On Improving Wikipedia Search using Article Quality

Meiqun Hu, Ee-Peng Lim, Aixin Sun, Hady W. Lauw, Ba-Quy Voung

Meiqun Hu

Nanyang Technological University

ACM WIDM 2007, Lisboa, Portugal

Outline

- Introduction
- 2 Quality-aware Search Framework
- Quality Assessment Models
- 4 Experimental Design and Results Analysis
- 6 Conclusion

Road Map

- Introduction
- Quality-aware Search Framework
- Quality Assessment Models
- 4 Experimental Design and Results Analysis
- Conclusion

Wikipedia

Wikipedia Web 2.0 service, aim for collaboration and interaction.

Launched on January 15, 2001.

Written collaboratively by volunteers.

Has 236 language editions.

Contains over 2 million articles in English Edition alone, marked on September 9, 2007.

Top ten most-visited website worldwide.

Quality in Search

Open & Free Any one can edit and create articles

Any one can over-write content contributed by other

people

Criticism on: Information Accuracy

Reputability of Third-party Sources

Editorial and Systemic Bias

Vandalism

Uneven Quality

اججانه

Searching performance compromised by poor quality articles.

Quality in Search

Open & Free Any one can edit and create articles

Any one can over-write content contributed by other

people

Criticism on: Information Accuracy

Reputability of Third-party Sources

Editorial and Systemic Bias

Vandalism

Uneven Quality

Issue

Searching performance compromised by poor quality articles.

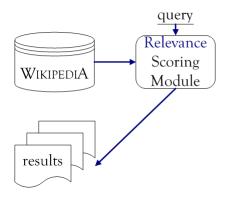
Related Work on Incorporating Quality in IR

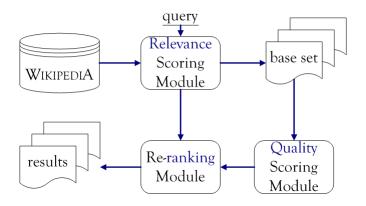
X. Zhu and S. Gauch.

Incorporating quality metrics in centralized/distributed information retrieval on the World Wide Web.

In Proc. of SIGIR'00, pages 288-295, July 2000.

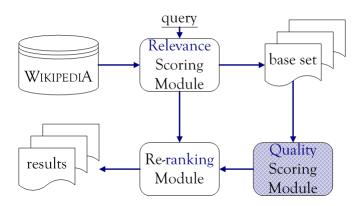
Metrics:


- currency
- availability
- information-to-noise ratio
- authority
- popularity
- cohesiveness


Road Map

- Introduction
- 2 Quality-aware Search Framework
- 3 Quality Assessment Models
- 4 Experimental Design and Results Analysis
- Conclusion

A Sketch on the Existing Search Engine


A Sketch on the Quality-aware Search Engine

Road Map

- Introduction
- Quality-aware Search Framework
- Quality Assessment Models
- 4 Experimental Design and Results Analysis
- Conclusion

Quality Assessment Models

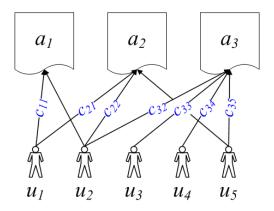
Naïve model

Naïve

The more words the articles has, the better the quality.

Drawback Not reliable Easily be fooled

Naïve model


Naïve

The more words the articles has, the better the quality.

Drawback Not reliable

Easily be fooled

Article-Contributor Interaction

Basic model

Mutual Dependency between Quality and Authority

Good authors write good articles; Good articles are written by good authors.

Basic

$$Q_{i} = \sum_{j} c_{ij} \times A_{j}$$

$$A_{j} = \sum_{i} c_{ij} \times Q_{i}$$

$$(1)$$

$$A_j = \sum_i c_{ij} \times Q_i \tag{2}$$

Revision Evolution and Effect of Reviewers

In collaborative editing, contributors will, in general,

- read the article
- 2 examine on the various parts of the article
- edit based on existing revision of the article

Assumption

- If content from earlier revision remains in current revision, then we say the editor of the current revision
 is a reviewer of the unchanged content; and
- If some content of the article has been reviewed by high authority reviewers, then the content also carries high quality

Revision Evolution and Effect of Reviewers

In collaborative editing, contributors will, in general,

- read the article
- 2 examine on the various parts of the article
- edit based on existing revision of the article

Assumption

- If content from earlier revision remains in current revision, then we say the editor of the current revision
 - is a reviewer of the unchanged content; and agrees with the unchanged content.
- If some content of the article has been reviewed by high authority reviewers, then the content also carries high quality.

Revision Evolution and Effect of Reviewers

In collaborative editing, contributors will, in general,

- read the article
- examine on the various parts of the article
- edit based on existing revision of the article

Assumption

- If content from earlier revision remains in current revision, then we say the editor of the current revision
 - is a reviewer of the unchanged content; and agrees with the unchanged content.
- If some content of the article has been reviewed by high authority reviewers, then the content also carries high quality.

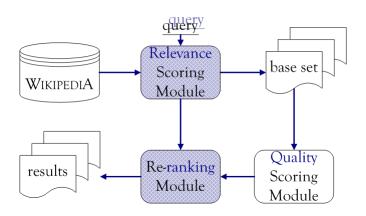
PeerReview model

PeerReview

$$q_{ik} = \sum_{w_{ik} \stackrel{A}{\leftarrow} u_i \vee w_{ik} \stackrel{R}{\leftarrow} u_i} A_j \tag{3}$$

$$A_j = \sum_{w_{ik} \stackrel{A}{\leftarrow} u_j \vee w_{ik} \stackrel{R}{\leftarrow} u_j} q_{ik} \tag{4}$$

and,


$$Q_i = \sum_{w_{ik} \in a_i} q_{ik}$$

- Authority of the reviewers are as important as that of the author;
- Authority of the contributors aggregate the quality of both authored and reviewed words.

Road Map

- Introduction
- Quality-aware Search Framework
- 3 Quality Assessment Models
- 4 Experimental Design and Results Analysis
- Conclusion

Experimental Design

Query Set

$$\underbrace{\text{single-term queries}}_{10} + \underbrace{\text{double-term queries}}_{10}$$

Queries carry general meaning.

Double-term queries are more specific than single-term queries.

Sources for the 20 Queries

P. Tsaparas.

Using non-linear dynamical systems for Web searching and ranking. In *Proc. of PODS'04*, pages 59–70, June 2004.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the Web. In *Proc. of WWW'05*, pages 613–622, May 2005.

Relevance Scoring and the Base Set

Wiki WIKIPEDIA

Google Google

Wikiseek Wikiseek

A better way to search Wikipedia

Base Set

Union of the top 500 (maximum) results from the three search engines.

Search Results Labeling

Assess and label top 10 results from each method.

Table: Decision Rules in User Assessm

Relevant	Quality	Label	r(p)
yes high		Highly Recommended	2.0
yes	moderate	Recommended	1.0
yes	poor	Not Recommended	0.0
no	_	Not Recommended	0.0

Evaluation Metric

Normalized Discounted Cumulative Gain at top k

NDCG@k

$$G_q = \frac{1}{N_q} \sum_{p=1}^k \frac{2^{r(p)} - 1}{\log(1+p)}$$

The normalization factor, N_q , is determined such that a perfect ranking of top k articles will yield a NDCG of 1. That is,

$$\underbrace{\mathsf{HR} \dots \mathsf{HR}}_{n_q^{HR}} \prec \underbrace{\mathsf{R} \dots \mathsf{R}}_{n_q^{R}} \prec \mathsf{NR} \dots \mathsf{NR}$$

top k ranked results

K. Jarvelin and J. Kekalainen.

IR evaluation methods for retrieving highly relevant documents. In *Proc. of SIGIR'00*, pages 41–48, July 2000.

Methods to be Evaluated

Method Type	Abbreviation				
relevance-only	Wiki,	Google,	Wikiseek		
quality-only	Naïve,	Basic,	PeerReview		
average-rank					

Re-ranking

$$\bar{s}_i = \gamma_q \times s^{\mathsf{rel}}(a_i) + (1 - \gamma_q) \times s^{\mathsf{qual}}(a_i)$$

Average-Rank Method

$$\gamma_q = \frac{1}{2}$$
 for all q

 $s^{\text{rel}}(a_i)$ relevance rank for a_i from the search engine results $s^{\text{qual}}(a_i)$ normalized quality rank for a_i from the quality ranking

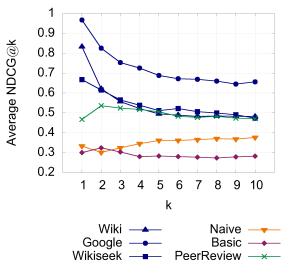
Methods to be Evaluated

Method Type	Abbreviation				
relevance-only	Wiki,	Google,	Wikiseek		
quality-only	Naïve,	Basic,	PeerReview		
average-rank					

Re-ranking

$$\bar{s}_i = \gamma_q \times s^{\mathsf{rel}}(a_i) + (1 - \gamma_q) \times s^{\mathsf{qual}}(a_i)$$

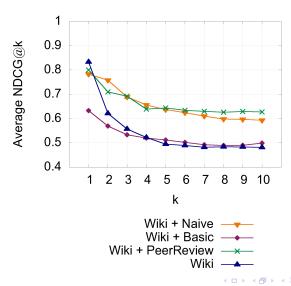
Average-Rank Method


$$\gamma_q = \frac{1}{2}$$
 for all q

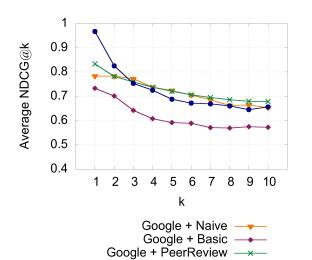
 $s^{\text{rel}}(a_i)$ relevance rank for a_i from the search engine results

 $s^{\mathsf{qual}}(a_i)$ normalized quality rank for a_i from the quality ranking

Experimental Results


Non-combined Methods

Observations


- Relevance supersede
 Quality, esp., at small k
- Relevance alone, Google best
- Quality alone, PeerReview best

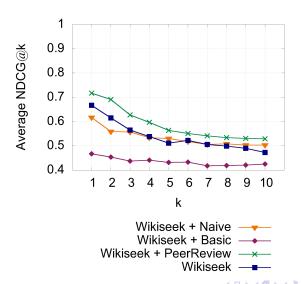
Experimental Results Improvement over Wiki Method

Experimental Results

Quality-aware Methods compared with Google Method

Quality factor in Google's searching results

backlink


traffic

improvement

Google --

Experimental Results

Quality-aware Methods compared with Wikiseek Method

Road Map

- Introduction
- 2 Quality-aware Search Framework
- Quality Assessment Models
- 4 Experimental Design and Results Analysis
- 6 Conclusion

Conclusion

- Quality improves search results
- Quality based on the interaction of contributors in collaborative editing
- PeerReview is robust in measuring article quality
- Room for improvement
 Base Set construction
 Weighting in re–ranking
 Authority in contributors

Thank You

Conclusion

- Quality improves search results
- Quality based on the interaction of contributors in collaborative editing
- PeerReview is robust in measuring article quality
- Room for improvement

Base Set construction Weighting in re-ranking Authority in contributors

Thank You

Conclusion

- Quality improves search results
- Quality based on the interaction of contributors in collaborative editing
- PeerReview is robust in measuring article quality
- Room for improvement

Base Set construction
Weighting in re-ranking
Authority in contributors

Thank You

Bibliography

B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life information retrieval: a study of user queries on the Web. ACM SIGIR Forum, 32(1):5-17, April 1998.

J. Jeon, W. B. Croft, J. H. Lee, and S. Park. A framework to predict the quality of answers with non-textual features.

In *Proc. of SIGIR'06*, pages 228–235, August 2006.

T. Mandl.

Implementation and evaluation of a quality-based search engine. In Proc. of HYPERTEXT'06, pages 73-84, August 2006.