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Abstract

The most of the existing LM tests for spatial dependence are derived under the

assumption that errors of the model are normally distributed and hence are sensitive to

the departure from normality. In this paper we present score-based tests for identifying

the existence of various forms of spatial dependence in cross-sectional models as well

as in panel models. The proposed tests typically modify the existing ones based on the

techniques of Kelejian and Prucha (2001) or Bera, Bilias and Yoon (2008) by allowing

the error distributions to be non-normal; hence they are robust against distributional

misspecifications. Monte Carlo simulation shows that the new tests compare favorably

against the existing popular ones such as Moran-flavored tests (see, e.g., Florax and

de Graaff, 2004), LM tests for error components in cross-sectional models (Anselin and

Moreno, 2003), and LM tests for spatial dependence in panel models (Baltagi, et al.,

2003, 2007).
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1 Introduction.

The most of the existing tests for spatial dependence are derived under the assumption
that innovations of the model are normally distributed. The earliest of this kind may be the
popular Moran’s I test for spacial dependence based on a random sample (Moran, 1950).
Subsequently, Cliff and Ord (1972, 1973, 1981) generalized Moran’s I test to linear models;
Burridge (1980) derived an LM test for this model which turns out to be asymptotically
equivalent to Cliff-Ord’s test; Anselin (2001) derived an LM test for spatial error components
model proposed by Kelejian and Robinson (1995); Baltagi, Song and Koh (2003) derived an
LM test for spatial dependence in panel models with random effets; Baltagi, et al. (2007)
derived an LM test for spatial dependence in panel models with random effects and serial
correlation, etc. Anselin and Bera (1998) and Florax and de Graaff (2004) provide excellent
reviews on tests of spatial dependence in linear models. While Anselin and Moreno (2003)
recognized that the LM test for spatial error components of Anselin (2001) is not robust
against distributional misspecifications and the spatial layouts, it is generally not clear how
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those normal-theory based LM tests perform under alternative distributions for the errors
and under different spatial layouts.

Kelejian and Prucha (2001) considered the asymptotic distribution of the Moran’s I
type of tests under a fairly general set-up allowing the innovations to be non-normal and
heteroscedastic. Their central limit theorem for linear-quadratic forms provides us a useful
tool for the development of the robust tests in this paper.

In this paper we present score-based tests for identifying the existence of various forms of
spatial dependence in cross-sectional models as well as in panel models. The proposed tests
typically modify the existing ones based on the techniques of Kelejian and Prucha (2001)
or Bera, Bilias and Yoon (2008) by allowing the error distributions to be non-normal; hence
they are robust against distributional misspecifications. Monte Carlo simulation shows that
the new tests compare favorably against the existing popular ones such as Moran-flavored
tests (see, e.g., Florax and de Graaff, 2004), LM tests for spatial error components in cross-
sectional models (Anselin and Moreno, 2003), and LM tests for spatial dependence in panel
models (Baltagi, Song and Koh, 2003). The most contrasting results are found in LM
tests for spatial error components where the original LM test can perform very poorly with
empirical frequencies of rejection being as high as 20% for a 5% test, but the newly proposed
test drastically improves the original LM test with the empirical sizes being generally quite
close to their nominal level. One important point revealed in this study is that the spatial
layout can have a significant impact on the performance of the classical LM tests.

Section 2 introduces a modified LM test for spatial error in a linear regression model.
Section 3 introduces a robustified version of the LM test for spatial error components in
a linear regression model. Section 4 introduces two modified versions of the LM test for
spatial error in a panel regression model. Section 5 presents Monte Carlo results. Section
6 concludes the paper.

2 LM Tests for Spatial Error

The original form of Moran’s I test (Moran, 1950) is based a sample of observations
Y1, Y2, · · · , YN on a variable of interest Y , which takes the form

I =
N

T0

i j wij(Yi − Ȳ )(Yj − Ȳ )
i(Yi − Ȳ )2

(1)

where T0 = i j wij , wij ’s are the elements of an N × N spatial weight matrix W , and
Ȳ is the average of the Yi’s. If the observations are normal, then the null distribution of
Moran’s I test statistic is shown to be asymptotic normal with mean E(I) = −1/(N − 1)
and a finite variance (see the general expression below).

Cliff and Ord (1972) extended Moran’s I test to the case of a spatial linear model:

Y = Xβ + u (2)

where Y is an N × 1 vector of observations on the response variable, X is an N × k
matrix containing the values of explanatory (exogenous) variables, and u is an N ×1 vector
of disturbances, which follow either a spatial autoregressive (SAR) process or a spatial
moving average (SMA) process. That is, u = λWu + ε or u = λWε + ε, where W is
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defined similarly as above, λ is the spatial parameter, and ε is a vector of independent
and identically distributed (iid) innovations. For this model, the hypothesis of no spatial
error correlation corresponds to H0 : λ = 0 vs Ha : λ W= 0 or one sided alternative. For a
row-standardized W matrix (in this case T0 = N), the Moran’s I test takes the form

I =
ũIWũ
ũIũ

(3)

where ũ is a vector of OLS residuals when regressing Y on X. Under the assumptions that
the elements of ε are iid normal, the null distribution of I is asymptotic normal with mean
E(I) = 1

N−ptr(MW ), and variance

Var(I) =
tr(MWMW I) + tr((MW )2) + [tr(MW )]2

(N − k)(N − k + 2) ,

whereM = IN −X(X IX)−1X I. Denoting I0 = (I−EI)/Var 12 (I), then I0 is asymptotically
N(0, 1).

Burridge (1980) derived an LM test for H0:

LMB =
N√
T1

ũIWũ
ũIũ

(4)

where T1 = tr(WIW+W2). Under the null hypothesis of no spatial error correlation,

LM
D−→ N(0, 1). Clearly, the LMB statistic is proportional to Moran’s I statistic, and thus

is expected to perform similarly to the standardized Moran’s I test statistic. However, our
Monte Carlo simulation shows that it is not the case under certain spatial layouts. Some
heuristic arguments for this are given after Theorem 1.

Both test statistics are derived under the assumption that errors are normally distrib-
uted. It is not clear how these tests perform when the error distributions are not normal.
In Theorem 1 given below we show that they both behave well asymptotically under non-
normality. The question remained is how they behave under finite samples. We now present
a modified version of these tests allowing the error distributions to be non-normal. The fol-
lowing basic regularity conditions are necessary for studying the asymptotic behavior of the
test statistics.

Assumption A1: The innovations {εi} are iid with mean zero, variance σ2ε , and excess
kurtosis κε. Also, the moment E|εi|4+η exists for some η > 0.

Assumption A2: The elements of W are at most of order h−1N uniformly for all i.
j, with the rate sequence {hn}, bounded or divergent, satisfying hN/N → 0 as N goes to
infinity. As normalizations, the diagonal elements wii = 0, and jWij = 1 for all i.

Assumption A3: limN→∞ 1
NX

IX exists and is nonsingular.

The Assumption A1 corresponds to one assumption of Kelejian and Prucha (2001)
for their central limit theorem of linear-quadratic forms. Assumption A2 corresponds to
one assumption in Lee (2004a) which identifies the different types of spatial dependence.
Typically, one type of spatial dependence corresponds to the case where each unit has fixed
number of neighbors and in this case hN is bounded, the other type of spatial dependence
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corresponds to the case where the number of neighbors of each spatial unit grows as N goes
to infinity, and in this case hN is divergent. To limit the spatial dependence to a manageable
degree, it is thus required that hN/N → 0 as N →∞.

Theorem 1: Under Assumptions A1-A3, the modified LM test for testing H0 : λ = 0
vs Ha : λ W= 0 (or λ < 0, or λ > 0) takes the form

LM∗B =
ũIWũ/ũIũ− S1
(κ̃εS2 + S3)

1
2 /N

(5)

where S1 =
1

N−k tr(WM), S2 =
N
i=1 a

2
ii, and S3 = tr(AAI + A2), A = MWM − S1M ,

aii are the diagonal elements of A, and κ̃ε is the excess sample kurtosis of ũ. Under H0,

we have (i) LM∗B
D−→ N(0, 1); and (ii) The three test statistics, I0, LMB and LM∗B are

asymptotically equivalent.

Proof: We have ũIWũ − S1ũIũ = ũI(W − S1IN )ũ = uIM(W − S1IN )Mu = uIAu. By
Lemma 1, EuIAu = σ2εtrA = 0 and Var(uIAu) = σ4εκε

n
i=1 a

2
ii + σ4ε [tr(AA

I) + tr(A2)].
It is easy to show that the column sums of the matrix A is uniformly bounded. By the
central limit theorem of linear-quadratic forms of Kelejian and Prucha (2001), uIAu is
asymptotically normal, and hence,

uIAu

σ2ε(κεS2 + S3)
1
2

=
ũIWũ− S1ũIũ
σ2ε(κεS2 + S3)

1
2

D−→ N(0, 1).

Now, σ̃2ε = ũ
Iũ/N P−→ σ2ε and κ̃ε =

1
N σ̃4ε

n
i=1 ũ

4
i − 3 P−→ κε, where κ̃ε is the sample excess

kurtosis of the OLS residuals. The result of the theorem thus follows from Slutsky’s theorem
by replacing σε by σ̃ε and κε by κ̃ε.

To prove the asymptotic equivalence of the three test statistics, we note, from Lemma
2 (i) in Appendix that tr(WM) = O(1), and thus S1 = O(N−1). The elements of W ∗ =
W−S1IN are uniformlyO(h−1N ). Lemma 2 (vi) gives S2 = N

i=1 a
2
ii =

N
i=1(w

∗
ii)
2+O(h−1N ) =

O(h−1N ). Lemma 2 (ii) and (iii) lead to S3−T1 = o(1). Since the elements ofW are uniformly
O(h−1N ) and the row sums of W are uniformly bounded, it follows that the elements of
WW I and W 2 are uniformly O(h−1N ). Hence, S3 and T1 are both O(N/hN ). Furthermore,
κ̃ε = Op(1). These give S1/(κ̃εS2 + S3)

1
2 = Op( hN/N) = op(1), which leads to LMB ∼

LM∗B . Similarly, one shows Var(I) ∼ T1, and hence LMB ∼ Io. Q.E.D.

Although both Moran’s I and the LMB test statistics are derived under the assumption
that the innovations are normally distributed, Theorem 1 shows that they are asymptotically
equivalent to the modified LM test derived under relaxed conditions on error distributions.
This means that all the three tests are robust against the distributional misspecification
when sample sizes are large. One question that still remains is that whether the three tests
behave similarly under finite samples. Following heuristic arguments show that their finite
sample performance may be different.

As it can be seen that the major difference between LMB and LM
∗
B is that the latter

puts a correction on the mean of the key quantity ũIWũ/ũIũ. This correction may quickly
become negligible as sample size goes large under certain spatial layouts, but not under the

4



others. From the proof of the theorem, we see that the mean correction factor is

S1

(κ̃εS2 + S3)
1
2

= Op((hN/N)
1
2 ),

which shows that the magnitude of mean correction depends on the ratio (hN/N)
1
2 . For

example, when hN = N0.8, (hN/N)
1
2 = N−0.1. Thus, if N = 20, 100, and 1000, N−0.1 =

0.74, 0.63, and 0.50. This shows that the mean of LMB can differ from the means of LM∗B
and Io by 0.74 when N = 20, and 0.50 when N = 1000. Note that the situations leading to
hN = N

0.8 or similar may be the spatial layouts constructed under large group interactions
where the group sizes are large and the number of groups is small.2 Our theory shows
that in this situation, the regular LM test may be misleading. Monte Carlo simulations
presented in Section 5 confirm the above discussions.

3 Robust LM Test for Spatial Error Components

While the bulk of the spatial econometrics literature is devoted to models where the
spatial dependence is expressed in the form of a SAR or SMA process, an alternative, called
spatial error components (SEC) model, was proposed by Kelejian and Robinson (1995).

Y = Xβ + u with u =Wν + ε (6)

where ν is anN×1 vector of errors that together withW incorporate the spatial dependence,
and all the other quantities have the same meaning as in Model (1). The two vectors of
error components ν and ε are assumed to be independent, each with iid elements of mean
zero and variances σ2ν and σ2ε , respectively. So, in this model the null hypothesis of no
spatial effect can be either H0 : σ

2
ν = 0, or θ = σ2ν/σ

2
ε = 0. The alternative hypothesis can

only be one-sided, i.e., Ha : σ
2
ν > 0 as σ2ν is non-negative. Anselin (2001) derived an LM

test based on the assumptions that both error components are normally distributed. The
test is of the form

LMSEC =
ũIWW Iũ/σ̃2ε − T1
(2T2 − 2

N T
2
1 )

1
2

(7)

where σ̃2ε = ũ
Iũ/N , ũ is the vector of OLS residuals, T1 = tr(WW I) and T2 = tr(WW IWW I).

Under H0, the positive part of LMSEC converges to that of N(0, 1). This means that the
above one sided test can be carried out as per normal. Alternatively, if the squared version
LM2

SEC is used, the reference null distribution of the test statistic for testing this one sided
test is a chi-square mixture. See Verbeke and Molenberghs (2003) for a detailed discussion on
tests where the parameter value under the null hypothesis falls on the boundary of parameter
space. Anselin and Moreno (2003) provide Monte Carlo evidence for the finite sample
performance of LMsec and find that it is not robust against distributional misspecifications.
We now present a robustified version of the above LM test statistic.

2See, e.g., Lee (2007) for detailed discussions on spatial models with group interactions.
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Theorem 2: If W , {εi} and X of Model (2) satisfy the Assumptions A1-A3, then a
robust LM test statistic for testing H0 : σ

2
ν = 0 vs Ha : σ

2
ν > 0 takes the form

LM∗SEC =
ũIWW Iũ/σ̃2ε − S1
(κ̃εS2 + S3)

1
2

(8)

where S1 =
N
N−k tr(WW

IM), S2 = i a
2
ii with aii being the diagonal elements of A =

M IWW IM − 1
N S1M , S3 = tr(AA

I + A2), and κ̃ε is the excess sample kurtosis of ũ. Un-
der H0, (i) the positive part of LM

∗
SEC converges to that of N(0, 1), and (ii) LM

∗
SEC is

asymptotically equivalent to LMSEC when errors are normal.

Proof: We have ũIWW Iũ− σ̃2εS1 = ũ
I(WW I − 1

N S1IN )ũ = u
IM(WW I − 1

N S1IN )Mu.
It follows from the central limit theorem of linear-quadratic forms of Kelejian and Prucha
(2001) and Lemma 1 of Appendix that this quantity is asymptotic normal with mean zero
and variance σ4ε(κεS2 + S3). The rest of the proof is similar to that of Theorem 1.

Q.E.D.
To have a feeling for the finite sample difference between LM∗SEC and LMSEC, we note

that S1 ∼ T1. Lemma 2 (iv) of Appendix shows that S1 = O(N/h2N ), and Lemma 2 (ii)-(iii)
shows that S3 = O(N/hN ). Take for example, hN = N

0.2. Then, we have S1 = O(N
0.6) and

S3 = O(N
0.8). With κ̃ε being Op(1), it follows that the excess kurtosis may have significant

impact on the variance and hence on the test statistic. The Monte Carlo simulation results
given in Section 5 indeed confirm this observation.

4 Modified LM Test for Spatial Error in Panel Models

Baltagi, Song and Koh (2003, BSK here after) introduced an LM test for SAR error in
the presence of random individual effects in panel models. The model they considered is of
the form:

Yt = Xtβ + ut, with ut = μ+ εt and εt = λWεt + vt, t = 1, · · · , T, (9)

where Yt, ut and vt are all N × 1 (t-dependent) random vectors, μ is an N × 1 random
vector representing individual specific effects, Xt is an N × k matrix containing the values
of explanatory variables at time period t, β is a k × 1 vector of regression coefficients, W
is an N × N spatial weight matrix, and λ is the spatial parameter. The vectors u and v
are assumed to be independent, each with iid elements of means zero and variances σ2μ and
σ2v , respectively. Stacking the vectors (Yt, ut, vt) and the matrix Xt, the model is written in
matrix form:

Y = Xβ + u, u = (ιT ⊗ IN )μ+ (IT ⊗B−1)v (10)

where ιm represents anm×1 vector of ones, Im represents anm dimensional identity matrix
and B = IN − λW . The Gaussian log-likelihood is

f(β,σ2v ,σ
2
μ,λ) = −

NT

2
log(2πσ2v)−

1

2
log |Σ|− 1

2σ2v
uIΣ−1u (11)

where Σ = φ(JT ⊗ IN ) + IT ⊗ (BIB)−1, Σ−1 = J̄T ⊗ (TφIN + (BIB)−1)−1+ET ⊗ (BIB)−1,
φ = σ2μ/σ

2
v , JT = ιT ι

I
T , J̄T =

1
T JT , and ET = IT − J̄T . Note that Σ = 1

σ2v
E(uuI).
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Maximizing (11) gives the maximum likelihood estimators (MLE) of the model parame-
ters if the error components are normally distributed, otherwise quasi-maximum likelihood
estimators (QMLE). The BSK’s LM test of the hypothesisH0 : λ = 0, under the assumption
that error components are normally distributed, takes the following form:

LMBSK =
ũI[ρ̃2(J̄T ⊗W o) +ET ⊗W o]ũ

σ̃2v [(T − 1 + ρ̃2)b]
1
2

(12)

where W o = 1
2(W + W I), ρ = σ2v/(Tσ

2
μ + σ2v), b = tr(W 2 + W IW ), ρ̃ and σ̃2v are the

constrained MLEs under H0 of ρ and σ2v , respectively, and ũ is the vector of constrained
MLE residuals.

A nice feature of the LM test is that it requires only the estimates of the model under
H0. However, even under H0, the constrained QMLE of ρ (or φ) does not posses an explicit
expression, meaning that ρ̃ has to be obtained through a numerical optimization. The
detail is as follows. Under the H0, the partially maximized (with respect to β and σ2v)
log-likelihood is

fmax(ρ) = constant− NT
2
log σ̃2v(ρ) +

N

2
log ρ (13)

where σ̃2v(ρ) =
1
NT ũ

I(ρ)Σ−1ũ(ρ), ũ(ρ) = Y − Xβ̃(ρ), β̃(ρ) = (X IΣ−1X)−1X IΣ−1Y , and
Σ−1 = ρJ̄T ⊗ IN + ET ⊗ IN . Maximizing (13) gives the QMLE ρ̃ of ρ, which in turn gives
the QMLEs β̃ = β̃(ρ̃), σ̃2v = σ̃2v(ρ̃), Σ̃

−1 = ρ̃J̄T ⊗ IN +ET ⊗ IN , and ũ = ũ(ρ̃).
We now present modified versions of LMBSK test, aiming for a better finite sample

performance. The idea is that the numerator of LMBSK does not have a zero mean at
finite samples, thus causing biasedness in the test. Finite sample variance of it may also
need to be corrected. Lemma 3 given in Appendix is essential in deriving the modified test
statistics. Some basic regularity conditions are listed below.

Assumption B1: The random effects {μi} are iid with mean zero, variance σ2μ, and
excess kurtosis κμ. The idiosyncratic errors {vit} are iid with mean zero, variance σ2v, and
excess kurtosis κv. Also, the moments E|μi|4+η1 and E|vit|4+η2 exist for some η1, η2 > 0.

Assumption B2: The elements of W are at most of order h−1N uniformly for all i.
j, with the rate sequence {hn}, bounded or divergent, satisfying hN/N → 0 as N goes to
infinity. As normalizations, the diagonal elements wii = 0, and jWij = 1 for all i.

Assumption B3: Both limN→∞ 1
NX

IX and limN→∞ 1
NX

I(J̄T ⊗ IN )X exist and are
nonsingular.

Now, define A(ρ) = ρ2(J̄T ⊗W o) +ET ⊗W o and M(ρ̃) = INT −X(X IΣ̃−1X)−1X IΣ̃−1.
Putting C(ρ) =M I(ρ)A(ρ)M(ρ), we have the following theorem.

Theorem 3: Under Assumptions B1-B3, for testing H0;λ = 0, the mean-corrected LM
test for spatial SAR in panel random effects model takes the form:

LM∗BSK =
ũIÃũ/σ̃2v − tr(Σ̃C̃)
[(T − 1 + ρ̃2)b]

1
2

, (14)
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where Ã = A(ρ̃) and C̃ = C(ρ̃). Under H0, LM
∗
BSK

D−→ N(0, 1). The modified LM test
which corrects both the mean and variance takes the form:

LM∗∗BSK =
ũIÃũ/σ̃2v − tr(Σ̃C̃)

[φ̃2κ̃μãI1ã1 + κ̃vãI2ã2 + 2tr(Σ̃C̃Σ̃C̃)]
1
2

, (15)

where κ̃μ is the sample excess kurtosis of μ̃ = (J̄T ⊗ IN )ũ, κ̃v is the sample excess kurtosis
of ṽ = ũ− (ι⊗IN )μ̃, ã1 = diagv[(ιIT ⊗IN )Ã(ιT ⊗IN )], and ã2 = diagv(Ã) with ‘diagv’ being
an operator which forms a column vector from the diagonal elements of the corresponding

matrix. Under H0, LM
∗∗
BSK

D−→ N(0, 1). Finally, the three LM tests (12), (14) and (15) are
asymptotically equivalent.

Proof: We have ũ = Y −Xβ̃ = Y −X(X IΣ̃−1X)−1X IΣ̃−1Y ≡M(ρ̃)Y . The numerator
of LMBSK becomes ũ

IA(ρ̃)ũ = Y IM I(ρ̃)A(ρ̃)M(ρ̃)Y = uIM I(ρ̃)A(ρ̃)M(ρ̃)u. It is easy to see
that the last term above is asymptotically equivalent to uIM I(ρ)A(ρ)M(ρ)u, which can be
decomposed to the following three terms

μI(ιIT ⊗ IN )M(ρ)A(ρ)M(ρ)(ιT ⊗ IN )μ+ vIM(ρ)A(ρ)M(ρ)v + μI(ιIT ⊗ IN )M(ρ)A(ρ)M(ρ)v,

which are either independent or asymptotically independent. Thus, the asymptotic normal-
ity of uIM I(ρ)A(ρ)M(ρ)u follows from the central limit theorem for linear-quadratic forms
of Kelejian and Prucha (2001). The mean and variance of it can be easily be obtained from
Lemma 3 of Appendix, which are E(uIC(ρ)u) = σ2vtr(ΣC(ρ)), giving the mean-corrected
LM test, and

Var(uIC(ρ)u) = σ2v [φ
2κμa

I
1a1 + κva

I
2a2 + 2tr(ΣC(ρ)ΣC(ρ))],

which together with the mean correction gives the modified LM test which corrects both
the mean and variance. The rest of the proof follows closely from the proof of Theorem 1.

Q.E.D.
We note that the results of Theorem 3 are quite similar to the results of Theorem 1.

Thus, it is expected that the three statistics will contrast themselves in a similar way. The
Monte Carlo results given in Section 5 indeed reveal this, though the three statistics contrast
themselves in a lesser degree. Nevertheless, the main message is that it is sometimes very
necessary to do finite sample corrections on the supposingly robust LM test.

We also note that the asymptotic equivalence of the three test statistics can also be
seen using the technique of adjusting Rao’s score test for distributional misspecification,
outlined in Bera, Bilias and Yoon (2008).

5 Monte Carlo Results

The finite sample performance of the test statistics introduced in this paper is evaluated
based on a series of Monte Carlo experiments under a number of different error distributions
and a number of different spatial layouts. Also comparison are made between the newly
introduced tests and the standard ones to see the improvement of the new tests in the
situations where there is a distributional misspecification.

8



Two general spatial layouts are considered in the Monte Carlo experiments and they
are applied to all the test statistics involved in the experiments. One is based on the Rook
contiguity and the other is based on the notion of group or social interactions with the
number of groups G = N δ where 0 < δ < 1. In the former case, the number of neighbors
for each spatial unit stays at 2 to 4 and does not change when sample size N increases,
whereas in the later case, the number of neighbors for each spatial unit increases with the
increase of sample size but with different rates.

The detail for generating theW matrix under Rook contiguity is as follows: (i) index the
N spatial units by {1, 2, · · · , N}, randomly permute these indices and then allocate them
into a lattice of r ×m(≥ N) squares, (ii) let Wij = 1 if the index j is in a square which
is on immediate left, or right, or above, or below the square which contains the index i,
otherwise Wij = 0, and (iii) divide each element of W by its row sum.

To generate the W matrix according to the group interaction scheme, (i) calculate the
number of groups according to G =Round(N δ), and the approximate average group size
m = N/G, (ii) generate the group sizes (n1, n2, · · · , nG) according to a discrete uniform
distribution from m/2 to 3m/2, (iii) adjust the group sizes so that G

i=1 ni = N , and (iv)
define W =diag{Wi/(ni−1), i = 1, · · · , G}, a matrix formed by placing the submatrices Wi

along the diagonal direction, where Wi is an ni × ni matrix with ones on the off-diagonal
positions and zeros on the diagonal positions. In our Monte Carlo experiments, we choose
δ = 0.2, 0.5, and 0.8, representing respectively the situations where (i) there are few groups
and many spatial units in a group, (ii) the number of groups and the sizes of the groups are of
the same magnitude, and (iii) there are many groups of few elements in each. Clearly, under
Rook contiguity, hN defined in the theorems is bounded, whereas under group interaction
hN is divergent with rates N

1−δ.
For the error distributions, the reported Monte Carlo results correspond to the follow-

ing three: (i) standard normal, (ii) mixture normal standardized to have mean zero and
variance 1, and (iii) log-normal also standardized to have mean zero and variance one. The
standardized normal-mixture variates are generated according to

ui = ((1− ξi)Zi + ξiσZi)/(1− p+ p ∗ σ2)0.5,

where ξ is a Bernoulli random variable with probability of success p and Zi is standard
normal independent of ξ. The parameter p in this case also represents the proportion of
mixing the two normal populations. In our experiments, we choose p = 0.05, meaning
that 95% of the random variates are from standard normal and the remaining 5% are from
another normal population with standard deviation σ. We choose σ = 10 to simulate the
situation where there are gross errors in the data. The standardized lognormal random
variates are generated according to

ui = [exp(Zi)− exp(0.5)]/[exp(2)− exp(1)]0.5.

This gives an error distribution that is both skewed and leptokurtic. The normal mixture
gives an error distribution that is still symmetric like normal but leptokurtic. Other non-
normal distributions, such as normal-gamma mixture and chi-squared, are also considered
and the results are available from the author upon request. All the Monte Carlo experiments
are based on 10,000 Monte Carlo samples.
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5.1 Moran’s I, LM and modified LM tests

The performance of the modified LM test statistic (LM∗B) introduced in Section 2 is
compared with the standardized Moran’s I0 and the LM statistics of Buridge (1980) (LMB).
The Monte Carlo experiments are carried out based on the following data generating process:

Yi = β0 +X1iβ1 +X2iβ2 + ui

where X1i’s are drawn from 10U(0, 1) and X2i’s are drawn from 5N(0, 1) + 5. Both are
treated as fixed in the experiments. The parameters β = {5, 1, 0.5}I. Six different sample
sizes are considered, i.e., N = 20, 50, 100, 200, 500, and 1000.

Size of the tests. Empirical sizes of the three tests are summarized in Table 1((a)-(d)).
From the results we see that the LM∗B and I

0 perform similarly in almost all the situations.
There are situations where the LMB performs poorly.

In the situation when the spatial layout is Rook, the results show that the three tests
perform similarly, though LMB can perform less satisfactorily when the sample sizes are
not large. The most contrasting results are obtained from the cases with group interaction
where there are few groups and each group contains many spatial units, e.g., G = N0.2.
In this case, the empirical means, SDs, and the rejection frequencies of LMB test can all
be far below their nominal values (0, 1, and 0.05). For samples sizes ranging from 20 to
1000, the empirical mean of LMB ranges from −0.7 to −0.35, empirical SD changes from
0.45 to 0.88, and the empirical rejection rates ranges from 0.0004 to 0.0264. In contrast,
the Moran’s I0 and the modified LM test LM∗B still perform equally well, although with
a slight edge toward the latter. When G is changed to N0.5 and N0.8, the performance of
LMB improved. The Monte Carlo results are consistent with the theoretical findings given
in and after Theorem 1, i.e., the mean bias of the LM test cannot be ignored when each
spatial unit has many neighbors.

Power of the tests. Empirical frequencies of rejection of the three tests are plotted
in Figures 1-3 against the values of λ (horizontal line). Results show that LM∗B almost
alway has higher power than the other two. The difference diminishes when sample size is
increased. Figure 3 reveals an interesting phenomenon: in the situation where G = N0.5,
the power of the tests can be very low when λ is begative and the sample size is not large. It
requires a very large sample (e.g., 1000) for the tests to be able to detect a negative spatial
dependence. However, the tests behave similarly to the other spatial two structures.
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Table 1a. Empirical Means, SDs and Rejection Frequencies at 5% Level: Rook

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

20 1 0.0031 1.0141 0.0526 0.0021 0.9013 0.0352 0.0288 0.9196 0.0329

2 -0.3526 0.9138 0.0441 -0.3535 0.8122 0.0267 -0.3294 0.8287 0.0207

3 0.0034 1.1306 0.0822 0.0030 0.9924 0.0555 0.0318 1.0118 0.0522

50 1 0.0044 1.0086 0.0516 -0.0042 0.8379 0.0292 0.0200 0.9070 0.0347

2 -0.1112 0.9756 0.0452 -0.1195 0.8105 0.0262 -0.0961 0.8774 0.0272

3 0.0045 1.0510 0.0611 -0.0044 0.8673 0.0337 0.0207 0.9407 0.0399

100 1 -0.0168 0.9979 0.0501 0.0011 0.8737 0.0368 -0.0053 0.9289 0.0381

2 -0.1454 0.9755 0.0471 -0.1279 0.8541 0.0355 -0.1342 0.9080 0.0322

3 -0.0172 1.0183 0.0537 0.0011 0.8865 0.0388 -0.0054 0.9447 0.0408

200 1 -0.0133 0.9956 0.0491 -0.0097 0.9111 0.0453 0.0082 0.9477 0.0414

2 -0.0937 0.9867 0.0479 -0.0901 0.9030 0.0445 -0.0723 0.9392 0.0374

3 -0.0135 1.0057 0.0508 -0.0098 0.9192 0.0465 0.0083 0.9564 0.0424

500 1 0.0035 1.0032 0.0504 0.0032 0.9695 0.0505 0.0068 0.9577 0.0416

2 -0.0573 0.9998 0.0506 -0.0576 0.9662 0.0507 -0.0540 0.9545 0.0405

3 0.0035 1.0072 0.0516 0.0032 0.9731 0.0514 0.0068 0.9613 0.0427

1000 1 -0.0267 0.9926 0.0502 0.0067 0.9841 0.0498 0.0049 0.9874 0.0445

2 -0.0665 0.9909 0.0502 -0.0331 0.9824 0.0505 -0.0349 0.9857 0.0446

3 -0.0268 0.9946 0.0505 0.0067 0.9860 0.0501 0.0049 0.9893 0.0452

Note: Test 1 = I0, Test 2 = LMB, Test 3 = LM
∗
B .

Table 1b. Empirical Means, SDs and Rejection Frequencies at 5% Level: Group, G = N0.2

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

20 1 0.0125 1.0214 0.0608 -0.0041 0.9727 0.0517 -0.0084 0.9666 0.0519

2 -0.6912 0.4727 0.0009 -0.6989 0.4501 0.0009 -0.7009 0.4473 0.0004

3 0.0138 1.1439 0.0728 -0.0076 1.0365 0.0562 -0.0116 1.0327 0.0560

50 1 0.0065 1.0102 0.0546 0.0180 0.8844 0.0419 0.0027 0.8999 0.0463

2 -0.5091 0.7018 0.0132 -0.5011 0.6144 0.0066 -0.5117 0.6252 0.0085

3 0.0067 1.0527 0.0593 0.0187 0.9091 0.0439 0.0028 0.9288 0.0479

100 1 0.0056 1.0081 0.0557 0.0114 0.8817 0.0380 0.0185 0.9270 0.0438

2 -0.3902 0.8379 0.0235 -0.3855 0.7328 0.0099 -0.3795 0.7705 0.0142

3 0.0057 1.0287 0.0579 0.0116 0.8986 0.0398 0.0189 0.9453 0.0449

200 1 -0.0077 1.0017 0.0519 0.0024 0.9126 0.0414 0.0017 0.9323 0.0445

2 -0.4204 0.8130 0.0189 -0.4123 0.7408 0.0119 -0.4128 0.7568 0.0140

3 -0.0077 1.0118 0.0526 0.0024 0.9193 0.0420 0.0017 0.9400 0.0454

500 1 -0.0088 0.9848 0.0495 -0.0060 0.9556 0.0489 -0.0037 0.9813 0.0467

2 -0.4140 0.8059 0.0166 -0.4117 0.7820 0.0169 -0.4098 0.8030 0.0175

3 -0.0088 0.9888 0.0497 -0.0061 0.9593 0.0489 -0.0037 0.9851 0.0470

1000 1 0.0085 1.0197 0.0519 0.0098 0.9809 0.0478 -0.0008 0.9838 0.0473

2 -0.3461 0.8833 0.0264 -0.3450 0.8497 0.0212 -0.3542 0.8522 0.0206

3 0.0085 1.0217 0.0520 0.0098 0.9828 0.0481 -0.0008 0.9857 0.0475

Note: Test 1 = I0, Test 2 = LMB, Test 3 = LM
∗
B.
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Table 1c. Empirical Means, SDs and Rejection Frequencies at 5% Level: Group, G = N0.5

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

20 1 0.0128 1.0145 0.0491 -0.0090 0.9148 0.0394 0.0029 0.9272 0.0422

2 -0.3477 0.8818 0.0195 -0.3667 0.7952 0.0144 -0.3563 0.8060 0.0157

3 0.0143 1.1320 0.0668 -0.0090 1.0036 0.0507 0.0042 1.0169 0.0535

50 1 0.0180 1.0074 0.0448 -0.0112 0.8461 0.0252 -0.0095 0.9058 0.0338

2 -0.2286 0.9431 0.0259 -0.2559 0.7921 0.0141 -0.2544 0.8480 0.0195

3 0.0187 1.0497 0.0509 -0.0116 0.8747 0.0273 -0.0099 0.9389 0.0387

100 1 0.0100 1.0089 0.0448 0.0008 0.8830 0.0308 0.0007 0.9138 0.0354

2 -0.1961 0.9653 0.0338 -0.2049 0.8449 0.0235 -0.2049 0.8744 0.0237

3 0.0102 1.0295 0.0478 0.0008 0.8980 0.0326 0.0008 0.9305 0.0377

200 1 -0.0037 1.0132 0.0470 -0.0064 0.9104 0.0350 -0.0065 0.9390 0.0345

2 -0.1869 0.9787 0.0381 -0.1894 0.8794 0.0294 -0.1896 0.9070 0.0259

3 -0.0038 1.0235 0.0491 -0.0065 0.9182 0.0359 -0.0066 0.9475 0.0354

500 1 0.0118 1.0014 0.0486 -0.0096 0.9664 0.0417 -0.0077 0.9616 0.0403

2 -0.1357 0.9795 0.0427 -0.1567 0.9453 0.0377 -0.1548 0.9406 0.0335

3 0.0118 1.0054 0.0498 -0.0097 0.9700 0.0427 -0.0078 0.9652 0.0409

1000 1 -0.0066 1.0057 0.0493 -0.0106 0.9723 0.0409 0.0084 0.9812 0.0440

2 -0.1308 0.9901 0.0434 -0.1347 0.9572 0.0374 -0.1160 0.9660 0.0387

3 -0.0067 1.0077 0.0495 -0.0106 0.9741 0.0413 0.0084 0.9830 0.0443

Note: Test 1 = I0, Test 2 = LMB, Test 3 = LM
∗
B.

Table 1d. Empirical Means, SDs and Rejection Frequencies at 5% Level: Group, G = N0.8

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

20 1 -0.0138 0.9883 0.0462 -0.0009 0.8930 0.0329 0.0054 0.9031 0.0353

2 -0.2379 0.9243 0.0368 -0.2258 0.8352 0.0263 -0.2199 0.8447 0.0238

3 -0.0154 1.1014 0.0727 -0.0007 0.9872 0.0534 0.0061 0.9976 0.0497

50 1 0.0061 0.9968 0.0482 -0.0061 0.8498 0.0314 0.0023 0.9071 0.0353

2 -0.1150 0.9803 0.0466 -0.1270 0.8358 0.0295 -0.1187 0.8922 0.0328

3 0.0064 1.0386 0.0594 -0.0063 0.8784 0.0347 0.0024 0.9402 0.0416

100 1 0.0040 1.0096 0.0528 0.0134 0.8858 0.0368 -0.0001 0.9307 0.0374

2 -0.1066 1.0010 0.0511 -0.0973 0.8782 0.0360 -0.1107 0.9228 0.0326

3 0.0041 1.0303 0.0586 0.0136 0.9011 0.0388 -0.0001 0.9479 0.0394

200 1 0.0031 0.9978 0.0483 -0.0011 0.9188 0.0419 0.0056 0.9471 0.0384

2 -0.0512 0.9940 0.0474 -0.0554 0.9153 0.0419 -0.0488 0.9436 0.0370

3 0.0032 1.0079 0.0508 -0.0011 0.9270 0.0428 0.0056 0.9560 0.0400

500 1 -0.0017 0.9902 0.0500 -0.0097 0.9822 0.0503 0.0033 0.9581 0.0415

2 -0.0501 0.9879 0.0497 -0.0581 0.9798 0.0501 -0.0451 0.9558 0.0411

3 -0.0017 0.9942 0.0509 -0.0098 0.9858 0.0506 0.0033 0.9617 0.0422

1000 1 0.0110 0.9993 0.0480 -0.0015 0.9883 0.0511 0.0170 0.9823 0.0420

2 -0.0257 0.9979 0.0471 -0.0382 0.9869 0.0510 -0.0197 0.9809 0.0412

3 0.0110 1.0013 0.0486 -0.0015 0.9902 0.0514 0.0170 0.9841 0.0423

Note: Test 1 = I0, Test 2 = LMB, Test 3 = LM
∗
B.
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Figure 1. Empirical Powers of the Tests: Rook Contiguity
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Figure 2. Empirical Powers of the Tests: Group Interaction, G = N0.8
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Figure 3. Empirical Powers of the Tests: Group Interaction, G = N0.5
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5.2 Tests of spatial error components

In this subsection, the performance of the robust LM test of spatial error components
(LM∗SEC) introduced in Section 3 is evaluated and is compared with the LM test (LMSEC)
introduced by Anselin (2001). We adopt the same designs as in Section 5.1 for the Monte
Carlo experiments. Note that these designs are also quite similar to those considered in
Anselin and Moreno (2003) when they compared the LMSEC with several other tests. They
concluded from their Monte Carlo results that essentially none of the tests considered is
satisfactory in all situations. In particular, their Monte Carlo results show that the LMSEC

can perform badly in the situation that the spatial layout is irregular. Our Monte Carlo
results are summarized in Table 2. Like in Anselin and Moreno (2003), our results (though
under different spatial layout) also show that the LMSEC can perform quite badly in situ-
ations where the number of neighbors grow with the increase of sample size. However, the
modified LM test introduced in this paper perform very well in all the situations considered
including those not reported.

The details are as follows. Under Rook contiguity, the two tests seem to perform simi-
larly in most of the situations. However, a closer examination for the cases of non-normal
error distributions and large samples, we see that there is sign that the size of the LMSEC

starts to increase with the sample size. This is a worrisome sign as it indicates the test is
not consistent when the error distribution is not normal. To confirm this point, we repeated
the experiment using an even larger sample size 1500 and it indeed shows this point.

Under group interaction, the performance of the modified test is very robust against
the error distributions as well the spatial layouts. In contrast, the performance of the LM
test depends very much on these two factors. When G = N0.2, i.e, there are few groups
and each group contains many spatial units, the LMSEC test tends to under-reject the null
hypothesis, where as when G = N0.8, i.e., there are many groups and each group contains
a few spatial units, the LMSEC test tends to over-rejects the null hypothesis severely, where
the empirical frequencies of rejection are often around 20% in the situations where the error
distributions are non-normal. For those reasons, we feel that it may not be necessary to
compare the power of the two tests.
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Table 2. Empirical Means, SDs and Rejection Frequencies for One-sided 5% Tests

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

Rook

20 1 -0.3745 0.8720 0.0210 -0.3586 0.8825 0.0160 -0.3653 0.8670 0.0194

2 -0.0084 1.1180 0.0804 0.0139 1.0674 0.0700 0.0058 1.0514 0.0703

50 1 -0.2180 0.9411 0.0334 -0.2019 0.9949 0.0483 -0.2003 0.9763 0.0431

2 -0.0174 1.0359 0.0643 -0.0006 0.9660 0.0603 0.0018 0.9843 0.0605

100 1 -0.1484 0.9744 0.0411 -0.1521 1.0651 0.0507 -0.1436 1.0387 0.0537

2 0.0013 1.0185 0.0601 -0.0012 0.9580 0.0509 0.0052 0.9812 0.0584

200 1 -0.1165 0.9886 0.0450 -0.1003 1.1164 0.0609 -0.1112 1.0754 0.0592

2 -0.0054 1.0118 0.0589 0.0096 0.9637 0.0497 0.0019 0.9706 0.0547

500 1 -0.0886 0.9970 0.0459 -0.0817 1.1578 0.0668 -0.0718 1.1437 0.0702

2 -0.0128 1.0069 0.0550 -0.0047 0.9928 0.0507 0.0031 0.9872 0.0544

1000 1 -0.0601 0.9910 0.0453 -0.0604 1.1541 0.0708 -0.0509 1.1808 0.0763

2 -0.0090 0.9957 0.0509 -0.0083 0.9896 0.0497 0.0010 0.9885 0.0521

1500 1 -0.0335 0.9956 0.0479 -0.0438 1.1470 0.0699 -0.0446 1.1971 0.0806

2 0.0092 0.9988 0.0522 -0.0007 0.9839 0.0486 -0.0023 0.9823 0.0485

Group: G = N0.2

20 1 -0.4628 0.7543 0.0244 -0.4702 0.6964 0.0169 -0.4719 0.7002 0.0188

2 0.0045 1.1095 0.0898 -0.0073 1.0017 0.0710 -0.0088 1.0079 0.0736

50 1 -0.5056 0.7119 0.0223 -0.5103 0.6286 0.0128 -0.5105 0.6606 0.0165

2 0.0057 1.0590 0.0779 -0.0008 0.9091 0.0595 -0.0011 0.9638 0.0686

100 1 -0.4245 0.8067 0.0283 -0.4348 0.7164 0.0163 -0.4227 0.7555 0.0216

2 0.0116 1.0376 0.0774 -0.0017 0.8953 0.0610 0.0136 0.9552 0.0659

200 1 -0.4088 0.8194 0.0299 -0.4184 0.7426 0.0207 -0.4074 0.7927 0.0276

2 -0.0025 1.0106 0.0721 -0.0141 0.9057 0.0615 -0.0008 0.9704 0.0675

500 1 -0.4051 0.8099 0.0305 -0.4040 0.7957 0.0281 -0.4116 0.7814 0.0276

2 -0.0003 0.9913 0.0719 0.0010 0.9733 0.0707 -0.0083 0.9558 0.0655

1000 1 -0.3417 0.8900 0.0384 -0.3488 0.8472 0.0318 -0.3356 0.8579 0.0318

2 0.0125 1.0286 0.0735 0.0043 0.9789 0.0687 0.0195 0.9912 0.0685

Group: G = N0.8

20 1 -0.0573 0.9520 0.0036 -0.0456 1.5576 0.0327 -0.0778 1.5179 0.0179

2 0.0073 1.1491 0.0465 0.0187 1.2307 0.0229 -0.0005 1.2560 0.0185

50 1 -0.0423 0.9979 0.0410 -0.0357 2.3038 0.2748 -0.0467 1.9405 0.2149

2 0.0058 1.0685 0.0583 0.0044 1.0989 0.0311 -0.0019 1.0919 0.0420

100 1 -0.0501 1.0030 0.0424 -0.0211 2.5926 0.2811 -0.0355 2.1466 0.2250

2 0.0008 1.0356 0.0542 0.0107 1.0518 0.0576 0.0045 1.0515 0.0547

200 1 -0.0679 1.0096 0.0475 -0.1192 2.4816 0.2176 -0.0723 2.2211 0.1853

2 -0.0083 1.0281 0.0568 -0.0256 1.0122 0.0776 -0.0015 1.0273 0.0857

500 1 -0.0216 0.9957 0.0484 -0.0674 2.5125 0.2182 -0.0660 2.4502 0.1843

2 0.0240 1.0022 0.0549 -0.0093 1.0119 0.0716 -0.0042 1.0010 0.0758

1000 1 -0.0130 0.9989 0.0499 -0.0395 2.2213 0.2045 -0.0231 2.3749 0.1791

2 0.0221 1.0024 0.0547 -0.0019 1.0179 0.0669 0.0067 1.0101 0.0650

Note: Test 1 = LMSEC, Test 2 = LM
∗
SEC
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5.3 Tests of spatial error in panel models

Consider the following DGP

Yt = β0 +X1tβ1 +X2tβ2 + ut, with ut = μ+ εt, t = 1, · · · , T,

where the error components μ and εt can be drawn from any of the three distributions used
in the previous two subsections, or the combination of any two distributions. For example,
μ and εt can both be drawn from the normal mixture, or μ from the normal mixture but
εt from the normal or log-normal distribution. The beta parameters are set at the same
values as before, σ2v = 1.0 and σ

2
μ = 1.5. For sample sizes, T = 3, and N = 20, 50, 100, 200,

and 500. The same spatial layouts as above are used.

Size of the tests. The results presented in Table 3 correspond to the cases where both
μ and vt are normal, both are normal mixture, and both are log-normal. Some observations
are as follows. The results confirm the theory that the three tests are asymptotically
equivalent and that they are robust against excess skewness and excess kurtosis. However,
the results also show there that there is indeed a need for finite sample corrections. The
two modified statistics correct the mean or both the mean and variance. The results show
a certain improvement, though it still may not seem to be enough in many situations.

Some more results are shown in Table 4 where the standard deviations of the error
components are changed to σ2v = 5, and σ

2
μ = 0.5. The results contrast further between the

LM and the Modified LM tests. In particular, when sample sizes are not large, LM test
severely under-rejects the null hypothesis, and as the sample size increases its empirical size
of the test converges to the nominal level very slowly. This is true even when the error
components are both normally distributed. A detailed examination shows that the cause
of this size distortion is that the mean of the LM test statistic is downward shifted.

Power of the tests. Similar to the case of Section 5.1, the sizes of the tests are similar
in many situations, it is necessary to compare the power. Empirical frequencies of rejection
of the three tests are plotted in Figures 4-6 against the values of λ (horizontal line). From
the plots we see that the LM∗∗BKS performs noticeably better than the other two. Again, the
tests show weakness in detecting a negative spatial dependence when G = N0.5 and sample
size is not large.
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Table 3a. Empirical Means, SDs and Rejection Frequencies at 5% Level: Rook

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

20 1 -0.0024 0.9472 0.0379 -0.0244 0.8474 0.0270 -0.0207 0.8809 0.0296

2 -0.0038 0.9471 0.0379 -0.0030 0.8461 0.0272 -0.0077 0.8801 0.0296

3 -0.0041 1.0063 0.0532 -0.0031 0.8967 0.0332 -0.0082 0.9333 0.0387

50 1 -0.0341 0.9936 0.0502 -0.0602 0.8989 0.0385 -0.0507 0.9179 0.0356

2 -0.0003 0.9936 0.0514 -0.0184 0.8988 0.0394 -0.0118 0.9177 0.0354

3 -0.0003 1.0122 0.0544 -0.0187 0.9150 0.0418 -0.0120 0.9344 0.0381

100 1 -0.0123 0.9900 0.0492 -0.0350 0.9409 0.0448 -0.0261 0.9573 0.0417

2 0.0053 0.9900 0.0493 -0.0141 0.9408 0.0449 -0.0059 0.9572 0.0411

3 0.0053 1.0002 0.0515 -0.0143 0.9502 0.0464 -0.0060 0.9669 0.0435

200 1 -0.0115 1.0014 0.0483 -0.0054 0.9645 0.0472 -0.0160 0.9628 0.0432

2 -0.0062 1.0014 0.0481 0.0012 0.9644 0.0471 -0.0095 0.9628 0.0428

3 -0.0062 1.0061 0.0498 0.0012 0.9689 0.0478 -0.0095 0.9673 0.0441

500 1 0.0093 1.0072 0.0532 -0.0053 0.9906 0.0515 -0.0029 0.9804 0.0453

2 0.0156 1.0072 0.0533 0.0013 0.9906 0.0514 0.0038 0.9804 0.0454

3 0.0156 1.0091 0.0539 0.0013 0.9925 0.0521 0.0038 0.9822 0.0457

Note: Test 1 = LMBSK, Test 2 = LM
∗
BSK, Test 3 = LM

∗∗
BSK.

Table 3b. Empirical Means, SDs and Rejection Frequencies at 5% Level: Group, G = N0.2

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

20 1 -0.0630 0.9706 0.0415 -0.0917 0.8334 0.0224 -0.0890 0.8833 0.0281

2 -0.0119 0.9705 0.0454 -0.0034 0.8310 0.0238 -0.0136 0.8810 0.0313

3 -0.0126 1.0221 0.0510 -0.0035 0.8797 0.0301 -0.0144 0.9303 0.0362

50 1 -0.0736 0.9773 0.0431 -0.0624 0.8928 0.0283 -0.0677 0.9237 0.0372

2 -0.0326 0.9770 0.0460 0.0025 0.8911 0.0315 -0.0105 0.9224 0.0404

3 -0.0332 0.9948 0.0473 0.0025 0.9112 0.0337 -0.0108 0.9409 0.0431

100 1 -0.0576 0.9785 0.0413 -0.0388 0.9485 0.0380 -0.0526 0.9407 0.0336

2 -0.0138 0.9785 0.0431 0.0156 0.9483 0.0402 -0.0002 0.9404 0.0365

3 -0.0140 0.9929 0.0447 0.0159 0.9633 0.0423 -0.0002 0.9549 0.0383

200 1 -0.0330 1.0093 0.0451 -0.0645 0.9519 0.0360 -0.0447 0.9590 0.0381

2 0.0036 1.0092 0.0470 -0.0223 0.9519 0.0382 -0.0025 0.9588 0.0406

3 0.0036 1.0150 0.0475 -0.0225 0.9580 0.0387 -0.0025 0.9648 0.0416

500 1 -0.0330 0.9971 0.0464 -0.0205 0.9873 0.0416 -0.0536 0.9743 0.0389

2 0.0049 0.9970 0.0488 0.0195 0.9870 0.0440 -0.0128 0.9741 0.0413

3 0.0049 1.0007 0.0491 0.0196 0.9908 0.0445 -0.0129 0.9780 0.0414

Note: Test 1 = LMBSK, Test 2 = LM
∗
BSK, Test 3 = LM

∗∗
BSK.
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Table 3c. Empirical Means, SDs and Rejection Frequencies at 5% Level: Group, G = N0.5

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

20 1 -0.0693 0.9631 0.0326 -0.1020 0.8448 0.0225 -0.1015 0.8900 0.0287

2 0.0033 0.9632 0.0353 -0.0047 0.8422 0.0236 -0.0144 0.8892 0.0309

3 0.0035 1.0241 0.0435 -0.0050 0.8942 0.0308 -0.0154 0.9444 0.0380

50 1 -0.0178 0.9924 0.0434 -0.0240 0.9115 0.0336 -0.0316 0.9242 0.0351

2 0.0071 0.9924 0.0440 0.0128 0.9105 0.0335 0.0008 0.9240 0.0352

3 0.0072 1.0123 0.0484 0.0130 0.9289 0.0371 0.0009 0.9424 0.0380

100 1 -0.0232 0.9960 0.0456 -0.0158 0.9412 0.0378 -0.0172 0.9611 0.0400

2 -0.0026 0.9960 0.0457 0.0104 0.9410 0.0384 0.0077 0.9609 0.0411

3 -0.0026 1.0061 0.0481 0.0105 0.9506 0.0395 0.0078 0.9707 0.0427

200 1 -0.0190 1.0013 0.0472 -0.0084 0.9741 0.0426 -0.0077 0.9808 0.0433

2 -0.0074 1.0013 0.0470 0.0058 0.9740 0.0429 0.0064 0.9808 0.0437

3 -0.0074 1.0051 0.0480 0.0058 0.9778 0.0431 0.0065 0.9845 0.0445

500 1 -0.0208 1.0011 0.0476 -0.0348 0.9863 0.0422 -0.0077 0.9763 0.0426

2 -0.0068 1.0011 0.0479 -0.0201 0.9863 0.0423 0.0073 0.9764 0.0433

3 -0.0068 1.0032 0.0483 -0.0201 0.9884 0.0425 0.0073 0.9785 0.0438

Note: Test 1 = LMBSK, Test 2 = LM
∗
BSK, Test 3 = LM

∗∗
BSK.

Table 3d. Empirical Means, SDs and Rejection Frequencies at 5% Level: Group, G = N0.8

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

20 1 0.0393 0.9865 0.0456 -0.0009 0.8627 0.0333 0.0203 0.9110 0.0399

2 0.0122 0.9864 0.0451 -0.0084 0.8618 0.0329 0.0054 0.9104 0.0401

3 0.0127 1.0270 0.0554 -0.0087 0.8952 0.0377 0.0057 0.9462 0.0465

50 1 -0.0083 0.9786 0.0460 -0.0277 0.9030 0.0400 -0.0209 0.9250 0.0393

2 0.0043 0.9786 0.0453 -0.0102 0.9029 0.0399 -0.0049 0.9247 0.0392

3 0.0044 0.9974 0.0494 -0.0104 0.9194 0.0418 -0.0049 0.9419 0.0425

100 1 0.0010 1.0013 0.0512 0.0069 0.9431 0.0435 0.0035 0.9479 0.0437

2 0.0021 1.0013 0.0512 0.0106 0.9431 0.0437 0.0067 0.9479 0.0435

3 0.0022 1.0108 0.0531 0.0107 0.9517 0.0453 0.0067 0.9567 0.0453

200 1 0.0078 0.9838 0.0456 -0.0008 0.9443 0.0420 -0.0069 0.9718 0.0461

2 0.0138 0.9838 0.0454 0.0060 0.9443 0.0421 0.0000 0.9719 0.0463

3 0.0138 0.9883 0.0469 0.0061 0.9485 0.0426 0.0000 0.9762 0.0469

500 1 0.0059 0.9982 0.0497 -0.0003 0.9978 0.0522 -0.0036 0.9816 0.0447

2 0.0110 0.9982 0.0499 0.0051 0.9978 0.0522 0.0019 0.9815 0.0453

3 0.0110 1.0002 0.0504 0.0051 0.9998 0.0525 0.0019 0.9835 0.0458

Note: Test 1 = LMBSK, Test 2 = LM
∗
BSK, Test 3 = LM

∗∗
BSK.
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Table 4. More Monte Carlo Results: σμ = 0.5,σv = 5.0

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

Group: G = N0.2

20 1 -0.2084 0.9524 0.0297 -0.2027 0.8085 0.0191 -0.2136 0.8629 0.0215

2 0.0127 0.9528 0.0418 0.0211 0.8088 0.0237 0.0097 0.8627 0.0305

3 0.0146 1.0431 0.0513 0.0234 0.8799 0.0340 0.0109 0.9412 0.0389

50 1 -0.2383 0.9327 0.0276 -0.2618 0.8287 0.0175 -0.2404 0.8771 0.0224

2 0.0113 0.9331 0.0396 -0.0102 0.8287 0.0253 0.0099 0.8771 0.0328

3 0.0127 1.0125 0.0488 -0.0108 0.8940 0.0331 0.0109 0.9478 0.0417

100 1 -0.2067 0.9496 0.0295 -0.2095 0.9118 0.0286 -0.2085 0.9209 0.0259

2 0.0100 0.9493 0.0394 0.0083 0.9121 0.0349 0.0089 0.9207 0.0339

3 0.0105 1.0041 0.0465 0.0089 0.9624 0.0402 0.0094 0.9719 0.0389

200 1 -0.2084 0.9707 0.0318 -0.2342 0.9262 0.0265 -0.2085 0.9191 0.0264

2 0.0160 0.9707 0.0427 -0.0091 0.9262 0.0346 0.0162 0.9190 0.0360

3 0.0170 1.0275 0.0515 -0.0096 0.9789 0.0395 0.0171 0.9710 0.0419

Group: G = N0.5

20 1 -0.0922 0.9894 0.0472 -0.1024 0.8541 0.0295 -0.0926 0.9006 0.0346

2 0.0048 0.9892 0.0462 -0.0046 0.8541 0.0294 0.0056 0.9004 0.0360

3 0.0050 1.0348 0.0577 -0.0048 0.8912 0.0346 0.0058 0.9407 0.0429

50 1 -0.0702 1.0049 0.0509 -0.0599 0.9107 0.0376 -0.0501 0.9453 0.0372

2 -0.0077 1.0048 0.0501 0.0029 0.9107 0.0380 0.0124 0.9452 0.0385

3 -0.0079 1.0230 0.0548 0.0030 0.9264 0.0397 0.0126 0.9618 0.0411

100 1 -0.0584 0.9925 0.0492 -0.0531 0.9247 0.0416 -0.0426 0.9573 0.0391

2 -0.0104 0.9924 0.0481 -0.0049 0.9247 0.0424 0.0055 0.9573 0.0402

3 -0.0105 1.0014 0.0501 -0.0049 0.9328 0.0427 0.0055 0.9657 0.0413

200 1 -0.0493 0.9970 0.0492 -0.0373 0.9792 0.0500 -0.0338 0.9786 0.0406

2 -0.0085 0.9970 0.0491 0.0035 0.9792 0.0503 0.0070 0.9786 0.0415

3 -0.0085 1.0020 0.0502 0.0036 0.9840 0.0511 0.0070 0.9833 0.0422

Group: G = N0.8

20 1 -0.0948 0.9828 0.0465 -0.0868 0.8530 0.0293 -0.0936 0.8953 0.0330

2 -0.0042 0.9827 0.0442 0.0044 0.8531 0.0292 -0.0024 0.8953 0.0344

3 -0.0044 1.0289 0.0570 0.0046 0.8905 0.0331 -0.0025 0.9358 0.0395

50 1 -0.0491 0.9978 0.0497 -0.0556 0.8764 0.0351 -0.0650 0.9340 0.0365

2 0.0147 0.9979 0.0491 0.0086 0.8764 0.0351 -0.0011 0.9340 0.0383

3 0.0149 1.0159 0.0526 0.0087 0.8912 0.0367 -0.0011 0.9503 0.0408

100 1 -0.0451 0.9851 0.0441 -0.0578 0.9314 0.0451 -0.0783 0.9332 0.0340

2 0.0124 0.9851 0.0435 -0.0001 0.9314 0.0442 -0.0207 0.9331 0.0351

3 0.0126 0.9947 0.0452 -0.0001 0.9402 0.0454 -0.0209 0.9420 0.0359

200 1 -0.0372 1.0004 0.0487 -0.0289 0.9765 0.0469 -0.0402 0.9675 0.0427

2 0.0026 1.0003 0.0488 0.0110 0.9764 0.0474 -0.0003 0.9675 0.0428

3 0.0026 1.0051 0.0497 0.0110 0.9810 0.0481 -0.0003 0.9720 0.0433

Note: Test 1 = LMBSK, Test 2 = LM
∗
BSK, Test 3 = LM

∗∗
BSK.
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Figure 4. Empirical Powers of Panel LM Tests: Rook Contiguity
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Figure 5. Empirical Powers of Panel LM Tests: Group Interaction, G = N0.8
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Figure 6. Empirical Powers of Panel LM Tests: Group Interaction, G = N0.5
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6 Conclusions

We obtained three sets of modified tests for spatial dependence in the errors of each
of the three type of models: (i) linear regression with possible SAR or SMA effect in the
errors, (ii) linear regression with possible spatial error components, and (iii) linear panel
regression with random effects and possible SAR effect in the pure error term. For case (i),
standardized Moran’s I and modified LM test perform well in general. The LM test can be
seriously affected by the degree of spatial dependence. A large degree of spatial dependence
(two many neighbors for each spatial unit) may reduce the mean, variance and the tail
probability of the LM test statistic greatly when sample sizes are not large, and noticeably
when the sample size is as large as 1000. For case (ii), the LM test is sensitive to both the
error distributions and to the spatial layout. In contrast, the proposed test performs well in
general. Case (iii) is somehow similar to case (i), and thus the proposed tests outperform
the LM test in a similar manner, though in a lesser degree.

There are other LM tests for other spatial models that are derived under normal as-
sumptions such as Baltagi, et al. (2007), and the LM test for spatial lag, which can be
studied in a similar manner. It is seen that the new tests presented in this paper not only
offer improvements in robustness over the standard LM tests, but also preserve simplicity
of the original LM tests so that they can be easily adopted by the applied researchers.
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Appendix: Some Useful Lemmas

Lemma 1 (Lee, 2004a): Let v be a random vector of iid elements with mean zero,
variance σ2, and finite excess kurtosis κ. Let A be an N dimensional square matrix. Then
E(vIAv) = σ2tr(A) and Var(vIAv) = σ4κ N

i=1 a
2
ii + σ4tr(AAI +A2).

Lemma 2 (Lemma A.9, Lee, 2004b): Suppose that A represents a sequence of N ×N
matrices that are uniformly bounded in both row and column sums. Elements of the N × k
matrix X are uniformly bounded; and limn→∞ 1

NX
IX exists and is nonsingular. Let M =

IN −X(X IX)−1X I. Then
(i) tr(MA) = tr(A) +O(1)
(ii) tr(AIMA) = tr(AIA) +O(1)
(iii) tr[(MA)2] = tr(A2) +O(1), and
(iv) tr[(AIMA)2] = tr[(MAIA)2] = tr[AIA)2] +O(1)

Furthermore, if Aij = O(h
−1
N ) for all i and j, then

(vi) tr2(MA) = tr2(A) +O( nhN ), and

(vii) n
i=1[(MA)ii]

2 = n
i=1(aii)

2 +O(h−1N ),

where (MA)ii are the diagonal elements of MA, and aii are the diagonal elements of A.

Lemma 3: Let u = G1μ+G2v, where u and v are independent vectors, each containing
iid elements of means zero, variances σ2μ and σ

2
v , skewness αμ and αv, and excess kurtosis

κμ and κv; G1 and G2 are two conformable non-stochastic matrices. Let φ = σ2μ/σ
2
v . We

have for a symmetric matrix A,

(i)E(uIAu) = σ2vtr(ΣA),
(ii)Var(uIAu) = σ4μκμa

I
1a1 + σ4vκva

I
2a2 + 2σ

4
vtr(ΣAΣA),

where Σ = σ−2v E(uuI) = φG1G
I
1 +G2G

I
2, a1 = diagv(G

I
1AG1), and a2 = diagv(G

I
2AG2).

Proof: Proof of (i) is simple. For ii), we have uIAu = μIGI1AG1μ + vIGI2AG2v +
2μIGI1AG2v. It is easy to see that the three terms are uncorrelated. Thus,

Var(uIAu) = Var(μIGI1AG1μ) + Var(vIGI2AG2v) + 4Var(μIGI1AG2v).

From Lemma 1, we obtain

Var(μIGI1AG1μ) = σ4μκμa
I
1a1 + 2σ

4
μtr(G

I
1AG1G

I
1AG1), and

Var(vIGI2AG2v) = σ4vκva
I
2a2 + 2σ

4
vtr(G

I
2AG2G

I
2AG2).

Finally, it is easy to show that Var(μIGI1AG2v) = σ2μσ
2
vG1G

I
1AG2G

I
2A. Putting these three

expressions together gives (ii). Q.E.D.
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