

Network Monitoring Tool to Identify Malware Infected Computers

Navpreet Singh

Principal Computer Engineer
Computer Centre, Indian Institute of Technology Kanpur, India

navi@iitk.ac.in

Megha Jain, Payas Gupta & Shikha Bansal
3rd Year UG Students of LNMIIT, Jaipur, India

ABSTRACT

These days most of the Organizational Networks are facing a critical problem. Lately
there has been a lot of increase in Malwares such as worms, adwares, spywares etc.,
which get installed on the users PC and generate Network and Internet traffic without the
user’s knowledge i.e. in the background. As a result, the overall utilization of the
network, specially the Internet link, gets drastically minimized due to this unwanted
traffic.

This tool monitors the network traffic and identifies all the (active) computers on the
network which are infected with any kind of Malware. It provides the IP Address, MAC
Address and type of infection for the identified hosts. There may be some hosts for which
may it not be able to provide information on the type of infection, but it is able to identify
them.

1. Introduction
This is a freeware tool which works on
Linux. It is a user-friendly shell script
which detects the Malware infected
machines on a local area network and
informs the network administrator about
them. The infections detected are in the
form of worms, adwares etc. which
block a large amount of the network
bandwidth.

Tcpdump is used to take a trace of the
network traffic and shell scripts are used
to analyze the collected data. Signature
packets in the collected traces are used
to identify the type of infection. The
monitoring needs to be done for only 5
minutes to capture all active infected
machines. Several configuration

parameters can be set as per
requirement.

The tool can be installed on any Linux
machine. To identify the infected hosts
on any Subnet/VLAN, the traffic needs
to be monitored on the mirror port of the
Default Gateway for that Subnet/VLAN.

The ability of this tool to identify all the
infected machines on the network as
well as the infections in them sitting
right on a network interface makes it a
powerful and a distinguished Malware
Detection Network Tool. This tool can
also be set to run at regular intervals
using cron and the reports generated can
be sent to the administrator through
email.

2. Description of the Tool

The tool is a Linux shell script which
captures the network traffic using tcpdump
[1] and analyzes the collected data after the
capture is complete.

As shown in the figure, the tool can be
applied at a mirror port of gateway of any
Subnet or VLAN of a network. Monitoring
at this port will identify all the infected
machines in that Subnet or VLAN

The script runs 'tcpdump' for the amount of
time which can be changed by the
administrator (the default value is 5
minutes). It captures all the packets going
through that particular point in that duration
of time and writes them into a file which is
created inside a directory of the current date
and time as the name. Using this file several
other files are made which contain packets
of exclusively ARP, TCP & UDP protocols.

Now these files are studied for infections by
identifying specific signatures and patterns
in packet transmission as described in the
next section.

3. Malicious Threats in Packets in a
Network

There are untold billions of packets flying
around the networks today. A great many of
them are of malicious intent [2]. Following

are the threats which the tool is able to
detect.

3.1 WORMS [3]

3.1.1 W32.MYDOOM@MM

W32.Mydoom@mm is a mass-mailing
worm that uses its own SMTP engine to
send itself to the email addresses that it finds
on an infected computer. The email contains
a spoofed “From” address. The subject and
message body vary, and the attachment has a
.bat, .cmd, .exe, .pif, .scr, or .zip extension.

Systems Affected: Windows 2000,
Windows 95, Windows 98, Windows Me,
Windows NT, Windows Server 2003,
Windows XP

Systems Not Affected: DOS, Linux,
Macintosh, OS/2, UNIX, Windows 3.x

Detection Technique: Mydoom worm is
detected by studying the data in UDP
packets.

It attempts to guess the name of an SMTP
server by prepending the following names to
the domain names gathered from the local
computer:

 gate.
 mail.
 mail1.
 mxs.
 mx.
 mx1.
 ns.
 relay.
 smtp.

Thus if any machine on the network uses all
the above prefixes with a single domain
name to guess the name of an SMTP server
then that machine is concluded to be
infected by the mydoom worm.

Router/
Layer 3 Switch Subnet/

VLAN

Point of
Monitoring

The domain name along with the prefix is
present in the UDP datagram.

3.1.12 W32.MYTOB.Q

W32.Mytob.Q@mm is a mass-mailing
worm with back door capabilities that is
infected with W32.Pinfi. The worm uses its
own SMTP engine to send email to
addresses that it gathers from the
compromised computer.

Systems Affected: Windows 2000,
Windows 95, Windows 98, Windows Me,
Windows NT, Windows Server 2003,
Windows XP

Detection Techniques: Mytob.q worm is
also detected by studying the data in UDP
packets. The functionality in the worm is
designed to contact the following IRC
server, join a specified channel, and wait for
further instructions:

 19.xxor.biz

It connects to the server 19.xxor.biz and
accepts remote control commands, which
will be performed on the affected computer.

Thus any machine having the above server
name as domain name in its UDP packets is
concluded to be infected by mytob.q worm.

3.1.3 W32.BLASTER

W32.Blaster Worm is a worm that exploits
the DCOM RPC vulnerability [4] (first
described in Microsoft Security Bulletin
MS03-026) using TCP port 135.The worm
targets only Windows 2000 and Windows
XP machines. While Windows NT and
Windows 2003 Server machines are
vulnerable to the aforementioned exploit (if
not properly patched), the worm is not coded
to replicate to those systems. This worm
attempts to download the msblast.exe file to

the %WinDir%\system32 directory and then
execute it.

Systems Affected: Windows 2000,
Windows NT, Windows Server 2003,
Windows XP

Systems Not Affected: Linux, Macintosh,
OS/2, UNIX, Windows 95, Windows 98,
Windows Me

Ports: TCP 135, TCP 4444, UDP 69

Target of Infection: Machines with
vulnerable DCOM RPC Services running.

Detection Techniques: Generates an IP
address and attempts to infect the computer
that has that address. The IP address is
generated according to the following
algorithms

 For 40% of the time, the generated IP
address is of the form A.B.C.0, where A
and B are equal to the first two parts of
the infected computer's IP address.

C is also calculated by the third part of
the infected system's IP address;
however, for 40% of the time the worm
checks whether C is greater than 20. If
so, a random value less than 20 is
subtracted from C. Once the IP address
is calculated, the worm will attempt to
find and exploit a computer with the IP
address A.B.C.0.

The worm will then increment the 0 part
of the IP address by 1, attempting to find
and exploit other computers based on the
new IP address, until it reaches 254.

 With a probability of 60%, the generated
IP address is completely random.

Sends data on TCP port 135 that may exploit
the DCOM RPC vulnerability. The worm
sends one of two types of data: either to
exploit Windows XP or Windows 2000.

For 80% of the time, Windows XP data will
be sent; and for 20% of the time, the
Windows 2000 data will be sent.

Listens on UDP port 69. When the worm
receives a request from a computer to which
it was able to connect using the DCOM RPC
exploit, it will send msblast.exe to that
computer and tell it to execute the worm.

Thus if any machine sends tcp SYN request
packets on tcp port 135 to increasing
destination IPs continuously then it is
infected by the w32.blaster worm.

3.1.4 W32.SASSER.WORM

W32.Sasser.Worm is a worm that attempts
to exploit the vulnerability described in
Microsoft Security Bulletin MS04-011. It
spreads by scanning the randomly selected
IP addresses for vulnerable systems.

Uses the AbortSystemShutdown API to
hinder attempts to shut down or restart the
computer.

Systems Affected: Windows 2000,
Windows XP

Systems Not Affected: DOS, Linux,
Macintosh, Novell Netware, OS/2, UNIX,
Windows 3.x, Windows 95, Windows 98,
Windows Me, Windows NT, Windows
Server 2003

Ports: TCP 445, 5554, 9996

Target of Infection: Unpatched systems
vulnerable to LSASS exploit – MS04-011.

Detection Techniques: It starts an FTP
server on TCP port 5554. This server is used
to spread the worm to other hosts.

Retrieves the IP addresses of the infected
computer, using the Windows API,
gethostbyname.

Generates another IP address, based on one
of the IP addresses retrieved from the
infected computer.

 25% of the time, the last two octets of
the IP address are changed to random
numbers. For example, if A.B.C.D is the
IP address retrieved, then C and D will
be random.

 23% of the time, the last three octets of
the IP address are changed to random
numbers. For example, if A.B.C.D is the
IP address retrieved, then B, C, and D
will be random.

 52% of the time, the IP address is
completely random.

Connects to the generated IP address on
TCP port 445 to determine if a remote
computer is online.

Thus if any machine sends too many tcp
packets on random IPs but on port 445
(microsoft-ds) and the destination IPs
obtained per second is greater than a
particular number then it is infected by
sasser worm.

3.2 SUSPICIOUS PACKETS

Our tool has a feature of identifying the
suspicious packets, packets which do not
follow the standards for different protocols
as defined in the RFCs [5].

 SYN FIN is probably the best known
illegal combination. SYN is used to start
a connection, while FIN is used to end
an existing connection. It is nonsensical
to perform both actions at the same time.
Many scanning tools use SYN FIN
packets, because many intrusion
detection systems did not catch these in
the past, although most do so now. You

can safely assume that any SYN FIN
packets you see are malicious.

 SYN FIN PSH, SYN FIN RST, SYN
FIN RST PSH, and other variants on
SYN FIN also exist. These packets may
be used by attackers who are aware that
intrusion detection systems may be
looking for packets with just the SYN
and FIN bits set, not additional bits set.
Again, these are clearly malicious.

 Packets should never contain just a FIN
flag. FIN packets are frequently used for
port scans, network mapping and other
stealth activities.

 Some packets have absolutely no flags
set at all; these are referred to as "null"
packets. It is illegal to have a packet
with no flags set.

Besides the six flag bits, TCP packets have
two additional bits which are reserved for
future use. These are commonly referred to
as the "reserved bits". Any packet which has
either or both of the reserved bits activated
is almost certainly crafted.

There are several other characteristics of
TCP traffic where abnormalities may be
seen:

 Packets should never have a source or
destination port set to 0.

 The acknowledgment number should
never be set to 0 when the ACK flag is
set.

 A SYN only packet, which should only
occur when a new connection is being
initiated, should not contain any data.

 Packets should not use a destination
address that is a broadcast address,
usually ending in .0 or .255 (.0 was an
older style of broadcast). Broadcasts are
normally not performed using TCP.

Many of the tools used by attackers to scan
and probe our networks are based on the use
of abnormal TCP packets. A large
percentage of alerts detected by intrusion
detection systems involve these types of
packets, so it is critical to be able to identify
them. Our tool alerts on all abnormal TCP
packets.

Detection Techniques: Our tool analyses all
the TCP packets for any of the above
mentioned suspicions and lists source of
these packets

3.3 SSH Dictionary Attack

Also known as a dictionary attack, which
uses a list of known passwords, a program
will connect to a remote SSH server and
attempt to login using common user
name/password combinations. The system
administrators will notice large number of
failed SSH login attempts in their log files.
It is quite obvious that this is the work of an
automated program as the user names used
are attempted in alphabetical order. The
time-stamps are also a dead give away, with
connections only a few seconds apart. Such
scripts are generally used by hackers for
illegal intrusion.

A dangerous addition to these attacks is the
attempts to break into “root” accounts.

Thus if any Linux machine attempts too
many ssh attacks on any other machine then
that machine is definitely suspicious.

Detection Techniques: If any linux machine
connects normally to ssh port (port 22) of
another machine then the number of tcp
packets transmitted, starting from the time
when the connection is established till it is
closed (SYN till FIN) remains almost fixed.
But if a machine is attempting a ssh
dictionary attack on another then it

continuously sends tcp SYN requests on port
22. Thus this machine is infected.

3.4 ADWARES

Our tool uses TCP and UDP packets for
adware detection purposes. Although
detecting adwares is a bit difficult job but
our tool tries to catch the infected machines
in the best possible way. It uses the TCP
payload and UDP data for this purpose. We
have created a list of more than 5000 adware
[6] and spyware [7][8] sites and the list is
manually updated.

Detection Techniques: In the UDP data we
simply compare the “NAME=” part in the
packet with our list and if any of site
matches then the machine with that
particular packet is declared as infected.

In the TCP payload the situation is a bit
different. First we capture all the TCP PUSH
packets with destination port 80(http) or
443(https). Then the ngrep utility is run in
order to separate the payload from the rest of
the packet. Then we check the 'host' part of
the payload and match it with our list. Here,
we observe 2 cases-

Case1- Packets which do not use the proxy
have the host name right there. Thus we
directly grep the IP of infected machine
(present in the first line of packet payload).

Case2- If any machine uses proxy for
sending these packets then first 'host' is
checked for the destination site and then we
grep the 'X-forwarded for' part of the
payload to know the source IP which
generates the adware packet.

3.5 Unidentified Infections

There are many infected machines which
cannot be identified for the type of infection

but the tool is able too identify machines
which are possibly infected.

Detection Techniques: The tool identifies all
the machines which sending packets at a rate
greater than n Packets per second (the
default value of n is 10). Many of these
machines may be servers or may be
machines which are doing heavy data
transfer (e.g. ftp, nfs, windows sharing etc.).
We maintain a list of server IPs (can be
modified in the tool). So a list of IPs which
are generating heavy traffic, leaving the
server IPs and the IPs of machines detected
to have an identified infection, is generated.
Every time the tool is run, such list is
generated. Since infected machine will be in
the list most of the time whereas other
machine will be there only when they are
doing heavy data transfer, correlating the
report generated in repeated runs, can be
used to identify the infected machines.

4. Limitations of the Tool

There are several limitations of the tool.
Some are:

 Dynamic behavior of Malware
signatures: A worm never contains
exactly the same string pattern
(signatures) and can vary for different
attacks making it difficult to recognize it
entirely on the basis of the string. So it
generates possibilities of misses as well
as false alarms.

 Appearance of a new threat each day:
Any new infection which is not in our
library would pass unchecked into the
network. So the tool should be updated
regularly to cover new infections.

 Problems related to encrypted data:
Certain worm/virus developers prefer to
send the malicious code in the encrypted
form making its detection tedious.

 Intent of the suspicious packets still
unknown: Though the suspicious

packets can be detected but their
intention remains a question.

 False Alarm: The identification of
machines as possibly infected poses a
high probability of false alarm. The
extent of false alarms generated has not
been studied yet.

5. Possible Enhancements in the
Tool

Modifications can be done in the script
and/or hardware on which it is implemented
to cover more Malware infections for which
it can do complete analysis, increase the
efficiency & make it real time analysis tool.
Specific improvements can be:

 Improving the dictionary of worm
signatures: This would help us ensure
that there are less number of misses and
false alarms.

 Making the tool work as a Prevention
Tool also: Specific ports on switches to
which infected machines which are
reportedly generating large number of
malicious or suspicious packets are
connected can be blocked, thus
removing the infected machines from the
network. The MAC address of the
machines identified as infected or
suspicious can also be blocked, so that
the infection doesn't spread in the
network and also save the network
bandwidth.

 Reducing the time taken for complete
analysis: Improvements can be done in
the script like inserting certain new
functions or using some different
algorithms or employing some new logic
that can bring down the analysis time.
Parallel programming can be one
possible solution to make the code run
faster.

 Strengthening the Hardware: Using
more sophisticated hardware based on
newer technologies to run this tool can

help it perform better. For instance,
using more RAM or multiple processor
etc. will definitely lead to reduction in
the processing time and improvement in
the performance of the tool.

 Implementing parallelization at the
hardware level: This requires the
captured traffic itself to be divided and
processed parallel on different machines
(which are physically separated but
logically connected in a cluster) and the
result be compiled in the end. This
brings down the analysis time to as close
as the capture time making the tool more
suitable for real time applications.

6. Conclusion

Lately there has been a lot of increase in
Malware which get installed on the users’
PC and connect to Internet without the users
knowledge i.e. in the background. This tool
helps Network Administrator to identify
such computers and take necessary action.

Currently the tool is a basic tool which is
very useful in identifying worms like sasser,
mytob, mydoom, blaster etc., adwares, ssh
dictionary attacks, and suspicious packets
including port scans. Still there are many
infected machines in the network which it is
not able to identify with certainty. There are
possibilities of misses and false alarms in
case of identifying machines which are
infected with unidentified Malware.

The tool can be enhanced to work as a
realtime Malware Infection Detection
System (MIDS), towards which we are
working.

7. References

[1]http://www.tcpdump.org/tcpdump_man.h
tml

[2]http://www.cromwell-
intl.com/security/security-netaudit.html

[3]http://www.doshelp.com/Ports/Trojan_Po
rts.htm

[4]http://securityresponse.symantec.com/avc
enter/venc/data/detecting.traffic.due.to.rpc.w
orms.html

[5]http://www.securityfocus.com/infocus/12
23

[6]http://sarc.com/avcenter/security_risks/ad
ware/

[7]http://www.spywaredetector.us/spywarew
eremove6.htm

[8]http://www.trojanguide.com/spywarelist.
html

