
Active Refinement of Clone Anomaly Reports

Lucia, David Lo, Lingxiao Jiang, and Aditya Budi

School of Information Systems

Singapore Management University

{lucia.2009,davidlo,lxjiang,adityabudi}@smu.edu.sg

Abstract—Software clones have been widely studied in the
recent literature and shown useful for finding bugs because
inconsistent changes among clones in a clone group may
indicate potential bugs. However, many inconsistent clone
groups are not real bugs (true positives). The excessive number
of false positives could easily impede broad adoption of clone-
based bug detection approaches.

In this work, we aim to improve the usability of clone-based
bug detection tools by increasing the rate of true positives
found when a developer analyzes anomaly reports. Our idea
is to control the number of anomaly reports a user can see
at a time and actively incorporate incremental user feedback
to continually refine the anomaly reports. Our system first
presents top few anomaly reports from the list of reports
generated by a tool in its default ordering. Users then either
accept or reject each of the reports. Based on the feedback,
our system automatically and iteratively refines a classification
model for anomalies and re-sorts the rest of the reports. Our
goal is to present the true positives to the users earlier than
the default ordering. The rationale of the idea is based on
our observation that false positives among the inconsistent
clone groups could share common features (in terms of code
structure, programming patterns, etc.), and these features can
be learned from the incremental user feedback.

We evaluate our refinement process on three sets of clone-
based anomaly reports from three large real programs: the
Linux Kernel (C), Eclipse, and ArgoUML (Java), extracted by
a clone-based anomaly detection tool. The results show that
compared to the original ordering of bug reports, we can
improve the rate of true positives found (i.e., true positives
are found faster) by 11%, 87%, and 86% for Linux kernel,
Eclipse, and ArgoUML, respectively.

I. INTRODUCTION

Code clones, or pieces of similar code, commonly occur in

large software systems [1], [2] due to various reasons, which

range from improper code reuse via the prevalent copy-and-

paste practice, to the introduction of redundant code to im-

prove runtime efficiency and/or reliability of systems. They

have attracted many research interest and various studies on

detecting code clones [2]–[5], tracking and managing code

clones [6]–[8], and examining the harmfulness or usefulness

of code clones [9]–[11].

One important use of code clones is their applicability

in detecting bugs [11]–[16]. These clone-based anomaly

detection tools look for inconsistencies among code clones

in every clone group (i.e., a group of code fragments similar

to each other) and report them as anomalies (i.e., potential

bugs). For example, Li et al. [14] look for different identifier

names among clones and check whether all names are

changed consistently ; Jiang et al. [12] look at syntactical

structures of the code surrounding every clone, in addition

to the identifier names in clones, and report differences as

anomalies. Tens of true positives of diverse characteristics

from large systems, such as the Linux kernel and Eclipse,

have been found by these tools. Figure 1 shows a true

positive from the Linux kernel: there is a missing null-check

on the tmp variable in the code fragment 2. Such a detection

is possible because most parts of the two code fragments

(after the if condition) are detected as clones, and the code

surrounding the clones (which are the variable declaration

and the if condition) shows some structural differences (no

if in code fragment 2).

However, the set of reported anomalies can be huge, con-

taining hundreds or even thousands of reports. Among these

anomalies, only a small proportion are true positives; others

are benign variations among clones in a clone group, which

are intended changes rather than mistakes. The process of

verifying whether these anomalies are true or not can be

painstaking and time-consuming. Developers tend to give

up if many of the first set of anomaly reports that they

check are false positives. For example, Jiang et al. [12]

reported that among more than 800 reports generated by

their tool for the Linux kernel, only 57 are true bugs or

bad programming styles. Gabel et al. [15] applied more

advanced filtering techniques based on textual similarity and

sequence alignment on inconsistent clones detected from a

large commercial code base. They reported that among 500

manually checked anomaly reports (out of 8103 in total), 149

may be true bugs and 109 may be code smells, while the

rest is unsure. Hence, reducing the manual effort in locating

true positives in clone-based anomaly reports remains an

important task for wide adoption of such tools.

In this paper, we propose an active-learning and user-

feedback directed approach to help alleviate the problem

of false positives. The task is challenging as there are

only a few true positives embedded in a mass of false

positives. Our idea is to actively, iteratively incorporate user

feedbacks to refine anomaly reports. Users are presented

anomaly reports one by one; as a user labels the report

as a false positive or true positive, our system actively

updates the remaining set of anomaly reports. In so doing,

we aim to make true positives appear earlier in the list

Code Fragment 1 Code Fragment 2

File: linux-2.6.19/fs/sysfs/inode.c

219: struct dentry * dentry = sd->s_dentry;

220:

221: if (dentry) {

/* the following parts are detected as clones */

222: spin_lock(&dcache_lock);

223: spin_lock(&dentry->d_lock);

224: if (!(d_unhashed(dentry) && dentry->d_inode)) {

225: dget_locked(dentry);

226: __d_drop(dentry);

227: spin_unlock(&dentry->d_lock);

228: spin_unlock(&dcache_lock);

229:

File: linux-2.6.19/drivers/infiniband/hw/ipath/ipath_fs.c

456: struct dentry *tmp;

457:

458: tmp = lookup_one_len(name, parent, strlen(name));

459:

460: spin_lock(&dcache_lock);

461: spin_lock(&tmp->d_lock);

462: if (!(d_unhashed(tmp) && tmp->d_inode)) {

463: dget_locked(tmp);

464: __d_drop(tmp);

465: spin_unlock(&tmp->d_lock);

467: spin_unlock(&dcache_lock);

468:

Code Fragment 1 Code Fragment 2

File: linux-2.6.19/fs/sysfs/inode.c

219: struct dentry * dentry = sd->s_dentry;

220:

221: if (dentry) {

/* the following parts are detected as clones */

222: spin_lock(&dcache_lock);

223: spin_lock(&dentry->d_lock);

224: if (!(d_unhashed(dentry) && dentry->d_inode)) {

225: dget_locked(dentry);

226: __d_drop(dentry);

227: spin_unlock(&dentry->d_lock);

228: spin_unlock(&dcache_lock);

229:

File: linux-2.6.19/drivers/infiniband/hw/ipath/ipath_fs.c

456: struct dentry *tmp;

457:

458: tmp = lookup_one_len(name, parent, strlen(name));

459:

460: spin_lock(&dcache_lock);

461: spin_lock(&tmp->d_lock);

462: if (!(d_unhashed(tmp) && tmp->d_inode)) {

463: dget_locked(tmp);

464: __d_drop(tmp);

465: spin_unlock(&tmp->d_lock);

467: spin_unlock(&dcache_lock);

468:

Figure 1. A sample bug (missing null-check) revealed by contextual inconsistency among clones in a clone group from the Linux kernel – compare

lines 221 & 224 in code fragment 1 with lines 459 & 462 in code fragment 2.

G# Code Clone 1 Code Clone 2

1 File: linux-2.6.19/fs/nfsd/nfs3xdr.c

423: if (!(p = decode_fh(p, &args->fh))

424: || !(p = decode_filename(p, &args->name, &args->len))

425: || !(p = decode_sattr3(p, &args->attrs)))

426: return 0;

File: linux-2.6.19/fs/nfsd/nfsxdr.c

344: if (!(p = decode_fh(p, &args->ffh))

345: || !(p = decode_fh(p, &args->tfh))

346: || !(p = decode_filename(p, &args->tname, &args->tlen)))

347: return 0;

2 File: linux-2.6.19/drivers/hwmon/lm87.c

688: if ((err = device_create_file(&new_client->dev,

689: &dev_attr_in6_input))

690: || (err = device_create_file(&new_client->dev,

691: &dev_attr_in6_min))

692: || (err = device_create_file(&new_client->dev,

693: &dev_attr_in6_max)))

694: goto exit_remove;

File: linux-2.6.19/drivers/hwmon/gl520sm.c

615: if ((err = device_create_file(&new_client->dev,

616: &dev_attr_in4_input))

617: || (err = device_create_file(&new_client->dev,

618: &dev_attr_in4_min))

619: || (err = device_create_file(&new_client->dev,

620: &dev_attr_in4_max)))

621: goto exit_remove_files;

G# Code Clone 1 Code Clone 2

1 File: linux-2.6.19/fs/nfsd/nfs3xdr.c

423: if (!(p = decode_fh(p, &args->fh))

424: || !(p = decode_filename(p, &args->name, &args->len))

425: || !(p = decode_sattr3(p, &args->attrs)))

426: return 0;

File: linux-2.6.19/fs/nfsd/nfsxdr.c

344: if (!(p = decode_fh(p, &args->ffh))

345: || !(p = decode_fh(p, &args->tfh))

346: || !(p = decode_filename(p, &args->tname, &args->tlen)))

347: return 0;

2 File: linux-2.6.19/drivers/hwmon/lm87.c

688: if ((err = device_create_file(&new_client->dev,

689: &dev_attr_in6_input))

690: || (err = device_create_file(&new_client->dev,

691: &dev_attr_in6_min))

692: || (err = device_create_file(&new_client->dev,

693: &dev_attr_in6_max)))

694: goto exit_remove;

File: linux-2.6.19/drivers/hwmon/gl520sm.c

615: if ((err = device_create_file(&new_client->dev,

616: &dev_attr_in4_input))

617: || (err = device_create_file(&new_client->dev,

618: &dev_attr_in4_min))

619: || (err = device_create_file(&new_client->dev,

620: &dev_attr_in4_max)))

621: goto exit_remove_files;

Figure 2. False positive clone groups in Linux Kernel. Each row is a pair of inconsistent clones which do not correspond to bugs. Each pair of clones

involve the same numbers of if statements, || operators, function calls, and assignments.

Table I
INFORMAL ILLUSTRATION: REFINEMENT PROCESS

Case 1: Without refinement

Jack is presented with 500 bug reports. He investigates the first 100, and can find

five true positives. If the bugs are mission critical, it’s worth the effort.

Case 2: With refinement

Jack is presented with 500 bug reports. As he navigates through the bug reports

and labels each of them as true bugs or false positives, the system automatically

reorders the remaining unlabeled bug reports. He can now find ten true positives

after investigating 100 reports. Jack’s productivity in finding bugs is doubled.

of all anomaly reports. Thus, we provide a feedback loop

between bug detection tools and developers, and help to

improve the quality of anomaly reports and reduce the effort

of manual investigation. As an informal illustration consider

two scenarios in Table I.

Now we describe how this active refinement of anomaly

reports could be performed. Conceptually, we divide the

space of possible clone groups into four quadrants as shown

in Figure 3. The columns separate clone groups that have

inconsistencies from those that do not; The rows separate

clone groups that allow variations (i.e., flexible) from those

that do not (i.e., rigid). A rigid clone group is a set of

clones where variations among clones are harmful; a flexible

clone group is a set of clones where variations are benign1.

Current clone-based anomaly detection tools would separate

clone groups in the two quadrants on the left from those

in the two quadrants on the right. However, clone groups

in the bottom left quadrant would be all false positives

since the inconsistent changes in those clones are allowed

or intentional and should not be reported as anomalies. The

1Both notions allow gapped clones, and are orthogonal to the concept of
gapped clones.

Rigid

Flexible

Inconsistent Consistent

True Positive

Figure 3. Clone Group’s Four Quadrants

goal of our approach is to learn a discriminative model to

provide the likelihood of a clone group belonging to the top

left quadrant (i.e., rigid but inconsistent) versus belonging

to the bottom left quadrant (i.e., flexible and inconsistent).

Then, this model can be used to re-sort the list of anomaly

reports and make true positives appear earlier in the list.

We observe that false positives could be similar to one

another in certain ways. For example, consider the code

snippets in Figure 2 containing two clone groups with two

clones each. All of code snippets involve the same number

of if statements, || operators, function calls, and assign-

ments, but they are quite different from the true positive

shown in Figure 1. Thus, the intuition of our approach is

that false positives may have similar characteristics among

themselves, but they have different characteristics from true

positives, and differences between false and true positives

could be leveraged to build a discriminative model.

In order to characterize the similarities and differences

among clones, we convert each clone group into a set of

features. These features are built from the various syntactical

patterns in the clones of each group. A discriminative model

is a composition of features that collectively capture the dif-

ferences between false and true positives. Often such models

are built from a fixed static training dataset, e.g., [17],

[18]. However, in our bug refinement process, the training

dataset is incrementally updated as a new anomaly report

is inspected and marked by a developer as either a false or

true positive, and we would like to build our discriminative

model based on such a dynamic training dataset.

We propose a framework consisting of a refinement engine

that leverages user feedbacks and is iteratively invoked.

People need to take action on anomaly reports, to either get

bugs fixed or discard them. Our feedbacks are from such

actions and no extra effort is needed. The refinement engine

is composed of a feature extractor, a pre-processor, and a

classifier arranged in a pipeline. It takes in the feedbacks

given so far to build and refine discriminative models. The

resultant discriminative model in each iteration is used to

refine the remaining uninvestigated anomaly reports.

We evaluate our framework on three sets of clone anomaly

reports for three large programs: the Linux kernel (C),

Eclipse, and ArgoUML (Java) [12] extracted by a clone-

based anomaly detection tool. Our evaluation shows that

compared to the original ordering of bug reports, we can

improve the average percentage of true positives found, an

evaluation metric adopted from the test case prioritization

community [19], by 11%, 87%, and 86% for the Linux

kernel, Eclipse, and ArgoUML respectively.

The main contributions of this work are as follows:
1. We present the topic of refining clone anomaly reports.

2. We propose an active learning approach to incremen-

tally refine anomaly reports with user feedbacks.

3. We present an engine that learns discriminative models

that can assign the likelihood of each anomaly report

being a false positive.

4. We evaluate our proposed approach on three large

systems—the Linux Kernel, Eclipse, and ArgoUML—

with promising results.

This paper is organized as follows. We describe related

work in Section II. In Section III, we review the concept of

clone-based anomaly detection. In Section IV, we describe

our overall active refinement framework which iteratively

invokes a refinement engine. We elaborate this engine in

Section V. Our evaluation metric is described in Section VI.

In Section VII, we describe our evaluation results on three

large software systems. We conclude and mention potential

future work in Section VIII.

II. RELATED WORK

There are many studies in software engineering that are

related to our work. We summarize them in the following.

1) Code Clone Analysis and Clone-Based Bug Detection:

Code clones have been widely studied in the literature.

Some studies focus on detection of code clones, based on

similarities among strings, tokens, syntax trees, dependency

graphs, and even functionalities [2]–[4], [14], [20]–[22].

Clones are traditionally thought as harmful, and techniques

have been proposed to reduce clones [23], [24]. On the

other hand, some studies show that clones can be useful

and necessary [9], [10]. Then, instead of reducing clones,

some studies investigate techniques to track and manage

code clones [7], [8], [25].

One important use of code clones is to detect bugs. A

number of studies detect bugs by detecting inconsistencies

among clones [11], [12], [14]–[16]. Such inconsistence-

based detection of clone-related bugs often produces many

false positives, and uses various filtering rules to reduce

false positives. However, even with the most recent filtering

techniques, such as ones based on textual similarity and

sequence alignment [15], false positive rates remain high.

Compared with these studies that use filtering-based ap-

proaches to remove reports which may cause false negatives,

our approach actively and incrementally refines and re-

ranks anomaly reports based on user feedbacks without

removing any report. The code features used in our re-

ranking are also different from those papers. Our work is not

an alternative, but rather a complement of others. Filtering-

based approaches (which still leave many false positives

behind) may be applied first, then our work refines the

filtered reports as users take actions, e.g., to fix an anomaly

if it is a true positive.

2) Bug Prediction and Triage: Many studies aim to predict

whether certain code changes or files may contain faults.

Kim et al. [26], [27] use bug history to predict faults.

Ruthruff et al. [28] use logistic regression models from

historical data to predict whether a warning generated by

FindBugs is actionable. Zimmermann et al. [29] have studied

the accuracies of bug prediction models that may be used

across various projects in various domains.

Other studies aim to reduce similar bug reports or priori-

tize bug reports. Podgurski et al. [30] group software failures

with similar symptoms together. Kremenek and Engler [31]

propose z-ranking to order bug reports produced by a static

program checking analysis tool. Heckman and William [32]

propose FAULTBENCH, a benchmark for evaluating alert

prioritization and classification techniques. These ranking

models only perform reordering of bug reports once.

Our approach is different from the above studies in several

aspects. We focus on anomaly reports generated by a clone-

based anomaly detection tool, instead of reports from users.

We reorder anomaly reports, while most other studies filter

reports. Filtering anomaly reports carries a risk of removing

true positives. Filtering and reordering are complementary as

we could first filter and then re-order anomaly reports. Some

studies leverage historical data to prioritize anomaly reports,

while we leverage immediate user feedbacks to iteratively

prioritize clone-based anomaly reports.

III. CLONE-BASED ANOMALY DETECTION

Clone-based bug detection techniques [12], [14] are based

on code clone detection and the concept of contextual

consistency. The intuition behind the technique is that code

clones should be inherently similar to each other, and incon-

sistent changes to the clones themselves or their surrounding

code (which are called contexts) may indicate unintentional

changes, bad programming styles, and bugs.

The technique in [12] is summarized as follows:

1) It uses a code clone detection tool, DECKARD [5], to

detect code clones in programs. The output of this step

is a set of clone groups, where each clone group is a

set of code pieces that are syntactically similar to each

other (a.k.a. clones);

2) Then, it locates the locations of every clone in the

source code and generates parse (sub)trees for them;

3) Next, it detects inconsistencies among the parse trees of

the clones and their contexts, e.g., whether the clones

contain different numbers of unique identifiers, and how

the language constructs of the contexts are different.

The inconsistencies are then ranked heuristically based

on their potential relationship with bugs. Inconsistent

clones unlike to be buggy are also filtered out.

4) Finally, it outputs a list of anomaly reports, each of

which indicates the location of a potential bug in the

source code, for developers to inspect.

It has been reported that this technique has high false

positive rates, even though it can find true bugs of diverse

characteristics that are difficult to detect by other techniques.

For example, among more than 800 reported bugs for the

Linux Kernel, only 41 are true bugs and another 17 are bad

programming styles; among more than 400 reported bugs

for the Eclipse, only 21 are true bugs and 17 are issues with

bad programming styles [12].

IV. OVERALL REFINEMENT FRAMEWORK

A typical clone-based anomaly detection system performs

a single batch analysis where a static set of anomaly or bug

reports (ordered or unordered) are produced. It requires no

or little user intervention (e.g., setting some parameters),but

may produce many false positives. To alleviate this problem,

we propose an active learning approach that can dynamically

and continually refine anomaly reports based on incremental

user feedbacks; each feedback is immediately incorporated

by our approach into the ordering of anomaly reports to

move possible true positive reports up in the list while

moving likely false positives towards the end of the list.

Our proposed active refinement process supporting user

feedbacks is shown in Figure 4. It is composed of five

parts corresponding to the boxes in the figure.2 Let us

refer to them as Block 1 to 5 (counter-clockwise from left

to right). Block 1 represents a typical batch-mode clone-

based anomaly detection system. Given a program, the

system identifies parts of the program that are different

from the norm, where the norm corresponds to the common

2A square, a trapeze, and a parallelogram represent a process, a manual
operation, and data respectively.

Anomaly Detection

System

Refinement

Engine

<<Refinement Loop>>

1

5

User

Feedback

4

Sorted

Bug Reports 2

First Few Bug

Reports 3

Figure 4. Active Refinement Process

characteristics in a clone group. Then, the set of anomalies or

bugs (i.e., Block 2) is presented for manual user inspection.

We extend such typical clone-based anomaly detec-

tion systems by incorporating incremental user feedbacks

through the feedback and refinement loop starting at Block

2 followed by Blocks 3, 4, and 5, and back to Block 2. At

Blocks 3 and 4, a user is presented with a few bug reports

and is asked to provide feedbacks on whether the reports he

or she sees are false or true positives. These feedbacks are

then fed into our refinement engine (i.e., Block 5) to update

the original or intermediate lists of bug reports.

With user feedbacks, the refinement engine analyzes the

characteristics of both false positives and true positives

labeled by users so far and hypothesizes about other false

positives and true positives in the list based on various clas-

sification and machine learning techniques. This hypothesis

is then used to rearrange the remaining bug reports. It is

possible that a true positive, that is originally ranked low, is

moved up the list; a false positive, that is originally ranked

high, is “downgraded” or pushed down the list.

The active refinement process repeats and users are asked

for more feedbacks. With more iterations, more feedbacks

are received, and a better hypothesis can be made for the

remaining unlabeled reports.

The ultimate goal of our refinement process is to produce

a better ordering of bug reports so that true positive reports

are listed first ahead of false positives, which we refer to

as the bug report ordering problem. With better ordering,

true positives can be identified earlier without the need to

investigate the entire report list. With less false positives

earlier in the list, a debugger can be encouraged to continue

investigating the rest of the reports and find more bugs in a

fixed period of time. If all (or most) of the true positives can

appear early, a debugger may stop analyzing the anomaly

reports once he or she finds many false positives.

V. REFINEMENT ENGINE

This section elaborates our refinement engine further. Our

refinement engine takes in a list of anomaly reports and

refines it by reordering the reports. Each anomaly report

is a set of code clones (i.e., a clone group) which contain

inconsistencies among the clones. Given a list of anomaly

reports, ordered either arbitrarily or with some ad-hoc cri-

teria, and user-provided labels (i.e., true positives or false

Input: Bug Report List

Feature Extraction From Source Code

Classification

Pre-Processing

Feature

Selection

Balancing

Reordered Input

Discriminative Model

2

3

4

1

5

6

Figure 5. Refinement Engine

positives) for some of the reports, our refinement process

reorders unlabeled anomaly reports based on the predicted

likelihood of each of them being true positives. Figure 5

shows our refinement engine that is composed of mainly

three blocks: feature extraction, pre-processing (including

feature selection and data balancing), and classification.

The feature extraction is meant to transform each clone

group into a set of features, where each feature is simply

a quantitative value that represents a certain property of the

code. The set of features is also referred to as a data point.

In our case, we apply feature extraction to each inconsistent

clone group reported by the clone anomaly detection tool

and collect a set of data points (a.k.a. a dataset) for all

clone groups in the reported list.

This feature set is then fed to the preprocessor, which

analyzes the data points, and may remove some features or

data points from the dataset. Its goal is to smooth over data

“noise” as much as possible before classification.

The classifier then takes a preprocessed dataset to mine a

classification model that can discriminate features belonging

to one class from the other. In our setting, the two classes

are false positive class and true positive class. We use class

labels (False and True) to indicate whether a clone group

is a false or true positive. This mined model in turn is used to

predict the class labels of the reported clone groups that have

received no user feedback. We also make our classification

engine to provide the degree of likelihood for a clone group

to be in each of the two classes, which is used as a key to

rank and sort unlabeled clone groups.

A. Feature Extraction

Our feature extraction block analyzes parse trees which

are commonly used to represent programs written in various

languages. As a benefit, it is easier to adopt our refinement

engine to code written in different programming languages.

A parse tree node is labeled with different information to

represent various program constructs e.g., for, switch, etc.

Each clone is reported as a sub-tree rooted in a particular

node in a parse tree. The feature extraction would construct

parse trees for every reported inconsistent clone group and

traverse the trees to collect features. More specifically, it

performs the following two steps:

1) Tree Construction: For each clone in the anomaly

reports, we invoke a parser on the source file containing

the clone to construct a parse tree for the file; each node

in the tree contains a label indicating its type (e.g., for,

if, assignment, etc.). Then, we locate the root node of

the subtree that corresponds to the clone. We refer to this

subtree as a clone tree. We also locate the first ancestor node

of this subtree that corresponds to the containing scope of

the clone in the source file, and refer to the subtree rooted

at this ancestor node as a clone ancestor tree.

Clone ancestor trees correspond to more code than clone

trees. They may contain more information that could help

decide whether an anomaly report is false or true positive.

Thus, we extract features from clone ancestor trees.

2) Representing Clone Ancestor Trees as Features: We

define five sets of features that could be extracted from

a clone ancestor tree, namely: basic, pair, proportional-

basic, proportional-pair, and rich. Consider a clone group

CG containing a set of clones corresponding to a set of

clone ancestor trees, the five sets of features are defined in

Definitions 5.1, 5.2, 5.3, 5.4, and 5.5. Rich features belong

to the most comprehensive feature set that is a superset of

the other four feature sets. Our engine would convert the

clone ancestor trees into rich features.

Definition 5.1 (Basic Features): The basic feature set

(Basic) of a clone group CG is the set of type-count pairs

in which each pair contains a node type and the number of

parse trees in CG having that particular type. For example,

considering the trees in Figure 6, the basic feature set

contains the following pairs: 〈Call, 2〉, 〈Name, 2〉, 〈Expr-

list, 2〉, and 〈Expr, 2〉. Mathematically, Basic(CG) =
∣

∣

∣

∣

(t, |CS|), where
CS = {c ∈ CG | c has a node of type t} ∧ |CS| > 0

∣

∣

∣

∣

Definition 5.2 (Pair Features): The pair feature set (Pair)

of a clone group CG is the set of type-count pairs in which

each pair contains a pair of node types and the number of

parse trees in CG having that particular pair. For example,

considering the trees in Figure 6, the pair feature set contains

the following pairs: 〈Call/Name, 2〉, 〈Call/Expr-list, 2〉,
and 〈Expr-list/Expr, 2〉. Mathematically, Pair(CG) =
∣

∣

∣

∣

∣

∣

((t1, t2), |CS|), where
CS = {c ∈ CG | ∃n1,n2∈c.n1 & n2 are connected ∧
n1 is of type t1 ∧ n2 is of type t2} ∧ |CS| > 0

∣

∣

∣

∣

∣

∣

Definition 5.3 (Proportional Features—Basic):

The proportional-basic feature set (Prop-Basic) of a clone

group CG is the set of type-count pairs in which each

pair contains a node type and the proportion of parse

trees in CG having that particular type. For example, con-

sidering the trees in Figure 6, the Prop-Basic feature set

Code clone 1:

...

decode_sattr3(p, &args->attrs)

...

Code clone 2:

...

decode_filename(p, &args->tname, &args->tlen)

...

Type Count

Call 2

Name 2

Expr-list 2

Expr 2

Basic

Type Count

Call / Name 2

Call / Expr-

list
2

Expr-list /

Expr
2

Pair

Type Proportion

Call / Name 100%

Call / Expr-list 100%

Expr-list / Expr 100%

Prop-Pair

Type Proportion

Call 100%

Name 100%

Expr-list 100%

Expr 100%

Prop-Basic

Type Value

Num 2

Avg 5.5

Other

Call

Name
Expr-

list

Expr Expr

Call

Name
Expr-

list

Expr Expr
Expr

Rich

Clone Group

Figure 6. Feature Extraction

contains the following pairs: 〈Call, 100%〉, 〈Name, 100%〉,
〈Expr-list, 100%〉, and 〈Expr, 100%〉. Mathematically,

PrBasic(CG) =
∣

∣

∣

∣

∣

(t, |CS|
|CG|), where

CS = {c ∈ CG | c has a node of type t} ∧ |CS| > 0

∣

∣

∣

∣

∣

Definition 5.4 (Proportional Features—Pair):

The proportional-pair feature set (Prop-Pair) of a clone

group CG is the set of type-count pairs in which each

pair contains a pair of node types and the proportion of

parse trees of CG having that particular pair. For exam-

ple, considering the trees in Figure 6, the Prop-Pair fea-

ture set contains the following pairs: 〈Call/Name, 100%〉,
〈Call/Expr-list, 100%〉, and 〈Expr-List/Expr, 100%〉.
Mathematically, PrPair(CG) =
∣

∣

∣

∣

∣

∣

((t1, t2),
|CS|
|CG|), where

CS = {c ∈ CG |∃n1,n2∈c.n1 & n2 are connected ∧
n1 is of type t1 ∧ n2 is of type t2} ∧ |CS| > 0

∣

∣

∣

∣

∣

∣

Definition 5.5 (Rich Features): The rich feature set

(Rich) of a clone group CG is the union of the Basic,

Pair, Prop-Basic, Prop-Pair feature sets, plus two additional

features: the number of clones in CG (Num), and the

average size of the clones in CG (Avg). For example,

considering the trees in Figure 6, the Rich feature set is the

union of other features sets plus two additional features:

〈Num, 2〉, and 〈Avg, 5.5〉. Mathematically, Rich(CG) =

Basic(CG) ∪ Pair(CG) ∪ PrBasic(CG) ∪

PrPair(CG) ∪ {(Num, |CG|), (Avg, Σc∈CG.|c|
|CG|)}

B. Preprocessing

We consider two pre-processing options: feature selection

and dataset re-balancing. Feature selection is to reduce

the number of features by removing unimportant ones.

Unimportant features are noise and are good to be removed.

Also, as our data contains much more false positives than

true positives, we need to re-balance the dataset; otherwise

the discriminative model would be biased to always label

unknown reports as false positives.

1) Feature Selection: Various approaches have been pro-

posed to select important features. Information gain has been

widely used to evaluate the usefulness of a feature, e.g., [33].

If we use c to denote the class labels (true positive [+ve
class] vs. false positive [−ve class]), and use f to represent

a feature, then information gain of f is defined as in Eq.(1).

IG(c|f) = H(c)−H(c|f) (1)

where H(c) = −
∑

ci∈{±ve} P (ci) logP (ci) is the entropy

and H(c|f) = −
∑

P (f)
∑

ci∈{±ve} P (ci|f) logP (ci|f) is

the conditional entropy given the feature f .

We select important features based information gain and

the Weka toolkit [34] with its default configuration.

2) Dataset Re-balancing: To re-balance the dataset, we

reduce the number of data points in the larger class. We

retain all data points in the smaller class. For each data point

in the smaller class, we find the most similar data points in

the other class and retain it—cosine similarity [35] between

two feature sets corresponding to the two data points is

used as the similarity measure. Other data points in the

larger class are dropped. This is motivated by the nearest

neighbor approach by Renieris and Reiss that localizes bugs

by comparing the nearest faulty and correct executions [36].

In their setting, they also have the issue of imbalanced

dataset: correct executions are many more than faulty ones.

C. Classification

The classification block takes preprocessed datasets and

learns a discriminative model that discriminates true posi-

tives from false ones. We refer to the true and false positives

as class labels. The purpose of a discriminative model

is to take an unlabeled datapoint (i.e., a datapoint or an

anomaly report that is not known to be a true positive or

a false positive) and assign a class label to it. To produce

a discriminative model, the classifier learns from a given

labeled training data points. In our case, the training data

points are the clone reports that have been investigated by

developers to be true positives or false positives.

In this paper, we use a variant of nearest neighbor clas-

sification scheme, namely nearest neighbor with non-nested

generalization (NNGe) [37]. Nearest neighbor classification

has been proved successful for various tasks, e.g., [38]. Also,

this technique matches our intuition: an instance similar to

known false positives is likely to be a false positive. Our

initial study showed that NNGe performs no worse than

other common classification approaches. We describe the

technique in the following.

1) Nearest Neighbor with Non-Nested Generalization:

As its name suggests, in nearest neighbor classification,

unknown data would be assigned with the same label as its

nearest neighbor. The time needed to build a model would

be little as it only involves index building and distance

calculation [39].

The nearest neighbor approach can not generalize or group

several data points together, which potentially reduces its

classification accuracy. Thus, it has been extended with

generalization [40]. Rather than loading all data points into

the memory, the training phase constructs multi-dimensional

rectangles (i.e., hyper-rectangles) that generalize a few data

points in a multi-dimensional space. This approach has

poor performance on some settings due to nested gener-

alization (i.e., hyper-rectangles are contained inside other

hyper-rectangles or overlap with one another) [41]. Martin

addresses this issue by proposing nearest neighbor with non-

nested generalization (NNGe) [37] which we use in this

work. In particular, we use the implementation available in

Weka [34] with its default distance function.

In this work, we extend NNGe to output the likelihood

for a data point dp to belong to each of the two classes

(i.e., true positives (T) and false positives (F)). Let’s refer

to the set of exemplars, the set of exemplars with label

T, and the set of exemplars with label F as D, DT , and

DF , respectively. Also, considering an exemplar d, let

sim(dp, d) = 1 − dist(dp, d), where dist(dp, d) is the

distance between dp to the exemplar d which ranges from

0 to 1. Our likelihood measure to re-sort the bug reports is

given by the following formula:

LH(dp) = 0.5 +
RS(dp)

2

RS(dp) =
|
∑

dT∈DT
sim(dp, dT)|

|DT |
−
|
∑

dF∈DF
sim(dp, dF)|

|DF |

The LH measure corresponds to the normalized relative

similarity of a datapoint dp to the datapoints in DT as

compared to those in DF . Bug reports with higher LH are

more likely to be true positives and would be listed first.

D. Concrete Refinement Process

Algorithm 1 is the pseudo-code of our refinement process.

It takes in several parameters: the list of bug reports (BR)

from a bug detection tool, the initial number of bug reports

to be labeled (k), and the feedback pool size (p). The

process would be bootstrapped by manually labeling the

first k bug reports which are used to train an initial model

(Lines 1–5). The classification model is then used to re-

sort the unlabeled bug reports (Line 6). The next top p
reports are presented for user feedback (Lines 7–8). We

only repeat the refinement process after p new feedback are

obtained. Then, the feedback are incorporated by learning a

new discriminative model and applying it to the remaining

unlabeled bug reports in the refinement loop (Lines 3–14).

When the false positive rate goes too high, a user can choose

to stop the refinement process (Lines 10–11).

With accumulated user feedback (Lines 8 and 13), the

refinement process can incrementally improve the classifi-

cation and ranking accuracy of the discriminative models so

that true positives can be ranked higher.

Algorithm 1 Clone Report Refinement Process

Input: BR: Bug Reports

k: Initial set of bug reports to be labeled

p: Feedback pool size

Output: Re-ordered Bug Reports

1: Let BK = Select the first k bug reports

2: Label all bug reports in BK (manual)

3: Let FK = Features extracted from BK

4: Perform pre-processing on FK

5: Let M = Classification model created from FK

6: Refine BR using M

7: Let BP = Select the new top p unlabeled bug reports

8: Ask for user feedback on bug reports in BP

9: Let FPRate = Compute false positive rate

10: If FPRate is too high (based on user feedback)

11: Stop

12: Else

13: Set BK = BK ∪ BP

14: Goto 3

VI. EVALUATION CRITERIA

In this section we define a suitable metric to measure

the quality of the re-sorted bug reports to evaluate the

effectiveness of our active refinement process.

Our refinement process is effective if it could re-sort the

reports such that all reports corresponding to true positives

are listed first. As an illustration, consider a scenario where

our refinement process starts with a set of k labeled bug

reports and there are m true positive reports among the

remaining unlabeled reports. The ideal situation happens

when all m other true positives are listed in the (k+1)th to

(k+m)th positions after the refinement process. The worst

case happens when the true positives are listed as the last

m reports after refinement.

To measure the quality of the refinement process, we

adapt a measure proposed in test case prioritization area—

average percentage faults detected (APFD) [19]. There are

a number of similarities between test case prioritization and

our problem. In test case prioritization, test cases need to

be sorted (i.e., prioritized) in the order of their likelihood

to reveal program failures. Also, there is a need to measure

and compare the quality of different test case orderings.

In [19], a graph capturing the cumulative proportion of

faults captured as more test cases are run is plotted. APFD

defined as the area under this curve measures the rate of fault

detection. In our work, we use the same concept and plot a

graph capturing the cumulative proportion of true positives

found as more anomaly reports are inspected by users. We

refer to this graph as the cumulative true positives curve.

In the cumulative true positives curve, a larger area under

the curve indicates that more true positives are found by

developers early, which means that the refinement process

effectively re-sorts the anomaly reports. Consider the sample

graphs in Figure 7 and assume that there are five true

positives among 10 reports. Each of the five increments

in each of the two cumulative curves corresponds to when

each of the five true positives is found. The left curve

shows that true positives are found at positions 1, 2, 3,

7, and 8. The right curve shows that true positives are

found at positions 1, 2, 3, 4, and 5. Using the original

list of reports (left), the developer could only find three

true positives by investigating the first six reports. Using

the refined list produced by the refinement process (right),

five true positives are found in the first six reports. Hence,

by performing the same number of inspections (which may

correspond to the time budget a developer has in real-world

situations), the developer could find more true positives

using the refined report list as compared to the original one.

In this case, the refined report list has a better true positive

detection rate. In the graphs, this improvement is indicated

by a larger area under the curve for the refined report list.

The idea of using APFD as the evaluation criteria for

bug finding is also used by Kremenek and Engler [31].

Following the same idea, we define average percentage true

positives found (APPF) as the area under the cumulative

true positives curve. Our goal is to improve the APPF score

which measures the rate of true positives found. We illustrate

APPF improvement computation in Figure 7.

VII. EMPIRICAL EVALUATION

In this section, we describe our experimental settings, our

evaluation results, and the threats to validity.

A. Settings and Results

1) Settings: We evaluate our approach on clone-based

anomaly reports for three real programs written in different

0

20

40

60

80

100

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Cumulative True Positives Curve

%
T

ru
e

P
o

si
ti

v
e
s

F
o

u
n
d

% Bug Reports Investigated

APPF=62%

0

20

40

60

80

100

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Cumulative True Positives Curve

%
T

ru
e

P
o

si
ti

v
e
s

F
o

u
n
d

% Bug Reports Investigated

APPF=72%

Original

APPF Improvement = (70-62)/62 = 12.9%

Refined

Figure 7. Computing and Comparing APPF

programming languages: the Linux kernel (C), Eclipse and

ArgoUML (Java). We analyze the reports generated by Jiang

et al. [12]. We choose these reports as they contain a large

number of false positives. There are more than 800 anomaly

reports (i.e., clone groups) for the Linux kernel, and only

57 of them are true positives or programming style issues.

There are more than 400 anomaly reports for Eclipse, and

only 38 of them are true positive. There are more than 50
anomaly reports for ArgoUML, and only 15 of them are true

positive. Finding a few true positives on the large number

of false positives is a challenging task that would stress test

the usability of our approach. The authors from [12] have

manually labeled all the reported inconsistent clone groups

from the Linux kernel and Eclipse as either true positives or

false positives. We manually label the reported inconsistent

clone groups from ArgoUML. We use these clone groups

and their labels to simulate initial and incremental user

feedbacks as inputs to our refinement engine.

The tool in [12] returns the list of anomalies in a particular

order. We take the ordering returned by the tool and refine it.

Following the steps in Section V, we initially take the first k
labeled clone groups. We set k to be 50 since there is only

one true positive among the first 50 bug reports for Eclipse.

We also use k = 50 for the Linux kernel. Since there are

only 50 inconsistent clone groups reported for ArgoUML,

we set k to be 10 for ArgoUML. We set the feedback pool

size (i.e., p) to be 1. We thus iteratively refine the bug reports

as each feedback is received. In this paper, we repeat the

refinement process until all anomaly reports are inspected.

2) Evaluation Results: We improve APPF by 11%, 87%,

and 86% for the Linux kernel, Eclipse, and ArgoUML bug

reports respectively. These measures mean that within a

limit period of time, a developer investigating the anomaly

reports may find more true positives in the Linux kernel,

Eclipse, and ArgoUML. The improvement for the Linux

kernel is not as much as Eclipse and ArgoUML. The bugs

in the Linux kernel often involves identifier changes (e.g.,

variations in variable names, function names, type names,

etc.) which are not captured well by our feature sets which

are mostly based on syntactical node types, while the bugs

Table II
TOP-5 RE-ORDERINGS. x 7→ y MEANS THAT A REPORT OF A TRUE

POSITIVE AT POSITION x IS REORDERED TO POSITION y.

System Top-5 Re-orderings

Linux 694 7→ 18, 672 7→ 64, 760 7→ 131, 770 7→ 179,
792 7→ 206

Eclipse 373 7→ 4, 348 7→ 11, 394 7→ 29, 388 7→ 43, 370 7→ 49

ArgoUML 40 7→ 12, 35 7→ 15, 34 7→ 11, 29 7→ 9, 23 7→ 8

Table III
TOP 3 FEATURES BASED ON THEIR INFORMATION GAIN: LINUX

KERNEL. THE ## SYMBOL IS THE SEPARATOR BETWEEN TWO FEATURES

FOR A PAIR FEATURE SET. THE P SUPERSCRIPT DENOTES A

PROPORTIONAL FEATURE.

Top Feature Info. Gain

1 extdefP 0.015941

2 extdef 1P 0.015941

3 program##extdefsP 0.015941

in Eclipse and ArgoUML often involve conditionals which

may be better captured by our features. In future, we plan to

add more features to construct better discriminative models

for Linux and more programs.

The top-5 successful re-orderings for the Linux kernel,

Eclipse and ArgoUML are shown in Table II. We highlight

sample bugs that are successfully reordered. Figure 8 shows

a buggy clone group in Linux that is reordered from position

694 to 18. The bug is related to an early unlock of a variable.

Figure 9 shows a bug from Eclipse that is successfully

reordered from position 373 to 4. The bug is similar to the

bug in Figure 1; it misses a null-check in code fragment 2,

and was reported to developers and fixed. For ArgoUML, a

bug shown in Figure 10 is reordered from position 40 to 12.

This bug is related to a missing validation before a variable

is used in the next statement.

To further investigate which program elements (i.e., fea-

tures as described in Section V-A) may be better bug

indicators than others, we compute the information gain [42]

of each feature in Linux and Eclipse bug reports. Informa-

tion gain is frequently used to find important features that

differentiate two contrasting datasets (i.e., in our case, true

positives and false positives), e.g., [33].

The top 3 features for Linux kernel, Eclipse, and Ar-

goUML are shown in Table III, IV, and V. We notice that

the individual features have low information gain. Thus,

individually they are not able to distinguish true positives

from false positives. However, composing them into a dis-

criminative model is more effective in improving the rate of

true positives found. From the list, one could intuitively infer

that if a clone from Eclipse involves inconsistent changes

related to conditionals, it is more likely to be buggy. For

ArgoUML, the inconsistent changes that involve variable

declaration and initialization are more likely to be buggy,

e.g., a declared variable being used without further validation

or checking (null checking), a variable needs to be converted

to an appropriate type, etc. As discriminative features us-

inginformation gain could mean that the features are either

Table IV
TOP 3 FEATURES BASED ON THEIR INFORMATION GAIN: ECLIPSE. THE

B SUPERSCRIPT DENOTES A BASIC FEATURE WHILE P SUPERSCRIPT

DENOTES A PROPORTIONAL FEATURE

Top Feature Info. Gain

1 BOOL OR TKP 0.01898
2 conditional or expression ## 0.01898

conditional or expressionP

3 BOOL OR TKB 0.01898

Table V
TOP 3 FEATURES BASED ON THEIR INFORMATION GAIN: ARGOUML

Top Feature Info. Gain

1 local variable declaration statementB 0.145772

2 variable initializerB 0.145772
3 block statement ## 0.145772

local variable declaration statementB

highly related to buggy clone or highly related to non-

buggy clone, in Linux kernel, if a clone involves inconsistent

changes related to global definitions (e.g., extdef), it is

more likely not a bug. Overall, our approach helps to better

separate false positives from true bugs, making first listed

anomaly reports closer towards the top left cell of the ideal

four quadrants of Figure 3.

B. Threats to Validity

Threat to construct validity corresponds to the suitableness

of our evaluation metric. In this study we adapt a measure

commonly used in test case prioritization which also needs

to re-sorts (i.e., prioritize) test cases. Their goal is to find

an optimal ordering of test cases that would identify the

failures early. They measure the quality of an ordering using

average percentage faults detected (APFD). We propose a

similar measure referred to as average percentage of true

positives found (APPF). Similar like APFD that measures

the rate of fault detection, APPF measures the rate of true

positives found. We believe this measure is relevant in

measuring the performance of a refinement framework. A

higher APPF score indicates that within the same period of

time a developer can find more true positives.

Threat of internal validity corresponds to the ability of our

experiments to link the independent and dependent variables.

The threat could be manifested due to experimental or

human errors. The labels of the bug reports are decided

manually by the authors of [12]. The labeling might be prone

to errors. Still, the authors of [12] and us have taken some

precautions to prevent these to happen – at least two people

are assigned to label each of the inconsistent clone group;

for any discrepancy, a third person would break the tie.

Threat of external validity corresponds to the generaliz-

ability of our result. We have performed a study on three

large real systems that are written in two most popular

programming languages: C and Java. Although these help,

there is still a threat to external validity. In the future,

we plan to investigate more systems written in various

programming languages.

Code Fragment 1 Code Fragment 2

File: linux-2.6.19/drivers/net/wireless/bcm43xx/bcm43xx_sysfs.c

347: struct bcm43xx_private *bcm = dev_to_bcm(dev);

…

351: mutex_lock(&(bcm)->mutex);

352: switch (bcm43xx_current_phy(bcm)->type) {

353: case BCM43xx_PHYTYPE_A:

…

362: default:

363: assert(0);

364: }

365: mutex_unlock(&(bcm)->mutex);

File: linux-2.6.19/drivers/net/wireless/bcm43xx/bcm43xx_wx.c

615: struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);

…

618: mutex_lock(&bcm->mutex);

619: mode = bcm43xx_current_radio(bcm)->interfmode;

620: mutex_unlock(&bcm->mutex);

621: switch (mode) {

622: case BCM43xx_RADIO_INTERFMODE_NONE:

…

632: default:

633: assert(0);

634: ..

Figure 8. Report of a true positive in Linux that is reordered from position 694 to 18

Code Fragment 1 Code Fragment 2

File: eclipse-cvs20070108/org.eclipse.debug.core/core/org/

eclipse/debug/internal/core/LaunchConfiguration.java

253: if (file != null) {

254: // validate edit

255: if (file.isReadOnly()) {

256: IStatus status = ResourcesPlugin.

getWorkspace().validateEdit(new IFile[] {file}, null);

257: if (!status.isOK()) {

258: throw new CoreException(status);

259:

File: eclipse-cvs20070108/org.eclipse.debug.core/core/org/

eclipse/debug/internal/core/LaunchConfigurationWorkingCopy.java

310:

311: // validate edit

312: if (file.isReadOnly()) {

313: IStatus status = ResourcesPlugin.

getWorkspace().validateEdit(new IFile[] {file}, null);

314: if (!status.isOK()) {

315: throw new CoreException(status);

316:

Code Fragment 1 Code Fragment 2

File: eclipse-cvs20070108/org.eclipse.debug.core/core/org/

eclipse/debug/internal/core/LaunchConfiguration.java

253: if (file != null) {

254: // validate edit

255: if (file.isReadOnly()) {

256: IStatus status = ResourcesPlugin.

getWorkspace().validateEdit(new IFile[] {file}, null);

257: if (!status.isOK()) {

258: throw new CoreException(status);

259:

File: eclipse-cvs20070108/org.eclipse.debug.core/core/org/

eclipse/debug/internal/core/LaunchConfigurationWorkingCopy.java

310:

311: // validate edit

312: if (file.isReadOnly()) {

313: IStatus status = ResourcesPlugin.

getWorkspace().validateEdit(new IFile[] {file}, null);

314: if (!status.isOK()) {

315: throw new CoreException(status);

316:

Figure 9. Report of a true positive in Eclipse that is reordered from position 373 to 4

Code Fragment 1 Code Fragment2

File: /argouml/src/argouml-

app/src/org/argouml/uml/diagram/UMLMutableGraphSupport.java

331: if (edge instanceof CommentEdge) {

332: …

333: } else if (Model.getFacade().isARelationship(edge)

334: || Model.getFacade().isATransition(edge)

335: || Model.getFacade().isAAssociationEnd(edge)){

336: return Model.getUmlHelper().getDestination(edge);

337 } else if (Model.getFacade().isALink(edge)) {

338: ..

339: }

File: /argouml/src/argouml-

app/src/org/argouml/uml/diagram/UMLMutableGraphSupport.java

360: if (edge instanceof CommentEdge) {

361: …

362: } else if (Model.getFacade().isAAssociation(edge)) {

363: List conns = new

ArrayList(Model.getFacade().getConnections(edge));

364: return conns.get(1);

365: } else if (Model.getFacade().isARelationship(edge)

366: || Model.getFacade().isATransition(edge)

367: || Model.getFacade().isAAssociationEnd(edge)){

368: return Model.getUmlHelper().getDestination(edge);

369 } else if (Model.getFacade().isALink(edge)) {

370: ..

371: }

Figure 10. Report of a true positive in ArgoUML that is reordered from position 40 to 12

VIII. CONCLUSION AND FUTURE WORK

Code clones have been widely studied in the literature.

Various techniques have been proposed to recover clones

from a code base. One important usage of clones is to find

bugs by detecting inconsistencies among members of the

same clone group. These correspond to bugs that might arise

due to inconsistent updates among parallel code fragments

or violation of a common programming practice. Past tech-

niques, e.g., [12], have demonstrated the ability of clone-

based bug detection tools to detect true positives in large

systems. However, often the number of false positives are

too many. This could affect the usability of such a system

as a developer could spend a lot of time in performing a

debugging activity, which at the end might be futile, as the

reported anomaly is a false alarm.

Our work tries to address this issue by proposing an

approach to automatically refine bug reports by the incorpo-

ration of user feedback. Rather than having a static sorted list

of bug reports, our bug reports are dynamic. As a user inves-

tigates the top few bug reports and feedback to the system,

the system automatically re-sorts the remaining uninvesti-

gated bug reports, and thus refines it. This refinement process

is performed multiple times as more feedback is available.

For each refinement, we perform feature extraction, pre-

processing (feature selection and dataset re-balancing), and

discriminative model learning. To evaluate the quality of a

list of ordered bug reports we use average percentage of

true positives found (APPF) which measure the rate true

positives are found. We evaluate our refinement process on

three sets of clone-based anomaly reports from three large

real programs: the Linux kernel (C), Eclipse, and ArgoUML

(Java), extracted by a clone-based anomaly detection tool.

The results show that, compared to the original ordering of

bug reports, we can improve APPF by 11%, 87%, and 86%

for Linux kernel, Eclipse, and ArgoUML, respectively.

As future work, we plan to extend our approach to refine

not only clone-based anomaly reports but also other types of

anomaly reports. We also plan to investigate the applicability

of models learned from one or more software systems to

refine bug reports of other software systems.

ACKNOWLEDGMENTS

We appreciate the valuable feedbacks from anonymous

reviewers for earlier versions of this paper.

REFERENCES

[1] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue, “Very-large
scale code clone analysis and visualization of open source
programs using distributed ccfinder,” in ICSE, 2007.

[2] I. D. Baxter, C. Pidgeon, and M. Mehlich, “DMS c©: Program
transformations for practical scalable software evolution,” in
ICSE, 2004.

[3] B. S. Baker, “Finding clones with Dup: Analysis of an
experiment,” IEEE TSE, 2007.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A
multilinguistic token-based code clone detection system for
large scale source code,” IEEE TSE, 2002.

[5] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD:
Scalable and accurate tree-based detection of code clones,” in
ICSE, 2007.

[6] Y. Higo, S. Kusumoto, and K. Inoue, “A metric-based ap-
proach to identifying refactoring opportunities for merging
code clones in a java software system,” Journal of Software
Maintenance, vol. 20, no. 6, pp. 435–461, 2008.

[7] E. Duala-Ekoko and M. P. Robillard, “Tracking code clones
in evolving software,” in ICSE, 2007.

[8] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen, “Clone-aware configuration management,”
in ASE, 2009.

[9] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empir-
ical study of code clone genealogies,” in ESEC/FSE, 2005.

[10] C. Kapser and M. W. Godfrey, ““cloning considered harmful”
considered harmful,” in WCRE, 2006.

[11] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner,
“Do code clones matter?” in ICSE, 2009.

[12] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of
clone-related bugs,” in ESEC/SIGSOFT FSE, 2007.

[13] J. Krinke, “A study of consistent and inconsistent changes to
code clones,” in WCRE, 2007.

[14] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool
for finding copy-paste and related bugs in operating system
code,” in OSDI, 2004.

[15] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su,
“Scalable and systematic detection of buggy inconsistencies
in source code,” in OOPSLA, 2010.

[16] Y. Hayase, Y. Y. Lee, and K. Inoue, “A criterion for filtering
code clone related bugs,” in DEFECTS, 2008.

[17] J.-G. Lee, J. Han, X.Li, and H. Cheng, “Mining discriminative
patterns for classifying trajectories on road networks.” IEEE
Trans. Knowl. Data Eng., 2011.

[18] A. Bosch, A. Zisserman, and X. Munoz, “Scene classification
using a hybrid generative/discriminative approach.” IEEE
Trans. Pattern Anal. Mach. Intell., 2008.

[19] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies.” IEEE Trans.
Software Eng., vol. 28, pp. 159–182, 2002.

[20] V. Wahler, D. Seipel, J. W. von Gudenberg, and G. Fischer,
“Clone detection in source code by frequent itemset tech-
niques,” in SCAM, 2004.

[21] R. Komondoor and S. Horwitz, “Using slicing to identify
duplication in source code,” in SAS, 2001.

[22] A. Podgurski and L. Pierce, “Retrieving reusable software by
sampling behavior,” ACM TOSEM, 1993.

[23] S. Jarzabek and S. Li, “Eliminating redundancies with
a “composition with adaptation” meta-programming tech-
nique,” in ESEC/FSE, 2003.

[24] D. C. Rajapakse and S. Jarzabek, “Using server pages to unify
clones in web applications: A trade-off analysis,” in ICSE,
2007.

[25] P. Jablonski and D. Hou, “CReN: A tool for tracking copy-
and-paste code clones and renaming identifiers consistently
in the IDE,” in ETX, 2007.

[26] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller, “Pre-
dicting faults from cached history,” in ICSE, 2007.

[27] S. Kim and M. D. Ernst, “Which warnings should i fix first?”
in ESEC-FSE, 2007.

[28] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum,
and G. Rothermel, “Predicting accurate and actionable static
analysis warnings: an experimental approach,” in ICSE, 2008.

[29] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Mur-
phy, “Cross-project defect prediction: a large scale experiment
on data vs. domain vs. process,” in ESEC/FSE, 2009.

[30] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang, “Automated support for classifying
software failure reports,” in ICSE, 2003, pp. 465–477.

[31] T. Kremenek and D. Engler, “Z-ranking: Using statistical
analysis to counter the impact of static analysis approxima-
tion,” in SAS, 2003, pp. 295–315.

[32] S. Heckman and L. Williams, “On establishing a benchmark
for evaluating static analysis alert prioritization and classifi-
cation techniques,” in ESEM, 2008, pp. 41–50.

[33] J. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[34] G. Holmes, A. Donkin, and I. Witten, “Weka: A machine
learning workbench.” in Proc Second Australia and New
Zealand Conference on Intelligent Information Systems, 1994.

[35] J. Han and M. Kamber, Data Mining Concepts and Tech-
niques, 2nd ed. Morgan Kaufmann, 2006.

[36] M. Renieris and S. Reiss, “Fault localization with nearest
neighbor queries,” in ASE, 2003, pp. 30–39.

[37] B. Martin, “Instance-based learning : Nearest neighbor with
generalization.” in Thesis, University of Waikato, Hamilton,
New Zealand, 1995.

[38] S. Tan, “An effective refinement strategy for knn text classi-
fier,” Expert Syst. Appl., 2006.

[39] A. Moore, “An introductory tutorial on KD-Trees,” Computer
Laboratory, University of Cambridge, Tech. Rep. 209, 1991,
extract from Andrew Moore PhD Thesis: Efficient Memory-
based Learning for Robot Control.

[40] S. Salzberg, “A nearest hyperrectangle learning method,”
Machine Learning, 1991.

[41] D. Wettschereck and G. Dietterich, “An experimental com-
parison of the nearest-neighbour and nearest-hyperrectangle
algorithms.” Machine Learning, 1994.

[42] T. M. Mitchell, Machine Learning. New York, USA:
McGraw-Hill, March 1997.

