
Automated Detection of Likely Design Flaws in
Layered Architectures

Aditya Budi, Lucia, David Lo, Lingxiao Jiang, and Shaowei Wang
School of Information Systems, Singapore Management University

{adityabudi,lucia.2009,davidlo,lxjiang,shaoweiwang.2010}@smu.edu.sg

Abstract

Layered architecture prescribes a good principle for sep-
arating concerns to make systems more maintainable. One
example of such layered architectures is the separation of
classes into three groups: Boundary, Control, and Entity,
which are referred to as the three analysis class stereo-
types in UML. Classes of different stereotypes are inter-
acting with one another, when properly designed, the over-
all interaction would be maintainable, flexible, and robust.
On the other hand, poor design would result in less main-
tainable system that is prone to errors. In many software
projects, the stereotypes of classes are often missing, thus
detection of design flaws becomes non-trivial. In this paper,
we provide a framework that automatically labels classes
as Boundary, Control, or Entity, and detects design flaws of
the rules associated with each stereotype. Our evaluation
with programs developed by both novice and expert devel-
opers show that our technique is able to detect many design
flaws accurately.

1 Introduction
Layered architecture is a recommended industry prac-

tice as it promotes separation of various concerns into lay-
ers [17]. By using this architecture, when requirements
change, most of the changes could be localized to a limited
number of classes in a particular layer. Thus, no changes
would be needed for classes in unrelated layers as long
as the interfaces between the layers remain the same. As
software evolves over time, layered architectures are more
likely to have better reusability, improve comprehension
and traceability, and ease maintenance and evolution tasks
than single-tier architectures.

One commonly used layered architecture is the separa-
tion of classes into three stereotypes, namely: Boundary,
Control, and Entity, following the Unified Modeling Lan-
guage (UML) and its suggested objectory process [15, 14].
Boundary classes are responsible to interface with external
systems or users. Control classes are responsible to real-

ize particular functionalities or use cases by coordinating
the activities of various other classes. Entity classes are re-
sponsible to model various domain concepts and store and
manage system data.

Class stereotypes are not just symbols; they come with
design rules governing their behaviors and responsibilities.
If the nature of a class is not apparent to developers or its
behaviors do not match its stereotype label, developers are
prone to make mistakes, violating the rules, especially as the
code evolves over time. There are two common rule vari-
ants: robustness rules [15], and well-formedness rules [14].

Unfortunately, many software projects, during develop-
ment or maintenance, have little documentation. Many de-
sign documents, including those specifying stereotype la-
bels of the classes in a program, are often missing. Such
information is often not obvious in the source code either
due to poor variable and class names, code changes, etc.
Also, keeping design documents and stereotypes up-to-date
manually could be time-consuming and error-prone.

To address the above issues, we propose a framework
that can automatically reverse engineer class stereotypes
and detect violations of design rules associated with them.

We empirically evaluated our proposed system on a num-
ber of student projects and a real software system. Our pre-
liminary experiments are promising. Compared with man-
ually stereotyped labels, our approach achieves on average
77% of accuracy. Design defects resulted from violations
of robustness and well-formedness rules could be detected
with up to 75% precision and 79% recall.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 presents the concept of
class stereotypes and their associated design rules. Sec-
tion 4 describes our design flaw detection framework. Sec-
tion 5 presents evaluation results. We discuss limitations
and applicability in Section 6 and conclude in Section 7.

2 Related Work
There are a number of studies on the characteristics of

class stereotypes [2, 8, 1, 12]. Andriyevska et al. study the
effect of stereotypes on program comprehension [1]. Kuz-

niarz et al. also study the effects of stereotypes on program
comprehension but focus on user-defined stereotypes rather
than the standard three (i.e., Boundary Control, and En-
tity) [12]. Atkinson et al. propose different de facto ways
in which stereotypes are used [2]. Gogolla and Henderson-
Sellers analyze the part of the UML metamodel that deals
with stereotypes and provide recommendations for improv-
ing the definitions and uses of stereotypes [8]. Dragan et
al. investigated an automated way to infer class and method
stereotypes [6, 7]. To the best of our knowledge, we are
the first to propose an automated way to automatically de-
tect likely violations of design rules governing stereotypes
based on automatically identified stereotype labels.

Various studies also address the problem of detecting and
correcting design flaws and code smells [9, 11, 19, 13, 18].
Guéhéneuc et al. [9] find code segments that do not con-
form to a particular design pattern and transform them ac-
cordingly. Khomh et al. use Bayesian Belief Networks to
detect code and design smell [11]. Vaucher et al. study god
classes and propose an approach to distinguish good god
classes from bad ones [19]. Moha et al. extract concepts
from text descriptions and establish formal specifications of
code smells so that they can detect code smells automati-
cally [13]. Trifu and Reupke also detect structural flaws in
object oriented programs and use optimization-based tech-
niques to automatically restructure programs [18]. Our
work in this paper focuses on detecting class stereotypes
and checking violations of design rules involving stereo-
types, which enriches the type of design information and
defects detected by past studies and helps users to reverse
engineer their designs.

3 Design Rules of Class Stereotypes

This paper provides a mechanism to identify class stereo-
types automatically and detect design flaws in programs.
The class stereotypes and design rules associated with the
stereotypes are described in the following subsections.

3.1 Class Stereotypes

Identifying class stereotypesis an important step for de-
signing, analyzing, understanding, and maintaining a soft-
ware system. In particular, this paper focuses on automated
identification of three class stereotypes, i.e., Entity, Con-
trol, and Boundary, which was introduced as an extension
to the standard UML [14, 3]. The UML extension describes
the responsibilities of classes belonging to each stereotype.
It promotes separation of different concerns into different
class stereotypes, and thus software changes related to one
concern would only affect one particular stereotype involv-
ing a limited number of classes [17].

Classes with the Entity stereotype store and manage in-
formation in a system. In this paper, we further distinguish
Regular Entity from a special kind of entity called –Data

Manager, which is used to persist to storage systems (e.g.,
databases, file systems, etc). As an example, Course is a
possible entity class in a University Management System
(UMS) and CourseStore is a possible data manager class
that stores and retrieves course data from databases.

Classes with the Boundary stereotype serve as an inter-
face between a system and external systems interacting with
it. External systems, represented as Actors, could be other
computing systems or the users of the system. These inter-
face classes would be the ones affected if the behavior of
external systems change. In a typical UMS, CourseMan-
agementUI is a possible boundary class.

Classes with the Control stereotype act as a glue among
entity and boundary classes, and control the activities of
other classes for particular tasks. For example, CourseReg-
istration class is a possible control class that interacts with
a user interface class and related entity classes, e.g. Course.

3.2 Design Rules

Class stereotypes, based on their supposed responsibili-
ties and the principle of separation of concern, should fol-
low certain design rules, such as, an Entity class cannot
call a Boundary class directly. Regulating the interactions
among different classes of various stereotypes can help to
ensure the understandability and maintainability of a soft-
ware system.

Our work provides an automated mechanism for check-
ing compliance of design rules governing the interactions
among class stereotypes. In particular, we instantiate
the checking against two sets of rules which reflect vari-
ous architectural styles, namely robustness rules and well-
formedness rules. Our checking mechanism is designed to
be flexible enough to take various rules for checking.

3.2.1 Robustness Rules
Robustness analysis, as described in Rosenberg and Scott’s
UML book [15], provides a set of rules that indicate all
valid and invalid interactions among different class stereo-
types. The rules are paraphrased as follows, where Ac-
tors represent users of a system which could be humans or
classes/objects outside the system under analysis:

R1 Actors can only call boundary objects.
R2 Boundary objects can only call controllers or actors.
R3 Entity objects can only call controllers.
R4 Controllers can call entities, other controllers, and

boundaries, but not actors.

3.2.2 Well-Formedness Rules
The well-formedness rules are defined in the UML exten-
sion [14], and rephrased as follows: 1

1The complete set of rules in the UML extension also allows the subscriber-
publisher style of interaction. This paper considers only interactions via direct calls
and thus omits a part of the rules governing subscribe-publish interactions.

Callee
Caller Actor Entity Control Boundary
Actor R1 W1
Entity W3 R3

Control R4 W4 R4 W4 R4 W4
Boundary R2 W2 W2 R2 W2 W2

Table 1. Robustness and Well-Formedness Rules.

W1 Actors can only call boundary objects.
W2 Boundary objects can call entities, controllers, other

boundaries, and actors.
W3 Entity objects can only call other entities.
W4 Controllers can call entities, other controllers, and

boundaries, but not actors.
The two sets of rules can also be represented as a matrix

shown in Table 1. Each entry indicates a rule that validates
the corresponding caller-callee relation. Unmarked entries
signify bad caller-callee relations that violate the rules.

4 Design Flaw Detection Framework

Our framework are shown as a flowchart in Figure 1. We
use a classification framework that has two phases, namely
training and violation detection. In the training phase, we
build a statistical model using a machine learning technique
that can discriminate the class stereotypes based on a set
of classes with given stereotypes, i.e., training data labeled
with Regular Entity, Data Manager, Control, and Bound-
ary stereotypes. In the violation detection phase, given a
class or a program containing more than one class with no
stereotype labels (i.e., test data), we first predict the corre-
sponding stereotype for each class based on the model. We
then detect design defects by using the inferred stereotypes
verified against either robustness or well-formedness rules.

Extraction of
Basic Information

Extraction of
Basic

Feature
Construction

Model Learning

Training Data

Feature
Construction

Training Phase Violation Detection
Phase

Violation
Detection

Stereotype
Assignment

Stereotypes

Test Data

Violations Model

Figure 1. Design Flaw Detection Framework

There are five processes in the framework: extraction
of basic information, feature construction, model learning,
stereotype assignment, and violation detection. The follow-
ing paragraphs describe these processes in more detail.

Extraction of Basic Information. In this process, we ex-
tract information about the classes in each Java program
from its source code. The basic information we extract

Feature Description
Size Number of instructions that a class has
NOM Number of methods that a class has
ASize Average size of all the methods in a class
Fan-out Number of other classes that a class calls
Fan-in Number of other classes that call a class
GetCnt Number of getters method in a class
SetCnt Number of setters method in a class
CRUD Number of methods performing create, read, update, or delete to data

sources in a class

Table 2. Features Used in Our Statistical Model.

includes all the methods in each class, all the instructions
contained in each method, the call-relations among classes
(represented as call graphs), and the classes that contain op-
erations related to I/O or database operations. We built our
information extractor upon WALA [20].

Feature Construction. Based on the basic information, we
form features that could help in differentiating the training
classes belonging to each of the four given stereotypes. In
this work, we compute the set of features shown in Table 2
for each class. Instead of using absolute values for the fea-
tures, we normalize their values to be in the [0, 10] range.

Model Learning. In this process, we take the training
data with its features and learn a model that could dis-
criminate the four stereotype labels: Regular Entity, Data
Manager, Boundary, and Controller. We use Support Vec-
tor Machine (SVM) [5] for this task since it is a well-
known machine learning technique that has been shown to
have good accuracies in many application domains. Regu-
lar SVMs learn models that only discriminate between two
labels. We use an SVM extension handling multiple class
labels [4]. Implementation-wise, we use the publicly avail-
able SVMmulticlass [16].

Stereotype Assignment. We use the model learned in the
training phase and the features extracted from the test data
to assign stereotype labels to each class in the test data. We
use the classification capability of SVMmulticlass.

Procedure Violation Checking
Inputs:

R : A set of rules (e.g., robustness, well-formedness)
C : A set of classes
L: The corresponding stereotypes for the classes

Output: V : A set of violations against R
Method:
1: Let V = {}
2: Let RMap = Process R and represent it as a pair

⟨Caller , {Callee}⟩, where {Callee}
is the set of stereotypes that can be called
by the stereotype Caller as expressed in R.

3: For each class c in C
4: Let Caller = c’s stereotype
5: Let {Callee} = Caller ’s information in RMap
6: Let C ′ = All other classes that are called by c
7: For each class c′ in C ′

8: If c′’s stereotype /∈ {Callee}
9: V ← V + {c′} // A violation is found
10: OUTPUT V

Figure 2. Violation Detection

Violation Detection. After the stereotypes are inferred, we
can check for violations against a set of class design rules by

leveraging the caller-callee relations extracted from code,
and the inferred stereotypes. In this paper, we consider ro-
bustness rules [15] and well-formedness rules [14]. For a
set of rules, the automated rule checker performs the steps
shown in Figure 2 to search for violations. At line 1, we ini-
tialize the output set. At line 2, we represent a set of rules
as a set of pairs of valid interactions from a stereotype (i.e.,
classes with this stereotype) to other stereotypes. At line 3-
10, we visit each class and for each, we extract its stereotype
(line 4), other valid stereotypes that it could call (line 5), and
the set of other classes called by it (line 6). At line 7-8, we
check if any of the called classes has a stereotype that vio-
late the rule (i.e., not in the set {Callee}). If this is the case,
we record this violation at line 9. We finally report all vio-
lations found (line 10). For example, for the robustness rule
R3, given a class with stereotype Entity, any call from the
class to other Entity or Boundary classes will be reported as
a violation. As another example, for the well-formedness
rule W4, any call originated from a Control class is valid.

5 Empirical Evaluation

In this section, we describe our dataset and evaluate the
accuracies of our approach in inferring stereotypes and de-
tecting design flaws.

5.1 Dataset

We perform our evaluation on 15 Java projects devel-
oped by students of an object-oriented application devel-
opment (OOAD) course. The projects are all about a sin-
gle player hunting game. The number of Java classes per
project ranges from 36 to 67 with an average of 45. Each
project has 3431 to 9220 lines of code (including comments
and blank lines), with an average of 5168. We also per-
form experiment using a real open source software namely
OpenHospital, which is a hospital management system. The
system consists of 233 classes, with 59,087 lines of code.

For each project, we manually labeled the classes with
either Boundary, Control, (Regular) Entity, and Data Man-
ager. The manual labels provide us valid classes stereotypes
for the training phase and an oracle to measure the accuracy
of our approach in the testing phase.

5.2 Accuracy of Stereotype Inference

We employ ten-fold cross validation to evaluate our ap-
proach. It divides all data points (i.e. classes in a project)
into ten disjoint subsets of (approximately) equal size. To
obtain a representative training data, the classes of the same
stereotype are distributed over the subsets. Then, one sub-
set is used as test data, while the others are used as training
data. This process is repeated ten times (iterations); each
iteration uses a different subset as test data.

We evaluate the accuracy of a trained model in inferring
stereotypes as a ratio of number of correctly inferred class

Real Vs. Inferred Label Number and Proportion of Predicted Classes
Boundary Control Entity Data Man.

Boundary 81.35% 9.84% 1.04% 7.77%
Control 10.37% 58.54% 23.78% 7.32%
Entity 3.21% 2.88% 92.31% 1.60%
Data Manager 18.33% 6.11% 12.22% 63.30%

Table 3. Confusion Matrix of the Stereotypes Inferred

1 public class InventoryController{

2 private TrapDataManager trapDM;

3 private BaitDataManager baitDM;

4 private PlayerDataManager playerDM;

5 public InventoryController(){

6 { trapDM = TrapDataManager.getInstance();

7 baitDM = BaitDataManager.getInstance();

8 playerDM = PlayerDataManager.getInstance(); }

9 public void setTrap(Player p, int trapID)

10 { trapDM.setTrap(p, trapID); }

11 public ArrayList<Trap> retrieveAllTraps(String username)

12 { return trapDM.retrieveAllTraps(username); }

13 public void setBait(Player p, int baitID)

14 { baitDM.setBait(p, baitID); }

15 public ArrayList<Bait> retrieveAllBaits(String username)

16 { return baitDM.retrieveAllBaits(username); }

17 public ArrayList<InventoryItem> retrieveAllInventory(String username)

18 { return playerDM.retrieveAllPlayerInventory(username); }

19 public void readPlayerChoice(Player p, String choice)

20 { …

21 if (tOrBChoice == 'T')

22 { InventoryUI inventoryUI = new InventoryUI(); …}

23 else if (tOrBChoice == 'C'){

24 { InventoryUI inventoryUI = new InventoryUI(); …}

25 else{ InventoryUI inventoryUI = new InventoryUI();

26 System.out.println("Please enter a VALID item ID > "); }}

27 public String getBaitInUse()

28 { return baitDM.getBaitInUse(); } }

Figure 3. Example of a Wrongly Labeled Control Class

stereotypes with number of classes in test data. We compute
the accuracy for each iteration for each project and average
them as the accuracy of each project. The accuracy of our
approach is then computed by taking the average of the ac-
curacies of all projects, which is 77%.

We draw a confusion matrix to evaluate the accuracy
of each stereotype prediction produced by the trained
model [10]. A confusion matrix is a table with rows cor-
responding to real labels and columns corresponding to in-
ferred labels. A cell (X,Y) in the matrix corresponds to the
number of test data points with real label X that are assigned
label Y by a classifier/model. Table 3 shows the accuracy
of the inferred stereotypes in percentages.

Considering the diagonal entries of the matrix, we no-
tice that boundary and entity classes can be detected with
very good accuracies of more than 80%. However, it is
less accurate when assigning labels to control classes. Con-
trol classes are often confused with entity classes. Upon
inspection, we find that many students implement their con-
trol classes poorly. For example, consider the control class
named InventoryController in Figure 3. It is assigned an
entity stereotype by our approach. This is the case, as all of

the methods in this class except readPlayerChoice method
perform either get data operation (e.g., retrieveAllTraps) or
set data operation (e.g., setTrap). The control class simply
delegates the execution of these operations to the respective
data manager classes.

5.3 Accuracy of Design Flaw Detection

After the labels are inferred, we can detect design flaws
as violations of the robustness and well-formedness rules.
In this subsection, we show sample detected violations and
analyze the quality of our violation detection mechanism.

Sample Violations. Figure 4 shows an example where vio-
lations occur in a Boundary, a Control, and an Entity.

According to the robustness rule R2, a boundary can only
call controllers or actors. We detected a violation of R2 in
Code-1: the boundary class named RegistrationPage
calls an entity class named RegistrationManager
(lines 8 and 13). Note that this is not a violation when we
check it against the well-formedness rule W2.

Both robustness and well-formedness rules allow a con-
troller to interact with any class but not actors. In Code-2,
we detect a violation of the rules: the controller class named
SendingController calls System.out.println
(lines 6, 8, and 12) to display a message directly to a user
(i.e., an actor) and uses Scanner(System.in) (line 16)
to elicit inputs directly from the user.2

Robustness and well-formedness rules deal differently
with entity classes. The robustness rule R3 allows an en-
tity to call only controllers, while the well-formedness rule
W3 allows an entity to call only entities. Code-3 of Fig-
ure 4 shows that an entity class named Player violates
both of the rules: Player uses another entity Inventory
(line 4) and thus violates R3; It also uses a controller
StarbugsController (line 8) and thus violates W3.
In addition, this class interacts with an actor directly via
System.out.println (line 15), violating R3 and W3.

Quality of Detected Violations. With correct stereotype la-
bels, our checking mechanism will detect all violations per-
fectly (i.e., no false positives or negatives) as both robust-
ness and well-formedness rules are well specified. How-
ever, since stereotypes inferred by our approach could be
wrong, we may detect wrong violations (false positives) or
miss some violations (false negatives).

To measure false positives and negatives, we can simply
compare the violations detected with inferred labels against
those detected with correct labels: The size of the intersec-
tion of the two sets relative to the sizes of the two sets are
indicative of false positive rates and negative rates, which
can be measured by the notion of precision and recall. Pre-
cision is the ratio of inferred violations that are true and
recall is the ratio of true violations that are inferred.

2We have (manually) predefined a list of classes and functions that send or receive
messages to users which are treated as actors‘.

Class & Type Class Only
Evaluation Rob. Well. Rob. Well.
Precision 61.2% 74.6% 68.6% 69.9%
Recall 68.7% 61.8% 78.8% 59.8%

Table 4. Precision and Recall of Detected Anomalies for Robustness
Analysis (Rob.) and Well-Formedness Analysis (Well.)

Precision =
∥{Inferred V iolations} ∩ {True V iolations}∥

∥{Inferred V iolations}∥
.

Recall =
∥{Inferred V iolations} ∩ {True V iolations}∥

∥{True V iolations}∥
.

When comparing violations during the intersection op-
eration, we consider two equivalence criteria. One criterion
considers two violations are matched only if both the vio-
lating class (i.e., the class where the violation occurs) and
the type of the violation are matched (Class & Type). The
other considers only the violating class (Class Only).

The total numbers of true violations of robustness and
well-formedness rules are 244 and 138 respectively. The
total numbers of inferred robustness and well-formedness
violations are 255 and 112 respectively. The overall preci-
sion and recall of our approach is shown in Table 4. The
precision and recall values are aggregated averages across
many model building and testing iterations. We calculate
them using the two equivalence criteria.

Table 4 shows that violating classes (Class Only) can
be detected with precision and recall of 68.7% and 78.8%
(robustness), and 69.9% and 59.8% (well-formedness).
When considering both violating classes and violation types
(Class & Type), the precision and recall are reduced by
7.5% and 10.1% (robustness), and increased by 4.7% and
2% (well-formedness), due to some violations are detected
with correct violating classes but wrong violation types.

6 Discussion
Effects of Features Used. We used eight code features in
our experiments. It would be interesting to consider other
features, such as code complexity metrics, which might help
to improve the accuracy of the stereotype inference further.
The confusion matrix shown in Section 5.2 particularly sug-
gests more features related to controllers should be used to
reduce the number of confusion occurrences.

Effects of Dataset Investigated. We perform experiments
on software systems written by novice programmers and
one real medium-sized software system. These systems are
chosen based on the availability of the class labels. None
of the processes in our framework is expensive: basic in-
formation extraction, feature construction, model learning,
and stereotype assignment make use of an inexpensive static
analysis technique and a scalable classification engine, i.e.,
SVM. We believe the framework is able to process larger
programs. We plan to analyze larger systems in the future.

Effects of Design Rules Checked. We detected violations
against only robustness and well-formedness rules. There

Code - 1 Code - 2 Code - 3 1 public class RegistrationPage{ 1 public class SendingController 1 public class Player { 2 … 2 { 2 … 3 private RegistrationController RC=new RegistrationController(); 3 public void displayPlayer() 3 public Player(String username, String password, String rank, String region, int experience, int gold) 4 private RegistrationManager RM=RC.getRM(); 4 { ArrayList<Player> playerList = PlayerDataManager.retrievePlayers(); … 4 { … inventory = new Inventory(); } 5 public RegistrationPage() 5 if(playerList.size() < 2) { 5 public int getGold() 6 { Scanner sc= new Scanner(System.in); …. 6 System.out.println("There is no other 6 { try 7 username= sc.next(); 7 } else { 7 { Player p = this; 8 if(RM.usernameIsAvailable(username)) { 8 System.out.println("Which user ..."); 8 StarbugsController starbugsController = new 9 ... 9 for (int i = 0; i < playerList.size(); i++) 9 ArrayList<BaitLineItem> alBli = new ArrayList<BaitLineItem>(); 10 String password = 10 { Player aPlayer = playerList.get(i); 10 alBli = p.getInventory().getBaits(); 11 String confirmation 11 if(11 BaitLineItem currentBait = null; 12 if(confirmation.equals(password)) { …. 12 { System.out.println(... aPlayer.getName()); 12 currentBait = p.getInventory().getBait(); 13 RM.processRegistration(username,password); 13 playerID++; } }}} 13 if (alBli.isEmpty() && !(currentBait != null)) { 14 }else { ... } 14 public void displayGiftOption(Player recipient) 14 if (this.gold < 50) { 15 }else{ 15 { … 15 … System.out.println("Your gold …"); 16 System.out.println(username+" is already in use"); 16 Scanner sc = new Scanner(System.in); … 16 } } catch (Exception e) {} 17 }}} 17 } 17 return this.gold; }
Figure 4. Violations in Boundary, Controller, and Entity Stereotypes

are other design rules, for example, some design rules re-
lax the robustness rules by allowing direct interactions be-
tween Entity objects. Our approach can be easily extended
to handle such variants. However, if the design rules in-
volve constraints such as conditional call-relations, our vi-
olation checking mechanism would then need further im-
provements, such as, taking control-flow conditions embed-
ded in inter-procedural call graphs into consideration.

Threats to Validity. To reduce the threats to construct va-
lidity, we used standard evaluation metrics, namely accu-
racy, precision, and recall, which are commonly used in
data mining and information retrieval tasks. However, it
remains a question what is the effect of inaccuracies on pro-
gram comprehension. To answer this question, a user study
would be needed and is left as future work. To reduce the
threats to internal validity and selection bias, the 15 projects
used in the experiment are chosen randomly from a pool of
93 student projects. However, as aforementioned, there are
still threats to external validity on the generalizability of our
results. We plan to evaluate our framework on various types
of software systems of various sizes to alleviate the threats.

7 Conclusion & Future Work
In this paper, we present a framework that detects likely

design flaws in layered object-oriented architecture with
classes belonging to various stereotypes, which should fol-
low certain design rules. Also, to accommodate to sys-
tems without sufficient stereotype annotations, our frame-
work learns a statistical model to distinguish various class
stereotypes available from a training set. This model in turn
is used to give labels to unannotated classes. Likely de-
sign flaws are later detected by finding violations of well-
known design rules. We have evaluated our approach on
Java projects developed by novice and expert developers.
The results show that our approach can identify class stereo-
types with 77% accuracy on average and can detect vio-
lations of the design rules associated with each stereotype
with up to 75% accuracy and up to 79% recall.

In the future, we plan to further investigate more useful
features for the inference of class stereotypes and more soft-
ware systems. We believe our framework is general and can
be adapted for reverse engineering other kinds of domain-
specific stereotypes.
Acknowledgement. We would like to thank Yeow-Leong
Lee for providing some stereotype labels.

References
[1] O. Andriyevska, N. Dragan, B. Simoes, and J. Maletic. Evaluating uml class

diagram layout based on architectural importance. In VISSOFT, 2005.
[2] C. Atkinson, T. Kuhne, and B. Henderson-Sellers. Systematic stereotype us-

age. Software and Systems Modelling, 2:153–163, 2003.
[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language

User Guide. Addison-Wesley, 1999.
[4] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. JMLR, 2002.
[5] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-

chines: And Other Kernel-Based Learning Methods. Cambridge, 2000.
[6] N. Dragan, M. Collard, and J. Maletic. Reverse engineering method stereo-

types. In ICSM, 2006.
[7] N. Dragan, M. Collard, and J. Maletic. Automatic identification of class

stereotypes. In ICSM, 2010.
[8] M. Gogolla and B. Henderson-Sellers. Analysis of uml stereotypes in the uml

metamodel. In UML, 2002.
[9] Y.-G. Guéhéneuc and H. Albin-Amiot. Using design patterns and constraints

to automate the detection and correction of inter-class design defects. In
TOOLS USA, 2001.

[10] J. Han and K. Micheline. Data Mining Concepts and Techniques. Morgan
Kaufmann, 2006.

[11] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui. A bayesian ap-
proach for the detection of code and design smells. In QSIC, 2009.

[12] L. Kuzniarz, M. Staron, and C. Wohlin. An empirical study on using stereo-
types to improve understanding of UML models. In IWPC, 2004.

[13] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur. DECOR: A
method for the specification and detection of code and design smells. IEEE
TSE, 36:20–36, 2010.

[14] Rational Software et al. UML Extension for Objectory Process for Software
Engineering ver. 1.1, 1997.

[15] D. Rosenberg and K. Scott. Use case driven object modeling with UML: a
practical approach. Addison-Wesley, 1999.

[16] http://svmlight.joachims.org/svm_multiclass.html.
[17] P. Tarr, H. Ossher, W. Harrison, and S. S. Jr. N degrees of separation: Multi-

dimensional separation of concerns. In ICSE, 1999.
[18] A. Trifu and U. Reupke. Towards automated restructuring of object oriented

systems. In CSMR, 2007.
[19] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Guéhéneuc. Tracking design

smells: Lessons from a study of god classes. In WCRE, 2009.
[20] http://wala.sourceforge.net.

