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Abstract—We are interested in scalable mining of a non-
redundant set of significant recurrent rules from a sequence
database. Recurrent rules have the form “whenever a series of
precedent events occurs, eventually a series of consequent events
occurs”. They are intuitive and characterize behaviors in many
domains. An example is the domain of software specification,
in which the rules capture a family of properties beneficial to
program verification and bug detection. We enhance a past work
on mining recurrent rules by Lo, Khoo, and Liu to perform
mining more scalably. We propose a new set of pruning properties
embedded in a new mining algorithm. Performance and case
studies on benchmark synthetic and real datasets show that our
approach is much more efficient and outperforms the state-of-
the-art approach in mining recurrent rules by up to two orders
of magnitude.

I. INTRODUCTION

Data mining has been shown useful in various domains
including finance, marketing, bioinformatics and recently soft-
ware engineering, e.g., [11], [17]. Many valuable data sources
are in sequential formats ranging from logs, transaction histo-
ries, medical histories, program traces, and many more.

To analyze sequential data, Lo et al. propose recurrent
rules stating: “Whenever a series of events occurs, eventually
another series of events occurs”. Recurrent rules capture
temporal constraints that repeat a substantial number of times
both within a sequence and across multiple sequences [18].
The rule format is general and is not limited by look-ahead
limit or window-width constraint. This enables the rule to
capture significant candidates for not only temporal short-
distance but also long-distance cause-and-effect relationships
in a dataset. There are many instance of recurrent rules in
day-to-day settings:

1. Resource Locking Protocol: Whenever a lock is ac-
quired, eventually it is released.

2. Internet Banking: Whenever a connection is made
and an authentication is completed and fund transfer
command is issued, eventually the fund is transferred.

3. Network Protocol: Whenever an HDLC connection is
made and an acknowledgement is received, eventually
a disconnection message is sent and an acknowledge-
ment is received.

Zooming into the domain of software specification and
verification, recurrent rules correspond to a family of pro-
gram properties useful for program verification (c.f., [9]). The
first example given above is a program property. Research

in software verification addresses approaches to check the
correctness of a software with respect to a formal specification
which often corresponds to a set of properties (c.f., [6]).
However, documented specifications might often be outdated
or missing due to software evolution, reluctance in writing for-
mal specifications and short-time-to-market cycle of software
development (c.f., [7], [5]).

There are past studies on mining association rules from sets
of items [2]. These studies are later extended to mine for
sequential patterns and episodes that consider ordering among
events in sequences [3], [20]. Rules can be formed from both
sequential patterns and episodes [24], [20]. Different from a
pattern, a rule expresses a constraint involving its premise (i.e.,
pre-condition) and consequent (i.e., post-condition). These
constraints are needed for their potential usages in filtering
erroneous sequences, detecting outliers, etc.

However, rules generated from sequential patterns and
episodes have different semantics from recurrent rules. A
sequential rule pre→ post states: “Whenever a sequence is a
super-sequence of pre it will also be a super-sequence of pre
concatenated with post”. An episode rule pre→ post states:
“Whenever a window is a super-sequence of pre it will also
be a super-sequence of pre concatenated with post”.

To illustrate the differences, consider the following se-
quences:

Seq ID. Sequence
S1 ⟨lock, use, use, use, use, unlock⟩
S2 ⟨lock, use, use, use, use, unlock, lock, lock, exit⟩

From sequence S1, episode rule mining with a window size
of two is not able to mine the rule: “lock must be followed
by unlock” as the two events are separated by more than two
events. From sequences S1 and S2, sequential rule mining
would report “lock must be followed by unlock with a perfect
confidence or likelihood (2 out of 2 cases)” despite the last
two lock operations in S2 are not paired with any subsequent
unlock operations. Considering both S1 and S2, recurrent rule
mining would report “lock is followed by unlock in 2 out of
4 cases”.

Recurrent rules generalize sequential rules where for each
rule, multiple occurrences of the rule’s premise and conse-
quent both within a sequence and across multiple sequences
are considered. Recurrent rules generalize episode rules by
allowing precedent and consequent events to be separated by



an arbitrary number of events in a sequence database. Also,
a set of sequences rather than a single sequence is considered
during mining. Furthermore, rather than mining all rules we
mine a non-redundant set of rules.

Recurrent rules could be formalized in Linear Temporal
Logic (LTL) [14]. LTL has been widely studied and many
tools have been built on top of it, e.g., [6], [16]. Model
checker is one of them [6]. It allows verifying correctness of
safety critical systems based on the satisfaction of rules and
properties formalized in LTL.

The new semantics of recurrent rules, as compared to
association, sequential and episode rules, necessitates new
pruning strategies and algorithms that utilize these strategies
to efficiently mine for recurrent rules.

The pioneer work on recurrent rules is a past study by Lo,
Khoo and Liu in [18]. However, with the growth in the size
of data currently available, there is a need for a more scalable
algorithm. On larger datasets or lower support thresholds, we
find that there is a need to enhance the scalability of the
algorithm in [18]. This work fills this gap by proposing a
more scalable algorithm that embeds new pruning properties
to mine recurrent rules more efficiently.

Our approach works in several steps: 1. Mining pruned
pre-conditions, 2. Mining pruned post-conditions, 3. Rule
formation, and 4. Redundant rules removal. A number of new
pruning strategies and a new data structure are employed for
efficient mining of a non-redundant set of recurrent rules. Un-
der a condition which holds in many cases, the complexity of
the proposed algorithm is smaller by an exponential factor than
the complexity of the one proposed in [18] (see Section VI-D).
Performance study conducted on benchmark datasets, both
synthetic and real, shows that runtime is improved by up to
134 times. We also conducted a case study on a dataset of real
software traces extracted from multiple user interactions with
an instant messaging application.

The outline of this paper is as follows. In Section II, we
discuss related work. Section III presents recurrent rule se-
mantics in Linear Temporal Logic (LTL). Section IV describes
some notations and definitions used in subsequent sections.
Section V presents various theorems and properties used to
prune search spaces. Section VI presents our algorithm and
compares it with [18]. Section VII describes our performance
study and case study. Finally, we conclude and describe future
work in Section VIII.

II. RELATED WORK

In this section, we discuss closely related past studies and
compare them with our approach.
Past Studies on Temporal Logics. In this work we mine
recurrent rules, which is under the family of Linear Temporal
Logic properties [14]. Temporal logics itself has been widely
used for various purposes ranging from specifying communi-
cation protocols among agents or models of agents’ behav-
iors [15], modeling bio-molecular interactions [21], querying
XML documents [4], supporting historical databases [28], ver-
ifying correctness of systems [6], etc. Many studies described

above use temporal logics to accomplish a particular task.
Different from these past studies, our goal is to mine temporal
logic expressions automatically from datasets.
Mining Frequent Itemsets & Association Rules. Association
rule mining is first proposed by Agrawal and Srikant in [2].
Association rule captures a relationship among items in a
set, where the ordering of items is irrelevant. Association
rules are generated by post-processing frequent itemsets. No-
tions of support and confidence are used as measures to
distinguish significant rules. There are many work extending
association rule mining, of special interest are work on closed
frequent itemsets (e.g., [22]) and non-redundant association
rules (e.g., [27]). Different from association rules, recurrent
rules express ordering constraints among events in a sequence
database. Due to this difference, pruning properties, suitable
mining algorithms and the notion of rule redundancy are
different.
Mining Patterns & Rules from Sequences. Sequential pat-
tern mining [3], [23] discovers patterns that are supported by
a significant number of sequences. A pattern is supported by
a sequence if it is a sub-sequence of it. To remove redun-
dant patterns, closed sequential pattern mining was proposed
by Yan et al. [26] and improved by Wang and Han [25].
Spiliopoulou proposed the generation of sequential rules from
sequential patterns [24]. Recurrent rules generalize sequential
rules by considering multiple occurrences of the premise and
consequent events within a sequence and across multiple
sequences in the database. This generalization is significant
since the precedent and consequent events of a rule can po-
tentially appear repeatedly in a sequence. Considering program
execution traces, due to loops and recursion, it is common to
see program properties observed repeatedly in a trace.

Mannila et al. performed episode mining to discover fre-
quent episodes within a sequence of events [20]. An episode
is defined as a series of events occurring relatively close to
one another (i.e. they occur at the same window). An episode
is supported by a window if it is a sub-sequence of the series
of events appearing in the window. There are many extensions
of the work. Harms et al. mine for constrained episode rules
where the distance between the precedent and consequent of
a rule is further limited by a value smaller than the overall
window size [12]. Garriga extends Mannila et al.’s work to
replace a fixed-window size with a gap constraint between
one event to the next in an episode [10]. Recurrent rules
generalize rules formed from episodes by allowing precedent
and consequent events to be separated by an arbitrary number
of events. This generalization is significant since precedent and
consequent events might possibly be separated by an arbitrary
number of events in sequences. For example, useful program
properties, such as: ‘acquiring of a lock (lock) is eventually
followed by its release (unlock)’, or ‘an opened file (open)
is eventually closed (closed)’ (c.f [17], [18]), often have their
associated events occur at some arbitrary distance away from
one another in an execution trace. Also, we analyze a sequence
database and mine non-redundant rules.

In [17], Lo et al. proposed iterative patterns to discover



TABLE I
LTL EXPRESSIONS AND THEIR MEANINGS

F (unlock)
Meaning: Eventually unlock is called

XF (unlock)
Meaning: From the next event onwards, eventually unlock

is called
G(lock → XF (unlock))

Meaning: Globally whenever lock is called, then from the
next event onwards, eventually unlock is called
G(main → XG(lock → (→ XF (unlock → XF (end)))))

Meaning: Globally whenever main followed by lock are called,
then from the next event onwards, eventually unlock followed by
end are called

TABLE II
RULES AND THEIR LTL EQUIVALENCES

Notation LTL Notation
a → b G(a → XFb)

⟨a, b⟩ → c G(a → XG(b → XFc))
a → ⟨b, c⟩ G(a → XF (b ∧XFc))

⟨a, b⟩ → ⟨c, d⟩ G(a → XG(b → XF (c ∧XFd)))

software specifications, which are defined based on the se-
mantics of Message Sequence Charts (MSC). In [8], Ding et
al. proposed an approach to mine for repetitive sub-sequences.
Our work could be viewed as an extension of their approaches
to mine for repetitive rules following the semantics of Linear
Temporal Logics. In the software domain, LTL (but not MSC)
is one of the most widely-used formalism for program verifi-
cation (i.e., ensuring correctness of a software system) [6].
Since the underlying target formalisms and semantics are
different, both the search space pruning strategies and the
mining algorithm needed to efficiently mine recurrent rules
are very different from those used in the past studies in [17]
and [8].

Mining recurrent rules is first proposed in [18]. In this
work, we speed up the mining process further. We propose
new pruning strategies and a new algorithm that embed the
strategies into an effective approach to prune search space.
Under a condition which holds in many cases, the complexity
of our approach is exponentially better than the complexity
of the approach in [18] (see Section VI-D). Furthermore,
our empirical evaluation shows that our approach is able to
outperform [18] by up to 2 orders of magnitude.

III. RULE SEMANTICS IN LTL

Our mined rules can be expressed in Linear Temporal Logic
(LTL) [14]. LTL is a logic that specifies properties of a
sequence (i.e., a series of events).

There are a number of LTL operators, among which we
are only interested in the operators: ‘G’,‘F’, and ‘X’. The
operator ‘G’ specifies that globally for every event in a
sequence a certain property holds. The operator ‘F’ specifies
that a property holds either at the current event or finally (or
eventually) in one of the subsequent events in a sequence. The
operator ‘X’ specifies that a property holds at the next event.
Some examples are listed in Table I.

Our mined rules state whenever a series of precedent
events occurs eventually another series of consequent events
also occurs. A mined rule denoted as pre → post, can
be mapped to its corresponding LTL expression. Examples
of such correspondences are shown in Table II. Note that
although the operator ‘X’ might seem redundant, it is needed

to specify rules such as ⟨a⟩→⟨b, b⟩ where the ‘b’s refer to
different occurrences of ‘b’.

The set of LTL expressions corresponding to the set of
recurrent rules and are minable by our mining framework is
shown in Backus-Naur Form (BNF) as follows:

rules := G(prepost)
prepost := event→ post|event→ XG(prepost)

post := XF (event)|XF (event ∧XF (post))

Example 1: To illustrate the semantics of recurrent rules,
consider a sequence:

S = ⟨main, lock, use, unlock, lock, end⟩

The LTL property corresponding to the rule ⟨main, lock⟩
→ ⟨unlock, end⟩ is the property G(main → XG(lock →
XF (unlock∧XF (end)))). This property is violated by S as
the second occurrence of lock is not eventually followed by
unlock and end. Note however, the property corresponding
to ⟨main, lock, use⟩ → ⟨unlock, end⟩, which is G(main→
XG(lock → XG(use → XF (unlock ∧ XF (end))))) is
satisfied. This is the case since the second occurrence of lock
immediately before end in S is not followed by a use.

IV. NOTATIONS & DEFINITIONS

This section presents some preliminary notations and defi-
nitions pertinent to mining recurrent rules. Many of these are
taken from [18].

A. Basic Notations

Let I be a set of distinct events considered. The input to our
mining problem is a sequence database denoted as SeqDB =
{S1, S2, . . . , S|SeqDB|}. Each sequence is an ordered list of
events, denoted as ⟨e1, e2, . . . , eend⟩ where ei ∈ I .

We define a pattern P to be a series of events. We use
first(P ) and last(P ) to denote the first and last event of P
respectively. A pattern P1++P2 denotes the concatenation of
patterns P1 and P2, also said to be the forward extension of P1

or backward extension of P2. A pattern P1 = ⟨e1, e2, . . . , en⟩
is a subsequence (sub-pattern) of another pattern P2 = ⟨e′1,
e′2, . . . , e

′
m⟩ (or, P2 is a super-pattern of P1) if there exists

integers 1 ≤ i1 < i2 < . . . < in ≤ m such that e1 = e′i1 ,
e2 = e′i2 , · · · , en = e′in (denoted as P1 ⊑ P2, or P1 < P2 if
they are not equal).

Each recurrent rule R has the form Rpre → Rpost, where
Rpre and Rpost are two series of events (i.e., two patterns).
Rpre is referred to as the premise or pre-condition of the rule,
while Rpost is referred to as the consequent or post-condition
of R.

B. Concepts and Problem Statement

In this subsection, we discuss various concepts and defini-
tions and define our problem statement. We use the database
in Table III as our running example throughout this paper.

Each recurrent rule we mine expresses:



TABLE III
EXAMPLE SEQUENCE DATABASE – SeqDB

Seq ID. Sequence
S1 ⟨a, b, e, c, b, d, c, d⟩
S2 ⟨a, c, b, e, a, e, d, c, b, d⟩

“Whenever a series of events has just occurred at a point in
time (i.e. a temporal point), eventually another series of

events occurs”

From the above semantics, to generate recurrent rules, we
need to “peek” at interesting temporal points and “see” what
series of events are likely to occur next. We will first formalize
the notion of temporal points and occurrences.

Definition 4.1 (Temporal Points & Prefixes & Suffixes):
Consider a sequence S of the form ⟨a1, a2, . . . , an⟩. All
events in S are indexed by their positions in S, starting from
1 (e.g., S[2] = a2). These positions are called temporal points
in S. For a temporal point j, the first j events ⟨a1, . . . , aj⟩ is
the j-prefix of S; the last j events ⟨an−j+1, . . . , an⟩ is the
j-suffix of S.

Definition 4.2 (Occurrences & Instances): Given a pat-
tern P and a sequence S, an occurrence of P in S is defined
to be a temporal point j, such that the j-prefix of S is a super-
sequence of P and last(P )=S[j].

Each of such j-prefixes is said to be an instance of the
pattern P in S, i.e., it is a super-sequence of P and last(P )
is indexed by j. An instance of P in S is minimum iff it is
the shortest one, i.e., there is no k < j such that k-prefix of
S is an instance of P .

Example 2: Consider a pattern P ⟨a, b⟩ and the se-
quence S1 in the example database in Table III (i.e.,
⟨a, b, e, c, b, d, c, d⟩). Temporal points {2, 5} are the occur-
rences of P in S1, and the corresponding instances are ⟨a, b⟩
and ⟨a, b, e, c, b⟩, where the instance ⟨a, b⟩ is the minimum
one.

Definition 4.3 is a standard database projection (c.f. [26],
[25]) capturing series of events occurring after the first tempo-
ral point. Definition 4.4 is a new type of projection capturing
series of events occurring after each temporal point introduced
in [18].

Definition 4.3 (Projection & Sequence Support): A
database projected on a pattern P is defined as:
SeqDBP = {(i, sx) | Si ∈ SeqDB , satisfying Si = px++sx,

and px is the minimum instance of P in Si, i.e., px is the
shortest prefix of Si containing P}.

For a pattern P , we define the sequence support
sup(P ,SeqDB) to be the size of SeqDBP (or equivalently,
the number of sequences in SeqDB containing P ). Reference
to the database is omitted if it is clear from the context.

Definition 4.4 (All-Projection & Instance Support):
A database all-projected on a pattern P is defined as:

SeqDBall
P = {(i, sx) | Si ∈ SeqDB , satisfying

Si = px++sx, and px is an instance of P in Si}.
For a pattern P , we define the instance support
supall(P,SeqDB) to be the size of SeqDBall

P (or equivalently,
the total number of instances of P in all sequences of SeqDB ).

Reference to the database is omitted if it is clear from the
context.

Example 3: To illustrate the above concepts, we list the pro-
jected and all-projected database SeqDB w.r.t. ⟨a, b⟩ in Table
III. From the support notations, we have sup(⟨a, b⟩,SeqDB)
= |SeqDB ⟨a,b⟩| = 2, supall(⟨a, b⟩,SeqDB) = |SeqDBall

⟨a,b⟩|
= 4.

TABLE IV
PROJECTION AND ALL-PROJECTION

Projection SeqDB⟨a,b⟩
(1, ⟨e, c, b, d, c, d⟩)
(2, ⟨e, a, e, d, c, b, d⟩)

All-Projection SeqDBall
⟨a,b⟩

(1, ⟨e, c, b, d, c, d⟩)
(1, ⟨d, c, d⟩)
(2, ⟨e, a, e, d, c, b, d⟩)
(2, ⟨d⟩)

The two projection methods associated notions of sup and
supall are different. Specifically, supall reflects the number
of occurrences of P in SeqDB rather than the number of
sequences in SeqDB supporting P . They would differ a lot
if sequences in SeqDB are long, and P repeats multiple times
in single sequences.

Each recurrent rule R, in the form of Rpre → Rpost,
where Rpre (pre-condition) and Rpost (post-condition) are
two series of events (patterns), expresses that: whenever Rpre

occurs at a temporal point, Rpost likely occurs (after Rpre).
From the above notions of temporal points, projected databases
and supports of patterns, we can now define the support and
confidence of R.

Definition 4.5 (Support & Confidence of Rule):
Consider a recurrent rule R (Rpre→Rpost) in SeqDB .
The sequence support (or instance support) of R, denoted as
sup(R,SeqDB) (or supall(R,SeqDB)), is defined to be the
sequence support (or instance support) of Rpre++Rpost in
SeqDB1:

sup(R,SeqDB) = sup(Rpre++Rpost,SeqDB),

supall(R,SeqDB) = supall(Rpre++Rpost,SeqDB).

The confidence of R, denoted as conf (R,SeqDB), is de-
fined to be the ratio:

conf (R,SeqDB) =
sup(Rpost,SeqDBall

Rpre
)

supall(Rpre,SeqDB)
.

SeqDB is omitted if it is clear from the context.
The confidence of R, conf (R,SeqDB), can be interpreted

as the likelihood of Rpost happening after Rpre. It is de-
fined to be the ratio of two quantities: supall(Rpre,SeqDB)–
the number of times that Rpre occurs in SeqDB , and
sup(Rpost,SeqDBall

Rpre
)–the number of times that Rpost oc-

curs after Rpre in SeqDB .
Example 4: Consider a sequence database SeqDB in Ta-

ble III and a recurrent rule R, ⟨a, b⟩ → ⟨c, d⟩. The sequence

1We standardize definitions of sup(R,SeqDB) and supall (R,SeqDB).
In [18], sup(R,SeqDB) is defined as sup(Rpre,SeqDB) while
supall (R,SeqDB) is defined as supall (Rpre++Rpost,SeqDB). The cur-
rent definition of sup follows typical definitions of support in association rule
mining and sequential rule mining.



support of R is the number of sequences in SeqDB containing
(or being a super-sequence of) the concatenation of pre-
condition and post-condition, i.e., ⟨a, b, c, d⟩. Both S1 and S2

(in Table III) contain it, so sup(R) = 2. The instance support
of R is the number of occurrences of pattern ⟨a, b, c, d⟩ in
SeqDB , i.e., supall(R) = supall(⟨a, b, c, d⟩) = 3.

The confidence of the rule R (⟨a, b⟩ → ⟨c, d⟩) is the
likelihood of ⟨c, d⟩ occurring after each temporal point of
⟨a, b⟩. Refer to SeqDBall

⟨a,b⟩ in Table IV, there is an occurrence
of ⟨c, d⟩ after each of the first three occurrences of ⟨a, b⟩ (i.e.,
supall(⟨a, b⟩,SeqDB) = 4 and sup(⟨c, d⟩,SeqDBall

⟨a,b⟩) = 3).
So, conf (R) = 3/4.
Mining Recurrent Rules. We aim to mine significant
rules (with sufficient supports and confidence). Formally,
in a sequence database SeqDB , given threshold min sup
for sequence support, threshold min supall for instance
support, and threshold min conf for confidence, our
goal is to find all rules R in forms of Rpre→Rpost

s.t. sup(R,SeqDB) ≥ min sup, supall(R,SeqDB) ≥
min supall , and conf (R,SeqDB) ≥ min conf (significant
rule).

To reduce the number of rules and improve efficiency (while
not to lose much information), in [18], Lo et al. define a no-
tion of rule redundancy based on super-sequence relationship
among rules having the same support and confidence values.
This is similar to the notion of closed patterns applied to
sequential patterns [26], [25].

Definition 4.6 (Rule Redundancy): A rule R = Rpre →
Rpost is redundant if there is another rule R′ = R′

pre → R′
post

such that:
1) R is a sub-sequence of R′ ( Rpre++Rpost < R′

pre++R′
post);

2) both rules have the same support and confidence values;
3) in the case that the concatenations are the same
(Rpre++Rpost = R′

pre++R′
post) and 2) holds, to break the tie,

we define the one with longer pre-condition as being redundant
(i.e., we wish to retain the rule with a shorter pre-condition
and a longer post-condition).

Example 5: Following Example 4, a rule R′: ⟨a, b⟩ → ⟨c⟩
is redundant in SeqDB , because another rule R: ⟨a, b⟩ →
⟨c, d⟩ has the same (sequence & instance) supports and
confidence as RX′ .

In this work, we mine non-redundant significant rules.

V. PRUNING PROPERTIES FOR SCALABLE MINING OF
RECURRENT RULES

The basic idea of our algorithm for mining non-redundant
recurrent rules is: first, we find a candidate set of pre-
conditions, and a candidate set of post-conditions; then, we
pair two elements, one from each candidate set, to form a
recurrent rules. For the scalable mining of rules, we study the
anti-monotonicity property of confidence used to speed up the
pairing procedure, and propose strategies for shrinking the two
candidate sets and pruning redundant rules in advance.

This section is organized as follows. The anti-monotonicity
property of confidence and pruning strategies rely on two
other types of projections, called prefix projection and suffix

projection, which are introduced in Section V-A. The anti-
monotonicity property of confidence is presented in Sec-
tion V-B. The strategies for shrinking candidate sets and
pruning redundant rules are described in Section V-C. The
description of the complete algorithm and its analysis are
deferred to Section VI.

A. Suffix Projection and Prefix Projection

Recall projection (Definition 4.3) and all-projection (Defini-
tion 4.4) essentially project sequences to their suffixes after the
instances of a pattern. Differently, here we introduce suffix pro-
jection (suf-projection) and prefix projection (pre-projection),
which project sequences to the minimum suffixes containing
a pattern and the complementary prefixes, respectively. Using
the two new types of projections, we will introduce the anti-
monotonicity property of confidence (Section V-B) and the
strategies for pruning redundant rules (Section V-C).

Definition 5.1 (Suffix Projection and Prefix Projection):
The jth suf-projection of SeqDB w.r.t. a pattern P is defined
as:

SeqDBsuf−j
P = {(i, sx) | Si ∈ SeqDB , satisfying

Si = px++sx, and sx is the jth minimum suffix of Si

containing P}.
The pre-projection of SeqDB w.r.t. a pattern P is defined as:

SeqDBpre
P = {(i, px) | Si ∈ SeqDB , satisfying

Si = px++sx, and sx is the minimum suffix of Si containing
P}.

The (1st) minimum suffix of Si containing P is sx iff no
suffix shorter than sx contains P . The jth minimum suffix of
Si containing P is sx iff no suffix, starting with first(P ),
shorter than sx, and longer than the (j−1)th minimum suffix
containing P , contains P .

Example 6: We still use SeqDB in Table III to illustrate
the above concepts. Consider pattern ⟨c, d⟩ here. The 1st suf-
projection, the 2nd suf-projection, and the pre-projection of
SeqDB w.r.t. ⟨c, d⟩ are shown in Table V.

TABLE V
SUF-PROJECTION AND PRE-PROJECTION

Suf-Projection SeqDBsuf−1
⟨c,d⟩

(1, ⟨c, d⟩)
(2, ⟨c, b, d⟩)
Suf-Projection SeqDBsuf−2

⟨c,d⟩
(1, ⟨c, b, d, c, d⟩)
(2, ⟨c, b, e, a, e, d, c, b, d⟩)

Pre-Projection SeqDBpre
⟨c,d⟩

(1, ⟨a, b, e, c, b, d⟩)
(2, ⟨a, c, b, e, a, e, d⟩)

B. Anti-Monotonicity Property of Confidence

Consider a recurrent rule R in the form Rpre → Rpost

in SeqDB . In this subsection, we discuss how to utilize
SeqDBpre

Rpost
to calculate conf (R). We also present the anti-

monotonicity property of confidence.
Suppose we have the confidence conf (R) = α. This rule

implies that in the database, the consequence Rpost of the rule
appears after a fraction α of the occurrences of the premise
Rpre of the rule. Note both Rpre and Rpost can appear one
or more times in a sequence Si ∈ SeqDB . Occurrences of



premise Rpre which are not followed by an occurrence of
Rpost contribute negatively to the confidence of the rule. On
the other hand, those followed by one or more occurrence of
Rpost contribute positively to the confidence.

Of importance is the portion of each sequence before the last
occurrences of the consequent Rpost–this portion of sequences
is exactly formulated as the prefix projection SeqDBpre

Rpost
.

For each Si in SeqDB , occurrences of Rpre appearing before
the last occurrence of Rpost contribute positively to the
confidence, because there is at least one instance of Rpost

afterwards. There are totally supall(Rpre,SeqDBpre
Rpost

) such
occurrences of Rpre. On the other hand, those appearing
after the last occurrence of Rpost contribute negatively to the
confidence.

Formally, we can prove that sup(Rpost,SeqDBall
Rpre

) is
equal to supall(Rpre,SeqDBpre

Rpost
), and thus the confidence

of a rule can be also defined using pre-projection via Rpost,
as stated in the following proposition. We omit its proof due
to the space limit.

Proposition 1: Consider a rule R, in the form of Rpre →
Rpost, and a sequence database SeqDB . We have

conf (R,SeqDB) =
supall(Rpre,SeqDBpre

Rpost
)

supall(Rpre,SeqDB)
. (1)

Example 7: Using the same setting as that of Example 4,
now we compute the confidence of recurrent rule R, ⟨a, b⟩ →
⟨c, d⟩, in SeqDB (Table III) in the way suggested by the above
proposition. SeqDBpre

⟨c,d⟩ is listed in Table V. It is easy to see
there are three instances of ⟨a, b⟩ in SeqDBpre

⟨c,d⟩ (two in S1 and
one in S2). Therefore, we have supall(⟨a, b⟩,SeqDBpre

⟨c,d⟩) =

3. According to Equation 1, we have conf (R) = 3/4,
obtaining the same result as in Example 4.

Proposition 1 also suggests the anti-monotonicity property
of conf (R) w.r.t. Rpost: as Rpost grows (i.e., e++Rpost),
SeqDBpre

Rpost
shrinks (the border shifts to the left, i.e., for each

(i, px) ∈ SeqDBpre
Rpost

, the prefix px becomes shorter), and
thus supall(Rpre,SeqDBpre

Rpost
) and conf (R) decrease. We

formulate this intuition as Proposition 2, and illustrate it in
Example 8.

Proposition 2: Consider two rules R and R′ in a sequence
database SeqDB , with R′

pre = Rpre and R′
post = e++Rpost

for some event e ∈ I . Then we have conf (R) ≥ conf (R′).
Proof: Consider any two prefixes of the same sequence

Si in SeqDB from the prefix projections w.r.t. R and R′,
respectively. Suppose they are: (i, px) ∈ SeqDBpre

Rpost
and

(i, px′) ∈ SeqDBpre
R′

post
. Since R′

post = e++Rpost, we must
have px is a super-sequence of px′. Therefore, there are at
least as many occurrences of Rpre in px as the ones of R′

pre

in px′. This implies

supall(Rpre,SeqDBpre
Rpost

) ≥ supall(R′
pre,SeqDBpre

R′
post

),

which completes the proof.
Example 8: Consider two rules R = ⟨a, b⟩ → ⟨c, d⟩ and

R′ = ⟨a, b⟩ → ⟨e, c, d⟩ in the sequence database SeqDB
(Table III). Recall SeqDBpre

⟨c,d⟩ shown in Table V. SeqDBpre
⟨e,c,d⟩

contains two elements: (1, ⟨a, b⟩) and (2, ⟨a, c, b, e, a⟩). As
can be verified, each sequence in SeqDBpre

⟨c,d⟩ is a super-
sequence of the corresponding sequence in SeqDBpre

⟨e,c,d⟩; and,
we can calculate conf (R′) = 2/4 ≤ 3/4 = conf (R) (since
supall(⟨a, b⟩,SeqDBpre

⟨e,c,d⟩) = 2).
Theorem 1 (Anti-Monotonicity Property of Confidence):

Consider two rules R and R′ in a sequence database SeqDB ,
with R′

pre = Rpre and Rpost = evs++R′
post, where evs

is an arbitrary series of events. Then we have conf (R) ≥
conf (R′). In other words, if R is not confident enough
(conf (R) < min conf ), R′ is not either.

Proposition 2 directly leads to Theorem 1. Theorem 1 can be
utilized to speed up the pairing of pre-condition candidates and
post-condition candidates by avoiding generating rules with
insufficient confidence. The basic idea is that, when we try to
pair a pre-condition candidate with a post-condition candidate
to form a rule, if the confidence of the resulting rule is lower
than the threshold, we no longer try to pair the same pre-
condition with any backward extension of the post-condition.
Details are deferred to Section VI.

C. Strategies for Eliminating Redundant Rules

Aside from early detection of rules with low confidence, we
also desire to detect redundant rules (see Definition 4.6) early.
A rule is redundant if there exists another rule, which is a
super-sequence and has the same support and confidence. Our
goal is to detect the redundancy early in the pre-condition and
post-condition candidates, so as to prune the pre-conditions
and post-conditions which definitely lead to the formation of
redundant rules. We still need to test whether a rule generated
from pre/post-condition candidates is redundant afterwards,
but our pruning strategies can reduce the number of pre/post-
condition candidates by a lot.

Two strategies are introduced in Theorem 2 and Theorem 3,
for pruning redundant pre-conditions and post-conditions, re-
spectively. Theorem 2 is borrowed from [18].2

Theorem 2 (Pruning Redundant Pre-Conds):
In a sequence database SeqDB , consider a pre-condition can-
didate Rpre. If there is a pre-condition candidate R′

pre = Rpre

s.t. (i) R′
pre = P1++e++P2 while Rpre = P1++P2, for

some event e and nonempty P1, P2, and (ii) SeqDBRpre
=

SeqDBR′
pre

, then for any post-condition candidate post and
any forward extension Rpre++P , the rule (Rpre++P )→ post
is redundant.

Theorem 2 implies that, there is no need to put Rpre or its
forward extension (Rpre++P ) into the pre-condition candidate
set, if Rpre satisfies the stated properties (i)-(ii). The intuition
is that: (Rpre++P ) → post is redundant because there is a
longer rule (R′

pre++P ) → post with the same support and
confidence.

As Theorem 2 has been presented and proved in [18], thus
in the following part of this subsection, we focus on how to
prune post-conditions (Theorem 3). In [18], another theorem
to prune redundant post-condition is given; however, applying

2Theorem 1 and 3 are new.



that theorem requires performing one mining operation on the
projected database for every single pre-condition candidate,
which is not efficient enough for large datasets.

We first discuss when a post-condition candidate is redun-
dant w.r.t. confidence (Lemma 1), and then discuss when it
is redundant w.r.t. support (Lemma 2). Finally, we combine
them as our pruning strategy for post-conditions (Theorem 3).

Lemma 1 and 2 state that, if for a post-condition candidate,
inserting some event in the middle does not change the pre-
projection and suf-projection of SeqDB w.r.t. it, then any
backward extension of this post-condition can only generate
redundant rules.

Lemma 1: In a sequence database SeqDB , consider a post-
condition candidate Rpost. If there is a post-condition candi-
date R′

post = Rpost s.t.
(i) R′

post = P1++e++P2 while Rpost = P1++P2, for some
event e, subsequences P1, and (nonempty) P2, and
(ii) SeqDBpre

Rpost
= SeqDBpre

R′
post

,
then for any pre-condition candidate pre and any backward ex-
tension P++Rpost of Rpost, the rule R = pre→ (P++Rpost)
is not confidence-closed (i.e., there exists another rule R′ = R
s.t. conf (R) = conf (R′)).

Proof: To prove this lemma, it suffices to prove the
existence of R′. We construct R′ = pre → (P++R′

post). In
fact, from (ii) SeqDBpre

Rpost
= SeqDBpre

R′
post

and Equation (1)
in Proposition 1, we directly get conf (R) = conf (R′), which
completes the proof.

Lemma 2: In a sequence database SeqDB , consider a post-
condition candidate Rpost. If there is a post-condition candi-
date R′

post = Rpost s.t.
(i) R′

post = P1++e++P2 while Rpost = P1++P2, for some
event e, and subsequences P1 and (nonempty) P2,
(iii) ∀j: SeqDBsuf−j

Rpost
= SeqDBsuf−j

R′
post

, and

(iv) ∀j:
∣∣∣∣(SeqDBsuf−j

Rpost

)all

Rpost

∣∣∣∣ = ∣∣∣∣(SeqDBsuf−j
R′

post

)all

R′
post

∣∣∣∣,
then for any pre-condition candidate pre and any backward ex-
tension P++Rpost of Rpost, the rule R = pre→ (P++Rpost)
is not support-closed (i.e., there exists another rule R′ = R
s.t. sup(R) = sup(R′) and supall(R) = supall(R′)).

Proof: Similar to the proof of Lemma 2, we prove the
existence of R′. And again, we construct R′ = pre →
(P++R′

post) and only need to prove sup(R) = sup(R′) and
supall(R) = supall(R′) to complete the proof.

To prove sup(R) = sup(R′), we only need to prove, for
each sequence Si ∈ SeqDB , R ⊑ Si (i.e., pre++P++Rpost ⊑
Si) if and only if R′ ⊑ Si (i.e., pre++P++R′

post ⊑ Si):
From (iii), for each (i, sx) ∈ SeqDBsuf−1

Rpost
= SeqDBsuf−1

R′
post

,
we know Rpost, R

′
post ⊑ sx. Suppose Si = px++sx, if

pre++P ⊑ px, then we have both R ⊑ Si and R′ ⊑ Si,
otherwise, neither is true.

To prove supall(R) = supall(R′), we only need to show,
for each sequence Si ∈ SeqDB , R (pre++P++Rpost) and R′

(pre++ P++R′
post) have the same number of instances in Si:

Suppose the shortest prefix of Si containing pre++P is px0.
Consider (i, sx) ∈ SeqDBsuf−j

Rpost
= SeqDBsuf−j

R′
post

and let Si =

px++sx. Let j′ be the minimum j that satisfies px0 ⊑ px. Let
(i, sx′) ∈ SeqDBsuf−j′

Rpost
= SeqDBsuf−j′

R′
post

and Si = px′++sx′.
From (iv), Rpost has the same number of instances in sx′ as
R′

post has in sx′. So, R has the same number of instances in
Si as R′ does.

Theorem 3 (Pruning Redundant Post-Conds):
In a sequence database SeqDB , consider a post-condition
candidate Rpost. If the properties (i)-(iv) in Lemma 1 and 2
are satisfied, then for any pre-condition candidate pre and any
backward extension P++Rpost, the rule pre → (P++Rpost)
is redundant.

Theorem 3 directly follows from Lemma 1 and 2, and it
implies that, there is no need to put Rpost or its backward
extension P++Rpost into the post-candidate set, if (i)-(iv) in
Lemma 1 and 2 are satisfied.

Example 9: Consider a post-condition candidate Rpost =
⟨c⟩ in the sequence database SeqDB (Table III). Recall the suf-
projection and pre-projection of SeqDB w.r.t. ⟨c, d⟩ is shown
in Table V. Choosing R′

post = ⟨c, d⟩, we can easily verify
that Rpost here satisfies properties (i)-(iv) in Lemma 1 and 2.
So from Theorem 3, any backward extension of ⟨c⟩ can only
generate redundant rules. Take the backward extension ⟨b, c⟩
for example: consider the rule R = ⟨a⟩ → ⟨b, c⟩ and R′ =
⟨a⟩ → ⟨b, c, d⟩; R is redundant because we have conf (R) =
conf (R′) = 2/3, sup(R) = sup(R′) = 2, and supall(R) =
supall(R′) = 3.

Theorem 2 and 3 throw away those pre- and post- condition
candidates that are generating redundant rules, before we try to
pair them. The two theorems can serve as early-stop conditions
in the pattern-growth generation of pre- and post- condition
candidates.

In the next section, we will show how to utilize the pruning
strategies, namely Theorem 1, 2, and 3, in a holistic mining
algorithm.

VI. ALGORITHM

In this section, we first introduce our framework to mine
(non-redundant) rules in Section VI-A. Two stages of our
mining framework are detailed in Section VI-B and VI-C. We
analyze our algorithm in Section VI-D. We call our framework
BidirectiOnal pruning-Based recurrent rule mining algorithm
(BOB).

A. Algorithm Framework

Recall the goal of our mining algorithm is, given a sequence
database SeqDB and three thresholds min sup, min supall ,
and min conf , we want to find all the rules Rs in SeqDB
with support sup(R) no less than min sup, instance support
supall(R) no less than min supall , and confidence conf (R)
no less than min conf .

Our mining algorithm consists of two major stages. In
the first stage, we use a pattern-growth algorithm to find a
candidate set of pre-conditions and a candidate set of post-
conditions–strategies introduced by Theorem 2 and 3 are used
to prune candidates for mining non-redundant rules. In the
second stage, pre-conditions and post-conditions are paired



to form rules, with the significant (sufficient supports and
confidence) and non-redundant ones output–Theorem 1 is used
to speed up the pairing procedure. We outline the algorithm
as follows:

1) (Mining Pruned Pre-Conditions) Mine a set of pre-
condition candidates PRE satisfying min sup. Candi-
dates are pruned based on Theorem 2.

2) (Mining Pruned Post-Conditions) Mine a set of post-
condition candidates POST satisfying min sup. Can-
didates are pruned based on Theorem 3.

3) (Forming Rules) For each pre ∈ PRE, pair it with
each post ∈ POST to form a rule R (in some order).
Test whether a rule is significant (sufficient supports
and confidence), and keep all significant rules in a set
RULES. Theorem 1 is used to speed up the pairing
here.

4) (Removing Redundant Rules) Remove the remaining
redundant rules (Definition 4.6) in RULES, and output
the rest.

Step 1 and 2 above belong to the first stage, which will be
elaborated in Section VI-B. Step 3 and 4 belong to the second
stage, which will be described in more detail in Section VI-C.

B. Stage I: Mining Pruned Candidates

We propose a new pattern-growth algorithm to find pre-
condition (PRE) and post-condition (POST ) candidates.

The algorithm for mining pruned candidates is outlined in
Algorithm 1. It is important to note that both the mining
of pre-condition candidates and the mining of post-condition
candidates are done using pattern-growth (i.e., depth-first
search of the pattern space). The difference is: to mine pre-
conditions, patterns are grown forward (P is grown to P++e),
and thus we utilize the projections of SeqDB (projected to the
suffixes); on the other hand, to mine post-condition candidates,
patterns are grown backward (e++P ), and thus we utilized
the pre-projections of SeqDB (projected to the prefixes). The
subroutine BackwardGrow and ForwardGrow implement the
forward and backward pattern growth strategy respectively.
The reason for differentiating mining pre-conditions from
mining post-conditions is to facilitate the pruning strategies
presented in Theorem 2 and 3.

Line 6 and 11 utilize the anti-monotonicity property of sup-
port (longer patterns cannot have higher sequence supports).

Line 7 and 12 apply the pruning strategies in Theorem 2
and 3, respectively. It should be noted that, once a pattern P
is pruned, we stop growing from P , because Theorem 2(3)
states that any of its forward(backward) extension can only
lead to redundant rules.

Representation of Projected Databases. The remaining
question is how to represent projected databases SeqDBP ,
SeqDBall

P , SeqDBpre
P , and SeqDBsuf−j

P (used in Theorem 2
and 3), which are referred to in Algorithm 1. It is not space-
efficient to store them explicitly. Interestingly, all the projected
databases are either prefixes or suffixes of the original se-
quences. Therefore, we only need to store the ending/starting

Algorithm 1 Mining (Pruned) Candidates
Input: sequence database SeqDB = {S1, S2, . . . , SN};
threshold min sup
Output: pre-/post-condition candidates PRE/POST

1: I ← all events appearing in SeqDB ; PRE,POST ← ∅;
2: for each e ∈ I do
3: ForwardGrow(e,SeqDBP );
4: BackwardGrow(e,SeqDBpre

P );
5: return PRE and POST ;

Subroutine ForwardGrow(P,SeqDBP )
Input: pattern P and projected database SeqDBP w.r.t. P
Objective: add pre-condition candidates with prefix P into

PRE

6: if |SeqDBP | ≥ min sup then
7: if P satisfies (i)-(ii) in Theorem 2 then prune P else
8: Pre← Pre ∪ {P};
9: for each event e appearing in SeqDBP do

10: ForwardGrow(P++e,SeqDBP++e);

Subroutine BackwardGrow(P,SeqDBpre
P )

Input: pattern P and pre-projected database SeqDBpre
P w.r.t.

P
Objective: add post-condition candidates with suffix P into

POST

11: if |SeqDBP | ≥ min sup then
12: if P satisfies (i)-(iv) in Theorem 3 then prune P else
13: Post← Post ∪ {P};
14: for each event e appearing in SeqDBpre

P do
15: BackGrow(e++P,SeqDBpre

e++P );

positions of prefixes/suffixes in the original sequences, instead
of explicitly storing the prefixes/suffixes.

C. Stage II: Forming Rules

This subsection describes Step 3-4 of our algorithm frame-
work, i.e., how to form significant non-redundant rules from
the two candidate sets PRE and POST obtained in Step 1-2.

The basic idea is to pair each pre-condition from PRE
with each post-condition from POST to form a rule, and
then test whether its supports and confidence are high enough
and whether it is redundant. Note the strategies introduced in
Theorem 2 and 3 (line 7 and 12 in Algorithm 1) can prune
some redundant rules but not all of them. So the redundancy
test here is still needed. The main purpose of Theorem 2 and
3 is to shrink the candidate sets, and thus speed up the mining
and pairing of candidates.

This stage is outlined in Algorithm 2. There are four
remaining questions: (i) how to organize PRE and POST
to facilitate the pairing procedure; (ii) in what order to pair
each pre ∈ PRE with each post ∈ POST ; (iii) how to
compute the supports and confidence of a rule; (iv) how to
test whether a rule is redundant.
Prefix Hash Tree. We use a prefix hash-tree (PHT) data



Algorithm 2 Forming Rules from Candidates
Input: pre-/post-condition candidates PRE/POST in
SeqDB ; thresholds min sup, min supall , and min conf
Output: Significant and non-redundant rules

1: Store PRE in a Prefix Hash Tree PHTPRE ;
2: Store POST in a Prefix Hash Tree PHTPOST ;
3: for each pre ∈ PRE do
4: for each post ∈ PHTPOST (in DFS order) do
5: Let R be the rule pre→ post;
6: if conf (R) < min conf or

sup(R) < min sup then
skip the subtree below post;

7: Add R into RULES;
8: Eliminate redundant rules in RULES;
9: return RULES

structure to organize the set of candidates PRE and POST .
For POST , all patterns are stored in the PHT in reverse
order. Each node in this tree represents a pattern (obtained
by following the path from root to this node). Each node
is also associated with its corresponding projected databases:
SeqDBP , SeqDBall

P , and SeqDBpre
P . As is discussed in Sec-

tion VI-B, each projected database is stored implicitly. Each
node has a hash table to quickly locate one of its child in a
constant lookup operation given an event.

An example of a PHT is shown in Figure 1.

A 

B 

C 

C 

Proj. DBs of <A,B> 

Proj. DBs of <A,B,C> 

Proj. DBs of <A,C> 

Statistics PHT 

Fig. 1. Prefix Hash-Tree (PHT) Data Structure

Embedding the Anti-Monotonicity Property. We store
POST in a PHT in reverse order and scan Rpost ∈ POST
in DFS order. By following the DFS order to visit nodes in
the PHT, a post-condition is always scanned earlier than its
backward extensions. This feature enables us to embed the
anti-monotonicity properties of confidence (Theorem 1) and
sequence support into the pairing algorithm (i.e., line 6 in Al-
gorithm 2): for any Rpre ∈ PRE, once a rule Rpre → Rpost

has a low support or low confidence, we can skip scanning
the whole subtree below Rpost. For example, in Figure 1
(suppose it is the PHT of post-condition candidates), for some
pre-condition candidate Rpre, if we find Rpre → ⟨a, b⟩ has a
low support or confidence, we can skip scanning ⟨a, b, c⟩, and
continue to ⟨a, c⟩.
Computing Supports and Confidence. We store both PRE
and POST in PHTs. For a rule R = Rpre → Rpost, its
supports and confidence can be computed from the projected
databases w.r.t. Rpre and Rpost stored in the PHTs. To

compute sup(R) we compare SeqDBRpre with SeqDBpre
Rpost

and look for common sequences where the premise Rpre

occurs first before Rpost. For computing conf (R), we use
the formula defined in Proposition 1 and use the projected
database SeqDBall

Rpre
and SeqDBpre

Rpost
. The ratio of the

occurrences of Rpre in SeqDBpre
Rpost

to all occurrences of
Rpre is conf (R). Supall(R) is the size of SeqDBall

pre++post

which is usually in the PHTs. However, there are cases where
Rpre → Rpost is a significant rule while Rpre++Rpost is
neither in PHTPRE nor PHTPOST . For these cases, we need
to re-scan the database to find the instance support of R.
Eliminating Redundant Rules. Next, in line 8 of Algorithm 2
we want to remove redundant rules. Some redundant rules have
been pruned early from the candidate sets in stage I. But to
eliminate all redundant rules, this step is needed. To illustrate
the need for removing redundant rules even after applying
Theorem 2 and 3, consider the following database containing
two sequences:

Seq ID. Sequence
S1 ⟨a, b, b, c⟩
S2 ⟨a, b, b, c⟩

The rule R1 = ⟨b⟩→⟨c⟩ has a sequence support, instance
support, and confidence of 2, 2, and 100%. These are the same
as those of rule R2 = ⟨a⟩→⟨b, c⟩. Although R2 subsumes R1,
yet, the pre-condition ⟨b⟩ is not considered redundant due to
⟨a⟩ by Theorem 2. Similarly ⟨c⟩ is not considered redundant
due to ⟨b, c⟩ by Theorem 3.

We map rules R’s with the same supports and confidence,
i.e., the same triple (sup(R), supall(R), conf (R)), into a
bucket (using, e.g., a hash table). Then, for each bucket, we
want to remove the redundant rules (i.e., the ones with their
super-pattern in the same bucket).

D. Algorithm Comparative Analysis

Consider a database containing a set of sequences with
events coming from an alphabet A. The worst case complexity
of mining frequent patterns of length at most k from such a
database is O(|A|k) database scan operations. Consider a set
of patterns P , the worst case complexity of constructing PHT
from patterns in P is O(|P |) database scan operations. In our
analysis, we use database scan as the unit of operation. We
ignore the time needed to eliminate redundant rules since no
database scan operation is involved.

In BOB, we perform: 1. two mining operations on
the original sequence database to obtain the set of PRE
and POST , 2. construction of PHTPRE and PHTPOST ,
and 3. Composition of premises and consequents to form
non-redundant rules. Let us also assume that both the
premises and consequents have a maximum length of k.
The complexity of our approach is at most O(|A|k + |A|k
+ |A|k + |A|k + |RULES REQ SCAN |) = O(|A|k +
|RULES REQ SCAN |). The first term of the first formula
(i.e., |A|k) is due to the mining of the premises, the second is
due to the mining of the consequents, the third and fourth are
due to the construction of PHTPRE and PHTPOST , and the
last is due to the composition of premises and consequents to



form rules. Remember many rules can be constructed without
requiring any additional database scan operation. Some how-
ever require the re-scanning of the database to compute their
instance support values (see Section VI-C).

The algorithm in [18] (LKL08) takes as input a sequence
database SeqDB and works in two steps: 1. Mine a pruned set
of pre-conditions obeying minimum sequence support thresh-
old and Theorem 2 from SeqDB, 2. For each pre-condition,
mine a set of post-conditions obeying the minimum confidence
and minimum instance support thresholds. At the end of the
first step, for each pre-condition pre, LKL08 constructs a
projected database SeqDBall

pre. Another mining operation is
then performed on this projected database. The complexity is
thus O(|A|k × |A|k). Notice that if |RULES REQ SCAN |
is not large, the complexity of our approach is smaller by
an exponential factor than that of LKL08. In the worst case,
|RULES REQ SCAN | = |A|k × |A|k though.

However, in frequent pattern mining, worst case analysis
is often not interesting. This is so as in the worst case, all
pruning properties do not work. In the worst case, all possible
rules up to a particular length are significant and none of them
is redundant. The following points summarize reasons behind
the superiority of our approach as compared to [18]:

1) We employ two new pruning strategies described by
Theorem 1 and 3. These strategies are embedded into
our new mining algorithm to remove search space not
pruned before by the approach in [18].

2) The projected database created in [18] could be very
large especially if patterns recur in a sequence many
times. For a premise pre, the projected database
SeqDBall

pre could be larger than the original SeqDB
especially in cases where the number of repetitions of
pre within each sequence containing it is high. Also,
projecting with respect to a premise can produce a very
localized dataset (i.e., a single sequence is split into its
many suffixes), resulting in hard-to-mine dense dataset
with a large number of frequent patterns even at a high
support threshold.

3) During the mining of premises and consequents from
SeqDB, for each pattern P , we store summary informa-
tion, e.g., SeqDBpre

P and SeqDBall
P . This information

is used to immediately prune insignificant rules not
satisfying minimum sequence support and confidence
thresholds (see Section VI-C). For this pruning, we do
not need to re-scan the database, rather only the sum-
mary information needs to be analyzed. The algorithm
in [18] can only perform database scan operations to
prune candidate rules.

To compare effectiveness of various pruning strategies,
experiments on various datasets are needed. We perform this
empirical evaluation in Section VII.

VII. EMPIRICAL EVALUATION

Experiments have been performed to evaluate the scalability
of our approach. A case study on analyzing traces from an
instant messaging application has also been conducted.

Environment and Pattern Miners. All experiments are per-
formed on a Pentium Core 2 Duo 3.17GHz PC with 3GB main
memory running Windows XP Professional. Algorithms are
written in Visual C#.Net. We compare the approach presented
in [18] with our approach. We refer to the two approaches as
LKL08 and BOB respectively.
Datasets. To reduce the threat of external validity (i.e., the
generalizability of our result), we investigate a variety of
datasets. Four datasets, two synthetic and two real, are studied.

IBM synthetic data generator is used [3]. It is modified to
produce sequences of events, rather than sequences of sets
of events. The generator accepts a set of parameters. We
focus on four parameters: D, C, N, and R. They correspond
to the number of sequences (in 1000s), the average number
of events per sequence, the number of different events (in
1000s), and the repetition level (range: 0 to 1) respectively.
All other parameters of the synthetic data generator are
set to their default values. We experiment with two syn-
thetic datasets: D5C20N10R0.5 and D10C10N10R0.5. Dataset
D5C20N10R0.5 contains sequences with an average length of
64.4 and a maximum length of 275. Dataset D10C10N10R0.5
contains sequences with an average length of 31.2 and a
maximum length of 133. D5C20N10R0.5 has less sequences
of longer lengths. On the other hand, D10C10N10R0.5 has
more sequences of shorter lengths.

We also experiment on a click stream dataset (i.e., Gazelle
dataset) from KDDCup 2000 which has also been used to
evaluate frequent sequential pattern miners, i.e., CloSpan [26]
and BIDE [25]. The dataset contains 29,369 sequences with an
average length of 3 and a maximum length of 651. Compared
to the two synthetic datasets, this real data has a lower average
length but contains sequences of longer lengths. The gap in
the lengths of long and short sequences is also wider.

To evaluate our algorithm performance on mining from
program traces, we generate traces from TotInfo program in
the Siemens Test Suite [13]. The test suite comes with 893
correct test cases. We run these test cases to obtain 893 traces.
Each trace is a sequence of events where every event is a
method invocation. We refer this dataset as the TotInfo dataset.
The TotInfo dataset contains sequences with an average length
of 12.1 and a maximum length of 136.
Results. In Figure 2 and 3, we plot the runtime needed and the
number of rules mined from D5C20N10R0.5 when varying
the minimum sequence support threshold and the minimum
confidence threshold respectively. In this study, for simplicity
sake, we set the minimum instance support threshold to be
equal to the minimum sequence support threshold. Each of
the runtime graphs has two lines corresponding to the two
algorithms’ runtime at various thresholds.

We could note that BOB is faster than LKL08 by up to
one order of magnitude (i.e., 10x faster). Also, we note that
BOB pruning strategy is effective in reducing required runtime
when the minimum confidence threshold is raised from 50%
to 90%. On the other hand, no significant performance change
could be noticed in LKL08 case.

In Figure 4 and 5, we plot the runtime needed and the



Fig. 2. Runtime (left) & |Rules| (right) for D5C20N10R0.5 dataset when
varying min s-sup (at min conf=50%)

Fig. 3. Runtime (left) & |Rules| (right) for D5C20N10R0.5 dataset when
varying min conf (at min s-sup =2.4%)

number of rules mined from the D10C10N10R0.5 dataset
when varying the minimum sequence support threshold and
the minimum confidence threshold respectively. Again, we
notice that BOB is up to 10 times faster than LKL08. Also,
we note that the gap between the performance of BOB and
LKL08 is increased when the minimum confidence threshold
is raised from 50% to 90%. We do not experiment with mining
at lower confidence threshold levels as low confidence rules
have very little use and are likely to only capture noises.

Fig. 4. Runtime (left) & |Rules| (right) for D10C10N10R0.5 dataset when
varying min s-sup (at min conf=50%)

Fig. 5. Runtime (left) & |Rules| (right) for D10C10N10R0.5 dataset when
varying min conf (at min s-sup =0.5%)

In Figure 6 and 7, we plot the runtime needed and the
number of rules mined from the Gazelle dataset when varying
the minimum sequence support threshold and the minimum
confidence threshold respectively. We notice that BOB im-
proves the performance of LKL08 by two orders of magnitude

(i.e., more than 100x faster). At support level 0.020%, LKL08
is not able to finish within 8 hours. Thus BOB can successfully
mine rules at a lower support threshold that is not minable by
LKL08 in a reasonable amount of time.

Fig. 6. Runtime (left) & |Rules| (right) for Gazelle dataset when varying
min s-sup (at min conf=50%)

Fig. 7. Runtime (left) & |Rules| (right) for for Gazelle dataset when varying
min conf(at min sup=0.034%)

In Figure 8 and 9, we plot the runtime needed and the
number of rules mined from the TotInfo dataset when varying
the minimum sequence support threshold and the minimum
confidence threshold respectively. At all support levels shown
in Figure 8 and 50% minimum confidence threshold, LKL08 is
not able to run due to an out of memory exception while BOB
is able to finish in less than 2 minutes. When we decrease the
minimum confidence threshold, we see an exponential increase
in the runtime of LKL08. BOB runtime on the other hand
remains the same. LKL08 performs a pattern mining operation
for every projected database of each mined pre-conditions, this
causes the high runtime values.

LKL08 is not able to run

Fig. 8. Runtime (left) & |Rules| (right) for TotInfo dataset when varying
min s-sup (at min conf=50%)

Case Study. In past studies, recurrent rules, either in full
or restricted form, have been mined from various software
datasets [18], [19]. Mined rules correspond to interesting tem-
poral properties extracted from execution traces of programs.
In [18], Lo et al. mined rules from execution traces generated
by running test cases of JBoss Application Server. In [19], in
a study within Microsoft, Lo et al. mined a restricted form of
two-event recurrent rules with quantification from Windows
device drivers and other Windows applications.



Fig. 9. Runtime (left) & |Rules| (right) for TotInfo dataset when varying
min conf (at min s-sup =5.6%)

In this study, we consider another trace data obtained from
user interactions with a drawing utility of an instant messaging
application.Many systems like the one that we analyze do not
come with sufficient test cases. We ask a student who is not
involved in this study to interact with the system.

Premise                                   Consequent 

Map PC.createWritersMap() 
void PC.showWindow() 
void PC.unselect() 
void PC.showWindow() 
JID PC.getMyJID() 
void PC.draw(Shape) 
 

PH.addShapeDrawnByMe(…) 

Legend  
PC-  nu.fw.jeti.plugins.drawing.shapes.PictureChat 
PH -  nu.fw.jeti.plugins.drawing.shapes.PictureHistory 

Fig. 10. Jeti Instant Messaging Application: Drawing Scenario

We use Jeti [1], a popular instant messaging application
which supports many features. We record 30 interactions with
the drawing tool of Jeti application and collect 30 traces.
The traces have an average length of 1,430 and a maximum
length of 11,838 events. Each event is a method call. The
purpose of this case study is to show the usefulness of the
mined rules by discovering frequent and significant rules
describing behaviors of the drawing sub-component of Jeti.
Using minimum sequence support and instance support of 25
traces/instances and a minimum confidence threshold of 90%,
BOB could complete in 57 seconds while LKL08 is only able
to complete in 2844 seconds. A total of 19 rules are collected
after applying the following post-processing steps:
1. Density. Only report a mined rule iff the number of its

unique events is more than 80% of its length.
2. Ranking. Order mined rules according to their lengths

and support values.
A sample mined rule is shown in Figure 10. The rule

captures the scenario when a user draws an object (e.g., a
rectangle, a line, etc) to a canvas. First, a resource, i.e., a Map
object, is created by a PictureChat object. Next, multiple
invocations of showWindow(...) method are made by
different callers. When the application starts, an empty window
is first shown or displayed. After an object is drawn, the drawn
object (i.e, rectangle, line, etc.) would request the canvas (i.e.,
PictureChat object) to “unselect” and redraw itself. The
system next retrieves the identifier of the user that draws the
object by the invocation of getMyJID(...) method. This
identifier is later affixed to the object drawn. Finally, the canvas
records the operation in a PictureHistory object.

VIII. CONCLUSION

This work proposes a new approach to mine recurrent
rules in the form of “Whenever a series of events occurs,
another series of events also occurs”. The proposed approach
is more scalable than the previous approach in [18]. Rather
than performing a mining operation for each non-redundant
pre-condition as proposed in [18], our new approach employs
a number of new pruning strategies embedded in a new mining
algorithm that requires only two mining and some additional
database scanning operations. Under a condition which holds
in many cases, the complexity of the proposed algorithm
is smaller by an exponential factor than the complexity of
the one proposed in [18]. We have experimented on various
datasets: synthetic and real. Experiments have shown that the
new algorithm improves the runtime of the previous algorithm
by up to two orders of magnitude. In the future, we are
looking into more applications of the mining algorithm and
opportunities to further speed up the mining process.
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