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Abstract

Commodity operating systems are known to be vulnerable to rootkit at-
tacks due to their enormous code base and complex logic. Since the OS runs
with a higher privilege than user applications, the rootkit residing in the k-
ernel can access the entire user application space, even when the application
is designed and implemented with security considerations. Existing systems
protecting user-space code have various drawbacks, such as high perfor-
mance overhead, large Trusted Computing Base (TCB), hardware modifica-
tions, or with a restriction imposed on the protected code. Moreover, several
newly identified threats in our paper are evidence that protecting applica-
tions from malicious OS is more challenging than previously realized.

In this paper, we present the design and implementation of AppShield, a
hypervisor-based approach that efficiently and reliably safeguards code, da-
ta and execution integrity of a critical application. The protection overhead
is localized to the protected application such that unprotected application-
s are not affected. We implement the prototype of AppShield with a tiny
hypervisor. We experiment AppShield with several existing applications on
a Linux platform and the results show that the performance costs on CPU
computation, disk I/O and network /O are insignificant.

1 Introduction

It is upheld as a norm that the operating system has a higher privilege than ap-
plications and therefore can access anywhere in the latter’s address space. As a
result, once the OS is compromised (which is commonly due to its enormous code
size and complexity), the application and its data are under the threat of rootkit



attacks. To cope with kernel level attacks, various mechanisms [23, 22, 29, 4,
7, 36, 32, 6, 30] have been proposed to protect those critical applications without
trusting the OS.

Among them, the approaches like Flicker [23], TrustVisor [22] and Fides [29]
simplify the problem setting by assuming that the protected code is self-contained
with pre-defined inputs and outputs (e.g., inputs are the initial parameters and
outputs are the final returns); and that the protected execution does not involve
dynamic memory allocation or deallocation.

However, applications in practice usually interact with the kernel via system
calls for memory management and data exchanges. To protect a full-fledged ap-
plication, several systems [30, 21, 3, 11, 7, 36, 32, 6, 14, 17] are proposed. A-
mong them, AEGIS [30], XOM OS [21], Bastion [3] and SecureME [11] re-
quire hardware modifications, which appear impractical for commodity platforms.
Proxos [32] and Terra [14] introduce a dedicated trusted virtual machine for the
protected applications, which dramatically increases the TCB size and therefore
weakens their security strength. The systems like OverShadow [7], CHAOS [6],
SP? [36], InkTag [17] aim to protect the whole process without requiring hard-
ware modifications or a trusted VM. However, they incur high performance loss
due to the costly encryption/decryption operations and are subject to the newly
identified attacks described in Section 3.2.1. For example, the malicious OS may
swap two address translation mappings to break the data integrity without directly
accessing the data pages (i.e., mapping reorder attack). It may also illicitly return
an allocated memory region with its virtual addresses occupied by the application
stack (i.e., lago attack [5]). By doing so, the application may happen to modify
the control data (e.g., return address) in the stack, and thereby compromise the
execution of the victim application. The newly identified threats are evidence that
protecting applications against the malicious OS is more difficult than previously
realized.

In this paper, we propose AppShield, a novel system which reliably and effi-
ciently protects data secrecy and integrity of a critical application, as well as its
execution integrity, against rootkit attacks. AppShield leverages the hardware-
assisted virtualization techniques [19] to isolate the application’s address space
such that all accesses from the kernel are blocked except those explicitly autho-
rized by the application through system calls. The protected application utilizes
the main memory in the same fashion as in a normal (unprotected) setting. It ac-
cesses the memory with native speed, i.e. without encryption/decryption or being
intercepted, and it can request the kernel to (de)allocate memory buffers. App-
Shield achieves performance isolation since those unprotected applications are
not affected and do not have performance loss. We have implemented a proto-
type of AppShield which consists of a bare-metal hypervisor with roughly 29K
SLOC and a tiny kernel module of around 2K SLOC. We have experimented



the prototype with several applications (e.g., Apache and VIM) and run a suite
of benchmark tests. The experiment results demonstrate that AppShield incurs
insignificant performance costs in CPU computation, disk I/O and network I/O.

ORGANIZATION. In the next section, we define the problem by specify-
ing the threat model, our objectives and the AppShield overview. In Section 3,
we describe the dynamic address space isolation together with newly identified
threats. The secure and efficient address space switch, and the support of legal
data exchanges is described in Section 4 and Section 5, respectively. The imple-
mentation and evaluation are shown in Section 6. We discuss several issues and
related work in Section 7 and Section 8, respectively. Finally, we conclude this
paper in Section 9.

2 Synopsis

2.1 The Model

In this work, we consider an adversary who remotely controls the OS on the tar-
get platform by a rootkit and attempts to attack a critical application by tampering
with its data and/or execution. The adversary can run arbitrary code and launch
DMA operations in the victim platform. Nonetheless the adversary can not phys-
ically control it.

Our aim is to protect a critical application execution integrity and data security
against such an adversary. We do not consider protection of its availability. Nei-
ther do we protect the application’s raw I/O inputs and final data outputs'. Side
channel attacks are also out of scope of our study.

We suppose that no malicious data input can subvert the control flow of the
critical application. It is orthogonal to our objectives to enhance code security
(e.g., fixing bugs) of the protected applications. The platform’s chipset and all
peripheral devices are trusted in the sense that they operate exactly following their
specifications and do not contain Trojan-Horse circuits or microcode that respond
to commands of the adversary.

In our model, a bare-metal hypervisor is trusted since it can be protected
with secure boot/DRTM (e.g., Intel TXT) and hardware virtualization technolo-
gy. Furthermore, the hypervisor can leverage some existing hypervisor protection
schemes (e.g., HyperSafe [35], HyperSentry [1], HyperCheck [34]) to further en-
hance its security. Note that the hypervisor can intercept and emulate the SMM
operations so that SMM-based attacks cannot subvert it.

'The critical application may encrypt its disk and network data. Existing secure 1/O path
schemes like [10, 37] can protect the raw I/O inputs



2.2 Desired Properties

It is desirable for a security solution for the stated problem to have the following
properties. Firstly, the application’s behavior should be preserved by the protec-
tion mechanism. The application is not assumed to be a piece of self-contained
code and is entitled to issue system calls as in a normal setting. For instance, it
can request the OS to allocate a memory buffer even though the OS is not trusted.

Secondly, the security mechanism should have minimum performance impact
on the protected application and on the platform as a whole. The performance
requirement has twofold implications. Ideally, the protected application should
be able to access the main memory with the native speed. Therefore, hypervisor-
based interposition and memory buffer encryption/decryption should be avoided
since they take a significant toll on memory access delays. Moreover, the mech-
anism should only incur localized performance overhead, without affecting the
performance of unprotected applications and the OS.

Lastly, the TCB of the security mechanism should small and simple, which
ensures that the risk of subverting the TCB is kept minimal. This property pre-
cludes the approach of using a trusted virtual machine where the TCB encloses an
operating system.

In this paper, we present the design and implementation of AppShield which
is the first of its kind meeting the security requirement with all the aforementioned
properties. AppShield uses a tiny hypervisor on the bare-metal machine to protect
a critical application against the untrusted OS. Its overview is described in the next
section.

2.3 AppShield Overview

The fundamental idea of AppShield is to isolate the target application’s context
(registers) and address space from the kernel and other applications, while allow-
ing it to issue system calls and utilize the memory in a dynamic fashion. The
rootkit cannot access its memory space, except those memory buffers explicitly
exported to the kernel by its system calls. In the rest of the paper, we use CAP to
denote the critical application that is under AppShield’s protection.

Figure 1 depicts the architecture of AppShield. It consists of a bare-metal hy-
pervisor, a transit module in the guest kernel space and a shim code in the user
space. Both the transit module and the shim code are safeguarded by the hyper-
visor to defend against attacks from the guest kernel. CAP runs in an address
space isolated from the rest of the guest domain, while the guest OS and those
unprotected applications on the platform run unaffected. The page table of CAP
is managed by the guest OS, but the updates are intercepted and verified by the
hypervisor to defend against various attacks (Section 3.2.1). CAP’s system calls
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Figure 1: The architecture of AppShield. The data flows (dotted lines) between
the protected Critical APplication (CAP) always go through the shared buffer and
mediated by the shim code. The control flows (solid lines) between CAP and
the OS are mediated by the Transit Module (TraMod). The execution of transit
module are protected by the hypervisor.

are mediated by the trusted shim code which is essentially a wrapper of 1ibc
libraries. The main task of the shim is to marshal the system call parameters by
exporting the data needed by the system call routine into the shared buffer acces-
sible to the kernel. Since events like interrupts and system calls causes context
switches between CAP and the guest kernel, the transit module responds to the
event, facilitates the context switches, and prevents the context switch from being
manipulated by the rootkit.

3 Dynamic Address Space Isolation

Dynamic address space isolation is the bedrock of AppShield. In this section, we
first elaborate how the hypervisor isolates a pre-defined address space of CAP.
Then, we explain how the isolation is dynamically adapted to the changes of the
memory boundary at runtime. While our description follows Intel virtualization
technology, the approach is applicable with AMD’s as well.



3.1 Address Space Isolation

In a nutshell, the physical memory assigned to the guest is divided into two sepa-
rated regions by the hypervisor. One region is used for CAP while the other is for
the guest OS and other applications. The memory dichotomy as depicted in Fig-
ure 2 is realized by two suites of EPTs maintained by the hypervisor, respectively.
In this way, the virtual addresses of the guest OS and other applications are never
mapped to a physical address dedicated to the protected application, and vice ver-
sa. The hardware enforced address space isolation ensures that the guest OS and
the protected application cannot directly access each other, provided that all EPTs
are properly set and applied. For the sake of clarification, we use AppShield EPT
to refer to the ones dedicated for CAP. In the following, we only focus on the EPT
configuration. The details of applying the proper EPT are described in Section 4
which elaborates the context switches between CAP and the guest OS.

Untrusted EPT AppShield EPT

! ! ------------------- Mappings =~ -----moeeeeoeod ! !

Memory Regions
"""""""" of CAP B 55%%

- Shared Buffer ;

\\‘*\Other Memory
Regions

|:| Accessible @ Inaccessible

Figure 2: Address Space Isolation. With the trusted AppShield EPT, only the
memory regions of CAP and the shared buffer are accessible, while with the orig-
inal EPT, the memory regions except the shared buffer are inaccessible.

The hypervisor exports two hypercalls for CAP to activate and deactivate the
protection. The activation hypercall is issued before CAP’s main function is en-
tered. In response, the hypervisor obtains the CR3 register value from the VMCS
and traverses the page table entries belonging to the application, so that it locates
all pages within the address space, including the shared libraries. (Note that the
page fetching during the traversal forces the guest kernel to load share libraries



into the memory.) Both the traversed guest PTEs and the pages pointed by them
constitute the physical memory region that needs to be separated from the guest.
The hypervisor creates the AppShield EPT for this region and marks the corre-
sponding entires in the original EPT as inaccessible, so that the guest cannot visit
the isolated region. Once the application’s code and data are isolated, the hy-
pervisor can validate its launch-time integrity, supposing that it has been priorly
authenticated by a signature or an HMAC tag.

Through the deactivation hypercall, CAP notifies the hypervisor to disable the
protection. In response, the hypervisor destroys the AppShield EPT and restores
the entries in the original EPTs. Note that the deactivation hypercall can only
be issued by CAP. Any deactivation requests from malicious guest OS and other
unprotected applications will be rejected by the hypervisor.

3.2 Dynamic Isolation

One of the main challenges of isolating a full-fledge application is that its memory
region evolves over time, due to dynamic memory allocation and deallocation
as a result of relevant system calls (e.g., brk) which are in turn invoked by the
corresponding memory usage functions (e.g., malloc and free) in the 1ibc library.

The semantics of these system calls are preserved in AppShield as the guest
OS still manages the memory resources for CAP through the guest page table.
Although the hypervisor protects the guest page table used by CAP, the guest
kernel may manipulate the virtual and/or physical address of the new buffer to
attack CAP without direct access to the latter’s memory space. We identify several
such attacks below.

3.2.1 Address Manipulation

In general, address manipulation attacks can be launched by the kernel in response
to any system calls that result in page table updates. Without loss of generality,
we use buffer allocation as an example to illustrate the attacks.

Suppose a CAP’s buffer contains three consecutive pages at virtual address
V., Vp and Vi respectively and CAP requests a new buffer. In a normal scenario,
the newly allocated buffer’s virtual address and physical addresses do not over-
lap with any existing one, as illustrated in Figure 3-(a), where they are at virtual
address Vp, Vg and Vp. In the following, we show four types of manipulation
attacks.

Mapping Overlap Attack. The malicious kernel may overlap two memory re-
gions in the virtual address space. As illustrated in Figure 3-(b), the new buffer is
set to the pages located at V- to V. The overlapping leads to undesired modifi-
cations of data in P> when the application attempts to update the first page of the
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Figure 3: Threats for address space isolation.

allocated buffer. Obviously this threat could break the data integrity, and it may
also subvert the control flow of the application, if the overlapping memory is in
the application stack and the modifications change the stored return address(es).
In fact, the mapping overlapping is a type of Iago attack [5].

Double Mapping Attack. The double-mapping attack maps two or more virtual
pages to one physical page in the user space. As shown in Figure 3-(c), a write to
V4 affects the result of a read operation at V. This attack is more stealthy than
the mapping-overlap attack, as the physical addresses are transparent to the code
running in the virtual space which is not tampered with at all.

Mapping Reorder Attack. The mapping-reorder attack is to reorder the existing
address mappings between the virtual addresses and the physical addresses. As
shown in Figure 3-(d), CAP retrieves wrong data when it reads from Vp. As a
result, CAP’s data or control flow can be manipulated by the malicious kernel.

Mapping Release Attack. The mapping-release attack is to release one or more
existing mappings without any system call requests driven by the protected appli-



cation. The mapping-release could induce the hypervisor to give up the protection
of those pages since they are not in the protected addresses space any more. By
doing so, the guest OS can freely access the data on those released pages.

3.2.2 Information Collection

Most applications and shared libraries trust OS by default, and they all miss the
verification of the OS behaviors in the memory allocation and deallocation. To fix
this loophole, AppShield has to verify if the memory updates follow the requests
of the application and are not manipulated.

To verify the OS behaviors in memory updates, we should know the exist-
ing memory layout, determine the intent of the application relevant to memory
updates and interpret the page table updates operated by the untrusted OS. The
existing memory layout (the mapping relationship between guest virtual address-
es to guest physical addresses) can be collected from the guest page table of the
CAP. The collected information is reliable since it is collected by the hypervisor
and the page table has been protected to prevent any update.

To determine the intent of the application relevant to memory updates, one
possible way is to allow the hypervisor to intercept all system calls that are po-
tentially used by the CAP to allocate or deallocate memory. In order to correctly
interpret the memory updates information (i.e., the based address and the size),
the hypervisor has to know the exact semantic meaning of all parameters and re-
turn values. It inevitably increases the complexity of the hypervisor and thereby
dampens its security. In our paper, the trusted shim running in the user space
closely works with the CAP. Thus, it knows the system calls used by the CAP and
their semantic meanings, e.g., the parameter of the malloc is the memory size and
the return value is the based address of the new allocated buffer. Through several
hypercalls, the trusted shim is able to securely synchronize such information with
the hypervisor.

To intercept and interpret page table updates, one possible solution is to allo-
cate a dedicated Guest Page Table (GPT) in the address space of the CAP, and
the hypervisor or transit module manages its updates. By doing so, the securi-
ty of the page table is guaranteed but the complexity of the hypervisor or transit
module will dramatically increase, which further takes a toll on the overall system
security. Another possible way is the paraverfication technique [17]. However
it requires costly modifications of OS code. To achieve good compatibility and
make the hypervisor and transit module small and simple, we choose the solution
that is similar to the management of the page table in paravirtualization, e.g., X-
en [2]. Specifically, the page table created by the untrusted OS for the CAP is set
read-only, but the management is still handled by the untrusted OS. The updates
referring to the CAP memory regions are intercepted and verified by the hypervi-



sor. Note that during the validation procedure, the hypervisor gets the original and
the new value of the page table slot, together with the virtual address according
to the slot position. Considering the updated address and comparing the original
value with the new one, the hypervisor obtains the meaning of the current update,
and thereby can validate the page table update.

3.2.3 Verification Details

In page table update verification, the hypervisor and the shim code jointly enforce
the following policies for protecting the address space of a CAP.

1. The page table of CAP should be non-writable for the untrusted guest OS.
Any update should be intercepted by the hypervisor.

2. The newly added memory region should not conflict/overlap with any exist-
ing memory regions, no matter the conflicts happen in virtual address space
(no mapping overlap) or physical address space (no double mapping).

3. Once the mappings between guest virtual addresses and guest physical ad-
dresses are fixed, they are not allowed to re-map (e.g., no mapping reorder).

4. The memory regions can be released only if the CAP requires to release
them (no malicious release), and the page data should be cleaned before
allowing the guest OS to manage/access it (no data leakage).

Essentially, the mapping overlap attack is the conflicts in the virtual address
space. Thus, the verification algorithm can be put into the trusted shim, since it
is protected and aware of virtual addresses. Specifically, the trusted shim is able
to know all memory regions used by the CAP by collecting such information in
the memory-related system calls. For example, the trusted shim can know the
size of the memory-mapped region through the second parameter of mmap and
the base address through the return value. Such information stored in an ordered
list is inaccessible for the untrusted guest OS since the address space of the CAP
is isolated by the hypervisor. For each new allocated memory region, the trusted
shim verifies it with existing ones. If there is no overlap, it then updates the
maintained list and passes the execution flow to the CAP; otherwise it will issue a
hypercall to the hypervisor to inform the policy violation.

To defend against double mapping and mapping reorder attacks in the page
table updates, the hypervisor has to interpret the old mapping M, and the new
mapping M,,, and analyze the intent of this update. If the guest OS is to build
a new mapping (i.e., M, is empty and M, points to a guest physical page), the
hypervisor verifies if the new pointed physical page is occupied before. If it is
already occupied, it is a double mapping attack; otherwise the update is approved.
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If the guest OS aims to remap/reorder the mappings (i.e., both M,, and M, point
to guest physical pages), the hypervisor directly rejects it.

If the guest OS aims to free an old mapping (i.e., M, points to a guest physical
page while M, is empty), the hypervisor verifies if CAP requires the guest OS
to release this memory page. The information about the released memory pages
is provided by the trusted shim through hypercalls. Those potentially released
memory pages are stored in a list in the hypervisor space. By searching the list,
the hypervisor decides if the current page is the one that CAP aims to release. If
it is not, the hypervisor rejects the update; otherwise it approves it and updates
the list by deleting the corresponding record. Note that the data on the releases
memory page is cleaned by the trusted shim once it gets the release requests from
the CAP.

4 Secure Context Switch

Events like system calls, interrupts and exceptions, lead to context switches be-
tween CAP and the kernel. Different from traditional user-kernel context switch,
the switch between CAP and the kernel involves address space switches, since
they run in two address spaces.

When CAP is in execution, the transit module in AppShield handles all inter-
rupts and prevents the kernel from exploiting the context switch to attack CAP.
Its main tasks are to facilitate the context switch and to safeguard CAP’s context
information. It also notifies the hypervisor to perform address space switch. As
shown in Figure 4, when an interrupt is raised, the control flow leaves from CAP
to the kernel. Once the event is processed by the kernel, the flow goes back to
CAP. We proceed to elaborate the details of context switch.

Address Space Boundary

CAP
l A
P { Exit Gates |
Commodity OS . Transit Module
'E > Entry Gates ]

Figure 4: Control flow between the CAP and the guest kernel.
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4.1 Transit Module

The transit module is a self-contained kernel module with its execution being
protected by the hypervisor using the mechanism described in [28]. Specifically,
the memory regions occupied by the transit module is isolated by the hypervisor,
such that the untrusted commodity OS can not modify the data and the code. The
control flows of the transit module execution always start from the pre-defined
addresses.

Entry Gates Exit Gates
-~
i n
O 5
Public Private

Section Section

1
L
[}
Page Aligned

Figure 5: The format of transit module

The transit module has two sections (Figure 5), which are page aligned for fa-
cilitating memory protection. The first section is the public section which contains
information that is read-only for the transit module and the commodity OS. The
second section is the private section which contains private data. Accesses to the
private section are only allowed if they are from the transit module; other accesses
originated from outside of the transit module are blocked by the hypervisor. The
transit module consists of a set of interrupt handlers called AppShield interrupt
handlers. An AppShield interrupt handler is composed of two code stubs (Fig-
ure 6). One is called the entry gate which is located in the public section and the
other is called the exit gate which is in the private section. The control flow of the
transit module always starts from one of the entry/exit gates. The exit gate handles
the context switch from CAP in protection to the guest kernel while the entry gate
handles the switch back to CAP. More details are presented in Section 4.3.
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Figure 6: The AppShield interrupt handler.

4.2 Event Capture

We do not use the hypervisor to intercept the interrupt events as this method sig-
nificantly affects the platform performance. When AppShield is activated, the hy-
pervisor loads the AppShield Interrupt Descriptor Table (IDT) which is dedicated
to CAP under protection, and protects it from be modified by the guest kernel by
setting its region as read-only.

The AppShield IDT contains the pointers pointing to the AppShield interrup-
t handlers. The hypervisor installs the AppShield IDT to the CPU occupied by
CAP by setting its IDTR register. Consequently, the AppShield interrupt handlers
become the first responders to interrupts on the CPU. When the guest OS is run-
ning, it uses the original IDT and interrupt handlers. The switch of the two IDTs
follows the switch of the address space. As illustrated in Figure 7, the original
IDT is uninstalled and the secure IDT is installed for the CAP execution.

By using two sets of interrupt handlers, our design achieves performance over-
head localization, because the transit module is only invoked when CAP is inter-
rupted. AppShield is not involved when other applications and the guest OS are
running.

13
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Figure 7: Performance Overhead Localization. When the context switches to
CAP, the normal IDT is uninstalled and the secure IDT is installed.

4.3 Context and Address Space Switch

Figure 8 depicts the control flow of event handling with two context switches at the
exit gate and the entry gate. When an interrupt is raised during CAP’s execution,
the exit gate of the AppShield interrupt handler kicks off the context switch. Under
the protection of the hypervisor, the exit gate first prepares a buffer and saves
CAP’s context in the transit module’s private section. It then creates a dummy
context for the kernel to execute within. Note that the dummy context should
not be randomly generated since some context information is used by the kernel
to serve the application. For instance, the EIP should point to the corresponding
interrupt handler so that the original handler can serve the interrupt. Specifically,
we only need to hide the information in the general registers (i.e., EAX, EBX,
ECX, EDX, ESI, EDI, EBP) since they may contain sensitive CAP data. In the
case of system call context switch, we also need to keep the parameters in the
corresponding registers. Moreover, to allow the execution flow to come back to
the transit module, the return address of the dummy context is set to point to the
corresponding entry gate. In the end, the exit gate then issues a hypercall to inform
the hypervisor to restore the original page tables so that the interrupt handler in
the guest kernel can properly execute.

Once the guest interrupt handler finishes its process, the control is returned to
the entry gate. The entry gate issues a hypercall to request the hypervisor to restore
the AppShield EPT. After ensuring that the request is indeed from the legitimate
entry gate, the hypervisor restores the AppShield EPT and installs the AppShield

14



IDT, so that the entry gate can properly restore the saved context and resume the
interrupted CAP execution.

Exit Gate Entry Gate
1. Issue hypercall to \
1. Save the context switch address space
2. Prepare dummy 2. Restore the original
context / N\ context
3. lIssue hypercall to 0s 3. Continue the previous
switch address space Execution execution S

Figure 8: A typical address space switch always starts with an exit gate and ends
with an entry gate. The commodity OS handles the events that trigger the address
space switch.

4.4 Special Considerations

Fast-System-Call Cost Localization The platforms equipped with new proces-
sor and chipset support fast system call mechanisms (i.e., SYSENTER/SYSCALL,
SYSEXIT/SYSRET), which are independently proposed by Intel and AMD, re-
spectively. The SYSENTRER/SYSCALL traps the CPU to the kernel mode and
the SYSEXIT/SYSRET transfers the CPU back to the user mode. In this paper
we choose one pair (i.e., SYSENTER/SYSEXIT) to illustrate.

The SY SENTER instruction sets the registers (i.e., CS, EIP, SS and ESP)
according to values specified by the operating system in certain Model-Specific
Registers (MSR), and triggers the CPU to trap into the kernel mode. To localize
the performance overhead to CAP, the hypervisor also prepares two sets of MSR
registers. One set is used for CAP, where the EIP value in the corresponding M-
SR (i.e., SYSENTER_EIP_MSR) is modified to point to the new system call handler
prepared by the transit module. By doing so, all fast system calls will be inter-
cepted the transit module. Another set is used for the unprotected applications as
usual. The two sets of registers are switched following address space switches.
Note that the context backup and restoration are still handled by the pairs of the
exit and entry gates.

Multi-Thread Execution AppShield supports multi-thread execution of CAP.
The child threads could be user threads, which are completely maintained by CAP
in user space, or light weight processes scheduled by the guest OS and sharing the
same address space with their parent.
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The user threads do not have their own contexts since they do not have the
kernel structure for scheduling. Therefore, they are transparent to AppShield. In
contrast, light weight process threads may have multiple user contexts for CAP,
since each of them has its own corresponding structures (e.g., kernel stack) for
scheduling. These threads may run in parallel and trap into the guest OS simul-
taneously. Therefore, by using the base addresses of their kernel stacks as the
identifiers, the transit module can distinguish each of them, and save/restore the
respective contexts.

S System Call Adaption

The system call from CAP to the guest kernel exposes some CAP data since they
are passed to the guest as parameters. AppShield provides a spatio-temporal pro-
tection [11] for the data involved in the system call. It ensures that the guest OS
can only access the authorized data (spatial protection) during the execution of the
system call (temporal protection). The previous sections have explained that tem-
poral protection is achieved by address space isolation and secure context switch.
In this section, we describe how AppShield enforces spatial protection through
system call adaption.

A majority of system calls do not need the OS to access the application address
space to get further information, since all needed information in in the parameters
(e.g., close) or even without needing any parameters (e.g., getpid). These calls are
passed to the guest OS without any adaption.

Those system calls whose parameters contain pointers (e.g., a pointer pointing
to the file name in open), need adapting. To ensure spatial protection, researchers
have proposed two possible solutions. The first approach [7] is to interact with the
hypervisor multiple rounds to safely move the decrypted data into a shared/public
buffer. The other approach [11] does not allocate a new buffer. Instead, it decrypts
the data in the original buffer and allows the OS to directly access the buffer. Both
solutions use expensive cryptographic technique, which dramatically reduces the
application performance if the application frequently issues system calls. In ad-
dition, the multiple round interaction (with the hypervisor) is another source of
the performance loss. We summarize the time cost of the parameter marshalling
in a system call in two typical schemes (i.e., Overshadow and SecureME) togeth-
er with our scheme in Table 1. Overshadow needs 8 context switches and costly
cryptographic operations, and SecureME also needs cryptographic operations to-
gether with 2 context switches. For our scheme, we only need 2 context switches
for one system call.

In our scheme, the trusted shim creates a shared region (buffer) in its user
space, and issues a hypercall to inform the hypervisor that the shared region is
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Crypto. | Data Context

Opera- Move- Switch

tions ment (#)
OverShadow | / v/ 8
SecureME V v 2
AppShield X Vv 2

Table 1: The time cost of the parameter marshalling in a system call. Our scheme
is relatively efficient because we give up the costly cryptographic operations and
reduce the switch times.

accessible for the guest OS. In this way, the guest OS can only access the data
within the shared region, but cannot access any other regions within the user space
of the CAP, achieving the spatial protection.

To adapt system calls, the shim developers should understand the semantic
meaning of each system call. Specifically, they should know the meaning of the
parameters and the return values. In addition, they should know the direction of
the data exchange, e.g., from application perspective, the buffer referred to by the
parameter is for receiving data from the guest OS, or caching the data that will
be sent out. Getting such semantic information, they are ready for the system call
adaption. Specifically, for the data that the CAP attempts to send out, the shim
simply moves the data into a buffer allocated in the shared region, and updates the
corresponding parameter to refer to the new buffer. To receive data from the guest
OS, the shim should reserve a buffer in the shared region. The shim then saves
the base address of the original buffer, and updates the corresponding parameter
to refer to the reserved one. When the system call returns, the shim copies the
received data into the original buffer and continues the execution.

5.1 System Call Emulation

There are several system calls whereby the system call adaption technique is not
applicable to resolve the conflicts between the system call purpose and our secu-
rity requirements. Specifically, such system calls are not designed for exchanging
data. Instead, they are for introspecting or manipulating the application by access-
ing or modifying internal status.

The first is Futex (i.e., fast user mutex), which provides a method for an ap-
plication to wait for a value at a given address, and a method to wake up other
applications waiting on a particular address. The implementation of Futex not
only directly accesses the process memory, but also binds some information (e.g.,
a hash bucket) with the address. Therefore, if we simply apply the system call
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Configurations Descriptions

CPU Intel 17-2600 with 3.40GHZ
Memory 3GB DDR3 1333MHZ
Network Card Intel Device 1502 with 1Gbps
Disk ATA 7200RPM

OS Ubuntu 10.04 with Kernel 2.6.32.59

Table 2: The configurations of the experiment machine.

adapting technique to Futex, the semantic information may be bound to a wrong
address, which may lead to the failure of Futex.

The rest are the system calls used in the signal-handling, where the guest OS
needs to prepare a temporary execution context for the application and transfers
the execution control to a pre-registered handler to handle the corresponding sig-
nal. The critical security issue here is that the guest OS needs to be authorized to
manipulate the application context. Such authorization may be exploited to reveal
and tamper with the application data, e.g., involve a function to send plain text
outside. To revoke the authorization from the guest OS, we have to emulate it.

5.2 Ptrace

The ptrace system call is not allowed for CAP since its working mechanism re-
quires the guest OS to directly read the content of the user space, or to modify the
data or even code of the specific addresses, which is completely conflicts with our
security requirements. We should not emulate this system call since it opens the
door for the malicious guest OS to read/write the whole address space of the CAP.

6 Implementation and Evaluation

We have implemented a prototype of AppShield on a PC whose specification is
listed in Table 2. The prototype consists of a dedicated hypervisor running on
the bare-metal hardware, and a Linux loadable module as the transit module. The
code base of the hypervisor is around 29K SLOC with 218 K B binary size. The
transit module consists of around 2/ SLOC, and the trusted shim is around 1K
SLOC.

Trusted Shim We do not modify the source code of the application and the
shared libraries, instead we create the shim as a wrapper of libc, and allow it to in-
tercept the function calls that are supposed to call the libc functions. Specifically,
on the Linux system, an application usually needs shared libraries at runtime, and
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System Calls
open, close, read, write, chdir
Files writev, access, fstat64, uname, poll, fcntl
statfs64, fstatfs64, getdents64, getdents
stat64, Iseek, llseek, getcwd, fchdir, ioctl
bind, listen, accept,
sendto, recvfrom, accept4, select
connect, send, recv, getsockname
Memory mmap2, munmap, mremap, brk, mprotect
getpid, gettid, getgroups32, set_thread_area
getuid, geteuid, getgid, getegid
exit_groud, tgkill, getrlimit, exit
Time time, clock_gettime, gettimeofday
Others | futex, rt_sigaction, rt_sigprocmask, sigaltstack

Network

Process

Table 3: Supported system calls.

the dynamic linker loads those shared libraries in whatever order it needs them.
However, when you set LD _PRELOAD to a shared library, that file will be load-
ed before any other libraries, including the libc library. Preloading a library means
that its functions will be used before others of the same name in later libraries, al-
lowing a function to be intercepted. We use this feature in our implementation,
saving the cost of the source code modification.

The trusted shim needs to do some initializations and preparations for the pro-
tection and the interception, such as allocating the shared buffer, and informing the
hypervisor to protected the application. However, those functions for intercepting
system calls are passively invoked, meaning those functions will not execute until
the application explicitly call them. To solve this problem, we resort to anoth-
er feature - constructor function. A constructor function marked with .init will be
called by the dynamic linker when the library is loaded. The trusted shim supports
56 system calls (listed in Table 3) in the current implementation.

We evaluate the impacts of AppShield by running both macro- and micro-
benchmark kits.

6.1 Micro Benchmark

In the micro benchmark, we evaluate the cost of the address space switch (Ta-
ble 4). An address space switch event can be divided into three parts: protection
mode switch, context backup and restoration. The protection mode switch in-
cludes a hypercall, IDTR and EPT switching. The context backup consists of
saving 17 registers (including general, flag and control registers) and creating a
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Operation Time (us)
Out of Protected Address Space 1.72
Back to Protected Address Space 1.33
Context Backup 0.11
Context Restoration 0.08

Table 4: The micro-benchmark results for address space switch.

dummy context. The context restoration is to load all the saved registers. The
cost of domain switch is relatively high, because it contains the costly memory
access from hypervisor space to guest space, i.e., inserting the return address to
the kernel stack. All three costs constitute the latency for the system to handle a
particular interrupt or exception. The cost for a system call is for address-space
switch cost and parameter marshalingt. The parameter marshaling cost varies for
different system calls. For instance, there is no such cost for getpid, while we need
it to copy data from user space to the shared region in write. Thus, we do not mea-
sure them individually, but choose to evaluate the whole application performance
overhead in macro benchmark.

6.2 Macro Benchmark

AppShield Impacts on Performance SPEC CINT2006 [12] is an industry-
standard benchmark intended for measuring the performance of the CPU and
memory. We executed SPEC CINT2006 in two setups: system with virtualiza-
tion, and the system with AppShield. Figure 9 shows the results.

Comparing the impact of running the workload in a system with a bare-metal
hypervisor, we calculate the overhead added by the additional virtualization lay-
er. Based on the virtualization impacts, AppShield imposes an additional 0.01%
slowdown on average. The primary source of virtualization overhead is VM exits
due to interrupts and privileged instructions [15].

Computation Effects We measure the AppShield protection on computation
programs. In our experiment, we measure three encryption algorithms (i.e., AES,
RC4 and RSA), which is adopted from OpenSSL 0.9.8k project. We run these
algorithms to encrypt/decrypt messages with different lengths, from 32bytes to
2048 bytes. The measurement results in Figure 10 show that the protection effects
on the computation programs is quite small.

Disk I/0 Benchmark The disk I/O benchmark includes three sub-benchmarks
to evaluate the overhead in disk reading, writing and copying. Disk I/O bench-
mark reads/writes data from/to files with different sizes. In our experiments, the
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Figure 9: SPECint 2006 Result. AppShield introduces insignificant slowdown
comparing with virtualization.
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Figure 10: The effects of AppShield protection on computation.

file size is 64MB, and the read/write granularity is from 512B to 4MB. Exper-
iments with a larger file and a smaller buffer result in more system calls, and
consequently introduce more context switches. However, with the increasing of
the buffer size, the performance is better, which is also proved by the experiment
results in Figure 11. Note that the overhead is mainly introduced by data copy and
context backup/restoration in parameter marshaling.
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Figure 11: The disk I/O Benchmark.

| | Linux | AppShield | Overhead |
Apache Throughput 320.65 req/s | 316.84 req/s 1.01x
Connection Time (ms) Proc§§sing 160 163 1.OIx
Waiting 131 135 1.03x

Table 5: The benchmark results of Apache.

Network I/0O Benchmark We measured the network performance with the A-
pache web server. The Apache is configured as worker mode with one main pro-
cess and 20 threads. We run the standard ab matchmarking tool included in the
Apache utility tools. We execute 10,000 web requests, at the concurrency level
of 100 to fetch the default index page. The web client and the Apache server are
in the same LAN. The Apache web server serves requests with 1.20% overhead
in throughput, and about 3.05% overhead in waiting time and 1.86% overhead
in processing time. The overhead is reasonable since Apache may cache the fre-
quently requested pages, without issuing disk I/O for each request.

7 Discussions

I/0 Data Protection To keep the hypervisor and the transit module small and
simple, we do not integrate the device drivers into them, while choose to reuse the
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legacy ones in the untrusted OS. It means that the untrusted OS have the chance to
reveal or tamper with the input data of the CAP. For the file and network data, we
can use cryptographic techniques to protect them, e.g., all file and network data
are encrypted with the CAP private key. However, the data like keyboard input and
mouse input are passed from the devices in plain text, meaning that the untrusted
OS is able to get the content or even arbitrarily modify them. To protect such data,
we can integrate the trusted path [10, 37] with our AppShield technique.

Fine-Grained Protection Currently, we focus on the whole application pro-
tection, while the AppShield technique can be adapted to protect self-contained
high-assurance components. To achieve this, we can split the application into
low- and high-assurance partitions, and only protect the high-assurance compo-
nents. In addition, the high-assurance components that are aware of the existence
of the AppShield can explicitly communicate with the hypervisor to request more
fine-grained protections or certain special services, e.g., the online transaction ser-
vice.

Verifiable Protection End users usually require a proof (verifiable protection)
to indicate the state of the protection. There are several approaches proposed to
provide a secure feedback channel. Bumpy [24], ZTIC [20], Lockdown [33] and
Trusted Path [37] attempt to use a dedicated (extra) hardware device (e.g., USB
token and mobile) as the trusted monitor, while KGuard [8] and Guardian [9] build
a visual verification on the display. We can integrate the the visual verification
into our hypervisor since it does not need dedicated devices. Note that the visual
verification is only involved when the first time the CAP is isolated.

8 Related Work

There are several approaches proposed to protect application code and data, and
all of them attempted to remove the OS out of TCB to provide a higher-assurance
execution environment.

8.1 Self-contained Code Protection

Flicker [23] system built on the TPM-based Dynamic Root Of Trust (DROT) tech-
nology can build an isolation environment to protect a piece of code and data. Due
to the limitation of the TPM, the latency of the Flicker system is quite high. To
minimize the latency, TrustVisor [22] scheme are proposed. By leveraging virtu-
alization technology, TrustVisor virtualizes the physical TPM into Virtual TPM
(VTPMs) and migrate them into hypervisor space. Note that both of them focus
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on the protection of a small piece of code and data. The increasing of the protec-
tion scope, such as protecting the whole application or device drivers, may lead
both schemes to failure.

8.2 Whole Application Protection

Secure-Processor-Based Protection. AEGIS [30] and XOM OS [21] are secure-
processor based approaches that provide compartments to isolate one application
from others. Both of them incur poor computability since they require substantial
modifications on the OSes and applications. AEGIS [30] also provide an alterna-
tive implementation, which requires to build security into the OS.

Bastion [3] and SecureME [11] aim to deal with untrusted OS and untrusted
hardware attacks simultaneously with the assistance of a secure processor. Bas-
tion focuses on the protection of a security module, while SecureME attempts
to provide privacy and integrity for data and code of the application. SecureME
requires modifications on both OSes and applications.

In addition, a Processor-Measured Application Protection Service P-MAPS [26]
is announced by Intel, which is built upon Intel TXT [18] and Intel VT [19] hard-
ware capabilities. P-MAPS provides runtime isolation to protect standard appli-
cations with small TCB. P-MAPS is quite similar to our scheme at a high level.
However, the details of P-MAPS are unavailable for public to conduct an in-depth
comparison.

Microkernel-Based Protection. EROS[27], Perseus[25], Microsoft’s NGSCB [13]
and Nizza [16] are microkernel(or small kernel) based solutions. They attempt to
run commodity OS and untrusted applications in the low-assurance partitions, and
run the applications with higher security requirements in the high-assurance par-
titions, which are isolated and protected by the microkernel itself. However, all of
them incur compatibility issue since they may require splitting or even redesigning
on the applications.

Virtualization-Based Protection. The approaches like TERRA [14] and Prox-
os [32] are hypervisor-based trust partitioning systems. They protect applications
by isolating them into trusted domains with application-specific OSes. These sys-
tems incurs large TCB since they include all secure domains inside. In addition,
they are still vulnerable once the application-specific OSes are compromised.
OverShadow [7], CHAOS [6] and SP? [36] aim to protect the whole applica-
tion execution against malicious application and OSes. However, all of them need
complex encryption and decryption operations on the application data. Obviously,
these additional costly cryptographic operations may reduce the performance and
increase the latency of the whole system, especially for the protected application.
In addition, none of them claims that they protect applications from the MS attack.
Thus, the data and code integrity may still be broken by potentially compromised
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OS. InkTag [17] is a new proposed approach, which also protects the whole ap-
plication and verifies the OS behaviors through paraverfication technique. The
paraverfication technique needs to modify the source code of the kernel, which
is not always available. Thus, it may lead to the failure of the protection on the
close-source OSes, e.g., Windows.

BIOS-Based Protection.  Lockdown [33] system relies on a BIOS-assisted
lightweight hypervisor and a ACPI-based mechanism to provide two switchable
worlds - green world for trusted applications and red world for untrusted appli-
cations. Lockdown uses a trusted path built upon LEDs to provide a verifiable
protection. The main drawback of the Lockdown system is the switch latency is
too high, roughly 40 seconds. SecureSwitch [31] system that is quite similar to
Lockdown also leverages a BIOS-assisted mechanism for secure instantiation and
management of trusted execution environments. The switch latency is relatively
smaller, roughly 6 seconds. Both approaches needs to shut down one world to run
another one, meaning they they can not simultaneously execute two worlds.

9 Conclusion

In this paper, we have presented the designed and implementation of AppShield,
which reliably and flexibly protects critical applications with complete isolation,
rich functionalities and high efficiency. We have implemented the prototype of
AppShield with a small bare-metal hypervisor. We have evaluated the perfor-
mance impacts on CPU computation, disk I/O and network I/O using micro and
macro benchmarks. The experiments show thatAppShield is lightweight and effi-
cient.
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