School of Information Systems

A Probabilistic Approach to Personalized Tag Recommendation

Meiqun Hu, Ee-Peng Lim and Jing Jiang

School of Information Systems Singapore Management University

Image credit @ logorunner.com

- Social tagging allows users to annotate resources with tags.
 - organize
 - tags are keywords, serving as (personalized) index terms that group relevant resources
 - store
 - online storage gives mobility and convenience to access
 - share
 - published bookmarks can be viewed by other users
 - explore
 - to leverage collective wisdom to find interesting resources

Personalized Tag Recommendation

- Personalized tag recommendation aims to recommend tags to the query user for annotating the query resource.
- Recommendation eases the tagging process.
 - avoids misspelling, provides consistency

School of

Why Personalize Recommendations?

- Tag recommendation should be personalized.
 - users exhibit individualized choice of tag terms
 - e.g., language preference

 personalized index for personal consumption and consistency

Problem Formulation and A Basic Method

- Problem Formulation: p(t|r_a,u_a)
- A Basic Method: freq-r, to recommend most frequent tags
 - assuming that the more people have used this tag, the more likely it will be used again
 - Ref. [Golder & Huberman 2006]
 - current state-of-the-art in many social tagging sites, e.g.,
 - fails to personalize the recommendations for the query user

Three Scenarios

Scenario 1: 'foto' is an infrequent tag for the resource.

Scenario 2: 'foto' has not been used for the resource, but has been used by the user for annotating other resources in the past.

Scenario 3: 'foto' has not been used for the resource, neither has it been used by the query user, but has been used by other users for annotating other resources.

Collaborative Filtering Method

- A Method based on Collaborative Filtering: (knn)
 - select the *k-nearest neighbors* of the query user, and
 - recommend tags used by these neighbors for annotating the resource
 - classic collaborative filtering, without ratings
 - Ref. [Marinho & Schmidt-Thienme 2008]
 - addresses scenario 1, but fails scenario 2,3

Personomy Translation Method

- To translate the resource tags to the user's personal tags (trans-u)
 - to learn $p(t='foto'|u=Alice, t_r='photo')$
 - Ref. [Wetzker et al. 2009]

To Address Scenario 3

- 1. Personomy Translation
- 2. A Framework
- 3. Measuring User Similarity

A PROBABILISTIC FRAMEWORK

School of Information Systems

Proposed Framework

$$p(t|r_q, u_q) = \frac{\sum_u sim(u, u_q) \times p(t|r_q, u)}{\sum_u sim(u, u_q)}$$

 To learn p(t='foto'|u=Bob,t_r='photo') and sim (u=Bob,u_a=Alice)

Personomy Translation

To learn p(t='foto'|u=Alice,t_r='photo')

$$p(t|r_q, u) = \sum_{t_r \in \mathbf{t}_r} p(t|u, t_r) \times p(t_r|r_q)$$

$$p(t|u, t_r) = \sum_{r \in \mathbf{r}_u} p(t|r, u) \times p(r|t_r)$$

[Wetzker et al. 2009]

Measuring Similarity between Users

- sim(u,u_q)
 - assuming that users are similar if they perform similar translations
- User profile

Remark on the 3 Scenarios

This framework is able to address all three scenarios

$$p(t|r_q, u_q) = \frac{\sum_u sim(u, u_q) \times p(t|r_q, u)}{\sum_u sim(u, u_q)}$$

- addresses scenario 1 by allowing self-translation, e.g., p('photo'|u,'photo')
- addresses scenario 2 by allowing the query to be most similar to himeself, e.g., sim(u_q,u_q)
- addresses scenario 3 by enabling borrowed translations

- 1. Data Collection
- 2. Experimental Setup
- 3. Recommendation Performance

EXPERIMENTS

Dataset from BibSonomy

	train	validation	test
time frame	start ~ DEC 08	JAN 09 ~ JUL 09	JUL 09 ~ DEC 09
number of resources	22,389	667	258
number of users	1,185	136	57
number of tags	13,276	862	525
number of assignments	253,615	2,604	1,262
average posts per user	53.695	5.699	4.895
average tag tokens per user	3.955	3.360	4.523
average distinct tags per user	61.833	13.191	14.667

Note:

users in test set must have been appeared in validation set.

Experimental Setup

- Methods to compare
 - trans-n1, trans-n2
 - trans-u1, trans-u2
 - [Wetzker et al. 2009],
 [Wetzker et al. 2010]
 - knn-ur, knn-ut
 - interpolating with freq-r

- Evaluation metric
 - pr-curve at top 5
 - macro-average for users
- Parameter tuning
 - macro-average f1@5
 - global vs. individual settings

Recommendation Performance Global Setting

Recommendation Performance Individual Setting

Recommendation Case Study

	u	r	tags assigned	top 5 recommendatio		IS
				trans-u1	trans-n1	freq-r
	920	a45 57f	2008, bookmarking, folksonomy, social, spam, folksonomies, tagorapub, web20, 20, integpub, systems, tagger, web	diplomathesis captcha folksonomybackgro und closelyrelated folksonomy	folksonomy tagging social web20 web	spam social myown mining folksonomy
	1119	d16 b50	it, news, technology, blog, feed, technologie	kultur online radio kunst cd	news web20 blog software technology	newsticker news pc langde heise
Sc	3217	467 655	annotation, ontology, knowledge, semantic	sql erd eclipse	tagging folksonomy ontology web20	tools survey smilegroup semantics
scenario 3 tags						

Conclusion

- We propose a probabilistic framework for solving the personalized tag recommendation task, which incorporate personomy translation and borrowing translation from neighbors.
- We devise to use distributional divergence to measure similarity between users. Users are similar if they exhibit similar translation behavior.
- We find the proposed methods give superior performance than translation by the query user only and classic collaborative filtering.

Future Work

School of

 Performance gain in successfully recommending scenario 3 tags.

– e.g., compared with freq-r

- -e.g., resources that are inadequately tagged
- Recommendations strategies from the resources' perspective.

References

[Golder & Huberman 2006]	Scoot A. Golder and Bernardo A. Huberman. Usage Patterns of Collaborative Tagging Systems. Journal of Information Science, 32(2):198-208, 2006.
[Maronho & Schmidt-Theime 2008]	Leandro B. Marinho and Lars Schmidt-Thieme. Collaborative Tag Recommendations, Chater 63, pp. 533-540. Springer Berlin Heidelberg, 2008.
[Wetzker et al. 2009]	Robert Wetzker, Alan Said and Carsten Zimmermann. Understanding the User: Peronomy Translation for Tag Recommendation. In ECML PKDD Discovery Challenge, pp. 275-285, 2009.
[Lee 1997]	Lillian Lee. Similarity-Based Approaches to Natural Language Processing. Ph.D Thesis, Harvard University, Cambridge, MA. 1997. Chapter Four.

