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Summary
In this Supplementary Appendix, we present details on (i) the derivations of the
Hessian, expected Hessian, and the VC matrices of the AQS functions, (i7) the proofs
of the four theorems, and (7i7) the estimation of the ‘typical’ sub-models including the
homogeneous models, the SLE models with homogeneity in spatial error coefficients,

and the panel SE (spatial error) models with one-way or two-way FE.

Appendix A: Some Basic Lemmas

Lemma A.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {A,} and {B,} be two
sequences of n X n matrices that are uniformly bounded in both row and column sums. Let
C,, be a sequence of conformable matrices whose elements are uniformly bounded. Then

(i) the sequence {A, By} are uniformly bounded in both row and column sums,

(ii) the elements of Ay, are uniformly bounded and tr(Ay,) = O(n), and

(iii) the elements of A,Cy and Cp A, are uniformly bounded.

Lemma A.2 (Yang, 2015b, Lemma A.1, extended). Fort = 1,2, let Ay be n X n
matrices and c,y be n X 1 vectors. Let e, be an n x 1 ramdom vector of iid elements with
mean zero, variance o2, and finite rd and 4th cumulants pz and pig. Let an; be the vector
of diagonal elements of Ani. Define Qui = chyen + el Anten, t = 1,2, Then, fort,s =1,2,

Cov(Qnt; @ns) = f(Ant, cnt; Ans, Cns)
= U4tr[(A;Lt + Ant) Ans)] + N3a;nfcns + NBC;Ltans + N4a;ztans + UQC;thn& (A1)
Various useful special cases of (A.1) are as follows:
(1) Cov(cpien, Qn2) = f(0, cn1; Ana, cn2) = pi3cy, an2 + UQC/nlCn%
where c,1 can be an n X k matriz with k > 1;
(i) Var(Qni) = f(An1, cn1; Ant, cn1) = 04‘51“[(14;11 + Ap1)An1)] + 2/‘3‘1;116”1
40 an1 + 02 Cnt ;
(iii) Var(el, Anien) = f(An1,0; An1,0) = odtr[(AL ] + Ap1)An1)] + padl, an: -

Lemma A.3 (CLT for Linear-Quadratic Forms, Kelejian and Prucha, 2001). Let

Ap,an,cn and e, be as in Lemma A.2. Assume (i) A, is bounded uniformly in row and

column sums, (i) n=1 >0 | \ciﬁ"ﬂ < oo,m >0, and (iii) E|€i7;n2| < 00, 2 > 0. Then,
el Apen + chen — o?tr(Ay) D, N0, 1)

1
{oMr(AL A, + A2) + paal,an + o2ccn + 2usal,cn}?
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Appendix B: Hessian, Expected Hessian and VC Matrices

Notation. For ¢t,s =1,...,T, blkdiag{A;} forms a block-diagonal matrix by placing
A; diagonally, {A;} forms a matrix by stacking A; horizontally, and {Bys} forms a matrix
by the component matrices B;s. The negative Hessian matrix J(0g), its expectation
I,(0g), and the VC matrix ¥(0¢) of the AQS function, w=SL1, SL2, SLE1, SLE2, are all
partitioned according to the slope parameters 3, the spatial lag parameters A, spatial error
parameters p (if existing in the model), and the error variance o2, with the sub-matrices
denoted by, e.g., Jgg, Jpa, Igg. Ipa, Xpp, Lpa- Furthermore, diag(-) forms a diagonal
matrix and diagv(-) a column vector, based on the diagonal elements of a square matrix.

Parametric quantities, e.g., A, () and By, (py), evaluated at the true parameters are
denoted as A,; and By;. For a matrix A,, denote A% = A, + A!.. The bold 0 represents

generically a vector or a matrix of zeros, to distinguish from the scalar 0.

B.1. Panel SL model with one-way FE. Letting 7, = Gn(Xni5t + ¢,) and
gnt = diagv(Gpy), the negative Hessian matrix, Js11(0¢), has the components:

Jpp = blkdiag{ 5 X Xni} — {752 X1 Xns},

Ing = blkdiag{al (WnYnt) Xt} — {72 ( 2(WnYor) "Xns},

I = blkdiag{oig(WnYm) (WnYot) + LZ52t0(G2) b — {75 ( 2 (WnYat) (Wi Yas) },

Jp2p = {%f/,;txm}, Joon = {4 1 (WnYor) Vit }, Jp2g2 = —"20 6 STV V.

The expected negative Hessian matrix, Isp1(00), has the components:

][3[5 = Jlgﬁ, I}\B = blkdiag{%n;tXnt} — {#T];Ltan},

Iy = blkdiag{ e + FFH0(GGne) } — {70z}

_ n(T-1)
203

I0'2[3 = 07 102)\ = %tr(Gnt)}, I >

The VC matrix Xgr.1(00) = Is1.1(00) + Q2s1.1(00), where Qs11(00) has components:

Qpp = Ot Qm = blkdlag{ Toa Ve Xnt} — {fzj,ﬁvgq’ans},

O = blkdiag{ 2Tyl gn + (L5 2kghugnt — 261(GrtGre) }

_{ T2_ao (Thntgns + 9nt77n5) - ﬁtr(Gnths) }7

QB N {Otk} Qag}‘ - { 2T2 2 Ktr nt)}a 90'202 = n(j;;é)Q

where v and s are, respectively, the measures of skewness and excess kurtosis of v; ;.

Alternatively, we can find the VC matrix X, 7(09) by first expressing the AQS
function S%,(0) at g in terms of Vy = (V);,...,V/,), where N = nT, and then

applying Lemma A.2. Let z; be a T' x 1 vector of element 1 in the tth position and 0
elsewhere, and define Zy; = 2 @ I,, Zy = %(ZT ® Ip), and 2%, = Zny — Zn. Thus,



Vot = Zy, Vv and Vig = Vg — V= Z3,Vy. The AQS function S& ,(0) at ©¢ takes the
form:
HlltVN, t=1,...,T,

S511(80) = { Iy, Viy + Vi &, Vy — T240(Gry), t=1,..., T, (B.1)
Vi oV — 20

where Ty = 25 2%, Xot, WMot = 2 230t Pt = 5 Zni Gl 23, and ¥ = 55 St 23 2%
Applying Lemma A.2 with ¢, ¢,; and A, replaced by Vy, II1; and IIy, ®, and ¥, we
obtain the VC matrix of the AQS function:

{f(O>H1t;O7H18)}a {f(Oaﬂlt;q)mHQs)}) {f(O>H1ta\Ilvo)}
Ysr1(00) = | ~, { (@, Moy; Dy, Ias) },  {f(Ps, oy ¥,0)}
~, ~, f(¥,0;¥,0)

This expression can be reduced to that given above, but it greatly simplifies the calculation.

B.2. Panel SL model with two-way FE. Letting 0%, = G:.(X},0: + ¢) and
gy, = diagv(G},), as the AQS function takes a similar form as that for 1FE panel SL

model, the negative Hessian, Js12(00), also takes a similar form:
Jpp = blkdiag{ > X*’X*t} — {ﬁX;;;X:;S},

nnt nnt

Ing :blkdiag{a WY ) X b — {75 ( 7 (WaY) X5}

JM:blkdiag{ig( ) (WY + Tern(Gi2) ) — {Tz SY) (WaYe)

n - nt n - nt

J 2p = { V*IX;:t}, J027\ _ {01 W*Y* t} J 2,2 = _ (=111 + 071823;1 ‘77#‘77;5

n nt 2061

As the derivation of the expected negative Hessian matrix involves only the first two
moments of the transformed errors which are the same as the first two moments of the
original error, the expected negative Hessian matrix, Is12(0g), also takes a similar form as

that of 1IFE panel SL model and contains the following components:

Tpp = Jpp, Iap = blidiag{ L X5} — {72mi X0}
Iy = blkdiag] gnﬁ’m}iﬁrTTltr GriGr)} — {TU277;/167758}

IGQﬁ_Otk7 o2\ = {T ltr G* } I,2,2 _w

200

The derivation of the VC matrix of the AQS function, however, is different from that
of one-way panel SL model due to the involvement of 3rd and 4th moments of the errors.
The elements of the transformed errors V,); may not be totally independent unless the
original errors are normal and their 3rd and 4th moments may not be constant. Thus,
one needs to work with the original error vector V,,; through V%, nn— 1Vat. Using

the results: (i) (Ip—1 — )\tF’ A WaFpp-1)™? F;Ln 1 (I )\tW) 'Fn-1 (Lee and
Yu, 2010, Lemma A.2), and (i7) for a row normalized W, F i Wadn = F n—1Wr and



Gr(M) = F) o 1Gn(M)Fyp—1 and gy = diag(Fnn-1G;(M)F),,,_1), we obtain the VC
matrix Ygra(00) = Is12(00) + Qs12(00), where Qs12(0¢) has components:

pp = Ophxrky Qap = bikdiag{ T gm Fon-1X5 } — { Fzos 190 Frn-1X0 )
O = blkdiag{ =5 2(T L Yy n—19mt + (TT) kg gne — (GG }
—{Fy (anAn 1Gns + G Fnn-17ns) — atr(GriGg) by
Qp2p = {O;k}, Qy2\ = {(TTQDQ rdiag(Jy,)diag(Fnn—1G. F, 1 }, Qp252 = (zLTTa}l) K.

Similarly, ¥s12(0¢) can be obtained by first expressing S ,(00) in Vy, through V3, =
7% * I o
F?Q,anZEVtVN and Vnt = Vnt — Vn = Fqlm,nflz]\;tVN:

m,Vn, t=1,...,T,

Ss12(80) = Iy, Vy + Vi@, Vy — T2240(G), t = 1,..., T, (B.2)
Vi OV — (=0

where I, = 2 ZJOVtan 1 X

nts

H2t = UigZ]i[tFn,nfln:Lta (I)t = *ZNtan 1G nn 1Z]o\;t7
and ¥ = 204 thl ZNtan_an,n_lZ]O\;t. Then, applying Lemma A.2 with €, ¢,y and A,
replaced by Vi, IT;; and Iy, 4, and ¥ to give Yg12(00) in an identical form as 3gp1(00).

B.3. Panel SLE model with one-way FE. Let D,,; = —d;%Dm = M) Bpi+ B, M,

We have the components of the negative Hessian matrix Jgg1(00):

Jpp = blkdiag{ kX DXt} — { 5 X0 Dty Do Xons

Jpr = blkdiag{—2 Dt WYy } — {—2 LDt Dy Dy s Wi Y b
Jpp = blkdiag{L XntDntBnt Wt} — {% 2 X}, DD, 'Dys Byl Vs )
Ty = blkdiag{—Q Wi Yi) Dyt (Wi Ynt) + tr(RnGry) b

{ (WnYnt) DraDy, D (Wi Ys) }5
J;\p:blkdlag{ (Wi Ynt)' Dot By Vit + tr[Dy ' Dy G}

{ (W, Ym DDy Dy By Vi + tr[D; 1 Dy Gy Dy D]
Jp;\:blkdlag{ (WaYnt) Dt B Vi } — {5 WnYnS)’DnSDglbntB;mt};
Jop = blkdiag{Z; v’ H!  Hypy Vi + tr(HZ, + D;lM;Mn)}

—{ LV H3 By, ' Bl HE Vi + tr(Dy, Bl M Dy D) ¥
Jop = {4 X B, Vs JUQA:{T(WHYM )Y BV, }
a2p = {[73 étHnt‘N/nt}§ Jp242 = *W 06 Zt 1 V,

Letting G = Bnthth , the expected negative Hessian matrix Isgr1(09) has the

components:



Ipp = Jpp, Ing = blkdiag{;?ngpntxnt} - {O_LgngDmD;LleXm}, Iop = Org
Iw = blkdiag{aignjltDnmm + t2[Snt (p) G5, Gt } — {aigngtDnthansnns},

Inp = blkdiag{tr[Gl,Sni(p)HEyl b Ippge = —20 4 o1 L trSu(p)

1
20y

Ip?\ = blkdiag{tr[é';ltsnt(p)HrsztSnt(p)]} - {tr[G;sDnsmglbntD;l]}
Ipp = blkdiag{tr[HZ,Sni(p) Hnt — ButDy, ' Dy By Hgl} + {tr[BryDy, ' DyysDy, ' Bl Hype] )
L2g = 0y, Izy = {Uigtr[Rm(p)Gm]}, Iz, = Ui%tr(sm(p)Hn ).

To derive Ygie1(00), we have, Vit = Vit (Bos Aoy Po) = Vit — ButDy ' S8 Bl Vie =
Z3, Vi, where Z, = [Z; — BuD; (I @ I,)By] and By = blkdiag(Byi, ..., Bar), and
WYt = Gt (Xt B0 + cn + B;tl Vat) = Nt + GntB;tl Z5, V. These lead to,

I, Vy, t=1,...,T,

H/ VN +Vl q)ltVN —tr(R tG t), t= 1,...,T,

SsLe1(00) = * N e (B.3)
V/]Vq)QtVN — tI‘(SntHnt), t= 1, ey T,

VOV — 250

202

_ 1 o _ 1 o _ 1 —17 v ! 7ol _
where Iy = 528, BuXut, Uoe = 525, Buthues @10 = 5 ZniBo" Gy Bl Zi, @ =

2 25 e Z,, and U = 50y ST Z8, 7%, Applying Lemma A.2 gives:

Ysie1 (o) =
{f(0,1114;0,111,)}, {f(0,Iy; @14, 1025)},  {F(0,I01; P2s,0)},  {f(0, 11145 ¥,0)}
~, {f(®1e, Mog; @15, Tas) b, { f(Pre, Hap; P25, 0) },  { f(P1e, 12r; ¥, 0) }
~, ~, {f(®2,0;P9,,0)},  {f(P2,0;%,0)}
~, ~, ~, f(¥,0;,v,0)
B.4. Panel SLE model with two-way FE. Let D;, = —34- Dy, = MyYB;y, +

B M. We have the components of the negative Hessian matrix Jsgr2(00):

Jop = blkdiag{aigxggz);txgt} — {%X*/ntD;tD;;_lD;sX;S};

Jpn = blkdiag{ L XDL WY} — { S X0 DLD; DL WYL
Top = Blkdiag{ h X035 B Uik — { & XDy Dy B Vi)

n-nt

Ja = blkdiag{ 55 (WiV) Dy (WY + tr(R, G }

— {5z WY Dy Dy (Wi Yo)

n-nt n-ns



Jrp = blkdiag{ F (WiY,0)' Dy, Br Vi + wlDy DG}

—{ o (WY Doy D5 By Vi, + 6Dy D3, Gy Dyl
Jon = blkdiag{ J (W1Y,0) Dy Bry Vi k = { s (WY DDy Dy B Vi b
Jop = blkdiag{ 5Vl H Hy Vi + te(H)7 + Dy MY M) |

— Vil Hy B Dy B Hs Vi + (D B MDDy )

Joop = LI XABAVA Y Jon = { OV BV

n*nt
Jo-Qp - {%V;ZHZtV;t}a J0.20.2 = —w + 1 Zthl ‘7*/~*

204 o6 nt Vnt*

The expected negative Hessian matrix, Isgr2(00), has the components:
I = Jpp, Iap = blkdiag{aign;"D;tX,’;t} - {;%nZ’DZtDZ_IDZsXZs}; lpp = 0;
L = blkdiag{%gU%D;tht + tr[Sp, GriGrgl b — {UigU;;D:ztDZilD:sUZs};
I?\p = blkdiag{tr[é*/ntS;tH;ﬂ}; 10202 = _% =+ U%% Zle tI‘( ;t);
Ipx = blkdiag{tr(Gy, Sy HyiSn) } — {tr(Grs D D5 Dy Dy~

Ipp = blkdiag{tr(H:S%, HY, — B DE L D: Bl ' HE) Y + {tr(Br,Ds~ D5 Di LB 1)
Ipag = 0; Ipon = { te(RyGr) b5 Tozp = { 5o tr( S5 Hop) }-

To derive Xsg2(00), Nﬁkt = ~1:<t([307 Ao, po) = V=B D! 23:1 BV = Fpn 1 Z3,Yn,

ns'ns n,
and WY = Gy (X7 B0 + ¢y + By ' Vi) = iy + G:LtB:‘LZIF;l,n—IZEVtVN7 leading to,
,Vy, t=1,...,T,

ngtVN + V/N(I)ltVN — tI‘(R:;tG;;t), t=1,...
VDoV — t(S%,HE), t=1,....T,
VIV — (n—1)(T—1)

20-2 )

S;LEQ(GO) = (B-4)

\

where 1Ty, = %ZﬁtB:LtX;;tv Iy = ;%Zﬁ‘tBﬁmfm Py = %ZﬂthgllG;;B;/tZﬁt,’ Py =
T .

gilgzﬁtH;tZX;kt/? and ¥ = ﬁ Zt:l Zﬁtzjo\;}la with Z]ift = ZNtFn,nfl and Zﬁt = ZX[tFn,nfl-

Applying Lemma A.2 with ¢, ¢,; and A, replaced by Vy, I and Ils, and @14, o and

U, we obtain the VC matrix Xgrga(09) taking identical form as Ygrei(0g) given above.

B.5. Panel SLE model with wto-way FE and homogeneous p. The quantities
Yy, X5, cn, Wy, MY and V)%, are defined similarly as in Model (3.11). Letting 7}, =
Gr (X5 B+ c) and gi, = diagv(G},). The AQS function of 8 = (B, N, p, 0% is

LXABY(0)Vi(BAp), t=1,....T,
LWrYs) B (0)Vi (B A, p) — Tttr[Ga(\)), t=1,...,T,
LS VAB A ) HE(p)Vi (B A, p) — (T — D)te[H(p)],

|~ 5 S Vi (B V(B ).

S§LE2(0) - (B-5)




The expected negative Hessian matrix, Isig2(00), has the components:

IBB = Jﬁﬁa IB)\ = blkdlag{ X*/D*nnt} {Tcr X*IDnnns} B = 0
D = blkdiag{ bni Dy + L tr(GriGh) } — {gaz i Dimis )

?\p = {Etr */tH*S)}7 IPP = (T - 1)tr(H7*LSHr*L)v 10202 = "(27:7_31)7

Iy2g = 0, T2y = {5 1m~ Gi)bs Iz, = Ta_gltr(H,’;)

The representations for AQS function at 6y in terms of Vy = (V,1, ..., V1) turn out to be
very useful. They lead to a simple way for estimating the variance-covariance (VC) matrix
of the AQS vector. Thus, one needs to work with the original error vector V,; through
Vi = Fhna
define Zny = 2z ® I, Zn = T(ZT ®1I,), and Z3, = Zni — Zn. the AQS function at 6y can

be written as

Vat. Let z; be a T x 1 of element 1 in the ¢th position and 0 elsewhere, and

I, Vy, t=1,...,T,

. I, Vy + V&, Vy — T0(Gry), t=1,...,T,

Ssre2(00) = T (B.6)
VEV(I)%VN — (T — 1)1:I‘(H;:),

V?\;\I/VN . (n—l)(T—l)’

202

Dy ZﬁtH;ZfV*g, and U = 2;3 thl ZJOWZJOV*;, with Zj(,t = ZNtFmH and 2§, =
Z31Fnn—1. Applying Lemma A.2 with €, ¢,; and A,; replaced by Vy, Il;; and Iy,
®4, P9 and ¥, we obtain the VC matrix of the AQS function:

Ysie2(6o) =

{£(0,1114;0,1015) }, { f(0,I1y; P14, IM0s) },  {f(0,10145P2,0)},  {f(0,14;¥,0)}

~y {f((@lta H2t; (b157 st)}, {f(q)ltv H2t; @2, 0)}7 {f((bltu H2t; lIl) O)}

~y ~y f((I)270;cI>270)7 f(¢)2707q170)

N’ N? N? f(w? O; \P7 O)

B.6. Panel SE model with two-way FE Let Dy = —7%-D;, = M, By, + By M,
and the quantities Y., X, ¢, M) and V, be defined similarly as in Model (3.11). Let

nty = Gi( X568+ ¢) and g, = diagv(GE,). The AQS function of @ = (B/, p’,02)" is

HXAB(o)ViB.p), t =10 T,
S3e2(0) = § Vi (B, ) Hi(p) V(B 0) — trlSi(@)Hy ()], t=1,.... T, (B7)
— =D | ST VB, 0) V(B p),

where V5 (B, p) = Byy(p)Usi (80)— B (p0) D1 (p) Xoo_y Djy(ps)Urs (Bs) is defined similarly



to that in S g,(0) but with Usf(8:) = Y., — X, 5.

The expected negative Hessian matrix, Isg2(00), has the components:
Tpp = blkdiag{ L XD X5} — { L XADLDE D X5, Top = 0
Ipp = blkdiag{tr(H}; S5 Hyy — BryDy ' Dy By 'Hyy) b+ {tr(By Dy Dis D By Hy) b
R —1)(T-1 T X
102[3 = 0; Iazp = {O-Lgtr(sntﬂnt)}; Iy252 = —(p-U(T-1) + O-Lé‘ Zt:l tr(smt)'

z)
20

Similarly, the AQS function at 6y can be expressed in terms of the vector of original er-
rors Vy = (Vp1,. .., Vi), which turns out to be very useful in finding the analitical expres-

sion of its VC matrix. Thus, one needs to work with the original error vector V,,; through

= F Vi Vi = Vi(Bo,po) = Vi — B S By Vi = Fl_ Z%, V. The

n ns - " ns

AQS function at 6y can be written as

,Vy, t=1,...,T,

Ssea(00) = § V&,V — tr(SE HE,), t=1,...,T, (B.8)
Vi OV — =D

where Iy = 5 2%, B, Xy, @0 = 5 23 H3y Z3, and W = 50 SL L Z 23, with Z%, =
InNtFnn—1 and 2%, = Z3;,Fnn—1. Applying Lemma A.2 with €, ¢,; and A,; replaced by
Vo, Iy and ®9, and ¥, we obtain the corresponding VC matrix Ygga(00):

{£(0,111;0,1114)}, {/f(0,I11;®,,0)}, {f(0,Iy;¥,0)}
ESEQ(BO) = ~ {f((I)t,O;(I)S,O)}, {f(q)taoa\:[jao)}
~, ~, f(¥,0;¥,0)



Appendix C: Proof of the Theorems

Proof of Theorem 2.1. From (B.1), we see that the AQS function at the true

parameters contains both linear and quadratic forms in the vector of original errors Vy,

I, Vy, t=1,...,T,
S514(80) = { Iy, Viy + Vi &, Vy — T2240(Gry), t=1,..., T,
Vv, oVy — 2D

202

where Iy = 528, Xnt, ot = 2 Z%mt, © = 5 ZniGr 23y, ¥ = oot Y1 23 2%y
Ine =2 ®In, 23 = Znt — Zn, Zn = #(lr ® I,), and z is a T x 1 vector with tth
element being 1 and other elements being zero.

First, as the elements of X,,; are non-stochastic and uniformly bounded (by Assumption
3), it is easy to see that the elements of IIj; are uniformly bounded. By Assumption A.4
and Lemma A.1(i), Gpt is uniformly bounded in both row and column sums. Thus,
the elements of 1, = Gpni(XntBro + ¢n) are uniformly bounded by Assumption A3 and
Lemma A.1(iii). It follows that the elements of Ily; are uniformly bounded. Now, from the
definition of Zn; and Z3;,, it is easy to see that ®;and ¥ are uniformly bounded in both
row and column sums. Thus, under Assumptions 1-4 the central limit theorem (CLT) of
linear-quadratic (LQ) form of Kelejian and Prucha (2001) or its simplified version (under
iid errors) given in Lemma A.3 can be applied to the elements of Sg ;(00). Therefore, an
application of Cramér-Wold device under a finite 7" leads to, as Ng — oo, ﬁSng(Go) D,
N (0, limp, oo §73s11(00)). It follows that by (2.11) and (2.12),

C[NLOISLl(90)]_1\/%5%11(@5]_‘1) & N(O, tho—>oo ESLi(GO))-

It left to show that 5-[/se1(OsL1) — Tse1(60)] —— 0 and -[Ssr1(Osw1) — Tsra(69)] —— 0.
Under the /Ny-consistency of Ogpy and with the analytical expressions of Isp1(0¢) and
Ys11(0p) given in Appendix B.1, the proofs of these results are repeated applications of
the mean value theorem (MVT) to each component of Nio[fsm(ésm) — Is11(00)] and each

component of Nio[zsm(ésm) — Ys11(09)], with the key results to note:

7 (EnGnin — caGricn) = 0; § =y =5 0; & — K == 0. (C.1)
See the end of Section 2.1 for details. See the proof of Theorem 3.2 for details in a more

general setup. [ |

Proof of Theorem 2.2. From the derivations in Section 2.2 and further results in
Appendix B2, we see that all the quantities in the 2FE panel SL model relate to the corre-
sponding quantities in the 1FE panel SL model through the orthonormal transformation
matrix F, ,—1. Thus, the proof of Theorem 2.2 is carried out in a similar manner as that

for 1FE panel SL model. For the results similar to those in (C.1), see the end of Section



2.2 for details. u

Proof of Theorem 3.1. Again the AQS function at the true parameters can be

expressed in terms of linear and quadratic forms in Vy as shown in (B.3),

m, vy, t=1,...,T,

I,V + Vi@ Vy — tr(RugGoe), t=1,...,T,
VI PV — t1(SpeHpg), t=1,....T,

VoV — 2D

202

Sng(eO) =

where 11y, = ULSZ]C{/tBntXnt’ Iy = U%zJZ]O\[tBntT/ntu Oy = %SZNtB;tllG;LtBéth\;“ Dy =
1 1 T _

(TgZ]C;ftHntZ]C{;t’ v = Fthl Z;,tZ}’\;t, Z]O\;t = [Z],Vt - Bntmnl(ﬂf ® In)By] and By =
blkdiag(By1, ..., Byr). Under Assumptions 1-5, it is easy to verify that each component
of S g1(0p) or a linear combination of the components of Sg; ¢, (0¢) satisfies the conditions

of Lemma A.3, leading to the asymptotic normality result:
1 -1_1 ox_(d D . -
C[WOISLM(GO)] \/T—OSSLM(BSLM) - N(Ou lim vy — 00 h:SLEl(eO))-

The proofs of NLO[ISLEl(éSLEl) —Iste1(00)] —= 0 and NLO[ESLEl(éSLEl) —Ys1e1(00)] = 0 are
again carried out by repeated applications of MVT under the \//Ny-consistency of Osiei.
For details on the estimation of ¢,, the skewness v and excess kurtosis k for the 1FE panel

SLE model, and the consistency of these estimates, see the end of Section 3.1. [ |

Proof of Theorem 3.2. Consider the AQS function S§,(0) given in (3.13). We

need to show that \/LNfosgLEg(eo) L, N(O, lim v, 00 NLOESLEQ(GO)), as Ny — oco. We have

7% — 17 * * T)*— T */ /%
Vnt = Vnt(|307 pO) = Vnt - BntDn ! Zs:l Bn;Vns = Frlz,n—lzlo\;tVN’ and

*\ % * * * —x1y /% * * —1
WnYnt = Gnt(XntﬁtO +c, t+ Bnt Vnt) =Mt + GntB:Lt Frlz,n—IZEVtVN‘
Hence, the AQS function at true 8y can be written as

I, Vy, t=1,...,T,

Ssre2(00) = ) _— (C.2)
VNCI’%VN — tr(SntHnt)? t=1,...,T,
Vi, Wy — (DT

202

where Ty, = Jig N B X, Mo = (%g N Brine P = ?%ZﬂtB:L;UG%BZ;&Zm,’ Py =
%ZﬁtH;tZﬁt’, and ¥ = % S Z5 28, with Z%, = ZniFup—1 and Z = 2%, Fon-1;
Znt = 2 ® I, and z; is a T' x 1 vector with tth element being 1 and other elements being
zero; and ZY, = [Zy, — B, Y (I @ I,)By] and By = blkdiag(Byyi, .. ., Bur).

First, as the elements of X,,; are non-stochastic and uniformly bounded (by Assump-
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tion 3), the row and column sums of B}, are uniformly bounded in absolute values by
Assumption 5 and Lemma A.1. It follows that the elements of II; are uniformly bounded.
By Assumption A.4 and Lemma A.1(7), G, is uniformly bounded in both row and column
sums. By Lemma A.2 of Lee and Yu (2010),

(In = AF}, s WinFpn1) "' = Fp 1 (In = AW,) "' Fy ey (C.3)

We have A% ! = F!

n,n—lAr:tan,nfl- Thus, G}, is uniformly bounded in both row and

column sums by Lemma A.1(iii), and the elements of 1}, = G}, (XG0 + ¢};) are uni-
formly bounded by Assumption A3. It follows that the elements of Ils; are uniformly
bounded. Similarly, B}, = Fr’mlegtan’n_l, and therefore the elements of H, is uni-
formly bounded in both row and column sums. With these and the definitions of Zyy
and 7%, it is easy to show that ®;, ®9; and ¥ are uniformly bounded in both row and
column sums. Thus, under Assumptions 1-5, the central limit theorem (CLT) of linear-
quadratic (LQ) form of Kelejian and Prucha (2001) or its simplified version (under iid
errors) given in Lemma A.3 can be applied to each element of S§g,(00) to establish its
asymptotic normality. Then, an application of Cramér-Wold device under a finite T gives,
A=Ste5(80) = N (0, limng oo 7> Tstea(80)), as No — oo, Then, by (2.11) and (2.12),
Cl; Tsuea(80)] ' =Sz (Bstea) - N (0, lim g, oo Esrea(00)).

It left to show that, as Ny — oo,

(a) NLO[ISLE2(é~SL1) — Iste2(80)] == 0,
(b) NLO[ZSLE2(BSLE2) — Yg14(80)] == 0.

Under the v/Ny-consistency of éSLEQ and with the analytical expressions of Isiga(60)
and Ygrpa(00) given in Appendix B.4, the proofs of these results are repeated applications
of the mean value theorem (MVT) to each component of NLO[ISLEQ(éSLEQ) — Is1e2(09)] and
each component of NLO[ZSLEQ(QSLEQ) — Ys1e2(00)].

To show (a), we pick a typical element of Isig2(0¢) given in Appendix B.4,
L = blkdiag{%gni’tl?émﬁt + tr(S; G _Zt)} - {T%U;;D;tm;_lDis%s}

to show that Nio(ff;\;\ — 1) L,0. The proofs for the other components follow similarly.
Recall: 15, = Giy(XzuBro + €3, Da(p) = S0y Do)y Do) = By (00) B (po), Bi(pe) =
In—1 — My, Siy(p) = In—1 — Bry(p)D; " (0) Bryy(pe), and Gy = By Gy Byt

By Assumptions 4 and 5 and Lemma A.1(7), it is straightforward to show the two
matrices, D} (p:) and G, (A, pt), are uniformly bounded in both row and column sums
in a neighborhood of (A, pio) for each ¢, and so are their derivatives. Clearly with the
properties of D (p;) and a finite T', D} (p) is uniformly bounded in both row and column
sums in a neighborhood of py, and so are its derivatives.

By Assumption 5 and Lemma A.1(i), D}~1(p;) is uniformly bounded in both row and

11



column sums in a neighborhood of py for each ¢, and so are its derivatives. By a matrix
result that for two invertible matrices A,, and B, (A, + B,) ™' = A 1 + ﬁA; 1B, AL
where ¢ = tr(B,A, 1), we infer that for a finite T, D (p) is uniformly bounded in both
row and column sums in a neighborhood of pg, and so are its derivatives. It follows that
Sx.(p) is uniformly bounded in both row and column sums in a neighborhood of py, and
so are its derivatives. Noting that I, = I}\}\(éSLEQ) and Iy = Ix(0g), we have by MVT,
for each component of Iy(0) denoted as Iy4s(0), t,s =1,...,T,

7 Des(Oste2) = 5= Tanes(80) + [ 23 Ianis(0)] (Bsiez — 00),

where 0 lies elementwise between éSLEQ and 0g, with 0 being \/Ny-consistent as éSLEQ is.
With the above argument and Lemma A.1(i7), we have NLO%I;\MS(Q) = Op(1). Therefore,
3 [Ian s (Osie2) — Tanes(80) = 0p(1) for each (t,s), and R=[Ian(Oste2) — Ian(60) = 0p(1).
Note that the easily proved results such as NLO(EnGntEn — cnGpicp) P, 0, has been used.
The proofs of the other components of NLO[ISLEg(éSLl) —Is11(090)] 2.0 proceeds similarly.

To show (b), we again choose the most complicated term, f(®q;, Io; Py, 12s) that
corresponds to A, to show in details where the quantities involved are given at the end of
Appendix B.4: IIy; = Uig N Bt X, oy = 0%2) N Bring P = %Z}k\/tB:L;l/G%BZ,tZXﬁ?
and $y; = ﬁZX}"tH:;tZX}k{, where Z%, = ZniFnn—1 and Z3;, = Z3;, Fun—1-

By (A.l)0 in Lemma A.2, replace Ay, by @14, any by ¢1; = diagv(Piy), and ¢y by Iy

(similarly for the quantities with subscript s), and note us = v and pg4 = K, we have,
f((I)lt; [o; @y, HQS) = Uétr[(q)llt + (I)lt)q)ls] + "Y(blltHQS + 7Hl2t¢ls + K¢,1t¢ls + UgHIQtH%-

Applying MVT and following the similar arguments as in (a), the convergence of the
relevant terms can easily be proved, e.g., Nio{tr[(zlg’lt + &) D] — tr[(®, + D) P1L]} =
op(1), Nio[ 1 los — ¢, as] = o0p(1), ete. Furthermore, 63z, — 05 = 0p(1), and hence
Gaign — 0 = 0p(1); for the estimates obtained from Lemma 4.1(a) of Yang et al. (2016),

it is easy to show that ¥ — v 2, 0and & — k -2 0. Tt follows that
[F (@16, Tag; P, Tag) — f(@1r, Mot B, Tz )] = 0p(1).

Similarly, the convergence of the other elements of NLO[ESLEQ(éSLEQ) — YsLe2(00)] is proved.
| |
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Appendix D: Estimation of Null Models

Homogeneous Panel SL model with 1FE. The construction of the AQS tests re-
quire the estimation of the null model, which could be the homogeneous model as specified
by HH in (2.2), the model with homogeneity in 3’s only, the model with homogeneity in
N’s only, or the model with change points as specified by H§F in (2.3), etc. Each null model
can estimated by solving the simplified AQS equations by simplifying Sg; ;(0) according to
the null hypothesis, which is clearly inconvenient to the applied researchers. To facilitate
practical applications of our methods, a general Lagrange Multiplier (LM) method is
introduced. Let Isp1(0) be the objective function to be maximized subject to C0y = 0,

with Sg,(0) given in (2.7) being its partial derivatives. Define the Lagrangian
Zo11(0) = ls11(0) — ¢'(CO),

where ¢ is a kj, x 1 vector of Lagrange multipliers. Taking partial derivatives and equating
to 0, we have k, equations a’%“ = S§1(0) — C'¢ = 0. Together with the k, constraints
C0 =0, we have k; + k, equatlons for the k4 + k, unknowns © and ¢, leading to

?SM = arg 554(0) = 9 =10 (A.1)
¢sL1 cCo=0

To further aid the applications, we make the Matlab codes available upon request, or
online at http://www.mysmu.edu/faculty/zlyang/SubPages/research.htm.

Finally, from the expressions of Isp1(09) and Xs11(0¢) given in Appendix Bl, we see
that they both contain ¢, which is estimated by plugging the null estimates Bsm and Agr1
into ¢,(B,A). Furthermore, in case of nonnormality, the VC matrix 3gp1(0¢) contains two
additional parameters, the skewness v and excess kurtosis k of the idiosyncratic errors
Vit and their estimates are obtained by applying Lemma 4.1 (a) of Yang et al. (2016).

However, as the hypothesis H{® given in (2.2) and the corresponding homogeneous
model plays an important role, we present some details to show how 5§ ;(0) is simplified
and how it leads to constrained AQS estimators with the desired asymptotic properties
needed in the implementation of the AQS tests. This simplified AQS function is also
useful in Monte Carlo simulation for computational efficiency. Let 6 = (5, \,02)'. The
constrained estimate of ¢, given (3, \) becomes ¢ (8, \) = A,(\)Y,, — X,,3 where Y,, and
X, are the averages of {Y;,;} and {X,,;}, respectively. Along the same line leading to (2.7),

one can easily show that AQS function for the null model takes the form:

L XSVE (BN,
Ssu1(0) = LS (WaYS) Ve (8,A) — (T — Dtr[Gr ()], (A.2)
e S RN VA (VA TAA(: Y

V(B A) = An( N Yot — Xt — E(6,0) = An(NYS — X208, where Y = Yy — Y, and
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X2, = Xyt — Xy Solving the estimating equations, Sg,(6) = 0, gives the null estimator
0s11 of 6. The process can be simplified by first solving the first set of equations and the

last equation of (A.2), giving the constrained estimators of 8 and o2 (for a given \) as
Bsna (V) = (/o) Xep X)) 7E 20y X An(\Yig,
531N = 7= it Vit (Bsa (A, MV (Bsn (M), M)

Substituting Bs.1(\) and 62, (A) into the middle equation of (A.2) and solving the resulted
concentrated estimating equation lead to the AQS estimator Ast1 of the common A, which
in turn gives the AQS estimator Bsm = BSM(S\SM) of the common 3, and the AQS estimator
62, = 62.,(As1) of 0. Finally, the AQS estimator of 6 is sy = (844, Asr1,ar4). The
proposed null estimator based on the AQS function provides an alternative to the direct
and transformation approaches of Lee and Yu (2010). It can be shown to be asymptotically
equivalent to the estimator based on an orthogonal transformation given in Lee and Yu
(2010). Thus, fg.4 is /(T — 1)-consistent for 6.

Homogeneous Panel SL model with 2FE. The LM procedure presented at the
end of Sec. 2.1 for 1FE panel SL model directly applies to 2FE panel SL model to give
constrained estimates of various null models. Again, the homogeneous model specified
by HE" in (2.2) and its AQS estimation play important roles in studying the asymptotic
properties and performing Monte Carlo simulations, and therefore some details are given
on the estimation procedures based on the simplified AQS function. The constrained
estimate of ¢, given (3, ), becomes &°(8,\) = A%(\)Y,* — X3, where Y,* and X} are
the averages of {Y,%,} and {X},}, respectively. Along the same line leading to (2.15), we
have the AS or AQS function for the 2FE panel SL null model:

LS XV (BN,
Ss2(0) = § & X0 (WY Vi (8,0) — (T = DG (V)] (A.3)

n-nt

— DD L S Vel (B )V (B,),

where V2 (8, A) = A5 (A, — X508 — G°(8,\) = An(\)Yi? — X228, Vg = Yy — V¥ and
X = X}, — X*. Solving the estimating equations, Sg,(#) = 0, gives the null estimator
fs1o of A, which is obtained by first solving the first and last sets of equations of (A.3) to

give the constrained estimators of 3 and o2, given )\, as

Bsa(\) = (2 Xad' Xo) ™' ol Xer AR (VYer

552N = sy Liet Vit Bsi2(N), MVir (Bsa (V) V),
and then substituting Bsp2(A) and §2,(\) into the middle equation of (A.3) and solving
the resulted concentrated estimating equation to give the null AQS estimators Asto of the

common A, which in turn gives the AQS estimator BSLQ = BSLQ(;\SLQ) of the common (3, and

the AQS estimator 62 gy = 63.5(Asr2) of 2. Denote the AQS estimator of the parameter
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vector # in the null model as fspo = (Bhg, As2; Gas)

The proposed null estimator based on the AQS function provides an alternative to the
transformation approaches of Lee and Yu (2010). It can be shown to be asymptotically
equivalent to the estimator based on an orthogonal transformation given in Lee and Yu
(2010). Thus, fsro is (n — 1)(T — 1)-consistent for . However, the AQS approach
is more general as it allows the estimation of a non-homogeneous model. Finally, the

estimation of ¢, and v and x contained in Is12(09) and Yg12(0¢) proceeds similarly.

Homogeneous Panel SLE model with 1FE. The general LM procedure presented
in Sec. 2.1 can be applied to estimate a null (1IFE-SLE) model based on S% 5, (0) and
a properly specified linear contrast matrix C'. To estimate the homogeneous null model,
whhich is important for the asymptotic arguments and for Monte Carlo simulation, let § =
(B, X, p,0%). Under Hy, the constrained estimate of ¢, given (3, ) becomes ¢2(3,\) =
An(N)Y, — X, 3, and the error vector becomes V(B M p) = Bulp)[An(N)YS — X2,1],
where Y2, = Y — Yy, X2 = Xpt — Xy, and Y, = TZt:l "+ and X,, = TZt:l
Along the same line leading to (3.7), one can easily show that AQS function for the null

model takes the form:

(45T X8 BL() V(8 A ),

ﬁ > (VoY) B, PV (B, A p) — (T = 1)tx[Gn(N)],
LS VB A p) Ha(p) Vi (B, X p) — (T — D)t Ho (p)]
(2020 4 S S V(B V(8. 0).

SgLEl(e) = (A-4)

Solving the estimating equations, Sz (#) = 0, gives the null estimator fsig; of 6. The
process can be simplified by first solving the first set of equations and the last equation of

(A.4), giving the constrained estimators of 3 and o2 (for given A and p) as

Barer(\, p) = (i XiD () X2 Y X Dn(p) An(NYi,
UgLEl()‘ p) = m Zt:l nt (ﬂSLEl()‘ap)aAvp)fi;t(BSLEl(Aap)’)Up)'

Substituting Bsie1 (A, p) and 62.g, (A, p) into the middle two equations of (A.4) and solving
the resulted concentrated estimating equations lead to the AQS estimators (S\SLEla PSLEL)
of (A, p), which in turn give the AQS estimator Beigr = BSLEl(S\SLElgﬁSLEl) of 3, and
the AQS estimator 63z = 62z (Aste1, fsiet) of o2, Finally, the AQS estimator of 6 is
Osigr = (BéLEl,S\SLEl,&gLEl)’ , which is asymptotically equivalent to the estimator based
on an orthogonal transformation given in Lee and Yu (2010), and thus is /n(T — 1)-

consistent. To estimate ¢, v and k, refer to the discussions at the end of Section 2.1.

Homogeneous Panel SLE model with 2FE. Again, the general LM procedure
can be adapted to estimated a null (panel SLE-2FE) model based on the AQS function
S&1e0(0) and a properly specified linear contrast matrix C. To estimate the homogeneous

null model, let § = (3, )\, p,02)’. Under Hy, the constrained estimate of ¢, given (3, \)
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becomes ¢o*(3,\) = AX(N)Y,* — X3 where Y, and X} are the averages of {Y,} and
{X};}, respectively. Along the same line leading to (3.13), one can easily show that AQS

function for the null homogeneous model takes the form:

LT XS B (0) V(B A p),

LS WY, ) BE (0) VS (B, A, p) — (T — tr[GE(V)],
% 23:1 ‘77%5*/(/87 )‘a P)HZ(P)vﬁt* (/87 )‘a P) - (T - 1)tr[H;:(>‘>]7
R AN Al (WA (W

ngm(e) - (A-5)

Vi (8,0 0) = B[4 (VYo — X8 — &7(8,0)] = Bi(p)[An (WY — X757 ], where
Yo =YY — Y and XoF = XF, — X*

=Y »o— X, Solving the estimating equations, Sgig,(6) = 0,
gives the null estimator Og gy of 0, which is obtained by first solving the first and last sets

of equations of (A.5) to give the constrained estimators of 3 and o2, given X\ and p, as

Bsie2(A, p) = (3i—y Xoi' By (p) B (p) X i) ™1 oLy Xoi By (p) By (p) A (NYrer
6-gLE2()‘7 P) = ﬁ Z?:l V?ft*/(BSLE2()\a P)> A P)Vr?t* (BSLED()H P)a A P)»

and then substituting fBsiga(\, p) and 625,(), p) into the middle equations of (A.5) and
solving the resulted concentrated estimating equation to give the null AQS estimators AsLE2
of the common A and psres of the common p, which in turn gives the AQS estimator ﬁsm =
BSLEQ(;\SLEQ, psie2) of the common 3, and the AQS estimator 6%z, = &gLEQ(S\SLEQ, psie2) of
o2. Finally, the AQS estimator of 6 is Og.gz = B4z AsLE2s JSLE2, O 2Ly ) - The proposed null
estimator based on the AQS function provides an alternative to the direct and transforma-
tion approaches of Lee and Yu (2010). It can be shown to be asymptotically equivalent to
the estimator based on an orthogonal transformation given in Lee and Yu (2010). Thus,

Os o is (n — 1)(T — 1)-consistent for #. Estimation of ¢,, v and k proceeds similarly.
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