
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1-2012

Virtualization Based Password Protection Against
Malware In Untrusted Operating Systems
Yueqiang Cheng
Singapore Management University, yqcheng.2008@smu.edu.sg

Xuhua DING
Singapore Management University, xhding@smu.edu.sg

Follow this and additional works at: http://ink.library.smu.edu.sg/sis_research
Part of the OS and Networks Commons

This Conference Paper is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
Cheng, Yueqiang and DING, Xuhua. Virtualization Based Password Protection Against Malware In Untrusted Operating Systems.
(2012). Research Collection School Of Information Systems.
Available at: http://ink.library.smu.edu.sg/sis_research/1670

http://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1670&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Virtualization Based Password Protection Against
Malware In Untrusted Operating Systems

Yueqiang Cheng and Xuhua Ding

School of Information Systems,
Singapore Management University,

{yqcheng.2008,xhding}@smu.edu.sg

Abstract. Password based authentication remains as the mainstream user au-
thentication method for most web servers, despite its known vulnerability to
keylogger attacks. Most existing countermeasures are costly because they re-
quire a strong isolation of the browser and the operating system. In this paper,
we propose KGuard, a password input protection system. Its security is based
on the hardware-based virtualization without safeguarding the browser or OS. A
security-conscious user can conveniently and securely activate or deactivate the
password protection by using key combinations. We have implemented KGuard
and experimented our prototype on Windows with Firefox. The results show that
no significant performance loss is induced by our protection mechanism when a
user authenticates to commercial web servers.

1 Introduction

Password based authentication is the primary method for a remote server to check a
user’s identity. In a typical web authentication, a user password is transferred from the
keyboard to the kernel, then to the browser before being sent out over the network to the
web server through an SSL channel. One of the main threats to password authentication
is kernel/application keyloggers which steal the password from its transferring path.

Any countermeasure to keyloggers must cope with both the attacks on the applica-
tion which forwards the password to a remote server, and the attacks on the I/O path,
namely from the keyboard to the application. Virtualization based isolation is the main
approach as used in [6, 9, 8, 3], where either the browser or the entire OS is isolated as
a protected environment. This approach usually incurs significant cost due to the large
code to isolate and the security assurance is not strong, though it addresses other related
security problems, e.g., phishing attacks. Another approach, as suggested in Bumpy
[16] and BitE [15], is to use an encryption-capable keyboard to protect the I/O path and
rely on the latest processor features to isolate the application. However, most commod-
ity platforms at present are not equipped with the needed keyboard.

In this paper, we propose a novel system to protect passwords against keyloggers
in remote authentication without using a special keyboard or isolation like [6, 9, 8, 3].
Note that in the remote authentication setting, it is unnecessary for the user’s platform
(including the OS and the application) to know the actual password as long as it can for-
ward the authentication information to the server properly. Therefore, the high level idea
of our work is that a hypervisor intercepts the user’s password input; and whenever the



application needs to submit the password to the server through an SSL channel, it traps
to the hypervisor which performs the desired encryption. In other words, the normal
SSL connection between the application and the server is split into non-cryptographic
operations and cryptographic operations, such that the latter are accomplished by the
hypervisor holding the password.

In our system, the cleartext password is never exposed to the operating system or
the application. As a result, a keylogger can only get a ciphertext version. The system
is highly efficient because no extra computation or communication cost is incurred as
compared to normal password authentication, except the keyboard interception and the
trapping. It is entirely transparent to the operating system, though the application needs
to have a plug-in in order to split the SSL operations. Furthermore, the system is user
friendly as it results in little user experience change. (Note that anti-phishing is not in
the scope of our work.)

In the rest of the paper, we present the design and implementation details of our
password protection system named as KGuard. It is for password based web authentica-
tion using Firefox. We also report its performance in experiments with commercial web-
sites such as Gmail. A novel building block of our system is a secure user-hypervisor
interaction channel that allows a user to authenticate a hypervisor, which in itself is of
research value as it addresses one of the challenges recently identified in [30]. KGuard
can be extended for other password authentication systems (e.g., SSH) by replacing the
browser plugin with the one for the application.

ORGANIZATION. In the next section, we discuss the related work. Then we present
an overview in Section 3 with the emphasis on the methodology used in our design.
In Section 4, we describe the details of our design. The implementation details and
performance results are shown in Section 5 and Section 6, respectively. We discuss
several important issues in Section 7 and conclude this paper in Section 8.

2 Related Work

BitE [15] and Bumpy [16] are two isolation based systems that defend user input against
malware attacks. Both of them require an encryption-capable keyboard. BitE suffers
from a large TCB since it contains the legacy OS and Window Manager. Bumpy reduces
the TCB size by using Flicker [14]. However, it has a higher computation latency. The
KGuard system does not leverage the encryption-capable keyboard, and the TCB size
of the KGuard is larger than Bumpy, and smaller than BitE.

Password protection against malware is a sub problem of password management
which deals with other issues like phishing attacks. A widely used approach in [19, 8,
3] is to set up a secure compartment which functions as a proxy to help the user’s au-
thentication. For instance, TruWallet [8] and TruWalletM [3] use different techniques
to secure the authentication proxy which securely stores the user credentials and prop-
erly submits them to a remote server. The main disadvantages of these schemes are the
architectural change (e.g., GUI parts are required to moved from the legacy OS) on the
platform and the high cost (e.g., longer data flow path comparing with the legacy one).
In addition, it is challenging to isolate the browser and the user interface due to the
enormous code size. Oprea et. al. in [19] propose an approach to allow users possess-

2



ing a trusted mobile device (e.g., PDA) to delegate their credentials (e.g., password) for
performing a task (e.g., login). Other works in password management include PwdHash
[22] which uses cryptographic techniques to cope with phishing attacks, and WebWallet
[29] which checks user information submission and determines phishing attacks. Note
that most secure password management systems are complementary to our work which
focuses on password input.

Our work is also related to I/O protection in the kernel space. DriverGuard system
[5] provides a generic solution to protect the confidentiality of I/O data from being
attacked by a compromised kernel. However, it does not solve the password protection
problem because it cannot protect the password residing in the application.

3 Overview

This section presents an overview of our work. We explain the design criteria and the
rationale we follow, including the trust model and a high level explanation of our ap-
proach. We also show the architecture of the proposed system.

3.1 Design Criteria

Ideally, a password protection system should meet the following criteria. Firstly, the
protection should offer the strongest security assurance. It should be able to defeat at-
tacks from rootkits which subvert the operating system, as kernel rootkit keyloggers are
not uncommon in the cyberspace. From the practicability perspective, the protection
should induce little or no modification on the operating system and is fully compatible
with existing browsers. This is due to the fact that proprietary operating systems such as
Windows and Mac OS are more widely used than open-source operating systems. Fur-
thermore, the password security should not be attained at the price of the easy-of-use of
password authentication. On the user side, the protection scheme should be as simple
as possible and does not require user possession of extra devices, such as a USB token
and a mobile phone. On the server side, no changes should be needed. Last but not the
least, the protection system should incur low cost. The cost is measured in terms of both
the time delay during the password authentication session and the overall computation
load on the platform. It is crucial that the user should not experience noticeable delay
in an authentication session.

3.2 Design Rationale

In order to meet the criteria, we carefully assess a variety of design options. The fore-
most issue to consider is the trust model, i.e. which component in the platform can be
considered as trustworthy.

Trust Model We do not trust the operating system and applications running on top
of it, in the sense that they can be compromised and attempt to steal user passwords.
Therefore, safeguarding user password necessitates a root of trust which should not

3



be subverted by rootkits. One candidate for the root of trust is the TPM chip [28],
which is expected to resist all software attacks. Nonetheless, despite of its high security
assurance, the TPM chip offers rather primitive and inflexible functionalities and is slow
in computation. These drawbacks make it ill-suited for password protection.

In this work, we choose the hypervisor (a.k.a. virtual machine monitor or VMM)
as the root of trust, as in [24, 25, 4]. The main benefit is that it allows us to develop
desirable protection functions within the hypervisor, and therefore facilitates the de-
sign and the implementation. The hypervisor is not as secure as the TPM chip since
several attacks have been discovered to compromise some versions of hypervisors [27,
7, 11, 21]. However, the security of the hypervisor can be ensured by three measures.
Our design is based on hardware-assisted virtualization, such as Intel VT-x and AMD
V, which significantly reduces the virtualization code of the hypervisor. In addition,
TPM-based authenticated bootup can verify the integrity of the hypervisor when being
launched. Thirdly, the hypervisor in our system is only for protection in a normal per-
sonal desktop setting, rather than a cloud server with a full-fledged virtualization for
multiple VMs. Therefore, those unneeded services from the hypervisor are turned off
so that only a minimal attack surface is exposed to the guest OS.

A secure hypervisor is capable to dynamically protect memory regions and I/O ports
against direct malware accesses. In addition to that, the hypervisor also uses IOMMU to
enforce the similar policies against malicious DMA operations launched by malware.

Protection Method There exist several candidate methods to protect user passwords
against rootkits. One is to follow the isolation approach as shown in [13]. The execution
of routines processing the password is isolated from the rest of the platform to cordon
off attacks. This method is not compatible with our design criteria because of its low
performance. The frequent interrupt caused by user keystrokes for password inputting
induces the expensive system thrashing between the protection mode and the regular
mode. In addition, the isolation approach faces the difficulty of extracting appropriate
Pieces of Application Logic (PAL) due to the complexity of the kernel’s keyboard in-
put processing and the browser’s web page processing. Another possible method could
be to escort the password data flow as shown in DriverGuard [5]. Nonetheless, this
approach requires code modifications on the drivers, which does not satisfy our com-
patibility requirement. Moreover, DriverGuard by itself does not guarantee the security
of password in the application level.

In this work, our method is based on the characteristics of the password authen-
tication. Firstly, passwords are typically sent to a remote server through an SSL/TLS
connection. It is not necessary for the local host to know the password in use. Sec-
ondly, passwords are fed to a system through keystrokes which can be intercepted by
the hypervisor.

Based on these two observations, the basic idea of our protection method is to in-
tercept the password keystrokes and then securely inject them back to the SSL/TLS
connection established by the browser, however, with its cryptographic operations per-
formed by the hypervisor. Therefore, the password is encapsulated using the web server’s
public key following the SSL/TLS specification without any exposure to the operating
system or the browser.

4



Security Properties The main challenge of realizing the proposed protection method
is the gap between the hypervisor and the security-conscious user. In existing platforms,
a user only interfaces with the operating system through the application, e.g., a browser.

This gap entails three problems to solve. The first is about the timing for protection.
It is undesirable for the hypervisor to intervene in all keyboard inputs. Ideally, the pro-
tection is only activated by the user whenever needed. The on-demand protection brings
up the second challenge: how the user is assured that the hypervisor is protecting the
password input. Note that the operating system may cheat the user by simulating the hy-
pervisor’s behavior. Last but not the least, the hypervisor’s SSL traffic assembling must
use a proper public key certificate for encapsulation. Ideally, the hypervisor is capable
of verifying whether the certificate belongs to the intended web server.

In this work, we design a dynamic secure channel for user-hypervisor interaction
which bypasses the operating system. While the hypervisor’s protection mechanism
is dormant, the channel allows a security-conscious user to activate it through a key
combination. In addition, the channel allows the user to verify whether it is indeed
active. Note that it is not necessary for the hypervisor to authenticate the origin of the
keystrokes, because a faked activation key combination, e.g., from the malware instead
of the user, does not lead to password leakage1.

For the aforementioned third problem, our design achieves the same level of security
as the standard browser’s dealing with SSL certificates, because a certificate misuse is
essentially the traditional man-in-the-middle attack on SSL. Similar to the browser’s
certificate verification, the hypervisor ensures that the certificate is genuine and matches
the SSL connection.

3.3 The Architecture

We consider a platform with an operating system running on top of a hypervisor. A user
uses a web browser to login to a remote server by supplying the password. KGuard is
designed to protect the user password from being stolen by kernel/application rootkits.
The architecture of KGuard consists of three components:

1. A secure user-hypervisor interaction channel allows the user to activate or deac-
tivate the password protection and authenticate the hypervisor. A user toggles the
protection by pressing a prescribed key combination. In response, the hypervisor
securely displays (on the screen) a secret message pre-shared with the user.

2. A routine in the hypervisor intercepts user keystrokes after the protection is acti-
vated. It also validates the authentication server’s public key certificate supplied by
the browser and encapsulates the password using encryption.

3. A browser plugin splits the SSL connection for password submission. Specifically,
it requests the hypervisor to perform the needed cryptographic operations in a SSL
connection and handles other non-cryptographic operations by itself.

1 The faked activation key combination can be considered as a denial of service attack. It will be
quickly spotted by a user because as shown later, the hypervisor will respond to the user with
a secret message pre-shared with the user.

5



Note that the hypervisor only performs cryptographic operations. It does not es-
tablish any SSL connection with the server. In a web authentication, the browser may
establish multiple SSL connections. Only the one submitting the password is split by
the plugin to get the needed cryptograms from the hypervisor. The benefit of this design
is that it does not entail extra computation and communication cost and it can keep the
hypervisor small without including the support for SSL.

4 The Design Details

4.1 User-Hypervisor Interaction

The user-hypervisor interaction channel is a duplex channel. In one direction, a user
sends an activation command to the hypervisor by requesting the operating system to
issue a hypercall. In the other direction, the hypervisor (on receiving the user’s com-
mand) securely displays a secret message on the screen. Therefore, the user can verify
whether the hypervisor receives the command or not.

Hypervisor Protection Activation There exist several approaches for activation. One
alternative design is for the hypervisor to listen to a prescribed hardware event, such as
keystrokes, plugging a USB device etc. These methods can bypass the operating system.
Nevertheless, it requires extra work from the hypervisor which has to keep listening to
all events and filter them properly. In our system, we do not favor this approach because
1) we aim to minimize the load on the hypervisor, especially when the protection is
not needed; and 2) bypassing the operating system is not necessary because no data is
sent to the hypervisor for activation. In addition, the user can verify the activation by
checking the returned secret message from the hypervisor.

In our design, the operation system is the medium transferring the user’s activa-
tion command to the hypervisor. Specifically, we design an application routine, e.g. a
browser extension, and install a new module to the OS, e.g. a virtual device in Win-
dows. The application routine listens to a prescribed key combination (i.e., the activa-
tion command). When the event is captured, it issues a hypercall to inform the hypervi-
sor. Specifically, in the system initialization phase, the hypervisor prepares a hypercall
table and then the installed OS module maps the table into the kernel space. The module
exports an interface (i.e., a system call) to applications. After getting input parameters
from an application via the exported system call, the module is invoked and forwards
these parameters to the hypervisor through a hypercall as the Xen Hypercall mecha-
nism [1].

In response to the activation hypercall, the hypervisor clears the keyboard input
buffer, starts to intercept the keyboard strokes as described in Section 4.2, and authen-
ticates itself to the user as shown in the next subsection.

Visual Verification of Hypervisor Protection The verification of hypervisor protec-
tion requires an output interface. To ensure its security, the output should not be cap-
tured or manipulated by malware in the guest OS. Otherwise, the guest can impersonate
the hypervisor and give the user an illusion that the protection is activated.

6



The basic idea of our visual verification is that the hypervisor securely outputs to the
monitor a secret text message priorly chosen by the user. Note that without involving the
operating system, the monitor automatically and periodically fetches the display data
directly from a memory region called the display buffer, whose location is determined
by the hardware [10], and then it renders them on the screen. The hypervisor shows the
secret message to the user by writing it into the display buffer. To prevent the operating
system from attacking the secret, the hypervisor clears the PAGE PRESENT attribute
bit of the corresponding page table entries. As a result, any guest access will be denied
by the hardware.

The details of the visual verification are described below. Initially, the user chooses
a random text message as his/her long term secret shared with the hypervisor. When
the hypervisor boots up, the secret message is passed to the hypervisor as a booting
parameter, which is the reason why the secret has to be text. Once taking control, the
hypervisor stores the secret message into its own space. Since the hypervisor boots up
before the operating system, the OS is not able to access this secret. To display it on a
monitor in the graphics mode, the hypervisor derives the graphic version of the secret
message by using the corresponding font bitmap for each character.

After receiving the activation hypercall, the hypervisor substitutes a part of the dis-
play buffer with the secret graphic data. As a result, the user secret message is displayed
on the screen. The location of the message on the screen depends on its offset in the
display buffer. Note that it is unnecessary to choose random locations. In addition, the
hypervisor properly sets the attribute bits of the page table entries covering the graphic
secret. Secret uploading and attribute bit setting up are an atomic operation. In other
words, the hypervisor occupies the CPU without yielding it to the operating system
until the attributes are set.

The hypervisor then sets up a timer whose duration is configured by the user during
bootup. When the timer expires, the hypervisor restores the original display data, and
finally returns the page access rights back to the guest OS.

Hypervisor Protection Deactivation Protection deactivation requires a stronger au-
thentication on the user than protection activation, since malware may attempt to im-
personate the user to terminate the protection. Note that once the protection is activated,
the hypervisor has cleared all previous data in the keyboard input buffer and intercepts
all new keystrokes. As a result of the interception, no software can access the keyboard
input buffer, either directly or through DMA operations, as explained in Section 4.2.
Only the physical keyboard strokes can place inputs to the buffer.

Therefore, the hypervisor in KGuard is pre-configured with a deactivation com-
mand. Once it intercepts the command during its protection, it switches to the no-
protection state by releasing the access control on the keyboard input buffer.

4.2 Keystroke Interception

After getting the activation key-combination command from the user, the hypervisor
starts keystroke interception. Since the key stroke code is directly delivered to the
guest’s memory by the hardware using DMA, keystroke interception means that the
hypervisor retrieves the keyboard scan code before the guest.

7



One potential approach is for the hypervisor to intercept all interrupts and intervenes
if needed. The main drawbacks of this approach are twofold. This approach may fail
because the guest OS can keep scanning the keyboard input buffer without waiting for
the interrupt. Therefore, the guest OS may have the luck of getting the data prior to
the interrupt. Secondly, the interrupt number can be shared by several devices. The
hypervisor has to determine whether the interrupt is for the keyboard. Furthermore, the
interrupt by itself does not provide sufficient information for the hypervisor to locate
the data.

Since locating the keyboard input buffer is an indispensable step, we let the hy-
pervisor intercept the guest access on the keyboard input buffer, rather than interrupt
interception. This method reduces the burden of the hypervisor as the guest OS man-
ages all interrupts and is forced by the hardware to alert the hypervisor for the scan
code retrieval. For this purpose, the hypervisor sets up page-table based access control
on both the keyboard I/O control region storing I/O commands and the keyboard input
buffer storing the scan code. IOMMU is also configured such that no DMA command
can be issued to access these protected regions. Consequently, both the guest OS’s key-
board I/O command issuance and its data retrieval are intercepted by KGuard. For the
I/O control, KGuard emulates the operations; for the data retrieval, it replaces the user
keystroke with a dummy one and saves the original input into a buffer in the hypervisor
space.

The actual access control mechanism for the keyboard input buffer depends on the
keyboard interface. A PS/2 keyboard usually uses PIO to transfer data whereas a USB-
keyboard uses DMA. It is easy to deal with port I/O keyboards. The technique for con-
trolling I/O port has been demonstrated in [5]. The access control for USB-keyboard
is more complex due to the USB architecture. The so-called Universal Host Controller
hardware uses a 32-bit register called FLBASEADD to locate a list of frame pointers.
A frame pointer points to a list of Transfer Descriptors (TDs). A TD specifies the nec-
essary I/O parameters for one DMA operation, including the input buffer address. After
completing one keyboard I/O, the guest OS must either update the current TD or insert
a new TD in order to read the next keyboard input. The keystroke interception for a
USB keyboard follows the steps below.

Step 1. KGuard freezes the present frame list and all TDs by setting FLBASEADD
and all memory regions occupied by the frame list data structure as read-only using
I/O bitmap and page table respectively. Therefore, any attempts from the guest OS
to relocate the input buffer will be monitored by KGuard.

Step 2. KGuard locates the keyboard input buffer following the path used by the host
controller. The keyboard input buffer is then set as inaccessible.

Step 3. When the guest OS attempts to read the keyboard input buffer, a page-fault is
generated and passes the control to KGuard which saves the scan code (which is
one password character) in the input buffer and replaces it with a dummy one, and
sets the buffer as read-write. The guest OS can have a full access to this buffer.

Step 4. When the guest OS prepares for the next keyboard I/O by updating the TD,
a page-fault is generated. In response, KGuard emulates the update operation. To
prevent malware from providing faked keystrokes, the hypervisor clears the content

8



in the keyboard input buffer, which ensures that the data fetched in Step 3 is indeed
from the keyboard.

Note that KGuard responds differently on the keyboard input buffer and the I/O
region because one keyboard I/O only involves one TD update but may incur multiple
accesses to the buffer depending on the driver’s needs. Our approach avoids unnecessary
hypervisor involvements.

We further remark that the keyboard interception is only activated based on the
user’s command. With the cooperation from the user, the incurred cost is therefore
minimal to the platform’s overall performance and it is reasonable for KGuard to treat
all the intercepted keystrokes as the password. Even in case that the user and KGuard
are out of synchronization, no user secret is compromised and the user can easily reset
the protection.

4.3 Handling SSL Session

A normal web authentication may involve one SSL session comprising one or multiple
SSL connections. Typically, when the user clicks a button for password submission, the
browser sends out the encrypted password with other necessary information through an
SSL connection.

In our system, the browser is deprived of the privilege of handling the password,
because the encryption of the password and other authentication information must be
performed in the hypervisor space, instead of in the untrusted guest domain. For this
purpose, we design a dedicated browser extension for posting authentication informa-
tion to the server through SSL. To achieve both security and compatibility, the extension
is only responsible for non-critical operations in the SSL connection, while all crypto-
graphic operations, such as master key generation and data encryption, are exported to
KGuard.

The extension captures the login event and initiates a new SSL connection with
the server. All keys used in this SSL connection are newly derived and only known by
KGuard and the server. Note that this new connection will be immediately closed after
the login event. Therefore, the browser does not need to maintain any extra connection.
In the new SSL connection, the extension obtains the server’s public key certificate.
At the same time, it prepares a data blob containing all the data needed by the web
server (except the password), e.g., the user name. It then submits to the hypervisor the
data blob together with the server certificate. The hypervisor merges the blob with the
intercepted user password, and encrypts them following the SSL specifications, on the
condition that the provided public key certificate is valid. On receiving the resulting
ciphertext from the hypervisor, the extension prepares the SSL data and sends them to
the server. If the authentication succeeds, the server usually returns a URL with some
cookies, which are decrypted by the hypervisor and forwarded to the extension. The
extension then sets the cookies and redirects the browser to the URL. Now the extension
terminates its SSL connection. Since neither the extension nor the browser possesses the
keys for the SSL connection used for password submission, this SSL connection cannot
be reused by the browser.

9



To avoid verbosity, we do not recite how the hypervisor generates the master key
and performs the encryption, because it strictly follows the SSL/TLS specification. Out
of the same reason, we do not explain how the extension prepares the data blob and the
SSL traffic. However, it is worthwhile to elaborate how the server’s public key certificate
is validated by the hypervisor. Since we do not trust any software in the guest domain,
the certificate forward by the extension to the hypervisor can be a malicious one. If
the adversary has the corresponding private key, the hypervisor’s password encryption
will be decrypted by the adversary. We leave the details of the browser extension in
Section 5 because it is browser specific and more relevant to usability than security.

Server Certificate Verification Certificate verification has long been considered as a
thorny problem due to the trust on the public key infrastructure. The problem is even
more complicated in our case because limited information is provided to the hypervisor
for the sake of minimizing the hypervisor’s size. Note that phishing detection is not
within the scope of our study. Therefore, the criterion of a certificate’s validity is not
whether it matches the web server the user intends to login. Instead, a certificate is
deemed as trusted as long as its root CA is trusted by the user.

In our system, the user may choose to trust all pre-loaded root CA certificates or
import CA certificates she trusts. Once the user obtains a repository of trusted (root)
certificates, the crux of our system is how the user securely passes them to the hypervi-
sor. The difficulty is that the hypervisor does not have a file system and the whole guest
is not trusted. The solution we propose relies on an additional trusted platform, or al-
ternatively, the user may consider his/her platform in the initial state is trustworthy. On
such a trusted platform, cryptographic tools such as OpenSSL, can be used to compute
a HMAC key Hk and computes HMACs for each of the trusted certificate. Then, the
user imports all trusted certificates as well as their corresponding HMAC tags into a file
on the untrusted platform running with KGuard. During the platform’s rebooting, the
HMAC key Hk is passed to the hypervisor as a parameter. Therefore, the hypervisor
knows whether a certificate is trusted by the user by checking its HMAC tag. Instead
of using HMAC, the user may also apply digital signatures and pass the public key
to the hypervisor, though this approach is not preferred because of its longer key and
higher computation cost. Note that these above procedure is only executed once, i.e.
for the first time using KGuard. All HMAC tags in the file are able to be reused after
rebooting.

In runtime, the certificate verification proceeds as follows.

Step 1. The browser extension receives the public key certificate from the server and
composes a certificate chain such that the last certificate in the chain is a trusted
certificate imported by the user. For ease of description, we denote the certificate
chain as (Cert0, · · · , Certk) where Cert0 is the server’s certificate and Certi is
the issuer of Certi−1 for 1 ≤ i ≤ k. In most cases in practice, k = 1 or 2. Note
that only Certk is the trusted certificate while all others are not. It is not necessary
to obtain the issuer for Certk even if it is not a root, because it is already trusted.

Step 2. The extension transfers (Cert0, · · · , Certk, σ) to KGuard, where σ is the HMAC
tag forCertk. In addition, the extension transfers the server’s host name to KGuard.
The transferring is accomplished by a hypercall.

10



Step 3. In response, KGuard first checks whether σ is a valid HMAC for Certk using
the HMAC key provided by the user during bootup. If the checking fails, KGuard
rejects the certificate chain and aborts.

Step 4. KGuard then verifies the certificate chain in the same ways as the browser’s ver-
ification, by treating Certk as a trusted CA. Namely, it checks Certi’s signatures
with the public key in Certi+1 for 0 ≤ i ≤ k − 1, and make sure that they are not
expired, and checks whether Cert0’s subject name matches the given server host-
name (domain name). If all certificates pass the checking, KGuard accepts Cert0
as the server’s public key and uses it to encrypt the pre-master secret key in the
current SSL connection.

The hypervisor calculates an HMAC value of each certificate in the verified certifi-
cation chain, and returns them back to the guest if the certificate chain passes all checks.
The browser inserts the certificate with its HMAC tag into the trusted certificate repos-
itory. This is to save the hypervisor’s verification time when this certificate is reused
in the user’s future logins. Note that the new website certificates are accepted once the
root certificate is trusted by the user.

4.4 Security Analysis

The security of the proposed password protection mechanism relies on the security of
the hypervisor and the user cooperation. With the assumption on both conditions, the
user-hypervisor channel ensures that the password is typed in only when KGuard is
in position for keystroke interception, which saves the real password in the hypervisor
space. The hypervisor and the guest space isolation enabled by the virtualization tech-
niques prevents the guest from accessing the password. When the browser runs an SSL
connection to submit the password, all cryptographic operations are performed by the
hypervisor. The browser and the guest OS only get the ciphertext of the password. The
hypervisor security is discussed in the Section 7.

5 Implementation

5.1 KGuard in The Hypervisor

We have built a prototype of KGuard on Xen 4.1.0 on a desktop with an Intel(R)
Core(TM) i7 CPU-860 @2.80GHz processor and 4GB main memory. We choose a
USB-keyboard as the experiment device. The implementation of KGuard does not de-
pend on the design of Xen and can be easily migrated to other hypervisors.

KGuard consists of around 1500 SLOC for its main functions except cryptographic
functions. We import the needed crypto functions (about 5000 SLOC) from [23]. The
main cost is due to AES and RSA algorithms which need about 3500 SLOC. Nonethe-
less, comparing with the Xen code base (around 225,000 SLOC), we only increase the
code size 2.885%. In fact, most of the code in Xen are not used by our system. There-
fore, it is one of our future work to customize Xen for KGuard.

11



Post Data Checking 
And Adjustment

HTTP Header 
Generation And 

Post Data Collection

HTTP Request Event

A Separated SSL 
Channel In Plug-in

1
Click Login Button

The Browser SSL 
Connection

Mouse Click Event 

Web Services (e.g., 
Twitter)

2

3

Form Submit Event

Fig. 1. Firefox events in the login session where the third one is intercepted by the extension

Visual Verification One of the implementation issues about the user’s visual verifica-
tion of the hypervisor verification is to choose a proper secret message. It is similar to a
password in the sense that it should not be random enough to resist dictionary attacks,
and it should be easy to remember. Since the user does not type in the message at run-
time, the message can be much longer than a password. For instance, we choose the
string ”ApBlE@8s BaeuT ifu10O” as the user secret in our experiment.

Another issue is the position of the text message on the screen. We do not change
the position for two reasons. Firstly, it does not enhance the security. If malware can
breach the access control, it may grab the entire display buffer data. Secondly, from
the usability perspective, it is inconvenient for users to find the message over the whole
screen. We choose the top-left corner of the screen as the location because it is less
likely to be overlapped with the web page in use.

The third concerns in visual verification is the performance overhead due to the slow
speed of the display memory. It requires twice display memory access for the hypervisor
to save the present content and to write the secret message. In our implementation, we
use the following trick to save one display memory access. We do not save the original
data. Instead, we impose the font bitmap of characters in the message upon the existing
content. By performing the XOR operation, all the bits corresponding to the characters
are flipped. As a result, the shape of the character is displayed on the screen. Although
the content is not saved, it can be recovered by running the XOR operations again.

Note that our current implementation requires to work with the VGA compatible
graphics cards.

5.2 Browser Extension and Plugin

Benefiting from the virtualization features of the Intel processor, we launch a hardware
virtual machine (HVM) running Windows. The HVM guest domain runs a installation
of Windows 7 Professional version with default configuration. We choose the popular
firefox (version 3.6) as the test browser, and extend it with a plug-in and an extension.

12



The main part of the browser plug-in is based on CyaSSL v22. It interacts with the
hypervisor using hypercalls to build a separated SSL channel with a web server. Specif-
ically, The plug-in interacts the hypervisor in the SSL handshake phase for four times:
to transfer the server certificate chain; to provide the key materials for pre-master key
generation; to provide the authentication data for encryption; and to provide a finish-
message to terminate the SSL handshake phase. The plugin finishes the SSL protocol
and forwards the server response data to the browser extension.

The browser extension is implemented using Firefox XML User interface Language
(XUL) and JavaScript. One of the tasks of the extension is to listening to the user acti-
vation key combination and then sends a hypercall to KGuard. The other two tasks are
to integrate the password protection with the browser. The first task is to intercept the
authentication data submitted to the server. Since KGuard is transparent to the browser,
it proceeds as usual in password submission though with a dummy password.

The events generated by Firefox after the login button is clicked are shown in Figure
1. We choose to intercept the HTTP Request Event, the last event right before Firefox
is about to pass the data to the SSL layer. The benefit of this choice is that this event
implies that the browser has prepared all the data (including the HTTP header) expected
by the web server. Therefore, the extension does not need to handle the nuisance of
gathering all kinds of POST data required by the web server.

The second task is to navigate the browser to the destination URL that is in the
server response packages. After receiving the response packages returned by the plug-in
from its own SSL channel, the extension extracts the cookies and the redirection URL
by parsing the header and body. It updates the cookies in the browser, and requests
it to refresh the current page to the redirection URL. For the following connections,
no matter whether they are HTTPS or HTTP connections, the browser will send the
request with corresponding cookies, and continue the web session as normal. Note that
the browser is not aware of the existence of the separated SSL connection, thanks to the
statelessness of HTTP and HTTPS protocols.

5.3 Hypercall Support In the HVM

In the Windows kernel space, we build a virtual device module using the Windows
Driver Kit (WDK) [17]. The module first uses the instruction CPUID to find registers
that contain the size and the location of the hypercall table. Then it maps the hypercall
table into its own memory space. Using the mapped hypercall table, the module is able
to issue hypercalls to communicate with the hypervisor.

The module also exports a DeviceIOControl interface for application usage. Ac-
cording to the dwIoControlCode parameter in the DeviceIOControl interface, the
module can request different services by issuing different types of hypercalls to the
hypervisor.

2 CyaSSL is a C-Langue SSL library for embedded and realtime operating systems, and in reg-
ular desktop and enterprise environments [12]

13



6 Performance Evaluation

We have run experiments and evaluated the performance and usability with legitimate
web servers, including Google, Groupon, Twitter and Amazon, and Microsoft Hotmail.
We divide the total authentication session into two phases to facilitate the evaluation.
The first phase is user password input and the second is password submission. We
have measured the time overhead in each of them. Note that our protection is the ”on-
demand” mode, therefore, there are no extra cost for the system when the protection is
inactive.

6.1 Overhead for Password Input

Table 1 lists the time costs for the procedures taking place during a user’s password
inputting. The password input phase begins with protection activation and ends with
protection deactivation. The main overhead is due to the hypervisor’s responses to the
activation/deactivation command and its interception of keyboard strokes. The activa-
tion cost mainly includes a guest system call, a hypercall, a series of access control
setup, and two accesses on the display memory. The deactivation cost only includes the
removal of access control on the relevant regions. The keystroke-interception cost is the
CPU time spent for intercepting one keystroke. It includes two exceptions, emulation
of the refreshing of TD and processing the keystroke.

Note that the user secret message is written to the display memory, instead of the
main memory. Its speed is only 27 MHZ, much slower than the main memory chip.
Therefore, the secret message displaying dominates the overhead of protection activa-
tion. Nonetheless, it is still negligible to the user as compared to the human keystroke
speed. The removal of the secret message is not considered as the overhead, because
with a high likelihood, it is completed between the user’s two keystrokes.

Components Protection
Activation

Protection
Deactivation

Keystroke
Interception

Displaying
Message

Time 1.71ms 3.5µs 0.12µs 1.67ms

Table 1. The performance overhead for password input protection in KGuard.

6.2 Overhead for Password Submission

In the password submission procedure, we evaluate the extra operations introduced by
our scheme, i.e. those not appearing in normal web authentication. The extra operations
include the extension’s HTTP Request event interception and extracting data from the
login (POST) request, which cost about 4ms in total. Note that the extension is written
in JavaScript, whose best timing granularity is in milliseconds. The extra operations
also include transferring data between the guest and the hypervisor; HMAC verification
for the certificate’s trustworthiness. The measurement results are listed in Table 2.

14



Event interception and
data extraction

Data transferring cost
during in hypercalls

HMAC computation

Time 4ms 1.38ms 0.02ms

Table 2. The performance overhead of each component for password submission.

We have also measured the turnaround time to evaluate the overall delay a user may
experience with KGuard. The turnaround time refers to the period from the moment
when the login button is clicked, to the moment when the browser begins refreshing the
page. We have tested KGuard with Twitter and a local web server which resides in the
same platform with the browser so that no network delay variation disturbs the results.
The results are shown in Table 3. Note that the results from the tests with Twitter are
not sufficiently accurate due to the large variance of network round trip time.

Login without KGuard Login with KGuard Extra Cost
Twitter 1.10s 1.11s 10ms

Local Web Site 201ms 207ms 6ms

Table 3. The overall performance measurement in the login procedure.

7 Discussions

7.1 Hypervisor Security

The hypervisor security is the bedrock of the proposed password protection system. It is
known that both the code size and the interfaces affect the hypervisor security. Accord-
ing to [2, 20], the size of the source code is proportional to the number of vulnerabilities
(bugs). We choose Xen for our prototype building instead of the other mainstream hy-
pervisor VMware ESXi, because the former has a smaller code size according to [26]
and is open source. In principle, KGuard can also be built on those tiny hypervisors
developed by researchers, such as SecVisor [24], BitVisor [25] and Nova [26]. Unfortu-
nately, they are not supported by the Intel processor used in our platform. As mentioned
in [18], interfaces are the main source of critical errors. In the current Xen hypervisor,
all default hypercalls for a HVM domain are only used during HVM loading. Therefore,
we turn off all of them to enhance security to minimize the attack surface.

In the future work, we aim to reduce the hypervisor code size by removing unneces-
sary code. Besides the basic hardware virtualization functions, our initial study shows
that the functionalities required by KGuard include: 1) memory management, including
data transferring and address translation between the guest and the hypervisor; 2) access
control on all I/O ports and memory regions; 3) interceptions on interrupts and excep-
tions; 4) basic crypto algorithms, such as RSA, AES and SHA1; 5) certain instruction
emulations; and 6) asynchronization support (e.g., timer).

15



7.2 Trusted Certificate Updates

The user may need to insert or delete entries in the trusted certificate repository. It is
relatively straightforward to add a new trusted certificate. The user simply calculates
the HMAC value on a clean system and adds the certificate and its HMAC into the
repository.

However, it is costly to revoke a trusted certificate from the repository. One solution
is that the user chooses a new HMAC key and re-computes the HMAC tags for all
trusted certificates excluding those revoked ones. Once the new key is updated to the
hypervisor, the revoked certificates will not pass the verification. Alternatively, the user
can prepare a Certificate Revocation List (CRL) whose integrity is protected by the
HMAC tag. Whenever the plugin sends the server certificate to the hypervisor, the CRL
is attached. The hypervisor then checks whether the certificate in use is on the CRL.
Both methods have pros and cons. The former requires more user involvement while
the latter increases the hypervisor’s code size and causes more runtime overhead.

7.3 Sensitive Keyboard Input Protection

The KGuard system proposed in this paper focuses on password protection. We can
easily extend it to protect other sensitive inputs from the keyboard, such as CAPTCHA,
credit card numbers or driver license numbers. KGuard is able to intercept and replace
the sensitive inputs whenever the user activates the protection. By inserting them back
into an SSL/TLS connection or forwarding them to a trusted domain, all sensitive inputs
are free from malware attacks.

The challenge is to maintain the user’s experience. For a normal password input, the
browser only displays a string of ’∗’. The user feels the same even if KGuard replaces
the original password with dummy ones. However, for other types of inputs, the user
may feel discomfort when seeing dummy characters instead of the expected ones. An-
other issue on the user interface is how a user determines the correctness of the input,
since a wrong key may have been pressed accidentally. One possible solution is that
KGuard echoes each input on the screen in the same ways as in the visual verification.
Alternatively, KGuard can display the entire input string and ask for user confirma-
tion. This method does not work well for protecting a large amount of sensitive inputs
(e.g., private document editing) due to the heavy load on the hypervisor and the slow
responses. In addition, it would add too much code into the hypervisor and possibly
weakens the security strength.

8 Conclusion

To conclude, this paper has presented a virtualization based password input protection
system, which is composed of a novel user-hypervisor interaction channel, a keyboard
stroke interception mechanism, and a hypervisor-based SSL client. Our method does
not require specialized hardware and is fully transparent to the operating system and
the browser. The prototype implementation and testing have demonstrated that the pro-
tection system incurs insignificant overhead on the platform and maintains the user-
friendliness of password authentication in web services.

16



Acknowledgements

The authors are grateful to anonymous reviewers for their valuable feedback. This work
is partially supported by Centre for Strategic Infocomm Technology (CSIT) Technol-
ogy Innovation Fund (TIF) Project #PO2011240001 and by Singapore Management
University (SMU) Office of Research under the project #12-C220-SMU-003.

References

1. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating systems principles, pages 164–
177, New York, NY, USA, 2003. ACM.

2. Victor R. Basili and Barry T. Perricone. Software errors and complexity: an empirical inves-
tigation0. Commun. ACM, 27:42–52, January 1984.

3. Sven Bugiel, Alexandra Dmitrienko, Kari Kostiainen, Ahmad-Reza Sadeghi, and Marcel
Winandy. Truwalletm: Secure web authentication on mobile platforms. In INTRUST’10,
pages 219–236, 2010.

4. Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Wald-
spurger, Dan Boneh, Jeffrey Dwoskin, and Dan R. K. Ports. Overshadow: A virtualization-
based approach to retrofitting protection in commodity operating systems. In Proceedings
of the 13th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’08), Seattle, WA, USA, March 2008.

5. Yueqiang Cheng, Xuhua Ding, and Robert H. Deng. Driverguard: a fine-grained protection
on i/o flows. In Proceedings of the 16th European conference on Research in computer
security, ESORICS’11, pages 227–244, Berlin, Heidelberg, 2011. Springer-Verlag.

6. R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A safety-oriented platform for web
applications. In Proceedings of IEEE Symposium on Security and Privacy, 2006.

7. CVE-2008-0923. http://cve.mitre.org/cgi-bin/cvename.cgi-?name=cve-2008-0923, 2008.
8. Sebastian Gajek, Hans Löhr, Ahmad-Reza Sadeghi, and Marcel Winandy. Truwallet: trust-

worthy and migratable wallet-based web authentication. In Proceedings of the 2009 ACM
workshop on Scalable trusted computing, STC ’09, pages 19–28, New York, NY, USA, 2009.
ACM.

9. C. Grier, S. Tang, and S. King. Secure web browsing with the OP web browser. In Proceed-
ings of IEEE Symposium on Security and Privacy, 2008.

10. IBM. IBM VGA Technical Reference Manual. Website. http://www.mca-
mafia.de/pdf/ibm vgaxga trm2.pdf.

11. Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang, and Ja-
cob R. Lorch. Subvirt: Implementing malware with virtual machines. In Proceedings of
the 2006 IEEE Symposium on Security and Privacy, pages 314–327, Washington, DC, USA,
2006. IEEE Computer Society.

12. Sawtooth Consulting Limited. CyaSSL Embedded SSL Library.
http://www.yassl.com/yaSSL/Products-cyassl.html.

13. Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil Gligor, and
Adrian Perrig. Trustvisor: Efficient tcb reduction and attestation. In Proceedings of the 2010
IEEE Symposium on Security and Privacy, SP ’10, pages 143–158, Washington, DC, USA,
2010. IEEE Computer Society.

14. Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi Isozaki.
Flicker: An execution infrastructure for TCB minimization. In EuroSys’08, 2008.

17



15. Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. Bump in the ether: a framework
for securing sensitive user input. In Proceedings of the annual conference on USENIX ’06
Annual Technical Conference, pages 17–17, Berkeley, CA, USA, 2006. USENIX Associa-
tion.

16. Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. Safe passage for passwords and
other sensitive data. In Proceedings of the Symposium on Network and Distributed Systems
Security (NDSS), February 2009.

17. Microsoft. About the Windows Driver Kit (WDK). Website. http://goo.gl/DfSRi.
18. Derek Gordon Murray, Grzegorz Milos, and Steven Hand. Improving xen security through

disaggregation. In Proceedings of the fourth ACM SIGPLAN/SIGOPS international confer-
ence on Virtual execution environments, VEE ’08, pages 151–160, New York, NY, USA,
2008. ACM.

19. A. Oprea, D. Balfanz, G. Durfee, and D.K. Smetters. Securing a remote terminal application
with a mobile trusted device. In Computer Security Applications Conference, 2004. 20th
Annual, pages 438–447. IEEE, 2004.

20. Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large industrial
software system. In Proceedings of the 2002 ACM SIGSOFT international symposium on
Software testing and analysis, ISSTA ’02, pages 55–64, New York, NY, USA, 2002. ACM.

21. Wojtczuk Rafal, Rutkowska Joanna, and Tereshkin Alexander. Xen 0wning trilogy. Website,
2008. http://invisible-thingslab.com/itl/Resources.html.

22. Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John Mitchell. Stronger pass-
word authentication using browser extensions. In Proceedings of the 14th USENIX Security
Symposium, 2005.

23. Limited Sawtooth, Consulting. Ctaocrypt embedded cryptography library.
http://www.yassh.com/yaSSL/Docs CTao Crypt Usage Reference.html.

24. Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. Secvisor: a tiny hypervisor to
provide lifetime kernel code integrity for commodity oses. In Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, SOSP ’07, pages 335–350, New
York, NY, USA, 2007. ACM.

25. Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa Omote, Shoichi
Hasegawa, Takashi Horie, Manabu Hirano, Kenichi Kourai, Yoshihiro Oyama, Eiji Kawai,
Kenji Kono, Shigeru Chiba, Yasushi Shinjo, and Kazuhiko Kato. Bitvisor: a thin hypervi-
sor for enforcing i/o device security. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, VEE ’09, pages 121–130, New
York, NY, USA, 2009. ACM.

26. Udo Steinberg and Bernhard Kauer. Nova: a microhypervisor-based secure virtualization
architecture. In Proceedings of the 5th European conference on Computer systems, EuroSys
’10, pages 209–222, New York, NY, USA, 2010. ACM.

27. The Blue Pill. http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf.
28. Trusted Computing Group. TPM main specification. Main Specification Version 1.2 rev. 85,

February 2005.
29. Min Wu, Robert C. Miller, and Greg Little. Web wallet: Preventing phishing attacks by re-

vealing user intentions. In In Proceedings of the Symposium on Usable Privacy and Security
(SOUPS, pages 102–113. ACM Press, 2006.

30. Matei Zaharia, Sachin Katti, Chris Grier, Vern Paxson, Scott Shenker, Ion Stoica, and Dawn
Song. Hypervisors as a foothold for personal computer security: An agenda for the research
community. Technical report, Jan 2012.

18


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2012

	Virtualization Based Password Protection Against Malware In Untrusted Operating Systems
	Yueqiang Cheng
	Xuhua DING
	Citation



