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ABSTRACT
During social interactions in a community, there are of-
ten sub-communities that behave in an opposite way with
each other. These antagonistic sub-communities could cor-
respond to various interesting information from highlighting
groups of people with opposite taste with each other to fac-
tions within a community that exhibit distrust with each
other. Based on a set of interactions in time, we develop
a novel pattern mining approach that extract for a set of
antagonistic sub-communities from an interaction database.
Based on a set of user specified thresholds, we extract a
set of pairs of sub-communities that behave in opposite way
with one another. To prevent a blow up in these set of
pairs, we focus on extracting a compact lossless represen-
tation based on the concept of closed patterns. To test the
scalability of our approach, we built a synthetic data genera-
tor and experiment on the scalability of the algorithm when
the size of the dataset is varied in multiple dimensions. Case
studies on Epinion dataset and a book rating dataset show
the efficiency of our approach and the utility of our tech-
nique in extracting interesting information on antagonistic
sub-communities.

1. INTRODUCTION
We form opinions and at times strong convictions on var-

ious issues and questions. Based on similarity in opinions
and ideals, it is common that sub-groups or communities
of users are formed. In a community, members support or
upheld a particular interest, idea or even conviction. Due to
the dynamics of human social interaction, often antagonistic
groups, i.e., two groups that consistently differ in opinions
are formed. Some examples of such group are many, ranging
from the various social groups that held differing opinion on
various topics including industrialism vs. conservation, to
formal organizations that are opposing to each other. Mem-
bers of opposing groups held similar opinions within the
group but different with members of the opposite group.

Opposing groups and their nature have been studied in
the sociology domain [19, 6, 5, 15, 11, 7]. Understanding the
formation of these groups and wide-spread-ness of opposing
communities are of research interest. They could potential
signify signs of disunity in the community and point to sub-
communities that oppose one another. If these issues could
be detected early, unwanted tensions between communities
could potentially be averted. Identification of antagonistic
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communities is also the first step to further studies: e.g.,
how the antagonistic community is formed, why they are
formed, how does the antagonistic communities grow over
time, when do the communities stop being antagonistic, etc.

Aside from enriching our study on dynamics of social in-
teractions, information on group of people having oppos-
ing opinions could potentially be used for: designing better
marketing/product survey strategy by deeper understand-
ing on the nature of each sub-community and potentially
an opposing one, better recommendation of friends, or even
recommendation of “non-friends”, e.g., those whose review
one could ignore, etc.

With the advent of Web 2.0, people’s opinion are more
readily expressed and available to be analyzed. Various fo-
rums and blogs provide opinions and views on multitudes
of issues. Some systems like Epinions [2] and Amazon, also
provides a mechanism to rate items, or even to rate the re-
views of the items themselves. These provide a wealth of
data ready to be analyzed.

In this study, our goal is to discover antagonistic commu-
nities automatically from their history of interactions. We
design a novel pattern mining algorithm to directly mine
antagonistic communities. We take as input a database of
user opinions/views over things, bucketized into high/low or
positive/negative. From these database, we would like to ex-
tract a set of users that are antagonistic over enough number
of common items/issues with a high likelihood. The pattern
that we mine would identify group of users that oppose an-
other group over a sufficient number of common issues/items
of interest (i.e., enough support) with a high likelihood (i.e.,
enough confidence).

Our approach explore the search space of all possible op-
posing communities and prune those that appear with not
enough frequency/support. An apriori-like anti-monotonicity
property is used to prune the search space. Eventually the
patterns mined are checked if the confidence is sufficient. If
it is, it would then be reported. As a frequent opposing
pattern would have many sub-pattern that are frequent we
only report patterns that are closed. A pattern is closed if
there exists no super-pattern having the same support and
confidence.

To show the scalability of our approach, we developed a
synthetic data generator in a similar fashion as the IBM
data generator used for mining association rules [3]. These
data generator is used to test the scalability of our approach
on several dimensions of interest. The result shows that our
algorithm is able to run well on various parameter settings.

We also investigated two real dataset which includes rat-



ing data from Epinion and another book rating data from
Amazon. We extract antagonistic communities from them.
The algorithm is shown to be able to run on real data and
extract antagonistic communities. A few hundred of com-
munities are mined from the dataset.

The contribution of our work is as follows:

1. We propose a new problem of mining antagonistic com-
munities from social network. Mined antagonistic com-
munities could potentially be used to shed better light
on social interaction, prevent unwanted tensions in the
communities, improve recommendations and market-
ing strategies, etc.

2. We propose a new algorithm to mine for antagonistic
communities that is shown to be scalable.

3. We extract antagonistic communities from two real
datasets shedding light to the extent of consistent an-
tagonistic behavior on real rating datasets.

The structure of this paper is as follows. Section 2 de-
scribes some related work. Section 3 formalizes some con-
cepts and the semantics of antagonistic communities. Sec-
tion 4 describes our mining algorithm. Section 5 describes
our synthetic data generation algorithm. Experiments and
case studies are described in Section 6. We finally conclude
and describe future work in Section 7.

2. RELATED WORK
There have been a number of studies on finding communi-

ties in social network [4, 10, 9]. In this study we enrich past
studies by discovering not communities but opposing ones.
We believe these two source of information could give more
light to the social interactions among users in Web 2.0.

Antagonistic communities is also related to the concept of
homophily. Members of a pair of antagonistic communities,
intuitively share more preferences with those in the same
community and share less preferences with others from the
opposing community. There have been a number of stud-
ies on homophily in social networks [18]. In this work, our
mined communities not only express similar preferences but
also opposing preferences. Homophily and trust are closely
related as users with similar preferences are more likely to
trust each other [12]. In this sense, our work enriches exist-
ing studies on homophily and trust [13, 16, 14].

In the sociology, economics, and psychology communities,
the concept of inter-group antagonism have been studied by
various work [19, 6, 5, 15, 11, 7]. We extend this inter-
esting research question by providing a computation tool to
automatically identify opposing communities from history of
their behavior. We believe our tool could potentially be used
to help sociologist in understanding the behavior of commu-
nities from the wealth of available data of user interactions
in Web 2.0.

On the algorithm end our algorithm belongs to a fam-
ily of pattern mining algorithm. There have been many of
these algorithm used to mine for association rules [3, 21], fre-
quent sequences [23, 20], frequent repetitive sequences [17,
8], frequent graphs [22], etc. The closest to our study is the
body of work on association rule mining [3]. Association rule
mining also employs the concept of support and confidence
like us. However, association rule mining extracts frequent
transactions, and relationship between transactions. On the

other hand we extract two sets of opposing users that share
many common interests/form opinions/common rated items
but oppose each other with high likelihood. The problem
is inherently different. We show that a similar apriori-like
anti-monotonicity property holds but employ a different al-
gorithm to directly mine for antagonistic communities. Sim-
ilar to the work in [21], we do not report all frequent and
confident groups rather only the closed ones.

3. ANTAGONISTIC GROUP
In this section, we formalize how history of user opinions

or views are captured. We follow by a formal definition of
antagonistic group and its associated notion of support and
confidence. We then describe a property on support that is
used by the mining process. A formal problem statement is
given at the end of the section.

We formalize past histories of user social interactions in
terms of ratings to objects/views/ideas/items. Hence there
is a bipartite graph between users and objects where the
arrows are labeled with rating scores. We divide all rating
scores to be high, low rating polarities and middle de-
pending on the score ranges. For example in epinions where
there is a 5-point scale assigned to an item by a user, we
bucketize rating scores of 1− 2 to be of low rating polarity,
4−5 to be of high rating polarity and 3 to be middle rating.
We formalize our input as a database of ratings, defined in
Definition 3.1. We refer to the size of a rating database DBR

as |DBR| which is equal to the number of mapping entries
in the database.

Definition 3.1. Consider a set of users U and a set of
items I. A database of ratings consists of a set of mappings of
item identifiers to a set of pairs, in which each pair consists
of user identifier and rating score. There are three types of
rating scores considered: high (hi), medium (mid), and low
(lo). The database of ratings could be formally represented
as:

DBR = {itid 7→ {(usid, rtg, . . .}|itid ∈ I ∧ usid ∈ U ∧ rtg
∈ {hi, mid, lo} ∧ usid gives itid a rating of rtg}

Two ratings are said to be common between two users if
the ratings are assigned by the two users on the same item.
A set of ratings is said to be common among a set of users
if these ratings are on a common set of items rated by the
set of users.

Definition 3.2. (Opposing Group): Let Ui and Uj be
two disjoint sets of users. (Ui, Uj) is called an opposing
group (or simply, o-group).

The number of common ratings between the two sets of
users Ui and Uj of an opposing group is known as their sup-
port count and is denoted by count(Ui, Uj). The support

of the two user sets support(Ui, Uj) is defined as
count(Ui,Uj)

|I|
where I represents the set of all items.

The number of common ratings between Ui and Uj that
satisfy three conditions:

• Users from Ui share the same rating polarity pi;

• Users from Uj share the same rating polarity pj ; and

• pi and pj are opposite polarities.



is called the antagonistic count, denoted by antcount(Ui, Uj).
Obviously, antcount(Ui, Uj) ≤ count(Ui, Uj). The antag-
onistic support of the two user sets asupport(Ui, Uj) is

defined as
antcount(Ui,Uj)

|I| . We also define the antagonis-

tic confidence of a a-group (Ui, Uj) to be aconf(Ui, Uj) =
antcount(Ui,Uj)

count(Ui,Uj)
.

Definition 3.3. (Frequent Opposing Group): An op-
posing group (Ui, Uj) is a frequent opposing group (or, fre-
quent o-group for short) if support(Ui, Uj) ≥ λ and asupport
(Ui, Uj) ≥ λ× σ where λ is the support threshold (∈ (0, 1)),
and σ is the antagonistic confidence threshold (∈ (0, 1)).

We consider (Ui, Uj) to subsume (U ′i , U
′
j) if: (a) U ′i ⊂ Ui

and U ′j ⊆ Uj ; or (b) U ′i ⊆ Ui and U ′j ⊂ Uj . We denote this
by (U ′i , U

′
j) ⊂ (Ui, Uj).

Frequent o-groups satisfy the important Apriori property
as stated below. Due to space constraint, we move the proof
to [?].

Property 3.1. (Apriori Property of Freq. O-group):
Every size (k−1) o-group (U ′i , U

′
j) subsumed by a size-k fre-

quent o-group (Ui, Uj) is a frequent o-group.

Proof. Assume an o-group gk−1 is not frequent. This

would mean
count(gk−1)

|I| < λ or
antcount(gk−1)

|I| < λ×σ. If an

user uk is added to either user set of this o-group, we call
the resulting o-group gk−1 ∪ uk. gk−1 ∪ uk’s count can not
be more than count(gk−1) and its antcount can not be more
than antcount(gk−1). This is because the count is calculated
by intersecting the gk−1’s user set’s rating and the uk’s rat-
ing ,count(gk−1 ∪ uk) ≤ min{count(gk−1),count(uk)}, and
similarly, the antcount is calculated by intersecting gk−1’s
user set’s rating and uk’s rating such that intersected rating
have opposite polarity, antcount(gk−1∪uk)≤ antcount(gk−1).

Therefore,
count(gk−1∪uk)

|I| < λ or
antcount(gk−1)∪uk

|I| < λ× σ;

that is gk−1 ∪ uk is not frequent neither. 2

Definition 3.4. (Antagonistic Group): An opposing
group (Ui, Uj) is an antagonistic group (or, a-group for short)
if it is a frequent o-group and aconf(Ui, Uj) ≥ σ.

Definition 3.5. (Closed Antagonistic Group): An a-
group (Ui, Uj) is closed if ¬∃(U ′i , U ′j).(Ui, Uj) ⊂ (U ′i , U

′
j),

count(U ′i , U
′
j) = count(Ui, Uj) and

antcount(U ′i , U
′
j) = antcount(Ui, Uj).

Example 3.1. Consider the example rating database in
Table 1. Suppose λ = 0.5 and σ = 0.5. Both (a, d) and
(a, bd) are a-groups. However, since count(a, d) = count(a, bd) =
3 and antcount(a, d) = antcount(a, bd) = 2, (a, d) is not a
closed a-group and is subsumed by (a, bd). Hence, (a, d) is
considered as redundant. On the other hand, both (a, b) and
(a, bc) are closed a-groups even though both aconf(a, b) and
aconf(a, bc) has the same value which is 2

3
. This is so as

count(a, b) 6= count(a, bc) and antcount(a, b) 6= antcount(a, bc).

Note that count(Ui, Uj) = count(U ′i , U
′
j) does not imply

that antcount(Ui, Uj) = antcount(U ′i , U
′
j) for any (Ui, Uj) ⊂

(U ′i , U
′
j), and vice versa. We can show this using the rating

database example in Table 2. In this example, we have
count(a, b) = count(a, bc) = 3 but (antcount(a, b) = 3) >
(antcount(a, bc) = 2). We also have antcount(d, e) = ant-
count(d, ef) = 1 but (count(d, e) = 2) > (count(d, ef) = 1).

Table 1: Example Rating Database 1 - DBEX1

Item User ratings
i1 a-hi, b-lo, d-lo
i2 a-hi, b-lo, d-lo
i3 a-hi, b-hi, d-hi
i4 a-hi, b-lo, c-lo
i5 a-hi, b-lo, c-lo
i6 a-hi, b-hi, c-lo

Table 2: Example Rating Database 2
Item User ratings
i1 a-hi, b-lo, c-lo
i2 a-hi, b-lo, c-lo
i3 a-hi, b-lo, c-hi
i4 d-hi, e-lo, f -lo
i5 d-hi, e-hi

Definition 3.6. (Antagonistic Group Mining Prob-
lem): Given a set of items I rated by a set of users U ,
the antagonistic group mining problem is to find all closed
antagonistic groups with the given support threshold λ and
antagonistic confidence threshold σ.

4. MINING ALGORITHM
We develop a new algorithm to mine for antagonistic groups

from a database of rating history. The database could be
viewed as a cleaned representation of people opinions or
views or convictions on various items or issues. Our algo-
rithm systematically traverses the search space of possible
antagonistic groups using a search space pruning strategy to
remove unfruitful search spaces.

The a-group mining algorithm runs for multiple passes. In
the initialization pass, we calculate the count and antcount
of all the frequent size-2 o-group candidates and determine
which of them are frequent o-groups. In the next pass, with
the set of frequent o-groups found in the previous pass, we
generate new potential frequent o-groups, which are called
candidate set. We then count the actual count and antcount
values for these candidates. At the end of this pass, we de-
termine which of the candidates are frequent o-groups, and
they are used to generate frequent o-groups for the next
pass. After that, we filter the previous frequent o-group set
with the newly generated frequent o-group set by remov-
ing non-closed frequent o-groups. Then we move on to the
next pass. This process continues until no larger frequent
o-groups are found. After successful mining of all frequent
o-groups, we derive the a-groups from them.

Algorithm 1 shows the a-group mining algorithm known
as Clagmine. Two basics data structures are maintained
namely Lk the intermediary set of frequent o-groups of size
k and Ck a candidate set of size k for frequent o-groups
checking. The first two lines of the algorithm derives size-2
candidates to get the frequent size-2 o-groups. It forms the
base for subsequent processing. A subsequent pass, say pass
k, consists of three phases. First, at line 5, the frequent o-
groups in Lk−1 found in k− 1 pass are used to generate the
candidate frequent o-group set Ck, using the antGrpMining-
gen method in Algorithm 2. Next, the database is scanned
and the count and antcount of candidates in Ck is updated
(lines 7 to 13). We make use of the hash-tree data struc-



Input: λ; σ; rating database
Output: closed a-group of all size
L1 = frequent user set;1

C2 = {({ui}{uj})|i < j, ui ∈ L1, uj ∈ L1};2

for k = 2;k ≤ |U | and |Lk−1| 6= 0; k++ do3

if k > 2 then4

Ck=antGrpMining-gen(Lk−1);5

end6

root← buildHashTree(k,Ck);7

foreach record t ∈ D do8

Ct=subset(t,root);9

foreach candidate c in Ct do10

update count and antcount of c;11

end12

end13

Lk={gk ∈ Ck| count(gk)
|I| ≥ λ and14

antcount(gk)
|I| ≥ λ× σ};

Lk−1=prune(Lk−1, Lk);15

end16

G={g ∈ ⋃
k Lk|antcount(g)

count(g)
≥ σ};17

Output G;18

Algorithm 1: Closed Antagonistic Group Mining Algo-
rithm – clmine(λ,σ,DBR)

ture described in [3] to hold Ck and we then use a subset
function to find the candidates overlap with the raters of an
item. After we marked all the overlapped candidates, we up-
date the count and antcount of them. Frequent o-groups can
be determined by checking count and antcount against the
support threshold and λ×σ thresholds respectively. Follow-
ing that, Lk−1 is filtered with the newly generated frequent
o-groups to remove non-closed frequent o-groups (line 15).
After all the passes, the a-groups are determined from the
frequent o-group set (line 17). The following subheadings
zoom into the various components of the mining algorithm
in more detail.

Input: size-(k − 1) frequent o-group set Lk−1

Output: size-k candidate frequent o-group set
foreach p, q ∈ Lk−1 do1

gk ← merge(p, q);2

add gk to Ck;3

forall (k − 1)-subsets s of gk do4

if s¬ ∈ Lk−1 then5

delete gk from Ck;6

end7

end8

end9

return Ck;10

Algorithm 2: antGrpMining-gen(Lk−1)

Candidate Generation and Pruning. The antGrpMining-
gen function described in Algorithm 2 takes Lk−1, the set of
all frequent size-(k−1) o-groups as input. It returns a super-
set of all frequent size-k o-groups. It works as below. First,
we merge all the elements in Lk−1 that share the same sub-
community of size-(k-2). Each of them can be merged into a
size-k candidate frequent o-group consisting of the common
sub-community and the two differing members. We add the

Input: a-group ({Ui},{Uj}); a-group ({U ′i},{U ′j})
Output: merged result of the two input a-group
if Ui=U ′i and diff(Uj,U

′
j)=1 then1

return (Ui,Uj

⋃
U ′j);2

end3

if Uj=U ′j and diff(Ui,U
′
i)=1 then4

return (Ui

⋃
U ′i ,U

′
j);5

end6

if Ui=U ′j and diff(Uj,U
′
i)=1 then7

return (Ui,U
′
i

⋃
Uj);8

end9

if U ′i=Uj and diff(Ui,U
′
j)=1 then10

return (Ui

⋃
U ′j ,Uj);11

end12

return null;13

Algorithm 3: merge(({Ui},{Uj}),({U ′i},{U ′j}))

candidate frequent o-groups to Ck. Next, in the pruning
stage, we delete gk ∈ Ck if some (k − 1) subset of gk is not
in Lk−1.

The pruning stage’s correctness is guaranteed by Property
3.1. From the property, if gk is a frequent o-group, all its
(k − 1) subsets must be frequent o-groups. In other words,
if any one (k − 1) subset of a frequent o-group gk is not
frequent, gk is not frequent too. We thus prune such gks.
The correctness of antGrpMining-gen function follows from
Lemma 1.

Lemma 1. For k ≥ 3, given a set of all size-(k − 1) fre-
quent o-group, i.e., Lk−1, every size-k frequent o-group, i.e.,
Lk, is in the candidate set, i.e., Ck, output by Algorithm 2.

Proof. From property 3.1, any subset of a frequent o-
group must also be frequent o-groups. Hence, if we extend
each frequent o-group in Lk−1(k ≥ 3) with all possible users
and then delete all those whose (k − 1)-subsets are not in
Lk−1, we will be left with a superset of the frequent o-groups
in Lk. In the Algorithm 2, first we perform a merge process
which is equivalent to extending Lk−1 with all possible users
in the database (line 2) and then at lines 4-8, we delete o-
groups whose (k − 1)-subsets are not in Lk−1. Thus after
we merge the and deletion steps, all frequent o-group must
be a subset of the returned candidate set.

An example to illustrate the process of candidate genera-
tion via merging and deletion is given below.

Example 4.1. Let L3 be {(u1, u2u3) ,(u5, u2u3),(u1u4,−
u2),(u1u5, u2),(u4u5, u2)}. After the merge step, C4 will be
{(u1u5, u2u3), (u1u4u5, u2)}. The deletion step serving as
apriori-based pruning, will delete the o-group (u1u5, u2u3)
because the o-group (u1u5, u3) is not in L3. We will then
left with only {(u1u4u5, u2)} in C4.

Subset Function. Candidate frequent o-groups are stored
in a hashtree as mentioned in line 7 of Algorithm 1. Each
node of the hashtree contains either a hashtable (interior
node), or a list of candidates (leaf). Each node is labeled
with a user identifier representing the user associated with
this node. The hashtable at interior nodes contains map-
pings to nodes at the next level, with each hash key being
the corresponding user identifier. Every candidate is sorted



Input: k:level of the tree; Ck:size-k candidate set
Output: root of the tree
create new node root;1

foreach candidate ci in Ck do2

sort users in ci by userID;3

tempNode← root;4

foreach user u in ci do5

if tempNode has descendant d labeled u then6

tempNode← d;7

else8

create node d with label u;9

set d as descendant of tempNode;10

tempNode← d;11

end12

if u is the last user in ci then13

set tempNode to leaf;14

add ci to the leaf;15

end16

end17

end18

return root;19

Algorithm 4: buildHashTree(k,Ck)

Input: t:item in database; root:root of hashtree
Output: set of candidate contained in t
Ct ← ∅;1

pointerRef ← empty vector of node;2

pointerRefSuffix ← empty vector of node;3

add root to pointerRef;4

foreach rater u of t do5

foreach node nodei in pointerRef do6

if nodei has descendant di with label u then7

nodei’s descendant count−−;8

if nodei’s descendant count==0 then9

remove nodei from pointerRef;10

end11

if di is leaf then12

add a-groups stored in di to Ct;13

else14

add di to pointerRefSuffix;15

end16

end17

end18

append pointerRefSuffix to pointerRef;19

pointerRefSuffix← empty vector of node;20

end21

Algorithm 5: subset(t,root)

according to the user identifier, and is then inserted into the
hashtree.

The subset function in line 9 of Algorithm 1 finds all the
candidate frequent o-groups among raters of item t. The
raters of item t is first sorted by their user identifiers. The
raters are then traversed one by one. A pointer list is kept
to maintain a list of nodes which are visited, which initially
has only the root of the hashtree. For a rater u, we traverse
through all the nodes in the pointer list, if a child node of
the current node is found with label u, the child node is
further checked to see whether it is interior or leaf. If it is
an interior node, we add it to the pointer list and if it is a
leaf, every a-group stored in the leaf is marked as a subset
of raters of t. A node is removed from the pointer list if
all of its child nodes are in the list (i.e., are visited). The
process is repeated through all the raters of item t. At the
end, all the candidates which are subset of raters of t will
be marked.

Filtering Non-Closed A-Group. The filtering of non-
closed a-groups is guaranteed by filtering of non-closed fre-
quent o-groups. It corresponds to line 15 in Algorithm 1.
The function works as follows. For each frequent o-group gk

in Lk, we traverse through every frequent o-group gk−1 in
Lk−1. If gk subsumes gk−1, and the count and antcount
of the two frequent o-groups are equal, gk−1 can be fil-
tered. This step ensures all the frequent o-groups in Lk−1

are closed. By iterating through k, we can have all the
non-closed frequent o-group of any size filtered. Note that a
closed frequent o-group could potentially subsumes a combi-
natorial number of sub-groups. Removal of non-closed fre-
quent o-group potentially reduces the number of reported
frequent o-groups significantly.

Input: frequent o-group set Lk−1; frequent o-group set
Lk

Output: closed frequent o-group set of size k
foreach gk ∈ Lk do1

foreach gk−1 ∈ Lk−1 do2

if gk−1 ⊆ gk and count(gk−1)=count(gk) and3

antcount(gk−1)= antcount(gk) then
remove gk−1 from Lk−1;4

end5

end6

end7

return Lk−1;8

Algorithm 6: ncfilter(Lk−1, Lk)

Correctness of the algorithm. The correctness of the al-
gorithm is guaranteed by the following Theorems 4.1 & 4.2.
The theorems guarantee that everything reported are cor-
rect and a complete set of closed antagonistic groups are
reported.

Theorem 4.1. Mined a-group set G contains all the closed
a-group.

Proof. Let’s assume an arbitrary a-group g to be closed,

hence, count(g)
|I| ≥ λ and antcount(g)

count(g)
≥ σ. By multiplying the

two, g also fulfills antcount(g)
|I| ≥ λ × σ. By definition 3.3,

g is a frequent o-group. As proved in lemma 1, g will be
in C|g|. g can be captured by line 5 of algorithm 1. As g

fulfills both count(g)
|I| ≥ λ and antcount(g)

|I| ≥ λ× σ. g will be



Table 3: Example Rating Database 1
Item User ratings
i1 a-hi, b-lo, d-lo
i2 a-hi, b-lo, d-lo
i3 a-hi, b-hi, d-hi

captured by line 14 of algorithm 1. Since g is closed, g will
retain in L|g| after step line 15 of algorithm 1. And finally,

due to antcount(g)
count(g)

≥ σ, g will be added to G by line 17 of

algorithm 1. Hence, every closed a-group will be contained
in G.

Theorem 4.2. Mined a-group set G contains only closed
a-groups.

Proof. Suppose an o-group g ∈ G is not an a-group, that

is, count(g)
|I| < λ or antcount(g)

count(g)
< σ. From the statement line

17 of algorithm 1, we can know g ∈ ⋃
k Lk, and antcount(g)

count(g)
≥

σ. However, every o-group gk in
⋃

k Lk has count(gk)
|I| ≥ λ.

Thus count(g)
|I| ≥ λ. It contradicts with our condition that

count(g)
|I| < λ or antcount(g)

count(g)
< σ. Thus, g must be an a-group.

Hence, G contains only a-groups. The closure property of G
can be guaranteed by line 15 of algorithm 1. Every a-group
in G will be checked to filter out the non-closed one. The
filtering method will not leave any non-closed a-group in G,
by Algorithm 6. Hence G contains only closed a-group.

Scalability Variant: Divide and Conquer Strategy.
At times the memory required to generate all the candidates
could be prohibitive. If there are too many L2 patterns,
storing all of them in memory would not be feasible. To
address this issue, we perform a divide and conquer strategy
by partitioning the database, mining for each partition, and
merging the result. We first state some new definitions and
describe a property.

Definition 4.1 (User Containment). Consider a
member m = itid 7→ PairSet in a database of ratings DBR.
We say that a user ui is contained in the entry, denoted by
ui ∈ m, iff ∃ (ui, rtg) where rtg ∈ {hi, lo, mid} and (ui, rtg)
is in PairSet. We also say that a user ui is in an a group
a = (S1, S2) iff (ui ∈ S1 ∨ ui ∈ S2)

Example 4.2. To illustrate, consider the first entry itm−
usr in the example rating database shown in Table 1. The
first entry itm−usr contains users a, b and d: a ∈ itm−usr,
b ∈ itm− usr, and d ∈ itm− usr.

Definition 4.2 (Database Partition). Consider a user
ui and a database of ratings DBR. The partition of the
database with respect to user ui, denoted as DBR[ui] is de-
fined as:

DBR[ui] = {itm− usr|ui ∈ itm− usr ∧ itm− usr ∈ DBR}

Example 4.3. To illustrate, consider the example rating
database shown in Table 1. Projection of the database with
respect to user d is shown in Table 3.

Having defined the above two definitions we now define a
lemma to divide and conquer the mining process in Lemma 2.

Lemma 2 (Divide and Merge). Consider a database
of ratings DBR, support threshold λ, and confidence thresh-
old σ. Let Uset be the set of users in DBR and Cm be the
shorthand of the Clagmine operation in Algorithm 1. The
following is guaranteed:
Cm(λ, σ, DBR) =⋃

ui∈USet
{g|ui ∈ g ∧ g ∈ Cm( λ×|DBR|

|DBR[ui]| , σ, DBR[ui])}
Proof. An entry in the database could only be counted

as an additional support to an a-group containing user ui

iff the entry contains an item ui. Hence, partitioning the
database with respect to a user ui would return the relevant
portion of the database that is relevant to ui. The absolute
support count of a-group containing ui in the partitioned
database DBR[ui] would be the same as that in the original
database DBR. All a-groups reported in Cm(λui, σ, DBR[ui])

(λui denotes λ×|DBR|
|DBR[ui]| ) that contains ui would have the cor-

rect support. All a-groups containing ui should be output
by Cm(λui, σ, DBR[ui]). However, nothing is guaranteed
for a-groups that do not contain ui in the set returned by
Cm(λui, σ, DBR[ui]) – they could have a wrong support.
They should be dropped then.

Hence, it could be easily seen that the union of the mining
results over the partitions with various uis, with removal of
results that does not contain ui would be equal to the results
returned by the mining operation on the entire dataset.

Based on Lemma 2, we algorithm to perform divide and
conquer is shown in Algorithm 7. The algorithm partitions
the database one item at a time and subsequently calls the
original closed antagonistic group mining algorithm defined
in Algorithm 1. We also have a theorem to guarantee that
the mined result is correct and a complete set of a-groups
are mined by Algorithm 7 stated in Theorem 4.3.

Theorem 4.3. Algorithm 7 would return a complete set
of closed a-groups and all returned a-group would be closed.

Proof. From Theorems 4.1 & 4.2 and Lemma 2 it is easy
to see that the above theorem holds.

Note that the divide and conquer algorithm would re-
duce memory costs but however would potentially increase
the runtime cost since the database would now need to be
scanned more number of times. In our experiment, we would
employ Algorithm 1 unless the algorithm is prohibitively ex-
pensive to run. In this case, we run Algorithm 7.

Input: λ; σ; rating database
Output: closed a-group of all size
USet = Set of all users in DBR;1

G = {};2

foreach ui ∈ USet do3

G = G ∪ {ag|ui ∈ ag ∧ ag ∈4

Clagmine( λ×|DBR|
|DBR[ui]| ,σ,DBR[ui])};

end5

Output G;6

Algorithm 7: clagmine-partitional(λ,σ,DBR)

5. SYNTHETIC DATASET



To investigate the scalability of our mining solution on
various data characteristic, similar to the evaluation mea-
sure applied to mining association rules [3, 23, 20], we de-
velop a data generator engine. The engine take some a sam-
ple dataset and a set of user-given inputs. The procedure of
synthetic data generation is shown in algorithm 8

The detailed generation of synthetic data is as follows:

• Generate the set of maximal potential large anti-groups
L:(line 1-10)
The anti-groups in L have an average size of NG. For
each anti-group g in L, we pick the size of g by a Pois-
son distribution with mean = NG. If the size of g
picked is larger than |U |, we resample. Let the i-th se-
lected size be Ni. For the 1st anti-group, we randomly
select a group of users (denoted by G) from U and add
the anti-group with equal splits of users in G into the
opposing user sets (U1, U2) to L. For each subsequent
anti-group G, we select Ni ∗ q users (randomly) from
the previous generated anti-group denoted by G′ and
Ni ∗ (1 − q) users (randomly) from (U − G′). The q
value is picked from an exponential distribution with
mean = 0.5. Again, if q is larger than 1, we resample.
Add the G with equal splits of users into the opposing
user sets to L.

• Determine the probabilities of anti-groups:(line 11-17)
We associate a probability pi of picking each anti-
group Gi in L. The pi’s is decided using an exponential
distribution with mean = 1. Pi’s are then normalized
such that their sum = 1. Hence, we have NL different
pi’s.

• Assign anti-groups to each item:(line 18-27)
For each item k, pick a number of users Mk to be in-
cluded for the item. The Mk is selected using a Pois-
son distribution with mean equals |U | ∗ s where s is a
number between 0 and 1. We pick a set of anti-groups
GSetk, a subset of L, using a biased dice with NL

sides and each side having a probability of pi. Note
that Mk ≤number of users in GSetk. If Mk < number
of users in GSetk, we can assign only subset of users
from an anti-group in GSetk to item k. The assigned
anti-group should not overlap on an user, which means
a same user i can not exist in two anti-groups in GSetk

concurrently.

• Assign ratings to each item:(line 28-40)
The assignment of rating(i, j) (user i to item j) can
be done as follow. We only consider three ratings,
high (hi), low (lo) and middle (middle). For an anti-
group (U1, U2) associated with item k. We assign all
rating(i, k) as H for all i belongs to U1, and all rating(j, k)
as L for all j belongs to U2. We continue the process
until all the anti-groups associated with item k is pro-
cessed, we assign M to the rest of rating(l, k)’s.

The next section reports a performance study experiment
using data generated by this data generator, along with two
case studies on real datasets.

6. EXPERIMENTS & CASE STUDIES
In this section we describe our performance study using

various data generated from our synthetic data generator

Input: NG: average size of maximal potential large
a-group;NL:number of maximal potential large
a-group;U :user set;I:item set;s:selecting
probability of each user

Output: ratings of users in U to items in I
L ← ∅;1

N1 ← poisson(NG);2

g1 ← randomly pick N1 users from U ;3

add g1 to L;4

for i from 2 to NL do5

Ni ← poisson(NG);6

q ← expo(0.5);7

gi ← {randomly pick Ni × q users from8

gi−1}
⋃{randomly pick Ni × (1− q) users from

(U -gi−1)};
add gi to L;9

end10

for i from 1 to NL do11

pgi ← expo(1);12

end13

sum ← ∑NL
i=1 pgi ;14

for i from 1 to NL do15

pgi ← pgi/sum;16

end17

foreach item k do18

GSetk ← ∅;19

Mk ← poisson(|U | × s);20

while number of users in GSetk < Mk do21

randomly pick gk from L and add gk to GSetk;22

if number of users in GSetk > Mk then23

retain partial users from last picked gk such24

that number of users in GSetk = Mk;
end25

end26

end27

foreach item k do28

foreach gk in GSetk, suppose gk =(U1, U2) do29

forall user u from U1 do30

rating(u, k)← hi;31

end32

forall user u from U2 do33

rating(u, k)← lo;34

end35

end36

forall user u in U − {users in GSetk} do37

rating(u, k)← middle;38

end39

end40

Algorithm 8: Synthetic Data Generation Procedure



with various parameter values. We then describe two case
studies from two real dataset: Epinions and Amazon book
rating dataset.

6.1 Performance Study
As a summary, our synthetic data generator accepts as in-

put I (in ’000)(the number of items), U (in ’000)(the number
of users), P (i.e., U × s, the expected number of users rat-
ing an item), NG (average size of maximal potential large
a-group), and NL (in ’000) (number of maximal potential
large a-group). We use the following datasets:

DS1 I=100, U=10, P=20, NG=6, NL=2
DS2 I=100, U=50, P=20, NG=6, NL=2
DS3 I=100, U=10, P=30, NG=6, NL=2
DS4 I=10, U=50, P=20, NG=6, NL=2

The experiments for datasets DS1 to DS4 are run with
σ=0.7.

The result for dataset DS1 when varying the support
threshold from 0.002 to 0.006 is shown in Figure 1. The first
graph show the runtime needed to execute the algorithm at
various support thresholds. ”Non-split” and ”Split” cor-
respond to Algorithm 1 &7 respectively. We only include
3 data points for ”Non-split”, as mining at lower thresh-
olds are too long to complete. The second graph shows the
numbers of a-groups being mined by the algorithm at vari-
ous support thresholds. Finally, we plot a cumulative graph
showing the number of patterns of size greater than or equal
to k at support threshold equals to 0.002.

The result shows that the time taken grows larger when
the support threshold is reduced. This growth is accompa-
nied by the growth in terms of number of a-groups mined.
Also, many longer patterns are mined as the support thresh-
old is lowered.

For DS2, we consider a larger number of users. The re-
sults for various support threshold with σ=0.7 are shown in
Figure 2.

For the third dataset we decrease the number of users
while increase the expected number of users rating an item.
The results for various support thresholds are shown in Fig-
ure 3.

For the fourth dataset we consider a fewer number of items
and a larger number of users. The results for various support
thresholds are shown in Figure 4.

The performance study has shown that the algorithm is
able to run well on various settings. The lower the support
threshold the more expensive it is to mine. Also, the larger
the number of users or items or expected number of users
rating an item, the more expensive it is to mine.

6.2 Case Studies

6.2.1 Real Data Statistics
For the case study, first we consider a rating data crawled

from Epinions [2] by Paolo Massa from [1]. The dataset is
a result of a 5-week crawl in November/December 2003. It
contains 49,290 users that rates 139,738 different items in
664,824 reviews. The experiment is run with σ=0.5. The
result for the first case study on Epinions data is shown in
Figure 5.

For the second case study, we consider a dataset of book
ratings from Amazon. There are a total of 99,255 users

ratings 108,142 books in 935,051 reviews. The experiment
is also run with σ=0.5. The result for the second case study
on Amazon book ratings dataset is shown in Figure 6.

It could be noted that the number of mined a-group in the
two real datasets are smaller even on much lower support
threshold. Interestingly, we find that antagonistic behavior
is not so much apparent on data ratings item in Epinions or
books. A “fan-like” attitude does not seem apparent from
mining the two datasets. This might be the case since the
objects rated are not “sensitive” items that tend to divide
people into opposing groups.

6.2.2 Detailed Examples
In this section, we present details of several interesting ex-

amples found by our mining algorithm. This illustrates how
our algorithm can effectively mine a-groups on real dataset.

Several interesting a-groups are discovered from the Ama-
zon book rating data set. They are obtained by running the
mining algorithm on Amazon data set with absolute support
threshold 10 and σ=0.5. The program runs for 930 second
with 167 a-groups generated. 147 of the a-groups are of size
2, 18 of them are of size 3 and 2 of them are of size 4. We
post-process the a-group with the following criteria:

• Aconf: Only retain a-groups with aconf > 0.7.

• commonly-rated-item/totally-rated-item:Retain a-groups
if at least one user in the a-group has (number of
commonly-rated-items/number of totally-rated-items
of the user) > 0.6.

After postprocessing, we noted 5 of the most interesting
a-groups. They have highest aconf and average (common-
item/total item) for all user. They are represented in table
4. Take the first a-group as an example, we examine it as
follows:

• High antagonistic level : We observe that the two users
in the first a-group rated in high level of antagonism.
Among Jason Johnston’s 56 rated books, 12 are of
opposite ratings to the ones rated by Luke Weissgar-
ber. Similarly for Luke Weissgarber, 12 of all its 13
rated books are rated against Jason Johnston, which
means more than 92% of Luke Weissgarber’s ratings
are against its component. It is a significantly high
figure.

• Antagonistically rated books: Based on our mining re-
sult, we examined the Amazon website. We found
that for books: ”Armageddon”, ”The Remnant: On
the Brink of Armageddon”, ”Desecration: Antichrist
Takes the Throne”, ”The Mark: The Beast Rules the
World”, ”The Indwelling: The Beast Takes Posses-
sion”, ”Assassins”, ”Apollyon: The Destroyer Is Un-
leashed”, ”Soul Harvest: The World Takes Sides”, ”Nico-
lae: The Rise of Antichrist”, ”Tribulation Force: The
Continuing Drama of Those Left Behind”, ”Left Be-
hind: A Novel of the Earth’s Last Days” and ”Glorious
Appearing: The End of Days”, Jason Johnston rated
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 and 4 for the books respec-
tively and Luke Weissgarber rated 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1 and 1 respectively. It can be noted that the
ratings of the 12 books are indeed against each other.
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Figure 1: Runtime & Patterns: DS1 at various support values.
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Figure 2: Runtime & Patterns: DS2 at various support values.
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Figure 3: Runtime & Patterns: DS3 at various support values.
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Figure 4: Runtime & Patterns: DS4 at various support values.
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Figure 5: Runtime & Patterns: Epinions dataset at various support values.
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Figure 6: Runtime & Patterns: Book ratings dataset at various support values.

There is a high tendency that the books liked by Jason Johnston are disliked by Luke Weissgarber.



Table 4: Interesting Examples from Amazon Book Rating Dataset
ID Antagonistic Group Commonly

Rated
Totally Rated
by 1st User(%
of commonly
rated)

Totally Rated
by 2nd
User(% of
commonly
rated)

Totally Rated
by 3rd User(%
of commonly
rated)

1 ({Jason Johnston},{Luke Weissgarber}) 12 56(21%) 13(92%) -
2 ({Jason Johnston, K.Jump},{Luke Weissgarber}) 10 56(17.8%) 61(16.4%) 13(76.9%)
3 ({Jason Johnston, C.Hill},{Luke Weissgarber}) 10 56(17.8%) 106(9.4%) 13(76.9%)
4 ({Jeffrey Leeper},{Luke Weissgarber}) 10 137(7.3%) 13(76.9%) -
5 ({Konrad Kern},{T.M.Sklarski}) 14 452(3.1%) 22(63.6%) -

• Antagonistically behaved user : It is interesting to look
at Luke Weissgarber, who appears four times in the
five interesting a-groups. He tends to rate books against
what others rate. His ratings are opposite to other four
users on at least 10 books. It sheds some lights on the
difference between Luke Weissgarber’s judgement with
normal people on books. It is interesting to research
further on Luke Weissgarber’s behavior.

7. CONCLUSION & FUTURE WORK
Antagonistic communities are important research interest

well studied in sociology, psychology, economics. As a first
step to understand the nature of antagonistic communities,
an approach to automatically mine for these communities
from ratings dataset storing user views/opinions/convictions
on certain objects/items/subjects would be very useful. In
this study, we proposed a new pattern mining algorithm
to directly mine for antagonistic communities from rating
database. Our algorithm traverse the search space of possi-
ble antagonistic groups and use several pruning strategies
to remove bad search space containing no patterns. We
also propose a new variant of the algorithm that perform
a divide and conquer process in case the first algorithm be-
comes prohibitively expensive to run. A performance study
is conducted on various synthetic datasets to show the scal-
ability of our approach on various parameter values. Two
case studies have also been performed on the Epinions and
book rating datasets. The result shows that antagonistic
communities exists but are not particularly many or large
on both datasets.

In the future, we plan to collect information from more
real datasets that are more “sensitive” and tends to induce
antagonistic groups to be formed. We also plan to im-
prove the speed of the algorithm further so that even larger
datasets could be analyzed more efficiently. An incremental
mining process is also interesting to investigate as ratings
database might change overtime.
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