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Abstract

This article considers quasi-maximum likelihood estimations (QMLE) for

two spatial panel data regression models: mixed effects model with spatial er-

rors and transformed mixed effects model (where response and covariates are

transformed) with spatial errors. One aim of transformation is to normalize

the data, thus the transformed models are more robust with respect to the nor-

mality assumption compared with the standard ones. QMLE method provides

additional protection against violation of normality assumption. Asymptotic

properties of the QMLEs are investigated. Numerical illustrations are provided.
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1 Introduction

In recent number of years, spatial panel data regression has received an increasing

attention by the researchers. See, for example, Baltagi, Song and Koh (2003), Balt-

agi and Li (2004), Baltagi, Song and Jung (2004), Persaran (2002, 2004), Azomahou

(1999, 2000, and 2001), and Elhorst (2003). For very recent developments, see pa-

pers presented at the Spatial Econometrics Workshop, Kiel, Germany 2005 available

at http://www.uni-kiel.de/ifw/konfer/spatial/prel-program.htm, and papers

presented at International Workshop on Spatial Econometrics and Statistics, Rome,

Italy 2006. However, important issues and techniques such as quasi-maximum like-

lihood estimation and data transformation, in particular the latter, have not been

considered in the spatial panel framework.

In this article, we consider quasi-maximum likelihood estimations (QMLE) for

two spatial panel data models: (i) mixed effects model with spatial errors; and (ii)

transformed mixed effects model with spatial errors. By mixed effects model we mean

a panel model with fixed time effects and random individual effects. Transformation

can be applied to both the response and some of the covariates. Model (i) is a standard

one, but QMLE has not been considered. The transformed model is an extension of

the standard model.

In a recent paper, Lee (2004) considered the asymptotic distributions of the QM-

LEs of a cross-sectional regression model with spatial lag. His work largely motivated

our work in a panel set up. QMLE method provides robust standard errors: ro-

bust against misspecification on error distributions. Transformation aims to bring

the data to near normality, induce flexible functional form, induce simpler model

structure and reduce heteroscedasticity (Box and Cox, 1964). Thus, transformation

together with QMLE method offer two-way protections against nonnormality of data.

These features make the transformed spatial panel models very attractive.

Research in spatial panel data regression often assumes that the data (in original

or log form) follow normal distributions; see, for example, Anselin (1988, Sec. 10.2);

2



Baltagi and Li (2004); Baltagi, Song and Koh (2003); Baltagi, Song and Jung (2004).

However, in practical applications, economic data are often non-normal, hence it

is necessary to transform the data before fitting the model.1 While this model is

preferable for modelling economic panel data, it renders the standard estimation

techniques such as the generalized least squares (GLS) and generalized method of

moments (GMM) unapplicable (Davidson and MacKinnon, 1993, p. 243). In this

sense, the QMLE method comes in as a natural choice for estimating the proposed

transformation model. A practical issue with the use of the maximum likelihood

estimation (MLE) method or QMLE method is its computational complexity. We

show in this paper that the amount of computation involved is feasible for a desktop

computer for data sets of moderate sizes.

Most of the economic panel data are of the feature that there many cross sections

and each cross section corresponds to a short time period. This makes it theoreti-

cally possible and practically popular to consider the unobservable time effects as

fixed. Furthermore, various policy interventions over time also justify the use of time

dummies for controlling the unobservable time effects (Baltagi, et al., 2000; Hamilton,

1972; Baltagi and Levin, 1986). In contrast, for the time-invariant, individual-specific

effects, incidental parameters problem prevents the consideration of fixed individual

effects. However, this problem can be resolved by including individual-specific vari-

ables and treating the ‘left-over’ unobservable individual effects as random.

In applying our models and methods to the state demand for cigarette data, we

found (i) strong evidence for the existence of spatial effect, (ii) strong evidence for

the use of general Box-Cox functional form rather than the traditional log-log form,

(iii) strong evidence for the existence of fixed time effects as well as random state

effects. These results have implications for more accurate prediction in cigarette sales

1Several authors, including van Gastel and Paelinck (1995), Griffith et al. (1998), Baltagi and Li

(2001), and Pace, et al. (2001), have discussed and demonstrated the importance of transformations

in analyzing spatial effects based on cross-sectional data.
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compared with Baltagi and Li (2004). We also found that the QMLE standard errors

are larger than the MLE standard errors for most of the parameter estimates. As a

result, the corresponding t-ratios are smaller.

The rest of paper is organized as follows. Section 2 presents the two models

and develops the MLE or QMLE procedure for model estimation. Section 3 consid-

ers asymptotic properties of the QMLEs, including the consistency and asymptotic

normality. Section 4 presents an empirical illustration using the states demand for

cigarettes data. Section 5 concludes the paper.

2 Quasi-Maximum Likelihood Estimation

We now develop the QMLE procedures for estimating the models. Some of the

matrix differential formulas that are useful in our derivation can be found in Magnus

(1982), Griffith (1981), or Magnus and Neudecker (1999).

2.1 Mixed effects model with spatial errors

The mixed effects model with spatial errors has the form

Yti = X
I
tiβ1 + ηt + μi + 6ti, t = 1, · · · , T ; i = 1, · · · , N,

where {ηt} are the fixed time effects, {μi} are the random individual effects, and {6it}
are the spatially correlated errors. In vector form

Yt = Xtβ1 + ηt1N + μ+ 6t, with 6t = δW 6t + vt, t = 1, · · · , T, (1)

where Yt = (Yt1, · · · , YtN )I, 6t = (6t1, · · · , 6tN)I, μ = (μ1, · · · ,μN)I, 1N is an N -vector of
ones, and Xt is a matrix whose ith row contains the values of covariates corresponding

to the ith spatial unit. The {μi} are independent and identically distributed (iid)
random variables with mean 0 and variance σ2μ, {vti} are iid random variables with

mean 0 and variance σ2v , and μi is independent of 6ti for all t and i. The parameter
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ηt represents the fixed effect for tth time period. The parameter δ is the spatial

autoregressive coefficient with |δ| < 1, W is a known N × N spatial weight matrix

whose diagonal elements are zero, which satisfies the condition such that (IN − δW )

is non-singular for all |δ| < 1.
Let B = IN − δW with IN being an N ×N identity matrix. We have 6t = B

−1vt.

The model can be rewritten conveniently in matrix notation as

Y = Xβ + u, with u = (1T ⊗ IN)μ+ (IT ⊗B−1)v, (2)

where ⊗ denotes the Kronecker product, Y = (Y I1 , · · · , Y IT )I, a TN × 1 vector of
responses, and X = {(X I1, · · · , X IT )I, (IT ⊗ 1N)}, a TN × k matrix whose rows contain
the values of the covariates and the dummy variables associated with the fixed effects

{ηt},2 and β = (βI1, η1, · · · , ηT )I. Letting φ = σ2μ/σ
2
v , we have Cov(u) = σ2vΩ with

Ω = φ(JT ⊗ IN) + IT ⊗ (BIB)−1.

Denoting u = Y −Xβ, the quasi-log likelihood function under the assumption that
errors are normally distributed has the form, besides an additive constant,

f(β,σ2v ,φ, δ) = −
TN

2
log(σ2v)−

1

2
log |Ω|− 1

2σ2v
uIΩ−1u. (3)

Maximization of (3) gives the MLEs if the errors are truly normal, otherwise

the QMLEs. It should be noted that when large panel data are involved, the above

maximization process can be quite involved computationally. Following procedures

lighten the computational burden considerably and those procedures can also be

generalized to the more complicated transformation model to be considered in the next

subsection. First, the dimension of maximization can be reduced by concentrating

out β and σ2v from f(β,σ2v ,φ, δ). Given θ = (φ, δ)
I, f is maximized at

β̂(θ) = [X IΩ−1X]−1X IΩ−1Y,

σ̂2v(θ) =
1

NT
ûI(θ)Ω−1û(θ),

2In cases that the model includes an intercept, the number of time dummies has to be reduced

by one, or one constraint be put on these dummies, to ensure parameters identifiability.
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where û(θ) = Y − Xβ̂(θ). Substituting β̂(θ) and σ̂2v(θ) into the quasi-log likelihood
function (3) for β and σ2v , respectively, gives the concentrated quasi-log likelihood

after dropping the constant,

fmax(θ) = −TN
2
log[σ̂2v(θ)]−

1

2
log |Ω|. (4)

Maximizing fmax(θ), subject to |δ| < 1, gives the QMLE θ̂ , which upon sub-

stitution gives the unconstrained QMLEs β̂ = β̂(θ̂) and σ̂2v = σ̂2v(θ̂) for β and σ2v ,

respectively. Further, the unconstrained QMLE of σ2μ is given by σ̂
2
μ = φ̂σ̂2v .

Maximization of fmax(θ) can be facilitated by providing the analytical gradients

or concentrated quasi-scores, which can be obtained by either directly differentiating

fmax(θ) with respect to φ and δ, or substituting β̂(θ) and σ̂2v(θ) into the last two

elements of the gradient vector (see Appendix A):

Gφ(θ) =
1

2

X
NTûI(θ)Ω−1(JT ⊗ IN)Ω−1û(θ)

ûI(θ)Ω−1û(θ)
− tr[Ω−1(JT ⊗ IN )]

~
(5)

Gδ(θ) =
1

2

X
TNûI(θ)Ω−1(IT ⊗A)Ω−1û(θ)

ûI(θ)Ω−1û(θ)
− tr[Ω−1(IT ⊗A)]

~
(6)

where A = (∂/∂δ)(BIB)−1 = (BIB)−1(W IB +BIW )(BIB)−1.

The above maximization process involves repeated evaluations of Ω−1 and |Ω| for
the TN × TN matrix Ω, which can be a great burden computationally when N or T

or both are large. Following Magnus (1982), the calculations involving the TN ×TN
matrix Ω can be reduced to the calculations involving the N ×N matrix B:

|Ω| = |(BIB)−1 + φTIN | · |B|−2(T−1), (7)

Ω−1 = (1/T )JT ⊗ [(BIB)−1 + φTIN ]
−1 + [IT − (1/T )JT ]⊗ (BIB). (8)

Following Griffith (1988, Table 3.1), calculation of |Ω| can be further simplified as

|B| =
N�
i=1

(1− δwi), and |(BIB)−1 + φTIN | =
N�
i=1

[(1− δwi)
−2 + Tφ], (9)

where wi are the eigenvalues ofW . Those formulas simplify the computations greatly

and make the model estimation involving a large panel data possible.
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2.2 Transformed mixed effects model with spatial errors

The transformed mixed effects model with spatial errors is

h(Yt,λ) = Ztβ1 + h(Xt,λ)β2 + ηt1N + μ+ 6t, with 6t = δW 6t + vt, (10)

where h(·,λ) is a monotonic transformation, known except the indexing parameter
λ, called the transformation parameter. The Zt matrix contains the column of ones,

values of dummy variables, as well as values for those variables that do not need to

be transformed. The Xt matrix contains values for those variables that are of the

continuous type similar in nature to the response, and hence also need to be trans-

formed. The error specifications are the same as in Model (1). In matrix notation,

the model takes the form

h(Y,λ) = X(λ)β + u, with u = (1T ⊗ IN )μ+ (IT ⊗ B−1)v (11)

where h(Y,λ) is a TN × 1 vector of transformed responses, and X(λ) is a TN × k
matrix whose rows contain the (transformed) values of the covariates including the

time dummies. The other quantities are defined similarly to those in Section 2.1. The

quasi-log likelihood function (assuming the errors are normal) has the form, besides

an additive constant,

f(β,σ2v , θ) = −
TN

2
log(σ2v)−

1

2
log |Ω|− 1

2σ2v
uIΩ−1u+ J(λ), (12)

where θ = (φ, δ,λ)I, u = h(Y,λ)−X(λ)β, and J(λ) = �T
t=1

�N
i=1 log hY (Yti,λ).

Maximization of (12) results in MLEs if the errors are exactly normal, otherwise

QMLEs for the model parameters. Clearly, the addition of transformation in the

model makes parameter estimation more challenging. Direct maximization of (12)

may be impractical and method of simplification should be sought after. Firstly, the

dimension of maximization can be reduced by concentrating out the parameters β

and σ2v from f(β,σ2v , θ). For given θ, f is maximized at

β̂(θ) = [X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1h(Y,λ),

σ̂2v(θ) =
1

NT
ûI(θ)Ω−1û(θ),
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where û(θ) = h(Y,λ)−X(λ)β̂(φ, δ,λ). Substituting β̂(θ) and σ̂2v(θ) into the quasi-log
likelihood function (12) for β and σ2v , respectively, gives the concentrated quasi-log

likelihood after dropping the constant,

fmax(θ) = −TN
2
log[σ̂2v(θ)]−

1

2
log |Ω|+ J(λ). (13)

Maximizing fmax(θ), subject to |δ| < 1, gives the QMLE θ̂, which upon substitution

gives the unconstrained QMLEs β̂ = β̂(θ̂) and σ̂2v = σ̂2v(θ̂) for β and σ
2
v , respectively.

Further, the unconstrained QMLE of σ2μ is given by σ̂
2
μ = φ̂σ̂2v .

Secondly, maximization of fmax can be facilitated by providing the analytical

gradients or concentrated quasi-scores, which can be obtained by either differentiating

fmax(θ) with respect to, φ, δ and λ, respectively, or substituting β̂(θ) and σ̂
2
v(θ) into

the last three elements of the full gradient vector (see Appendix A):

Gφ(θ) =
1

2

X
NTûI(θ)Ω−1(JT ⊗ IN)Ω−1û(θ)

ûI(θ)Ω−1û(θ)
− tr[Ω−1(JT ⊗ IN )]

~
(14)

Gδ(θ) =
1

2

X
TNûI(θ)Ω−1(IT ⊗A)Ω−1û(θ)

ûI(θ)Ω−1û(θ)
− tr[Ω−1(IT ⊗A)]

~
(15)

Gλ(θ) = Jλ(λ)− TNû
I
λ(θ)Ω

−1û(θ)
ûI(θ)Ω−1û(θ)

, (16)

where ûλ is the derivative of u with respect to λ evaluated at β = β̂(θ). Note that

the formulas for calculating |Ω| and Ω−1 introduced in Section 2.1 still apply.

For both Models defined in (1) and (10), standard errors of parameter estimates

can be estimated using the sandwich estimator which we will discuss in detail in next

section. The estimation procedures outlined above have been implemented using

GAUSS CO or CML procedures with empirical data. It turns out that the above

estimation procedures coupled with GAUSS CO work very well and convergence can

be achieved quickly for both models. However, we find that when panel becomes

large, computer memory problem may arise as there are many TN × TN matrices

involved in the computation. In this case, it may be necessary to use a mainframe

computer with a large memory to handle the computing work.
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3 Asymptotic Properties of the QMLEs

In this section, we consider the asymptotic properties of the QMLEs. We consider

the case where T is fixed and N goes large. Throughout, all quantities that are de-

pendent on N are held implicitly. Quantities that are functions of some parameter(s),

such as B, a function δ, and Ω, a function of φ and δ, are also held implicitly. Recall

the parameter vector that needs to be estimated through an optimization process

θ = {φ, δ}I for the standard model and θ = {φ, δ,λ}I for the transformed model. Let
ψ = {βI,σ2v , θI}I be the full parameter vector. Let ψ0 be the vector of true parameters
and ψ̂ its QMLE. A quantity evaluated at the true parameter values is denoted by

adding a subscript ‘0’, e.g., B0 is B evaluated at δ0.

Let {hN} be a rate sequence that can be bounded or divergent as N →∞ such

that the ratio hN/N → 0 as N goes to infinity. Some basic regularity conditions that

are common to both models are listed below.

Assumption 1. The {μ0i} are iid with mean zero, variance σ2μ0, skewness αμ0 and
centered kurtosis κμ0 (i.e., kurtosis minors 3); the {v0ti} are iid with mean zero,
variance σ2v0, skewness αv0 and centered kurtosis κv0. The moments E(|μ0i|4+61) and
E(|v0ti|4+62) exist for some 61, 62 > 0.
Assumption 2. The elements wij of W are at most of order O(h−1N ), uniformly in

all i, j and Wii = 0. The matrix B0 is nonsingular. The sequence of matrices {W}
and {B−10 } are uniformly bounded in both row and column sums.
Assumption 3. The {B−1} sequence are uniformly bounded in either row or column
sums, uniformly in δ in a compact parameter space.

Assumption 4. The true θ0 is the interior of a compact parameter space Θ.

Assumption 5. Define f̃max(θ) = maxβ,σ2v E[f(β, σ
2
v , θ)]. The sequence {f̃max(θ)} has

identifiably unique maximizers {θ̃}, and θ̃ → θ0 as N goes to infinity.

Assumptions 1 spells out the essential features of the rescaled disturbances so

that certain linear-quadratic forms in μ0 or in v0 obey the necessary probability
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laws. Assumption 2 is originated by Lee (2004, Assumptions 2-5), which sets out the

essential conditions for the weight matrix so that the systems (1) and (10) both have

an equilibrium and Y or h(Y,λ) has mean Xβ or X(λ)β, and variance σ2v0Ω0. It also

guarantees that this variance is bounded as N goes to infinity. Lee (2004) gives an

extensive discussion on situations where this assumption is satisfied and on when hN

can be bounded and when it goes to infinity in a rate lower than N as N goes to

infinity. Assumption 3 guarantees boundedness of certain matrices. Assumption 4

is standard. Assumption 5 is necessary for the parameters to be identifiable (White,

1994). Some additional assumptions are needed for each model.

3.1 Mixed effects model with spatial errors

An identifiability condition for the parameter vector β is necessary.

Assumption 6. The elements of X are uniformly bounded constants for all N . The

limN→∞ 1
TN
X IΩ−1X exists and is nonsingular for all θ ∈ Θ.

It is easy to see that E(β,σ2v .θ) = −TN
2
log(σ2v) − 1

2
log |Ω| − 1

2σ2v
[σ2v0tr(Ω0Ω

−1) +

(β0 − β)IX IΩ−1X(β0 − β)]. Thus, the solution for the optimization problem defined

in Assumption 5, f̃max(θ) = maxβ,σ2v E[f(β,σ
2
v , θ)], is

β̃(θ) = [X IΩ−1X]−1X IΩ−1Xβ0 = β0,

σ̃2v(θ) =
1

NT
E{[Y −Xβ̃(θ)]IΩ−1[Y −Xβ̃(θ)]} = 1

NT
σ2v0tr(Ω0Ω

−1),

which gives,

f̃max(θ) = −TN
2
log[σ̃2v(θ)]−

1

2
log |Ω| (17)

Following White (1994, Theorem 3.4), consistency of θ̂ follows from the convergence

of 1
TN
[fmax(θ)− f̃max(θ)] = 1

2
{log[σ̃2v(θ)]− log[σ̂2v(θ)]} to zero in probability, uniformly

on Θ. The consistency of β̂ and σ2v follows from that of θ̂.

Theorem 1. Under Assumptions 1-6, ψ̂
p−→ ψ0 as N goes to infinity.
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Asymptotic normality of the QMLE ψ̂ can be derived from the Taylor expansion

of G(ψ̂) = 0 at ψ0, which gives:

√
TN(ψ̂ − ψ0) = −

w
1

TN
H(ψ̄)

W−1 1√
TN

G(ψ0),

where ψ̄
p−→ ψ0 as ψ̂

p−→ ψ0, G(ψ) = ∂f(ψ)/∂ψ, called the gradient function (which

is score function when errors are normal), and H(ψ) = (∂2/∂ψ∂ψI)f(ψ), called the

Hessian matrix (which is the negative of the observed information matrix when errors

are normal). The asymptotic normality of
√
TN(ψ̂−ψ0) follows from the convergence

of 1√
TN
G(ψ0) in law to normal, and the convergence of 1

TN
H(ψ̄)−1 in probability.

Define Φ10 = Ω
−1
0 (JT ⊗ IN )Ω−10 and Φ20 = Ω

−1
0 (IT ⊗A0)Ω−10 . From the log likelihood

function f(ψ) given in (3), we have the gradient function as

G(ψ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2v0
X IΩ−10 u0,

1
2σ4v0

u0
IΩ−10 u0 − TN

2σ2v0
,

1
2σ2v0

u0
IΨ10u0 − 1

2
tr(Ψ10Ω

−1
0 ),

1
2σ2v0

u0
IΨ20u0 − 1

2
tr(Ψ20Ω

−1
0 ),

(18)

where u0 = (1T ⊗ IN )μ0 + (IT ⊗B−10 )v0. The elements of G(ψ0) are seen to be either
linear or quadratic functions of μ0 or v0, with iid elements. Hence, the asymptotic

distributions of 1√
TN
G(ψ0) can be derived from the central limit theorems for linear-

quadratic forms in Kelejian and Prochua (2001).

Theorem 2. Under Assumptions 1-6, assume further that 1
TN
(∂/∂ψ)H(ψ) is bounded

in probability uniformly in a neighborhood of ψ0. Then, we have

√
TN(ψ̂ − ψ0)

D−→ N(0,Σ−10 Π0Σ
−1
0 )

as N → ∞, where Π0 = limN→∞ 1
TN
Var[G(ψ0)] and Σ0 = − limN→∞ 1

TN
E[H(ψ0)],

both assumed to exist, and Σ0 is nonsingular.

Practical applications of Theorem 2 from inference point of view require both

Π0 and Σ0 be estimated consistently and perhaps conveniently. Following lemma
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provides a convenient tool for deriving the explicite expressions for Var[G(ψ0)] and

E[H(ψ0)], based on which consistent estimates of Π0 and Σ0 can be obtained easily.

Lemma 1. Let ε = R1v1+R2v2 where v1 and v2 are two independent random vectors

of iid elements such that v1i has mean zero, variance σ
2
1, skewness α1, and centered

kurtosis κ1, and that v2i has mean zero, variance σ
2
2, skewness α2, and centered kur-

tosis κ2. R1 and R2 are two fixed matrices. Let C and D be two square matrices.

(a) Ω = 1
σ22
E(εεI) = φR1R

I
1 +R2R

I
2, where φ = σ21/σ

2
2,

(b) E(εICε) = σ22tr(ΩC),

(c) g(C) = 1
σ32
Cov(ε, εICε) = φ

3
2α1R1c11 + α2R2c22,

(d) f(C,D) = 1
σ4
Cov(εICε, εIDε) = φ2κ1c

I
11d11 + κ2c

I
22d22 + 2tr(ΩCΩD),

where cij = diag(R
I
iCRj), and dij = diag(R

I
iDRj), i, j = 1, 2. When v1 and v2 are

both normal, g(ε, C) = 0, and f(ε, C,D) = 2tr(ΩCΩD).

The most useful result in Lemma 1 is that in part (d). Applying Lemma 1 on

the elements of G(ψ0) with ε = u0, R1 = 1T ⊗ IN , R2 = IT ⊗ B−10 , v1 = μ, v2 = v,

σ21 = σ2μ0, σ
2
2 = σ2v0, and φ = σ2μ0/σ

2
v0, one obtains immediately,

Var[G(ψ0)] =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2v0
X IΩ−10 X,

1
2σ3v0

X IΩ−10 g(Ω
−1
0 ),

1
2σv0

X IΩ−10 g(Φ10),
1

2σv0
X IΩ−10 g(Φ20)

∼, 1
4σ4v0

f(u0,Ω
−1
0 ,Ω

−1
0 )

1
4σ2v0

f(Ω−10 ,Φ10)
1

4σ2v0
f(Ω−10 ,Φ20)

∼, ∼, 1
4
f(Φ10,Φ10)

1
4
f(Φ10,Φ20)

∼, ∼, ∼, 1
4
f(Φ20,Φ20)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(19)

With the exact expression of H(ψ) (given in Appendix A), and Lemma 1(b), one

easily obtain the expected negative Hessian matrix as

−E[H(ψ0)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2v0
X IΩ−10 X, 0k, 0k, 0k

∼, TN
2σ4v0

, 1
2σ2v0

tr(Φ10Ω0)
1

2σ2v0
tr(Φ20Ω0)

∼, ∼, 1
2
tr(Φ10Ω0Φ10Ω0)

1
2
tr(Φ10Ω0Φ20Ω0)

∼, ∼, ∼, 1
2
tr(Φ20Ω0Φ20Ω0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)
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Note that when errors are exact normal, αμ0 = αv0 = κμ0 = κv0 = 0. The fact

that QMLE is robust against nonnormality is reflected by a non-zero values of αμ0,

αv0, κμ0 and κv0. In this case, the expression (19) reduces to (20). A practical issue

now left is the way of estimating these quantities. Let û = Y − Xβ̂, and B̂ be the

QMLE of B0. Run a GLS regression of û on R1 with weights R̂2 = IT ⊗ B̂−1. Let μ̂
be the GLS estimate of the regression coefficients and v̂ be the GLS estimates of the

standardized residuals. Then, the skewness and centered kurtosis of μ̂ gives estimates

of αμ0 and κμ0, and the skewness and centered kurtosis of v̂ gives estimates of αv0

and κv0. Thus, the variance of the QMLE ψ̂ can be conveniently estimated by

�
Var(ψ̂) = {E[H(ψ0)]}−1Var[G(ψ0)]{E[H(ψ0)]}−1|ψ0=ψ̂.

3.2 Transformed mixed effects model with spatial error

For the transformed mixed effects model with spatial error, the parameter vector

θ that needs to be estimated through an optimization process (Equation (13)) contains

an additional element, the transformation parameter λ. For ease of exposition, we use

the same set of notation as in Section 3.1 but keep in mind that this extra element is

involved everywhere, e.g., the gradient function G(ψ) and the Hessian function H(ψ).

Also, the X matrix should be replaced everywhere by X(λ).

Assumption 6∗. The elements of X(λ) are uniformly bounded for all N , uniformly

in λ in a compact set. The limit, limN→∞ 1
TN
X I(λ)Ω−1X(λ), exists and is nonsingular

for all θ ∈ Θ.

It is easy to show that the optimal solution to the maximization problem defined

in Assumption 5, f̃max(θ) = maxβ,σ2v E[f(β,σ
2
v , θ)], becomes

β̃(θ) = [X I(λ)Ω−1X(λ)]−1X I(λ)Ω−1E[h(Y,λ)]

σ̃2v(θ) = (TN)−1E{[h(Y,λ)−X(λ)β̃(θ)]IΩ−1[h(Y,λ)−X(λ)β̃(θ)]},

13



which leads to f̃max(θ) = −TN
2
log[σ̃2v(θ)]− 1

2
log |Ω|+ E[J(λ)], and

1

TN
[f̂max(θ)− f̃max(θ)] = −1

2
[log σ̂2v(θ)− log σ̃2v(θ)] +

1

TN
{J(λ)− E[J(λ)]}.

Let Y (θ) = Ω−
1
2h(Y,λ), and P (θ) = Ω−

1
2X(λ)[X(λ)Ω−1X I(λ)]−1X I(λ)Ω−

1
2 . With the

identification condition in Assumption 6a and the convergence of 1
TN
[f̂max(θ)−f̃max(θ)]

in probability to zero uniformly on Θ, consistency of the QMLE ψ̂ follows.

Theorem 3. Under Assumptions 1-5 and Assumption 6∗, assume further that (i)

,Y (θ),2 − E,Y (θ),2 = op(N) where , · , is the Euclidean norm, (ii) ,P (θ)Y (θ),2 =
op(N), (iii) ,P (θ)E[Y (θ)],2 = o(N), and (iv) 1ITN [log hY (Y,λ) − log EhY (Y,λ)] =
op(N), all uniformly on Θ. Then, we have, ψ̂

p−→ ψ0, as N →∞.

The treatment for the asymptotic normality of the QMLE of the transformed

mixed effect model requires some additional assumptions and approximations. The

gradient function is that of model (1) given in (18) after replacing X by X(λ), plus

the following additional element that corresponds to the transformation parameter λ,

Gλ(ψ0) = Jλ(λ0)− 1

σ2v0
uI0λΩ

−1u0, (21)

where Jλ(λ0) = (d/dλ0)J(λ0) and u0λ = (∂/∂λ0)u0. This can neither be written in

linear forms nor in quadratic forms of u0. Hence, the central limit theorems for linear-

quadratic forms in Kelejian and Prucha (2001) cannot be directly applied. However,

as we see below, under certain conditions it can be approximated by a linear-quadratic

form. We consider the case where h is the Box and Cox (1964) power transformation:

h(y,λ) =

⎧⎪⎨⎪⎩
1
λ
(yλ − 1), λ W= 0,
log y, λ = 0,

y > 0. (22)

Its first derivative has the form

hλ(y,λ) =

⎧⎪⎨⎪⎩
1
λ
[1 + λh(y,λ)] log y − 1

λ
h(y,λ), λ W= 0,

1
2
(log y)2, λ = 0.

14



In this case, we have J(λ) =
�T
t=1

�N
i=1 log Yit. Define

∆0 = max
t,i

eeeeee
λ0
�
Var(u0,ti)

1 + λ0xIti(λ0)β0

eeeeee .
If ∆0 U 1, then some simple approximations to log Y as well as hλ(Y,λ0) can be

developed which enable us to write the gradient function (22) in a linear-quadratic

form of u0. This assumption falls in spirit into the framework of small-σ asymptotics

of Bickel and Doksum (1981). Under this assumption, we have through a first-order

Taylor series approximation,

λ0 log Y ≈ log(1TN + λ0μ0) + λ0(1TN + λ0μ0)
−1u0,

where μ0 = X(λ0)β0, and the log and inverse functions applied to (1TN + λ0μ0) are

operated elementwise. This leads to an approximation to the derivative of u0,

u0λ ≈ a0 + b0 @ u0,

where @ denotes the Hadamard product, i.e., the elementwise multiplication, a0 =
1
λ20
(1TN + λ0μ0)@ log(1TN + λ0μ0) − 1

λ0
μ0 −Xλ(λ0)β0, and b0 =

1
λ0
log(1TN + λ0μ0).

Hence the gradient function corresponding to λ has the following approximation,

Gλ(ψ0) ≈ 1ITNb0 + ηI0u0 − σ−2v0 u
I
0Φ30u0, (23)

where Φ30 = diag{b0}Ω−10 and η0 = (1TN +λ0μ0)
−1−σ−2v0 Ω−10 a0. Using Lemma 1, this

leads immediately to approximations to the λ-related elements of Var[G(ψ0)]:

E[G(ψ0)Gλ(ψ0)] ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X I(λ0)
p
η0 − 1

σv0
Ω−10 g(Ψ30)

Q
,

1
2σv0

ηI0g(Ω
−1
0 )− 1

2σ2v0
f(Ω−10 ,Φ30),

σv0
2
ηI0g(Φ10)− 1

2
f(Φ10,Φ30),

σv0
2
ηI0g(Φ20)− 1

2
f(Φ20,Φ30),

σ2v0η
I
0Ω0η0 + f(Φ30,Φ30)− 2σv0ηI0g(Φ30).

(24)

This together with (19) give the full expression of Var[G(ψ0)]. The full expressions for

the gradient function G(ψ) and the Hessian function H(ψ) are given in the Appendix
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A. Approximations to the expectations of the λ-related elements in the Hessian matrix

are possible, though complicated, to give E[H(ψ0)], but not necessary. As long as the

Hessian matrix obeys some asymptotic properties as in the following theorem, one

can use − 1
TN
H(ψ̂) to estimate Σ0 defined therein.

Theorem 4. Under Assumptions 1-5 and Assumption 6∗, assume further that (i) h

is the Box-Cox power transformation and ∆0 U 1, (ii) (∂/∂ψ) 1
TN
H(ψ) is bounded in

probability, uniformly in a neighborhood of ψ, and (iii) 1
TN
[H(ψ)−E(H(ψ))] = op(1),

uniformly in a neighborhood of ψ. We have,

√
TN(ψ̂ − ψ0) −→D N(0,Σ−10 Π0Σ

−1
0 ),

as N → ∞, where Π0 = limN→∞ 1
TN
Var[G(ψ0)] and Σ0 = − limN→∞ 1

TN
E[H(ψ0)]

both assumed to exist, and Σ0 is nonsingular.

In practical applications, Σ0 can be estimated consistently by − 1
TN
H(ψ̂), and

Π0 can be estimated consistently by
1
TN
Var[G(ψ0)]|ψ0=ψ̂, in which the skewness and

kurtosis of μ and the skewness and kurtosis of v are estimated using the same method

as for Model (1).

Unlike the case of the usual spatial panel models, estimation of the variance of

gradient function seems to be one of the key issues in implementing the QMLE method

for the transformed spatial panel model. The explicit expression of Var[G(ψ0)] is not

available and alternative methods or approximations have to be followed. Conven-

tional methods include OPG (outer product of gradients) (Davidson and MacKinnon,

1993) which requires that the gradient can be written as a summation of TN inde-

pendent elements, and the resampling method (Foster et al., 2001) which requires

that the gradient function can be written as a U-statistics. However, neither is the

case for our gradient function. Hence, an approximation method is followed.
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4 An Empirical Illustration

In this section, we consider a numerical example to illustrate the model and the

ML estimation procedure developed earlier. In particular, we consider the demand

equations for cigarettes for United States, based on a panel of 46 states over 30 time

periods (1963-1992), given as CIGAR.TXT on the Wiley web site associated with book

of Baltagi (2001). The response variable Y = Cigarette sales in packs per capita. The

covariates are X1 = Price per pack of cigarettes; X2 = Population; X3 = Population

above the age of 16; X4 = Consumer price index with (1983=100); X5 = Per capita

disposable income; andX6 =Minimum price in adjoining states per pack of cigarettes.

Earlier studies regarding states demand for cigarettes include Hamilton (1972),

Baltagi and Levin (1986, 1992), Baltagi, Griffin and Xiong (2000), and Baltagi and

Li (2004). Only Baltagi and Li (2004) has considered spatial effects in modeling the

cigarettes demand, where some general explanations are given on why and how spatial

correlation may arise in the demand for cigarettes.

Following Baltagi, et al. (2000), we treat the time periods effects as fixed. Cor-

responding to the major policy interventions in 1965, 1968 and 1971, we used a single

dummy for each of the three multi-year periods: 1963-1964, 1965-1967 and 1968-

1970, all inclusive, and a dummy for each of the rest of the years except the last year

1992, which is dropped out to prevent over parameterization. A similar treatment

was given in Baltagi and Levin (1986). We consider fitting of three models: (I) both

response and covariates are log transformed; (II) response is Box-Cox transformed,

and covariates are log transformed; and (III) both response and covariates are Box-

Cox transformed. Model (I) is similar to that of Baltagi and Li (2004) where they

consider the prediction problem. It is reasonable to expect that our transformation

model will give a better predictive performance when the transformation parameter

is significantly different from zero or one, which are exactly the cases for the cigarette

demand data. For each of the three models, two cases are considered: the case of

without time effects and the case with time effects. For the spatial weighting matrix
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W , we follow the first-order rook’s contiguity relations. See Kelejian and Robinson

(1995) for a good discussion on the spatial weighing matrix.

The estimation results are summarized in Table 1. Following general observations

are in order: (i) spatial effect is strongly significant in all models considered, (ii)

functional form is significantly different from the traditional log or linear forms, (iii)

the individual random effects are also significant, and (iv) fixed time effects are highly

significant collectively. We also found that the QMLE standard errors are larger than

the MLE standard errors for most of the parameter estimates. As a result, the

corresponding t-ratios are smaller.

It is interesting to note that three models give quite consistent estimates of spatial

error correlation and cross-sectional random effects. Also, Model I & II (with or

without fixed time effects) give very consistent estimates of transformation parameter

λ. Model I is embedded in both Model II and Model III with λ specified as zero. The

maximum values of the log likelihood function (without the constant) listed in the

row labeled as loglik allows us to perform various likelihood ratio tests.3 Likelihood

ratio test (asymptotically χ2 distributed with one degree of freedom) of Models I

against II without fixed time effects results in a value of the test statistic 169.24,

which becomes 160.80 when the pair of models with fixed time effects are compared.

Similarly, the likelihood ratio test of Model I versus Model III has a test statistic value

of 412.38 when time effects are absent and 504.82 when time effects are present. All

tests strongly reject the null model. Thus, the conventional Cobb-Douglas functional

form specification for the cigarette demand is strongly rejected by the data.

Comparison of the models (a) without fixed time effects versus (b) with fixed time

effects shows the significance of the fixed time effects collectively. The likelihood ratio

test of the Model I(a) versus Model I(b) has a statistic value of 89.76, of Model II(a)

3These tests need to be modified when errors are not exact normal. The distribution of the

quasi-likelihood ratio test may be obtainable using the method described in Carroll et al. (1995).

Alternatively, one may simply use the LM test with the QMLE variance-covariance estimates.
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versus Model II(b), 81.42, and of Model III(a) versus Model III(b), 182.2. According

to the values of the maximized log likelihood function, Model III with fixed time

effects fits the data the best. Thus, it can be used to perform predictions and to

carry out various other tasks. It is reasonable to believe that this model performs

better in its predictive performance than that considered in Baltagi and Li (2004).

Price (X4) and income (X5) elasticities are often of interest. Model I specifies

that these are constant. For price elasticity, it is estimated to be -1.1699 by Model

I(a) and -1.1707 by Model I(b); for income elasticity, it is estimated to be 0.1147

by Model I(a) and 0.4606 by Model I(b). However, Model I is incorrectly specified,

hence this constant elasticity assumption is subject to question. The elasticity of a

covariate x relative to a response y in a general transformation model takes the form:

Ey|x = β
X

Y
· gx(x)
hy(y)

where g(x) and h(y) are, respectively, transformations applied to x and y, and gx(x)

and hy(y) are the derivatives. So, in the case of applying Box-Cox transformations

on both sides, we have Ey|x = β(x/y)λ, and in the case of applying Box-Cox trans-

formation on y and log transformation on x, we have Ey|x = β/yλ.

Hence, in both Models II and III, the elasticity is not constant, which depends

on the y value in Model II and on both x and y values in Model III. From Model III,

the price elasticity at the mean levels (average sale 123.95 and average price 68.70) is

estimated to be Êy|x = β̂4(X̄4/Ȳ )
λ̂ = −1.7156(68.70/123.95)−0.5262 = −2.3403 using

Model III(a) and −2.4488 using Model III(b). The same numbers for income elas-
ticity at the means (123.95 and 7525) are −0.0079 and −0.0511. Similarly, the price
elasticity estimates at the mean sales level estimated from Model II, without or with

fixed time effects, are Êy|x = β̂4/Ȳ
λ̂ = (−0.4203,−0.3222); and the corresponding

income elasticity estimates are (0.1172,−0.0143).
Per capita sales vary a lot from state to state. According to Models II and III,

the effects of covariates on sales can be quite different at different levels of cigarette

sales. For example, for states with per capita sales 85 packs, the price elasticity
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at the average price level becomes (−0.3262,−0.2513) and (−1.9190,−2.0013), re-
spectively, from Models II(a, b) and III(a, b); and for states with per capita sales

300 packs, the price elasticity at average price level becomes (−0.7610,−0.5765) and
(−3.7262,−3.9290) from Models II(a, b) and III(a, b), respectively. This shows that

price has much bigger impact on sales when sale volume is high than when it is low.

Similar conclusions apply to income variable, as well as other covariates.

5 Conclusions

We have introduced two important techniques, quasi-maximum likelihood estima-

tion and data transformation, into the modelling of spatial panel data. For spatial re-

gression models, many authors have advocated the use of maximum likelihood method

for model estimation (e.g., Anselin, 1988; Elhorst, 2003). Quasi-maximum likelihood

estimation provides robust standard error estimates, which makes the likelihood-based

method more attractive. Data transformation aims to bring the data to near nor-

mality, which makes normality-based QMLE more valid. Empirical results show the

importance of applying both techniques in modelling the spatial panel data. Some

immediate future work may be assessing the predictive performance of the models

and more empirical applications.
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Appendix A: The Gradient and Hessian

We first present the gradient and Hessian functions for Model (1). The same

functions for the transformed model, Model (10), can be obtained by adding the λ-

related elements on the gradient and Hessian matrix for Model (1). The elements of

the gradient vector G(ψ) for Model (1) are,

Gβ = ∂f
∂β

= 1
σ2v
X IΩ−1u

Gσ2v
= ∂f

∂σ2v
= 1

2σ4v
uIΩ−1u− NT

2σ2v

Gφ = ∂f
∂φ

= 1
2σ2v
uIΩ−1(JT ⊗ IN)Ω−1u− 1

2
tr[Ω−1(JT ⊗ IN)]

Gδ = ∂f
∂δ

= 1
2σ2v
uIΩ−1(IT ⊗A)Ω−1u− 1

2
tr[Ω−1(IT ⊗A)]

and the elements of the Hessian matrix H(ψ) for Model (1),

Hββ = − 1
σ2v
X IΩ−1X

Hβσ2v = − 1
σ4v
X IΩ−1u

Hβφ = − 1
σ2v
X IΩ−1(JT ⊗ IN)Ω−1u

Hβδ = − 1
σ2v
X IΩ−1(IT ⊗A)Ω−1u

Hσ2vσ
2
v
= NT

2σ4v
− 1

σ6v
uIΩ−1u

Hσ2vφ
= − 1

2σ4v
uIΩ−1(JT ⊗ IN)Ω−1u

Hσ2vδ = − 1
2σ4v
uIΩ−1(IT ⊗A)Ω−1u

Hφφ = 1
2
tr[Ω−1(JT ⊗ IN )Ω−1(JT ⊗ IN)]− 1

σ2v
uIΩ−1(JT ⊗ IN)Ω−1(JT ⊗ IN )Ω−1u

Hφδ = 1
2
tr[Ω−1(IT ⊗ A)Ω−1(JT ⊗ IN)]− 1

σ2v
uIΩ−1(IT ⊗A)Ω−1(JT ⊗ IN )Ω−1u

Hδδ = 1
2
tr[Ω−1(IT ⊗ A)Ω−1(IT ⊗A)− Ω−1(IT ⊗ ∂A

∂δ
)]

− 1
σ2v
uIΩ−1(IT ⊗A)Ω−1(IT ⊗ A)Ω−1u+ 1

2σ2v
uIΩ−1(IT ⊗ ∂A

∂δ
)Ω−1u

where A is given in (6) and ∂A
∂δ
= 2(BIB)−1[(W IB+BIW )A−W IW ]. For the gradient

function of Model (10), change X to X(λ) and add the following element

Gλ =
∂f

∂λ
= Jλ(λ)− 1

σ2v
uIλΩ

−1u,
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and for the Hessian of Model (10), replace X by X(λ) and add the following elements

Hβλ = 1
σ2v
[X Iλ(λ)Ω

−1u+X I(λ)Ω−1uλ]

Hσ2vλ = 1
σ4v
uIλΩ

−1u

Hφλ = 1
σ2v
uIλΩ

−1(JT ⊗ IN)Ω−1u
Hδλ = 1

σ2v
uIλΩ

−1(IT ⊗A)Ω−1u
Hλλ = − 1

σ2v
(uIλλΩ

−1u+ uIλΩ
−1uλ) + Jλλ(λ)

Appendix B: Proofs of the Theorems

Proof of Theorem 1: Consistency of ψ̂ follows from the uniform convergence

of 1
TN
[fmax(θ) − f̃max(θ)] to zero on Θ and the uniqueness identification condition

given in Assumption 5 (White, 1994, Theorem 3.4.). Since 1
TN
[fmax(θ) − f̃max(θ)] =

−1
2
[log σ̂2v(θ)− log σ̃2v(θ)]. It suffices to show that

σ̂2v(θ)− σ̃2v(θ)
p−→ 0, uniformly on Θ.

Now, σ̃2v(θ) =
1
TN
tr(Ω

− 1
2

0 Ω−1Ω
− 1
2

0 ), and

σ̂2v(θ) =
1

TN
[Y −Xβ̂(θ)]IΩ−1[Y −Xβ̂(θ)] = 1

TN
Y IΩ−

1
2MΩ−

1
2Y,

where M = ITN − Ω− 1
2X(X IΩ−1X)−1X IΩ−

1
2 , a projection matrix projecting onto a

space orthogonal to the space spanned by the columns of Ω−
1
2X. Define u∗0 = Ω

1
2
0 u0.

We have,

σ̂2v(θ) =
1

TN
uI0Ω

− 1
2MΩ−

1
2u0 =

1

TN
u∗0
IΩ

1
2
0Ω
− 1
2MΩ−

1
2Ω

1
2
0 u
∗
0,

which gives

σ̂2v(θ)− σ̃2v(θ) =
1

TN
u∗0
IΩ

1
2
0Ω
− 1
2MΩ−

1
2Ω

1
2
0 u
∗
0 −

1

TN
tr(Ω

1
2
0Ω
−1Ω

1
2
0 )

=
1

TN

}
u∗0
IΩ

1
2
0Ω
− 1
2MΩ−

1
2Ω

1
2
0 u
∗
0 − tr(Ω

1
2
0Ω
− 1
2MΩ−

1
2Ω

1
2
0 )
]

+
1

TN

}
tr(Ω

1
2
0Ω
− 1
2MΩ−

1
2Ω

1
2
0 )− tr(Ω

1
2
0Ω
−1Ω

1
2
0 )
]
.
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It can be shown that the first term above is op(1) and second term is o(1), uniformly

on Θ. Hence 1
TN
[fmax(θ)− f̃max(θ)] p−→ 0 uniformly on Θ. This implies that θ̂

p−→ θ0,

and hence ψ̂
p−→ ψ0.

Proof of Theorem 2: Proof of the theorem starts from the following Taylor

expansion

0 =
1√
TN

G(ψ̂) =
1√
TN

G(ψ0) +
w
1

TN
H(ψ̄)

W√
TN(ψ̂ − ψ0).

As each element of the gradient vector can be written as linear, or quadratic, or

linear-quadratic forms of μ0 or v0, Lindeberg-Feller central limit theorem can be

used to prove the asymptotic normality of the elements that are of linear form, and

Kelejian and Prucha (2001) central limit theorem can be used to prove the asymptotic

normality of the components that are quadratic or linear-quadratic functions of μ0 or

v0. Finally, Cramer-Wold device can be used to prove the joint asymptotic normality

of the gradient vector, as linear combinations of linear and quadratic functions of μ0

are a linear-quadratic function of μ0. The same applies to v0. Thus,

1

TN
G(ψ0) −→D N(0,Π0)

where Π0 = limN→∞ 1
TN
E[GI(ψ0)G(ψ0)]. By the mean value theorem, we have

1

TN
H(ψ̄)− 1

TN
H(ψ0) =

1

TN
(∂/∂ψ)H(ψ̃)(ψ̄ − ψ0) = op(1).

Finally, all the elements of the Hessian matrix (given in Appendix A) can be written

as either linear, or quadratic functions of μ0 or v0. By showing these linear functions

and quadratic functions divided by TN are all Op(1), we have

1

TN
H(ψ0)− 1

TN
E[H(ψ0)] = op(1).

The result of the theorem follows.

Proof of Theorem 3: The σ̂2v(θ) and σ̃
2
v(θ) can be written as

σ̂2v(θ) =
1

TN
Y (θ)I[ITN − P (θ)]Y (θ) = 1

TN
Y (θ)IY (θ)− 1

TN
Y (θ)IP (θ)Y (θ), and
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σ̂2v(θ) =
1

TN
E[Y (θ)IY (θ)]− 1

TN
E[Y (θ)]IP (θ)E[Y (θ)].

Hence,

σ̂2v(θ)− σ̃2v(θ) =
1

TN
{Y (θ)IY (θ)− E[Y (θ)IY (θ)]}

− 1

TN
Y (θ)IP (θ)Y (θ) +

1

TN
E[Y (θ)]IP (θ)E[Y (θ)]→p 0.

Further, J(λ) − EJ(λ) = 1ITN [log hY (Y,λ)− logEhY (Y,λ)] = o(N) uniformly on Θ.
We have 1

TN
[f(θ)− f̃(θ)]

p→ 0, uniformly on Θ. Consistency of θ̂ follows, which gives

the consistency of β̂(θ̂) and σ̂2v(ψ̂), and the consistency of the QMLE ψ̂.

Proof of Theorem 4: As the gradient function specified in (18) and (23) can

be either written as or approximated by linear or quadratic forms in μ0 or in v0. The

proof of the theorem is similar to that of Theorem 2.
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Table 1. Estimation Results for the Cigarette Demand Data

Model Par. (a) Without Fixed Time Effects (b) With Fixed Time Effects

Par. t-stat t-stat Par. t-stat t-stat

Est. MLE QMLE Est. MLE QMLE

I β0 2.4748 10.1095 10.3897 3.2262 3.9119 3.9208

β1 -0.9020 -26.9864 -26.9902 -1.0112 -25.2779 -25.3071

β2 0.5309 3.7139 3.7527 0.5260 3.4517 3.4942

β3 -0.5081 -3.6088 -3.6285 -0.5084 -3.3738 -3.4032

β4 0.0629 1.2364 1.2369 0.2000 1.0554 1.0572

β5 0.5448 13.3884 13.4010 0.5755 11.9703 11.9816

β6 0.1597 4.3794 4.3832 -0.0587 -1.0875 -1.0909

σv 0.0731 349.4144 183.2402 0.0714 359.3930 192.0414

φ 5.0560 4.4211 4.6783 5.1515 4.4670 4.6823

δ 0.3535 14.4587 11.3845 0.2433 8.5873 7.3215

loglik −4756.67 −4711.79
II β0 1.3431 18.8030 9.6844 1.3991 15.5916 8.7273

β1 -0.0345 -4.0950 -2.0934 -0.0401 -4.0167 -2.1004

β2 0.0085 1.3666 1.0072 0.0069 1.0239 0.8005

β3 -0.0072 -1.1943 -0.9044 -0.0059 -0.8913 -0.7113

β4 0.0020 0.9206 0.8545 -0.0003 -0.0316 -0.0313

β5 0.0214 3.9600 2.0805 0.0261 3.9974 2.1569

β6 0.0046 2.4890 1.6402 -0.0021 -0.9207 -0.8608

σv 0.0027 766.9198 581.0148 0.0028 723.9371 405.9130

φ 5.8541 4.3764 3.8569 5.8179 4.4389 4.0062

δ 0.4530 18.9454 20.4597 0.3441 11.9208 11.9092

λ -0.6717 -13.4517 -6.8397 -0.6582 -13.0511 -6.7793

loglik −4672.05 −4631.34
III β0 -7.6873 -12.5792 -7.2281 -8.2668 -13.1053 -8.1448

β1 -0.4476 -18.3674 -11.0216 -0.3797 -14.1564 -9.3236

β2 2.5704 7.9233 5.9917 2.5984 8.0228 6.1361

β3 -1.7156 -7.5380 -6.4724 -1.7859 -7.9064 -6.8378

β4 -0.0687 -1.9503 -1.7875 -0.4592 -4.7257 -4.6864

β5 4.6517 11.2584 6.1429 5.2974 12.1572 7.2700

β6 -0.0333 -1.7229 -1.6236 0.0482 2.0414 2.0291

σv 0.0048 806.4606 187.2567 0.0044 847.1905 310.9054

φ 13.8558 4.2189 3.4417 13.9944 4.2733 3.5204

δ 0.5895 29.1003 26.1723 0.4001 13.5572 11.3791

λ -0.5262 -19.9278 -10.4136 -0.5349 -19.6440 -11.3226

loglik −4550.48 −4459.38
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