School of Information Systems

Predicting Outcome of Collaborative Featured Article Nomination in Wikipedia

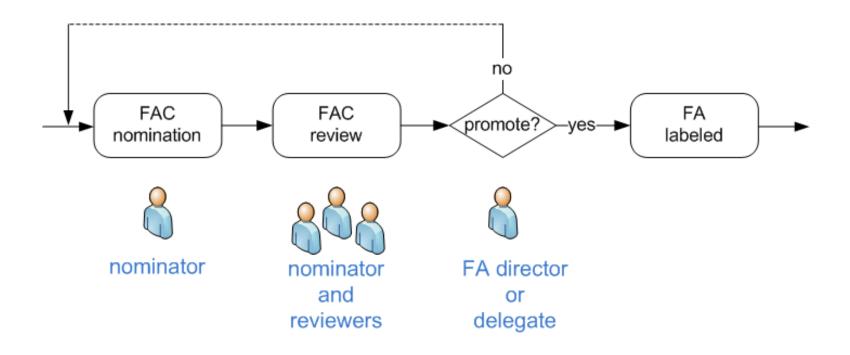
Meiqun Hu, Ee-Peng Lim and Ramayya Krishnan

Outline

- Featured articles in Wikipedia
 - Nomination of featured articles
 - Featured article candidates dataset
- Prediction on FAC outcome
 - Discussion features
 - User features
 - Collaborator features
- Conclusion

Featured article in Wikipedia

Wikipedia


- the largest online collaborative authoring site
- anyone can edit
- uneven quality in articles
- Featured articles (FA)

- represent the best articles in Wikipedia
- Featured article criteria

Key steps in acquiring FA label

FAC : featured article candidate FAC session : [time of nomination, time of decision]

nomination justification

Mass Rapid Transit (Singapore)

[edit]

Semi-self nomination. Took Singapore Wikipedians a month to summarise and cleanup the article to its current form. Compare with before version & Peer review suggests no significiant ideas/changes, so I think it should be ready by now. This is the first Singapore-related article going up for Featured Article Candidate. - Mailer Diablo 04:03, 18 December 2005 (UTC)

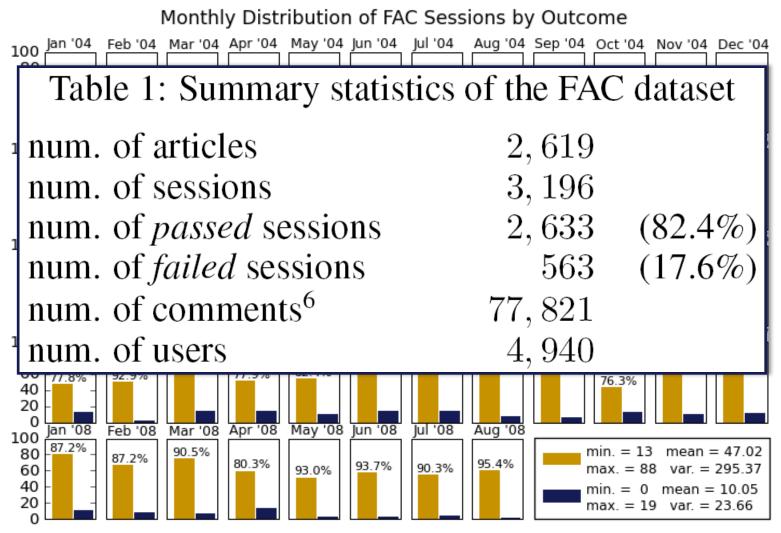
- Support, pust admit it's a semi-self nom for me to vote too, but it's been a long way and I think it is up to standard. -- Natalinasmpf 04:22, 18 December 2005 (UTC)
- Support: God article. I haven't read the whole of it in detail, but overall, through the titles, pictures, and some portions I read, it looks comprehensive. Great visual impact, and I noticed that everything is properly referenced. Can't see any reasons why it shouldn't be featured. deeptrivia (talk) 04:26, 18 December 2005 (UTC)
 - Weak support haven't delved into it yet but looks good. NSLE (T+C+CVU) 04:29, 18 December 2005 (UTC)

*Object. No ds a good copy-edit. Overlinked (see WP's policy on trivial chronological links and common noun links, and the following pages Wikipedia:Make only links relevant to the context, Wikipedia:Manual of Style (links)#Internal links, Wikipedia:Manual of Style (dates and numbers)#Date formatting and Wikipedia_talk:Manual_of_Style_(dates_and_numbers)#Dates_linking_convention_currently_ludicrous. Please use lower case for headings consistently. Tony 06:49, 18 December 2005 (UTC)

- De-linked sections, date now consistent. Are you sure there is
 Wikipedia_talk:Manual_of_Style_(dates_and_numbers)#Dates_linking_convention_currently_t_cicreus?? Cannot must not neadings, only names
 that are not in lower case are official names given by the authorities, including the Standard Ticket. Mailer Diablo 08:18, 18 December 2005 (UTC)
 - AFAIK Wikipedia_talk:Manual_of_Style_(dates_and_numbers)/archive28#Dates_linking_convention_ Mailer Diablo 09:04, 18 December 2005 (UTC)

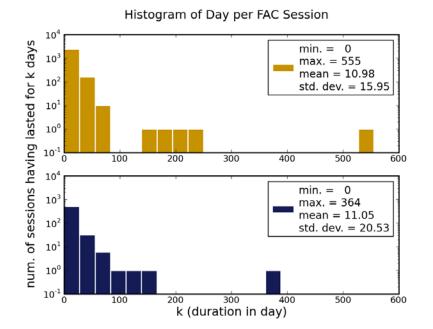
That's right—I wrote "see WP's policy on trivial chronological links and common noun links, *and* the following pages". The linking problem has been fixed: well done! I'll have a look at the prose later—it needs work. Tony 09:20, 18 December 2005 (UTC)

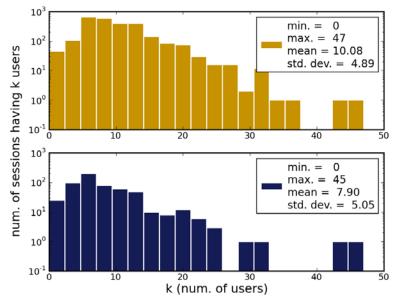
Support opcourse! Great job done. Article deserves what it really deserves. --Terence Ong Talk 17:00, 18 December 2005 (UTC)


Object. [Now strong object, see below for revised discussion]. I agree with the need for a thorough copyedit, with particular attention to lengthy sentences which really have next to no content, like this one: "Numerous measures have been taken by operators and authorities to ensure the safety of passengers travelling on the system." ("passengers travelling on the system" should just be "passengers"; and the sentence would be better in the form

Motivation and research objectives

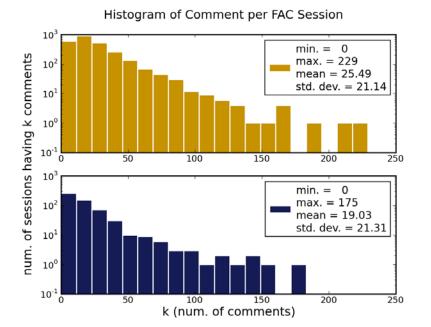
- Motivation
 - In Wikipedia, good articles are wanted.
 - Wikipedia has been growing exponentially, however,
 - number of featured articles is growing linearly
 - FA selection process is laborious
 - decision making is only shouldered by the FA director and his delegate
- We aim to aid in decision making
 - to collect FAC review data, and analyze user interaction during review process
 - to predict nomination outcomes using feature derived from interaction analysis


Featured article candidates dataset

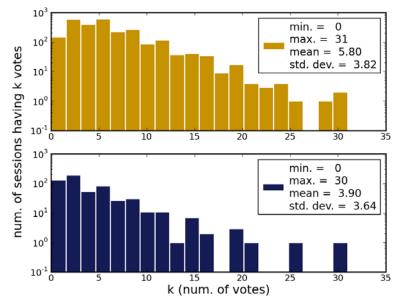


Statistics per FAC session (1)

Histogram of User per FAC Session

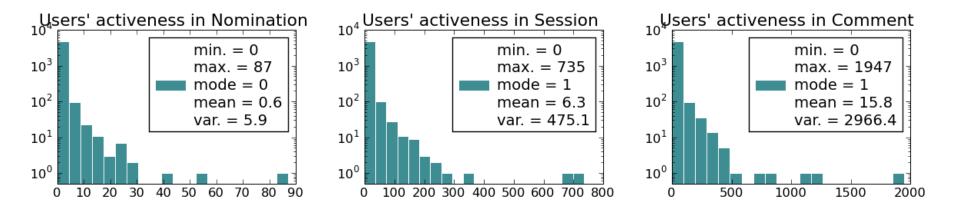


duration (in days)


distinct users

Statistics per FAC session (2)

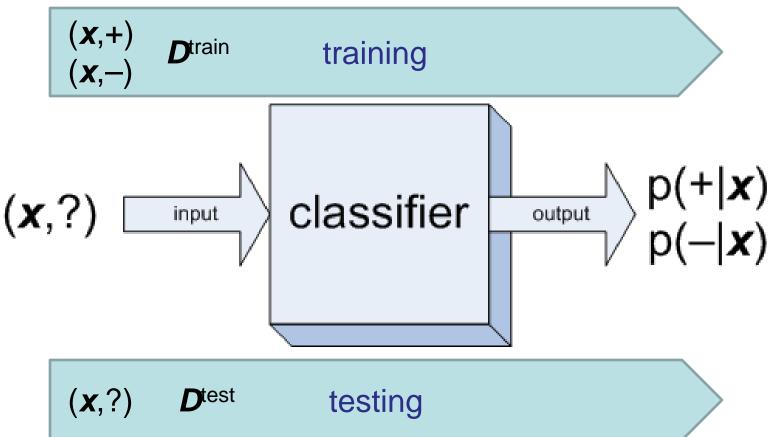
Histogram of Vote per FAC Session



number of comments

number of votes

Users' activeness in FAC sessions



Outline

- Featured articles in Wikipedia
 - Nomination of featured articles
 - Featured article candidates dataset
- Prediction on FAC outcome
 - Discussion features
 - User features
 - Collaborator features
- Conclusion

Classification in a nutshell

x: features of the data instance, often multiple dimensions

Feature engineering for prediction

$$\langle \mathsf{D}_x,\mathsf{U}_y(\mathsf{F}_u),\mathsf{P}_z(\mathsf{F}_p)\rangle$$

• D_x

– discussion features, $x \subseteq \{g+c,v\}$

- $U_y(F_u)$
 - user features, $y \in \{N, S, C, L\}$
 - user weighting options, $\mathsf{F}_u \in \{\mathsf{e}_u, \mathsf{c}_u, \mathsf{p}_u, \mathsf{s}_u\}$
- $P_z(F_p)$
 - collaborator (pair) features, $z \in \{Co, Ag, Dg\}$
 - collaborator weighting options, $F_p \in \{e_p, c_p, p1_p, p2_p\}$

Discussion features, D_{g,c,v}

General discussion features

- 1. duration (in days)
- 2. total number of comments
- 3. total number of distinct users
- 4. average number of comments per user

• Comment-specific discussion features

- 5-6. max. and avg. length of comments
- 7-8. max. and avg. depth of comments
- 9. self nomination (b)
- 10. FA director participation (b)
- 11. FA director's delegate participation (b)

• Voting-specific discussion features

- 12. number of comments at depth 1
- 13. number of comments at depth 1 that also votes
- 14. fraction of comments that vote for support
- 15. fraction of comments that vote for objection

User features, U_{N,S,C,L}(F_u)

- Features defined on the dimension of individual users
- Selecting top 50 active users
 - N, number of FAC nomination
 - S, number of FAC participation
 - C, number of comments given in FAC sessions
 - L, number of distinct FAC co-reviewers
- Assigning feature values
 - e_u , existence, {1,0}
 - p_u , polarity, {+1,-1,0}
 - c_u , comment, {0,1,...}
 - s_u , signed comment, {...,-1,0,+1,...}

Collaborator features, U_{Co,Ag,Dg}(F_p)

- Features defined on the dimension of pairs of users
- Selecting top 100 collaborative user pairs
 - Co, number of FAC sessions co-reviewed
 - Ag, degree of agreement number of sessions the pair agree in their votes number of sessions the pair both voted
 - Dg, degree of disagreement
- Assigning feature values
 - e_p , pair existence, {1,0}
 - c_p , sum of comments, {0,1,...}
 - p1_p, paired polarity, option 1, {-2,-1,0,1,2}

School of $-p2_p$, paired polarity, option 2, {-2,-1,-0.5,0,1,2} Information Systems

Experiment setup

- Training vs. test dataset
 - 10 folds cross-validation
 - stratified sampling based on the outcome
- Classifier
 - Linear SVM, with cost factor 0.2
 - Platt's calibration, SVM decision values to class posterior probabilities
- Evaluation
 - area under the curve (AUC) on precision-recall (PR) curve
 - precision and recall for the '-' class

AUC using discussion features

$$\begin{array}{|c|c|c|c|c|} & \langle \mathsf{D}_{\{\mathsf{g}+\mathsf{c}\}} & , \emptyset \, , \emptyset \rangle & 0.402 \ (\pm 0.063) \\ & \langle \mathsf{D}_{\{\mathsf{v}\}} & , \emptyset \, , \emptyset \rangle & 0.816 \ (\pm 0.057) \\ & \langle \mathsf{D}_{\{\mathsf{g}+\mathsf{c},\mathsf{v}\}} \, , \emptyset \, , \emptyset \rangle & 0.822 \ (\pm 0.052) \\ \hline \\ & \textbf{baseline} & 0.176 \\ \end{array}$$

baseline : the maximum prior classifier

- 1. using voting specific discussion features performs better than non-voting discussion features;
- 2. using both voting and non-voting features outperforms the latter;
- 3. all proposed feature settings perform better than the baseline.

AUC using user features

$\left\langle D_{\{g+c\}} , U_{N}(e_{u}) , \emptyset \right\rangle$	$0.438^{*} (\pm 0.060)$
$\langle D_{\{g+c\}},U_{N}(c_{u}),\emptyset\rangle$	$0.432^{*} (\pm 0.071)$
$\langle D_{\{g+c\}},U_{N}(p_{u}),\emptyset\rangle$	0.511^{*} (±0.068)
$\langle D_{\{g+c\}},U_{N}(s_{u}),\emptyset\rangle$	$0.468^{*} (\pm 0.067)$
$\langle D_{\{g+c\}},U_{S}(e_{u}),\emptyset\rangle$	$0.439^{*} (\pm 0.064)$
$\langle D_{\{g+c\}},U_{S}(c_{u}),\emptyset\rangle$	$0.413 \ (\pm 0.057)$
$\langle D_{\{g+c\}},U_{S}(p_{u}),\emptyset\rangle$	$0.590^{*} (\pm 0.052)$
$\langle D_{\{g+c\}},U_{S}(s_{u}),\emptyset\rangle$	$0.470^{*} (\pm 0.062)$
$\langle D_{\{g+c\}},U_{C}(e_{u}),\emptyset\rangle$	$0.446^{*} (\pm 0.051)$
$\langle D_{\{g+c\}},U_{C}(c_{u}),\emptyset\rangle$	$0.429^{*} (\pm 0.055)$
$\langle D_{\{g+c\}},U_{C}(p_{u}),\emptyset\rangle$	0.558^{*} (±0.050)
$\langle D_{\{g+c\}},U_{C}(s_{u}),\emptyset\rangle$	$0.460^{*} (\pm 0.070)$
$\langle D_{\{g+c\}},U_{L}(e_{u}),\emptyset\rangle$	$0.440^{*} (\pm 0.063)$
$\langle D_{\{g+c\}},U_{L}(c_{u}),\emptyset\rangle$	$0.406 \ (\pm 0.056)$
$\langle D_{\{g+c\}},U_{L}(p_{u}),\emptyset\rangle$	$0.586^{*} (\pm 0.055)$
$\langle D_{\{g+c\}},U_{L}(s_{u}),\emptyset\rangle$	0.469^{*} (±0.062)

AUC using collaborator features

$\langle D_{\{g+c\}}, \emptyset, P_{Co}(e_{p}) \rangle$	$0.383 \ (\pm 0.058)$
$\langle D_{\{g+c\}},\emptyset,P_{Co}(c_{p})\rangle$	$0.369 \ (\pm 0.054)$
$\langle D_{\{g+c\}}, \emptyset, P_{Co}(p1_{p}) \rangle$	$0.556^{*} \ (\pm 0.037)$
$\langle D_{\{g+c\}},\emptyset,P_{Co}(p2_{p})\rangle$	0.552^{*} (±0.032)
$\langle D_{\{g+c\}}, \emptyset, P_{Ag}(e_{p}) \rangle$	$0.397 \ (\pm 0.043)$
$\langle D_{\{g+c\}}, \emptyset, P_{Ag}(c_{p}) \rangle$	$0.388 \ (\pm 0.061)$
$\langle D_{\{g+c\}},\emptyset,P_{Ag}(p1_{p}) angle$	$0.571^{*} (\pm 0.067)$
$\langle D_{\{g+c\}},\emptyset,P_{Ag}(p2_{p}) angle$	$0.572^{*} \ (\pm 0.067)$
$\langle D_{\{g+c\}}, \emptyset, P_{Dg}(e_{p}) \rangle$	$0.375 \ (\pm 0.053)$
$\langle D_{\{g+c\}}, \emptyset, P_{Dg}(c_{p}) \rangle$	$0.377 \ (\pm 0.062)$
$\langle D_{\{g+c\}}, \emptyset, P_{Dg}(pl_{p}) \rangle$	$0.568^{*} \ (\pm 0.075)$
$\langle D_{\{g+c\}},\emptyset,P_{Dg}(p2_{p})\rangle$	$0.560^{*} \ (\pm 0.067)$

AUC using the 'best of best' features

1. using user features improves AUC performance significantly;

2. using collaborator pair features improves AUC, but not statistically significant.

Outline

- Featured articles in Wikipedia
 - Nomination of featured articles
 - Featured article candidates dataset
- Prediction on FAC outcome
 - Discussion features
 - User features
 - Collaborator features
- Conclusion

Conclusion

- We analyze user collaboration in the process of FAC nomination and review
 - users' participation, commenting, voting statistics
 - consensus is largely followed in the review process
- We address the task of predicting FAC outcome as binary classification using features derived from review data and user collaboration
 - using vote consensus gives strong performance
 - using user features improved prediction significantly

Future work

- To compare classifier performance when varying the number of active users selection, and compare with random selection.
- To look at the classifier performance for cases where consensus does not exist.
- To associate with article's editing history during the review period.
- To examine performance for controversial articles.

