, and devices and
so on. To avoid getting mired with these varied complicated
synchronization facets a pervasive synchronization middleware
seems must, that will seamlessly abstract difficulties and
expose simplicities. Not just this but there can be many
reasons that would drive us to the need for the existence of a
middleware (Fig 3).

Let us ponder over the necessity of having it before delving
into the intricacies of the proposed architecture.

• Isolating both the end user and the developers from the
complexities of the underlying systems.

• Secondly, a resource constrained mobile device can only
provide a limited or local view which quickly becomes
stale. To ascertain freshness, updated information must
be pulled from the neighborhood at periodic intervals or
on demand.

• In other scenarios, the device might not be able to
show the entire database at once. Therefore it becomes
mandatory to not only tag available information but also
know as to where the required information can be found.

• Finally, absence of centralized information retrieval has
the inherent advantage of no single point of failure and
high scalability.

Fig. 3. Overview of Pervasive Synchronization Middleware



Fig. 4. Architecture of Pervasive Synchronization Middleware

III. EVOLVING THE PERVASIVE SYNCHRONIZATION
MIDDLEWARE

Most of the block names capture the essence of their
purpose. For example, the Interface module exposes relevant
APIs to the developer, whose application overlays interact with
the end user. Similarly the Query Processor is able to parse
high level query constructs, whereas the configuration module
customizes the middleware for individual user preferences.
Other blocks require elaborate explanations and are therefore
included in the following subsections. Data and control infor-
mation pass through these blocks as shown in Fig 4.

Fig 5 captures the application interfaces as exposed to the
developer. All that is required to synchronize two disparate
data sources are the source and destination database type and
location as well as the table name. Security credentials if
applicable can also be specified. The middleware abstracts
the diversity of the database types and makes the informa-
tion available locally. We show synchronization between a
Microsoft Access database type at the server end and an SQL
CE database residing on the mobile device. The last panel
shows the information retrieved from the local storage after
synchronization.

A. Context Sensitivity

Pervasive computing is all about harnessing the computa-
tional power of distributed computing devices. Therefore, any
pervasive computing artifact must essentially adopt a context
sensitive approach rather than exhaustive searches. ’Context
sensitivity’ can be defined as the change in the response of a

deterministic device, in accordance with the parameters which
qualify the situation. It is to be noted that ’context sensitivity’
is a property of the system and not a task.

Our architecture is characterized by its ability to respond
to a given set of ’contexts’. Figure 6 lists these contexts
and factors which affect them. For example, an important
network context is the occurrence of ”Occasional Connectiv-
ity” wherein the user experiences short term disruptions in
the connection. Under normal circumstances the transaction
submitted just prior to (or during) this disruption is most
likely to get dropped. Moreover the user remains unaware
of this drop, as the disruption periods are extremely short.
The proposed middleware takes care of such situations by
incorporating intelligent store and forward mechanisms that
ensures proper execution of the submitted transaction. Prior-
itization of submission can be achieved through transaction
sensitivity associations. Note that all this is done without the
user intervention.

B. The Core middleware

The functionality of the core is controlled by the context
plane. Some contexts, like assessing rights of a particular
user, indirectly affect the Core by modifying the Configuration
module. In other cases, contexts like available NICs have direct
implications in the downstream control of the Core.

The functionalities of the Core can be listed as follows:

• Specifying the appropriate databases, along with the
parsed query, to the query Scheduler.



Fig. 5. Developer Interfaces

Fig. 6. Context Parameters

• Specifying communicating interfaces and other relevant
information to the query Optimizer.

• Issuing synchronization commands for databases with
stale data.

• Specifying the master repository for synchronizing a local
database. In case the master repository is more than a hop
away, it passes control to the P2P middleware.

• Control the Recovery Handler to resolve conflicts at the
earliest.

• Control the Extension Handler to accommodate new
databases and minimize complexity for the developer.

• Retrieve Information from the local databases and pass
them onto the user interface.

C. The P2P middleware

The P2P middleware comes into effect when communica-
tion needs to be established between devices that are more than
one hop away. There are two distinct aspects to this problem.
To optimize communication overheads we need to determine
which peer has access to the main repository. In keeping with
the current trends of P2P networks, we feel a dynamic hash
table (DHT) based approach is most suited. The other aspect

is the communication itself, because we are unsure of the
accessibility of the lowest layers. In this context we observe
that a web service (WS) based solution can overcome these
nuances.

In the WS approach, servers are configured to behave
as webservers whereas resource constrained devices have
lightweight webservers, serving as proxy to the main server.
Thus the communication between two heterogeneous devices
is through a set of XML based protocol, where a reliable asyn-
chronous messaging system like SOAP is used to connect to
webservices hosted by lightweight or full-service webservers.
This architecture is shown in Fig 7.

D. Observations

Since perpetual connectivity cannot be guaranteed, therefore
databases are to be synchronized opportunistically, whenever
the occasional connection is available. Secondly, the entire
endeavor is to make the application process believe that all
data is being retrieved from a local database. However a node
cannot deny responsibility of maintaining the DHT of its peer
group. Thirdly, network topology forms a context factor and
in that effect alters the behavior of the middleware itself.



Fig. 7. Architecture of Web Service based Communication Module

Fourthly, we must take note of the fact that a mobile device is
constrained in its memory and therefore necessitates explicit
buffer management. To do this it is must that we be able to
effectively filter inconsequent messages , with respect to the
current user.

E. Application Scenarios

The WS architecture immediately allows different wireless
technologies to have a more meaningful and symbiotic coex-
istence. Therefore the scenario depicted in Fig 1 transforms
into the one depicted in Fig 8.

Consider a field force deployed at a faraway location from
the corporate data centre, where the proposition of providing
every individual with GPRS connectivity is an expensive one.
However the team leader can be provided with a connection,
and all synchronization now happen when the team gets
together over coffee. This scenario is depicted in Fig 9.

Fig. 8. Combining Worlds

Fig. 9. A field force Use Case

IV. CONCLUSION

In this paper we have presented the architecture of a
pervasive computing artifact that effectively uses context in-
formation to enhance user experience. We have also presented

the architecture of a web service based communication model
that allows intercommunication between disparate wireless
worlds.

REFERENCES

[1] M. Weiser, The Computer for the Twenty-First Century, Scientific Amer-
ican, pp. 94-10, September 1991.

[2] M. Satyanarayanan, Pervasive Computing: Vision and Challenges, IEEE
Personal Communications , August 2001.

[3] Puneet Gupta, Deependra Moitra, ”Evolving a pervasive IT infrastructure:
A technology Integration Approach”, ACM personal and Ubiquitous
Computing, Vol 8(1), Feb 2004, pp 31-41.

[4] C. Bisdikian, I. Boamah, P. Castro, A. Misra, J. Rubas, N. Villoutreix, D.
Yeh, ”Intelligent pervasive middleware for context-based and localized
telematics services,” Proceedings of the second international workshop
on Mobile commerce, ACM Press, pp 15-24, 2002.

[5] L. B. Mummert, M. R. Ebling and M. Satyanarayanan, ”Exploiting
weak connectivity for mobile file access. Proceedings of the fifteenth
ACM symposium on operating systems principles,” December 3-6, 1995,
Copper Mountain, Colorado. Pages 143-155.


