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Summary

In this Supplementary Appendix, we present details on (i) the derivations of the

Hessian, expected Hessian, and the VC matrices of the AQS functions, (ii) the proofs

of the four theorems, and (iii) the estimation of the ‘typical’ sub-models including the

homogeneous models, the SLE models with homogeneity in spatial error coefficients,

and the panel SE (spatial error) models with one-way or two-way FE.

Appendix A: Some Basic Lemmas

Lemma A.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two

sequences of n×n matrices that are uniformly bounded in both row and column sums. Let

Cn be a sequence of conformable matrices whose elements are uniformly bounded. Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly bounded.

Lemma A.2 (Yang, 2015b, Lemma A.1, extended). For t = 1, 2, let Ant be n × n

matrices and cnt be n× 1 vectors. Let εn be an n× 1 ramdom vector of iid elements with

mean zero, variance σ2, and finite 3rd and 4th cumulants µ3 and µ4. Let ant be the vector

of diagonal elements of Ant. Define Qnt = c′ntεn + ε′nAntεn, t = 1, 2. Then, for t, s = 1, 2,

Cov(Qnt, Qns) ≡ f(Ant, cnt;Ans, cns)

= σ4tr[(A′
nt + Ant)Ans)] + µ3a

′
ntcns + µ3c

′
ntans + µ4a

′
ntans + σ2c′ntcns. (A.1)

Various useful special cases of (A.1) are as follows:

(i) Cov(c′n1εn, Qn2) = f(0, cn1;An2, cn2) = µ3c
′
n1an2 + σ2c′n1cn2,

where cn1 can be an n× k matrix with k ≥ 1;

(ii) Var(Qn1) = f(An1, cn1;An1, cn1) = σ4tr[(A′
n1 + An1)An1)] + 2µ3a

′
n1cn1

+µ4a
′
n1an1 + σ2c′n1cn1;

(iii) Var(ε′nAn1εn) = f(An1,0;An1,0) = σ4tr[(A′
n1 + An1)An1)] + µ4a

′
n1an1.

Lemma A.3 (CLT for Linear-Quadratic Forms, Kelejian and Prucha, 2001). Let

An, an, cn and εn be as in Lemma A.2. Assume (i) An is bounded uniformly in row and

column sums, (ii) n−1
∑n

i=1 |c
2+η1
n,i | < ∞, η1 > 0, and (iii) E|ε4+η2

n,i | < ∞, η2 > 0. Then,

ε′nAnεn + c′nεn − σ2tr(An)

{σ4tr(A′
nAn + A2

n) + µ4a′nan + σ2c′ncn + 2µ3a′ncn}
1
2

D−→ N(0, 1).
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Appendix B: Hessian, Expected Hessian and VC Matrices

Notation. For t, s = 1, . . . , T , blkdiag{At} forms a block-diagonal matrix by placing

At diagonally, {At} forms a matrix by stacking At horizontally, and {Bts} forms a matrix

by the component matrices Bts. The negative Hessian matrix J$(θ0), its expectation

I$(θ0), and the VC matrix Σ$(θ0) of the AQS function, $=SL1, SL2, SLE1, SLE2, are all

partitioned according to the slope parameters β, the spatial lag parameters λ, spatial error

parameters ρ (if existing in the model), and the error variance σ2, with the sub-matrices

denoted by, e.g., Jββ, Jβλ, Iββ, Iβλ, Σββ, Σβλ. Furthermore, diag(·) forms a diagonal

matrix and diagv(·) a column vector, based on the diagonal elements of a square matrix.

Parametric quantities, e.g., An(λt0) and Bn(ρt0), evaluated at the true parameters are

denoted as Ant and Bnt. For a matrix An, denote As
n = An + A′

n. The bold 0 represents

generically a vector or a matrix of zeros, to distinguish from the scalar 0.

B.1. Panel SL model with one-way FE. Letting ηnt = Gnt(Xntβt + cn) and

gnt = diagv(Gnt), the negative Hessian matrix, JSL1(θ0), has the components:

Jββ = blkdiag
{

1
σ2
0
X ′

ntXnt

}
−
{

1
Tσ2

0
X ′

ntXns

}
,

Jλβ = blkdiag
{

1
σ2
0
(WnYnt)′Xnt

}
−
{

1
Tσ2

0
(WnYnt)′Xns

}
,

Jλλ = blkdiag
{

1
σ2
0
(WnYnt)′(WnYnt) + T−1

T tr(G2
nt)
}
−
{

1
Tσ2

0
(WnYnt)′(WnYns)

}
,

Jσ2β =
{

1
σ4
0
Ṽ ′

ntXnt

}
, Jσ2λ =

{
1
σ4
0
(WnYnt)′Ṽnt

}
, Jσ2σ2 = −n(T−1)

2σ4
0

+ 1
σ6
0

∑T
t=1 Ṽ ′

ntṼnt.

The expected negative Hessian matrix, ISL1(θ0), has the components:

Iββ = Jββ, Iλβ = blkdiag
{

1
σ2
0
η′ntXnt

}
−
{

1
Tσ2

0
η′ntXns

}
,

Iλλ = blkdiag
{

1
σ2
0
η′ntηnt + T−1

T tr(Gs
ntGnt)

}
−
{

1
Tσ2

0
η′ntηns

}
,

Iσ2β = 0, Iσ2λ =
{

T−1
Tσ2

0
tr(Gnt)

}
, Iσ2σ2 = n(T−1)

2σ4
0

.

The VC matrix ΣSL1(θ0) = ISL1(θ0) + ΩSL1(θ0), where ΩSL1(θ0) has components:

Ωββ = 0tk×tk, Ωλβ = bikdiag
{

T−1
Tσ0

γg′ntXnt

}
−
{

T−1
T 2σ0

γg′ntXns

}
,

Ωλλ = blkdiag
{2(T−1)

Tσ0
γη′ntgnt + (T−1

T )2κg′ntgnt − 1
T tr(GntGnt)

}
−
{

T−1
T 2σ0

γ(η′ntgns + g′ntηns)− 1
T 2 tr(GntGns)

}
,

Ωσ2β =
{
0′tk
}
, Ωσ2λ =

{ (T−1)2

2T 2σ2
0

κtr(Gnt)
}
, Ωσ2σ2 = n(T−1)2

4Tσ4
0

κ.

where γ and κ are, respectively, the measures of skewness and excess kurtosis of vi,t.

Alternatively, we can find the VC matrix Σn,T (θ0) by first expressing the AQS

function S?
SL1(θ) at θ0 in terms of VN = (V ′

n1, . . . , V
′
nT )′, where N = nT , and then

applying Lemma A.2. Let zt be a T × 1 vector of element 1 in the tth position and 0

elsewhere, and define ZNt = zt ⊗ In, Z̄N = 1
T (lT ⊗ In), and Z◦

Nt = ZNt − Z̄N . Thus,
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Vnt = Z ′
NtVN and Ṽnt = Vnt − V n = Z◦′

NtVN . The AQS function S?
SL1(θ) at θ0 takes the

form:

S?
SL1(θ0) =


Π′

1tVN , t = 1, . . . , T,

Π′
2tVN + V′NΦtVN − T−1

T tr(Gnt), t = 1, . . . , T,

V′NΨVN − n(T−1)
2σ2 ,

(B.1)

where Π1t = 1
σ2
0
Z◦

NtXnt, Π2t = 1
σ2
0
Z◦

Ntηnt, Φt = 1
σ2
0
ZNtG

′
ntZ

◦′
Nt, and Ψ = 1

2σ4

∑T
t=1 Z◦

NtZ
◦′
Nt.

Applying Lemma A.2 with ε, cnt and Ant replaced by VN , Π1t and Π2t, Φt, and Ψ, we

obtain the VC matrix of the AQS function:

ΣSL1(θ0) =


{
f(0,Π1t;0,Π1s)

}
,
{
f(0,Π1t; Φs,Π2s)

}
,

{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φt,Π2t; Φs,Π2s)

}
,
{
f(Φt,Π2t; Ψ,0)

}
∼, ∼, f(Ψ,0; Ψ,0)

 .

This expression can be reduced to that given above, but it greatly simplifies the calculation.

B.2. Panel SL model with two-way FE. Letting η∗nt = G∗
nt(X

∗
ntβt + c∗n) and

g∗nt = diagv(G∗
nt), as the AQS function takes a similar form as that for 1FE panel SL

model, the negative Hessian, JSL2(θ0), also takes a similar form:

Jββ = blkdiag
{

1
σ2
0
X∗′

ntX
∗
nt

}
−
{

1
Tσ2

0
X∗′

ntX
∗
ns

}
,

Jλβ = blkdiag
{

1
σ2
0
(W ∗

nY ∗
nt)

′X∗
nt

}
−
{

1
Tσ2

0
(W ∗

nY ∗
nt)

′X∗
ns

}
,

Jλλ = blkdiag
{

1
σ2
0
(W ∗

nY ∗
nt)

′(W ∗
nY ∗

nt) + T−1
T tr(G∗2

nt)
}
−
{

1
Tσ2

0
(W ∗

nY ∗
nt)

′(W ∗
nY ∗

ns)
}
,

Jσ2β =
{

1
σ4
0
Ṽ ∗′

ntX
∗
nt

}
, Jσ2λ =

{
1
σ4
0
(W ∗

nY ∗
nt)

′Ṽ ∗
nt

}
, Jσ2σ2 = − (n−1)(T−1)

2σ4
0

+ 1
σ6
0

∑T
t=1 Ṽ ∗′

nt Ṽ
∗
nt.

As the derivation of the expected negative Hessian matrix involves only the first two

moments of the transformed errors which are the same as the first two moments of the

original error, the expected negative Hessian matrix, ISL2(θ0), also takes a similar form as

that of 1FE panel SL model and contains the following components:

Iββ = Jββ, Iλβ = blkdiag
{

1
σ2
0
η∗′ntX

∗
nt

}
−
{

1
Tσ2

0
η∗′ntX

∗
ns

}
,

Iλλ = blkdiag
{

1
σ2
0
η∗′ntη

∗
nt + T−1

T tr(G∗s
ntG

∗
nt)
}
−
{

1
Tσ2

0
η∗′ntη

∗
ns

}
,

Iσ2β = 0′tk, Iσ2λ =
{

T−1
Tσ2

0
tr(G∗

nt)
}
, Iσ2σ2 = (n−1)(T−1)

2σ4
0

.

The derivation of the VC matrix of the AQS function, however, is different from that

of one-way panel SL model due to the involvement of 3rd and 4th moments of the errors.

The elements of the transformed errors V ∗
nt may not be totally independent unless the

original errors are normal and their 3rd and 4th moments may not be constant. Thus,

one needs to work with the original error vector Vnt through V ∗
nt = F ′

n,n−1Vnt. Using

the results: (i) (In−1 − λtF
′
n,n−1WnFn,n−1)−1 = F ′

n,n−1(In − λtWn)−1Fn,n−1 (Lee and

Yu, 2010, Lemma A.2), and (ii) for a row normalized Wn, F ′
n,n−1WnJn = F ′

n,n−1Wn and

3



G∗
n(λt) = F ′

n,n−1Gn(λt)Fn,n−1 and g∗nt = diag(Fn,n−1G
∗
n(λt)F ′

n,n−1), we obtain the VC

matrix ΣSL2(θ0) = ISL2(θ0) + ΩSL2(θ0), where ΩSL2(θ0) has components:

Ωββ = 0tk×tk, Ωλβ = bikdiag
{

T−1
Tσ0

γg∗′ntFn,n−1X
∗
nt

}
−
{

T−1
T 2σ0

γg∗′ntFn,n−1X
∗
ns

}
,

Ωλλ = blkdiag
{2(T−1)

Tσ0
γη∗′ntF

′
n,n−1g

∗
nt + (T−1

T )2κg∗′ntg
∗
nt − 1

T tr(G∗
ntG

∗
nt)
}

−
{

T−1
T 2σ0

γ(η∗′ntF
′
n,n−1g

∗
ns + g∗′ntFn,n−1η

∗
ns)− 1

T 2 tr(G∗
ntG

∗
ns)
}
,

Ωσ2β =
{
0′tk
}
, Ωσ2λ =

{ (T−1)2

2T 2σ2
0

κdiag(Jn)diag(Fn,n−1G
∗
ntF

′
n,n−1)

}
, Ωσ2σ2 = n(T−1)2

4Tσ4
0

κ.

Similarly, ΣSL2(θ0) can be obtained by first expressing S?
SL2(θ0) in VN , through V ∗

nt =

F ′
n,n−1Z

′
NtVN and Ṽ ∗

nt = V ∗
nt − V

∗
n = F ′

n,n−1Z
◦′
NtVN :

S?
SL2(θ0) =


Π′

1tVN , t = 1, . . . , T,

Π′
2tVN + V′NΦtVN − T−1

T tr(Gnt), t = 1, . . . , T,

V′NΨVN − (n−1)(T−1)
2σ2 ,

(B.2)

where Π1t = 1
σ2
0
Z◦

NtFn,n−1X
∗
nt, Π2t = 1

σ2
0
Z◦

NtFn,n−1η
∗
nt, Φt = 1

σ2
0
ZNtFn,n−1G

∗′
ntF

′
n,n−1Z

◦′
Nt,

and Ψ = 1
2σ4

∑T
t=1 Z◦

NtFn,n−1F
′
n,n−1Z

◦′
Nt. Then, applying Lemma A.2 with ε, cnt and Ant

replaced by VN , Π1t and Π2t, Φt, and Ψ to give ΣSL2(θ0) in an identical form as ΣSL1(θ0).

B.3. Panel SLE model with one-way FE. Let Ḋnt = − d
dρt0

Dnt = M ′
nBnt+B′

ntMn.

We have the components of the negative Hessian matrix JSEL1(θ0):

Jββ = blkdiag
{

1
σ2
0
X ′

ntDntXnt

}
−
{

1
σ2
0
X ′

ntDntD−1
n DnsXns

}
;

Jβλ = blkdiag
{

1
σ2
0
X ′

ntDntWnYnt

}
−
{

1
σ2
0
X ′

ntDntD−1
n DnsWnYns

}
;

Jβρ = blkdiag
{

1
σ2
0
X ′

ntḊntB
−1
nt Ṽnt

}
−
{

1
σ2
0
X ′

ntDntD−1
n ḊnsB

−1
ns Ṽns

}
;

Jλλ = blkdiag
{

1
σ2
0
(WnYnt)′Dnt(WnYnt) + tr(RntG

2
nt)
}

−
{

1
σ2
0
(WnYnt)′DntD−1

n Dns(WnYns)
}
;

Jλρ = blkdiag
{

1
σ2
0
(WnYnt)′ḊntB

−1
nt Ṽnt + tr[D−1

n ḊntGnt]
}

−
{

1
σ2
0
(WnYnt)′DntD−1

n ḊnsB
−1
ns Ṽns + tr[D−1

n DntGntD−1
n Ḋns]

}
;

Jρλ = blkdiag
{

1
σ2
0
(WnYnt)′ḊntB

−1
nt Ṽnt

}
−
{

1
σ2
0
(WnYns)′DnsD−1

n ḊntB
−1
nt Ṽnt

}
;

Jρρ = blkdiag
{

1
σ2 Ṽ ′

ntH
′
ntHntṼnt + tr(H2

nt + D−1
n M ′

nMn)
}

−
{

1
σ2 Ṽ ′

ntH
s
ntBntD−1

n B′
nsH

s
nsṼns + tr(D−1

n B′
ntMnD−1

n Ḋns)
}
;

Jσ2β =
{

1
σ4
0
X ′

ntB
′
ntṼnt

}
; Jσ2λ =

{
1
σ4
0
(WnYnt)′B′

ntṼnt

}
;

Jσ2ρ =
{

1
σ4
0
Ṽ ′

ntHntṼnt

}
; Jσ2σ2 = −n(T−1)

2σ4 + 1
σ6

∑T
t=1 Ṽ ′

ntṼnt.

Letting Ḡnt = BntGntB
−1
nt , the expected negative Hessian matrix ISEL1(θ0) has the

components:
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Iββ = Jββ, Iλβ = blkdiag
{

1
σ2
0
η′tDntXnt

}
−
{

1
σ2
0
η′tDntD−1

n DnsXns

}
, Iρβ = 0Tk

Iλλ = blkdiag
{

1
σ2
0
η′ntDntηnt + tr[Snt(ρ)Ḡs

ntḠnt]
}
−
{

1
σ2
0
η′ntDntD−1

n Dnsηns

}
,

Iλρ = blkdiag
{
tr[Ḡ′

ntSnt(ρ)Hs
nt]
}
; Iσ2σ2 = −n(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 trSnt(ρ)

Iρλ = blkdiag
{
tr[Ḡ′

ntSnt(ρ)Hs
ntSnt(ρ)]} −

{
tr[G′

nsDnsD−1
n ḊntD−1

n ]
}

Iρρ = blkdiag
{
tr[Hs

ntSnt(ρ)Hnt −BntD−1
n ḊntB

−1
nt Hnt]

}
+
{
tr[BntD−1

n ḊnsD−1
n B′

ntHnt]
}

Iσ2β = 0′tk, Iσ2λ =
{

1
σ2
0
tr[Rnt(ρ)Gnt]

}
, Iσ2ρ = 1

σ2
0
tr(Snt(ρ)Hnt).

To derive ΣSLE1(θ0), we have, Ṽnt ≡ Ṽnt(β0,λ0,ρ0) = Vnt − BntD−1
n

∑T
s=1 B′

nsVns =

Z�′
NtVN , where Z�′

Nt = [Z ′
Nt −BntD−1

n (l′T ⊗ In)BN ] and BN = blkdiag(Bn1, . . . , BnT ), and

WnYnt = Gnt(Xntβ0 + cn + B−1
nt Vnt) = ηnt + GntB

−1
nt Z ′

NtVN . These lead to,

S∗SLE1(θ0) =



Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V′NΦ1tVN − tr(RntGnt), t = 1, . . . , T,

V′NΦ2tVN − tr(SntHnt), t = 1, . . . , T,

V′NΨVN − n(T−1)
2σ2 ,

(B.3)

where Π1t = 1
σ2
0
Z�

NtBntXnt, Π2t = 1
σ2
0
Z�

NtBntηnt, Φ1t = 1
σ2
0
ZNtB

−1′
nt G′

ntB
′
ntZ

�′
Nt, Φ2t =

1
σ2
0
Z�

NtHntZ
�′
Nt, and Ψ = 1

2σ4

∑T
t=1 Z�

NtZ
�′
Nt. Applying Lemma A.2 gives:

ΣSLE1(θ0) =

{
f(0,Π1t;0,Π1s)

}
,
{
f(0,Π1t; Φ1s,Π2s)

}
,

{
f(0,Π1t; Φ2s,0)

}
,

{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φ1t,Π2t; Φ1s,Π2s)

}
,
{
f(Φ1t,Π2t; Φ2s,0)

}
,
{
f(Φ1t,Π2t; Ψ,0)

}
∼, ∼,

{
f(Φ2t,0; Φ2s,0)

}
,

{
f(Φ2t,0; Ψ,0)

}
∼, ∼, ∼, f(Ψ,0; Ψ,0)



B.4. Panel SLE model with two-way FE. Let Ḋ∗
nt = − d

dρt0
D∗

nt = M∗′
n B∗

nt +

B∗′
ntM

∗
n. We have the components of the negative Hessian matrix JSEL2(θ0):

Jββ = blkdiag
{

1
σ2
0
X∗′

ntD
∗
ntX

∗
nt

}
−
{

1
σ2
0
X∗′ntD

∗
ntD∗−1

n D∗
nsX

∗
ns

}
;

Jβλ = blkdiag
{

1
σ2
0
X∗′

ntD
∗
ntW

∗
nY ∗

nt

}
−
{

1
σ2
0
X∗′

ntD
∗
ntD∗−1

n D∗
nsW

∗
nY ∗

ns

}
;

Jβρ = blkdiag
{

1
σ2
0
X∗′

ntḊ
∗
ntB

∗−1
nt Ṽ ∗

nt

}
−
{

1
σ2
0
X∗′

ntD
∗
ntD∗−1

n Ḋ∗
nsB

∗−1
ns Ṽ ∗

ns

}
;

Jλλ = blkdiag
{

1
σ2
0
(W ∗

nY ∗
nt)

′D∗
nt(W

∗
nY ∗

nt) + tr(R∗
ntG

∗2
nt)
}

−
{

1
σ2
0
(W ∗

nY ∗
nt)

′D∗
ntD∗−1

n Dns(W ∗
nY ∗

ns)
}
;
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Jλρ = blkdiag
{

1
σ2
0
(W ∗

nY ∗
nt)

′Ḋ∗
ntB

∗−1
nt Ṽ ∗

nt + tr[D∗−1
n Ḋ∗

ntG
∗
nt]
}

−
{

1
σ2
0
(W ∗

nY ∗
nt)

′D∗
ntD∗−1

n Ḋ∗
nsB

∗−1
ns Ṽ ∗

ns + tr[D∗−1
n D∗

ntG
∗
ntD∗−1

n Ḋ∗
ns]
}
;

Jρλ = blkdiag
{

1
σ2
0
(W ∗

nY ∗
nt)

′Ḋ∗
ntB

∗−1
nt Ṽ ∗

nt

}
−
{

1
σ2
0
(W ∗

nY ∗
ns)

′D∗
nsD∗−1

n Ḋ∗
ntB

∗−1
nt Ṽ ∗

nt

}
;

Jρρ = blkdiag
{

1
σ2 Ṽ ∗′

ntH
∗′
ntH

∗
ntṼ

∗
nt + tr(H∗2

nt + D∗−1
n M∗′

n M∗
n)
}
;

−
{

1
σ2 Ṽ ∗′

ntH
∗s
ntB

∗
ntD∗−1

n B∗′
nsH

∗s
nsṼ

∗
ns + tr(D∗−1

n B∗′
ntM

∗
nD∗−1

n Ḋ∗
ns)
}

Jσ2β =
{

1
σ4
0
X∗′

ntB
∗′
ntṼ

∗
nt

}
; Jσ2λ =

{
1
σ4
0
(W ∗

nY ∗
nt)

′B∗′
ntṼ

∗
nt

}
;

Jσ2ρ =
{

1
σ4
0
Ṽ ∗′

ntH
∗
ntṼ

∗
nt

}
; Jσ2σ2 = − (n−1)(T−1)

2σ4 + 1
σ6

∑T
t=1 Ṽ ∗′

nt Ṽ
∗
nt.

The expected negative Hessian matrix, ISEL2(θ0), has the components:

Iββ = Jββ, Iλβ = blkdiag
{

1
σ2
0
η∗′t D∗

ntX
∗
nt

}
−
{

1
σ2
0
η∗′t D∗

ntD∗−1
n D∗

nsX
∗
ns

}
; Iρβ = 0;

Iλλ = blkdiag
{

1
σ2
0
η∗′ntD

∗
ntη

∗
nt + tr[S∗ntḠ

∗s
ntḠ

∗
nt]
}
−
{

1
σ2
0
η∗′ntD

∗
ntD∗−1

n D∗
nsη

∗
ns

}
;

Iλρ = blkdiag
{
tr[Ḡ∗′ntS

∗
ntH

∗s
nt ]
}
; Iσ2σ2 = − (n−1)(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 tr(S∗nt);

Iρλ = blkdiag
{
tr(Ḡ∗′

ntS
∗
ntH

∗s
ntS

∗
nt)
}
−
{
tr(G∗′

nsD
∗
nsD∗−1

n Ḋ∗
ntD∗−1

n )
}
;

Iρρ = blkdiag
{
tr(H∗s

ntS
∗
ntH

∗
nt −B∗

ntD∗−1
n Ḋ∗

ntB
∗−1
nt H∗

nt)
}

+
{
tr(B∗

ntD∗−1
n Ḋ∗

nsD∗−1
n B∗′

ntH
∗
nt)
}
;

Iσ2β = 0; Iσ2λ =
{

1
σ2
0
tr(R∗

ntG
∗
nt)
}
; Iσ2ρ =

{
1
σ2
0
tr(S∗ntH

∗
nt)
}
.

To derive ΣSLE2(θ0), Ṽ ∗
nt ≡ Ṽ ∗

nt(β0,λ0,ρ0) = V ∗
nt−B∗

ntD∗−1
n

∑T
s=1 B∗′

nsV
∗
ns = F ′

n,n−1Z
�′
NtVN ,

and W ∗
nY ∗

nt = G∗
nt(X

∗
ntβ0 + c∗n + B−∗1

nt V ∗
nt) = η∗nt + G∗

ntB
∗−1
nt F ′

n,n−1Z
′
NtVN , leading to,

S∗SLE2(θ0) =



Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V′NΦ1tVN − tr(R∗

ntG
∗
nt), t = 1, . . . , T,

V′NΦ2tVN − tr(S∗ntH
∗
nt), t = 1, . . . , T,

V′NΨVN − (n−1)(T−1)
2σ2 ,

(B.4)

where Π1t = 1
σ2
0
Z�∗

NtB
∗
ntX

∗
nt, Π2t = 1

σ2
0
Z�∗

NtB
∗
ntη

∗
nt, Φ1t = 1

σ2
0
Z∗

NtB
∗−1′
nt G∗′

ntB
∗′
ntZ

�∗′
Nt , Φ2t =

1
σ2
0
Z�∗

NtH
∗
ntZ

�∗′
Nt , and Ψ = 1

2σ4

∑T
t=1 Z�∗

NtZ
�∗′
Nt , with Z∗

Nt = ZNtFn,n−1 and Z�∗
Nt = Z�

NtFn,n−1.

Applying Lemma A.2 with ε, cnt and Ant replaced by VN , Π1t and Π2t, and Φ1t, Φ2t and

Ψ, we obtain the VC matrix ΣSLE2(θ0) taking identical form as ΣSLE1(θ0) given above.

B.5. Panel SLE model with wto-way FE and homogeneous ρ. The quantities

Y ∗
nt, X∗

nt, c∗n, W ∗
n , M∗

n and V ∗
nt, are defined similarly as in Model (3.11). Letting η∗nt =

G∗
nt(X

∗
ntβt + c∗n) and g∗nt = diagv(G∗

nt). The AQS function of θ = (β′,λ′, ρ, σ2)′ is

S?
SLE2(θ) =



1
σ2 X∗′

ntB
∗′
n (ρ)Ṽ ∗

nt(β,λ, ρ), t = 1, . . . , T,

1
σ2 (W ∗

nY ∗
nt)

′B∗′
n (ρ)Ṽ ∗

nt(β,λ, ρ)− T−1
T tr[G∗

n(λt)], t = 1, . . . , T,

1
σ2

∑T
t=1 Ṽ ∗′

nt(β,λ, ρ)H∗
n(ρ)Ṽ ∗

nt(β,λ, ρ)− (T − 1)tr[H∗
n(ρ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ∗′

nt(β,λ, ρ)Ṽ ∗
nt(β,λ, ρ).

(B.5)
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The expected negative Hessian matrix, ISLE2(θ0), has the components:

Iββ = Jββ, Iβλ = blkdiag
{

1
σ2
0
X∗′

ntD
∗
nη∗nt

}
−
{

1
Tσ2

0
X∗′

ntD
∗
nη∗ns

}
, Iρβ = 0

Iλλ = blkdiag
{

1
σ2
0
η∗′ntD

∗
nη∗nt + T−1

T tr(Ḡ∗s
ntḠ

∗
nt)
}
−
{

1
Tσ2

0
η∗′ntD

∗
nη∗ns

}
,

Iλρ =
{

T−1
T tr(Ḡ∗′

ntH
∗s
n )
}
, Iρρ = (T − 1)tr(H∗s

n H∗
n), Iσ2σ2 = n(T−1)

2σ4
0

,

Iσ2β = 0′tk, Iσ2λ =
{

T−1
Tσ2

0
tr(G∗

nt)
}
, Iσ2ρ = T−1

σ2
0

tr(H∗
n)

The representations for AQS function at θ0 in terms of VN = (Vn1, ..., VnT ) turn out to be

very useful. They lead to a simple way for estimating the variance-covariance (VC) matrix

of the AQS vector. Thus, one needs to work with the original error vector Vnt through

V ∗
nt = F ′

n,n−1Vnt. Let zt be a T × 1 of element 1 in the tth position and 0 elsewhere, and

define ZNt = zt⊗ In, Z̄N = 1
T (lT ⊗ In), and Z◦

Nt = ZNt− Z̄N . the AQS function at θ0 can

be written as

S∗SLE2(θ0) =



Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V′NΦ1tVN − T−1

T tr(G∗
nt), t = 1, . . . , T,

V′NΦ2tVN − (T − 1)tr(H∗
n),

V′NΨVN − (n−1)(T−1)
2σ2 ,

(B.6)

where Π1t = 1
σ2
0
Z◦∗

NtB
∗
ntX

∗
nt, Π2t = 1

σ2
0
Z◦∗

NtB
∗
ntη

∗
nt0, Φ1t = 1

σ2
0
Z∗

NtB
∗−1′
nt G∗′

ntB
∗′
ntZ

◦∗′
Nt , Φ2 =

1
σ2
0

∑T
t=1 Z◦∗

NtH
∗
nZ◦∗′

Nt , and Ψ = 1
2σ4

0

∑T
t=1 Z◦∗

NtZ
◦∗′
Nt , with Z∗

Nt = ZNtFn,n−1 and Z◦∗
Nt =

Z◦
NtFn,n−1. Applying Lemma A.2 with ε, cnt and Ant replaced by VN , Π1t and Π2t,

Φ1t, Φ2 and Ψ, we obtain the VC matrix of the AQS function:

ΣSLE2(θ0) =

{
f(0,Π1t;0,Π1s)

}
,
{
f(0,Π1t; Φ1s,Π2s)

}
,
{
f(0,Π1t; Φ2,0)

}
,
{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φ1t,Π2t; Φ1s,Π2s)

}
,
{
f(Φ1t,Π2t; Φ2,0)

}
,
{
f(Φ1t,Π2t; Ψ,0)

}
∼, ∼, f(Φ2,0; Φ2,0), f(Φ2,0; Ψ,0)

∼, ∼, ∼, f(Ψ,0; Ψ,0)

 .

B.6. Panel SE model with two-way FE Let Ḋnt = − d
dρt0

D∗
nt = M∗′

n B∗
nt +B∗′

ntM
∗
n,

and the quantities Y ∗
nt, X∗

nt, c∗n, M∗
n and V ∗

nt be defined similarly as in Model (3.11). Let

η∗nt = G∗
nt(X

∗
ntβt + c∗n) and g∗nt = diagv(G∗

nt). The AQS function of θ = (β′,ρ′, σ2)′ is

S?
SE2(θ) =


1
σ2 X∗′

ntB
∗′
n (ρt)Ṽ ∗

nt(β,ρ), t = 1, . . . , T,

1
σ2 Ṽ ∗′

nt(β,ρ)H∗
n(ρt)Ṽ ∗

nt(β,ρ)− tr[S∗nt(ρ)H∗
n(ρt)], t = 1, . . . , T,

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ∗′

nt(β,ρ)Ṽ ∗
nt(β,ρ),

(B.7)

where Ṽ ∗
nt(β,ρ) = B∗

n(ρt)U◦∗
nt (βt)−B∗

n(ρt)D∗−1
n (ρ)

∑T
s=1 D∗

n(ρs)U◦∗
ns(βs) is defined similarly

7



to that in S?
SLE2(θ) but with U◦∗

nt (βt) = Y ∗
nt −X∗

ntβt.

The expected negative Hessian matrix, ISE2(θ0), has the components:

Iββ = blkdiag
{

1
σ2
0
X∗′

ntD
∗
ntX

∗
nt

}
−
{

1
σ2
0
X∗′

ntD
∗
ntD∗−1

n D∗
nsX

∗
ns

}
, Iρβ = 0;

Iρρ = blkdiag
{
tr(H∗s

ntS
∗
ntH

∗
nt −B∗

ntD∗−1
n ḊntB

∗−1
nt H∗

nt)
}

+
{
tr(B∗

ntD∗−1
n ḊnsD∗−1

n B∗′
ntH

∗
nt)
}
;

Iσ2β = 0; Iσ2ρ =
{

1
σ2
0
tr(S∗ntH

∗
nt)
}
; Iσ2σ2 = − (n−1)(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 tr(S∗nt).

Similarly, the AQS function at θ0 can be expressed in terms of the vector of original er-

rors VN = (Vn1, . . . , VnT ), which turns out to be very useful in finding the analitical expres-

sion of its VC matrix. Thus, one needs to work with the original error vector Vnt through

V ∗
nt = F ′

n,n−1Vnt. Ṽ ∗
nt ≡ Ṽ ∗

nt(β0,ρ0) = V ∗
nt − B∗

ntD∗−1
n

∑T
s=1 B∗′

nsV
∗
ns = F ′

n,n−1Z
◦′
NtVN . The

AQS function at θ0 can be written as

S∗SE2(θ0) =


Π′

1tVN , t = 1, . . . , T,

V′NΦtVN − tr(S∗ntH
∗
nt), t = 1, . . . , T,

V′NΨVN − (n−1)(T−1)
2σ2 ,

(B.8)

where Π1t = 1
σ2
0
Z◦∗

NtB
∗
ntX

∗
nt, Φt = 1

σ2
0
Z◦∗

NtH
∗
ntZ

◦∗′
Nt , and Ψ = 1

2σ4

∑T
t=1 Z◦∗

NtZ
◦∗′
Nt , with Z∗

Nt =

ZNtFn,n−1 and Z◦∗
Nt = Z◦

NtFn,n−1. Applying Lemma A.2 with ε, cnt and Ant replaced by

VN , Π1t and Φ2t and Ψ, we obtain the corresponding VC matrix ΣSE2(θ0):

ΣSE2(θ0) =


{
f(0,Π1t;0,Π1s)

}
,
{
f(0,Π1t; Φs,0)

}
,
{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φt,0; Φs,0)

}
,

{
f(Φt,0; Ψ,0)

}
∼, ∼, f(Ψ,0; Ψ,0)

 .
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Appendix C: Proof of the Theorems

Proof of Theorem 2.1. From (B.1), we see that the AQS function at the true

parameters contains both linear and quadratic forms in the vector of original errors VN ,

S?
SL1(θ0) =


Π′

1tVN , t = 1, . . . , T,

Π′
2tVN + V′NΦtVN − T−1

T tr(Gnt), t = 1, . . . , T,

V′NΨVN − n(T−1)
2σ2 ,

where Π1t = 1
σ2
0
Z◦

NtXnt, Π2t = 1
σ2
0
Z◦

Ntηnt, Φt = 1
σ2
0
ZNtG

′
ntZ

◦′
Nt, Ψ = 1

2σ4

∑T
t=1 Z◦

NtZ
◦′
Nt,

ZNt = zt ⊗ In, Z◦
Nt = ZNt − Z̄N , Z̄N = 1

T (lT ⊗ In), and zt is a T × 1 vector with tth

element being 1 and other elements being zero.

First, as the elements of Xnt are non-stochastic and uniformly bounded (by Assumption

3), it is easy to see that the elements of Π1t are uniformly bounded. By Assumption A.4

and Lemma A.1(i), Gnt is uniformly bounded in both row and column sums. Thus,

the elements of ηnt = Gnt(Xntβt0 + cn) are uniformly bounded by Assumption A3 and

Lemma A.1(iii). It follows that the elements of Π2t are uniformly bounded. Now, from the

definition of ZNt and Z◦
Nt, it is easy to see that Φtand Ψ are uniformly bounded in both

row and column sums. Thus, under Assumptions 1-4 the central limit theorem (CLT) of

linear-quadratic (LQ) form of Kelejian and Prucha (2001) or its simplified version (under

iid errors) given in Lemma A.3 can be applied to the elements of S?
SL1(θ0). Therefore, an

application of Cramér-Wold device under a finite T leads to, as N0 →∞, 1√
N0

S?
SL1(θ0)

D−→
N
(
0, limN0→∞

1
N0

ΣSL1(θ0)
)
. It follows that by (2.11) and (2.12),

C[ 1
N0

ISL1(θ0)]−1 1√
N0

S?
SL1(θ̃SL1)

D−→ N
(
0, limN0→∞ΞSL1(θ0)

)
.

It left to show that 1
N0

[ISL1(θ̃SL1)− ISL1(θ0)]
p−→ 0 and 1

N0
[ΣSL1(θ̃SL1)− ΣSL1(θ0)]

p−→ 0.

Under the
√

N0-consistency of θ̃SL1 and with the analytical expressions of ISL1(θ0) and

ΣSL1(θ0) given in Appendix B.1, the proofs of these results are repeated applications of

the mean value theorem (MVT) to each component of 1
N0

[ISL1(θ̃SL1)− ISL1(θ0)] and each

component of 1
N0

[ΣSL1(θ̃SL1)− ΣSL1(θ0)], with the key results to note:

1
N0

(c̃nG̃ntc̃n − cnGntcn)
p−→ 0; γ̃ − γ

p−→ 0; κ̃− κ
p−→ 0. (C.1)

See the end of Section 2.1 for details. See the proof of Theorem 3.2 for details in a more

general setup. �

Proof of Theorem 2.2. From the derivations in Section 2.2 and further results in

Appendix B2, we see that all the quantities in the 2FE panel SL model relate to the corre-

sponding quantities in the 1FE panel SL model through the orthonormal transformation

matrix Fn,n−1. Thus, the proof of Theorem 2.2 is carried out in a similar manner as that

for 1FE panel SL model. For the results similar to those in (C.1), see the end of Section
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2.2 for details. �

Proof of Theorem 3.1. Again the AQS function at the true parameters can be

expressed in terms of linear and quadratic forms in VN as shown in (B.3),

S∗SLE1(θ0) =



Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V′NΦ1tVN − tr(RntGnt), t = 1, . . . , T,

V′NΦ2tVN − tr(SntHnt), t = 1, . . . , T,

V′NΨVN − n(T−1)
2σ2 ,

where Π1t = 1
σ2
0
Z◦

NtBntXnt, Π2t = 1
σ2
0
Z◦

NtBntηnt, Φ1t = 1
σ2
0
ZNtB

−1′
nt G′

ntB
′
ntZ

◦′
Nt, Φ2t =

1
σ2
0
Z◦

NtHntZ
◦′
Nt, Ψ = 1

2σ4

∑T
t=1 Z◦

NtZ
◦′
Nt, Z◦′

Nt = [Z ′
Nt − BntD−1

n (l′T ⊗ In)BN ] and BN =

blkdiag(Bn1, . . . , BnT ). Under Assumptions 1-5, it is easy to verify that each component

of S∗SLE1(θ0) or a linear combination of the components of S∗SLE1(θ0) satisfies the conditions

of Lemma A.3, leading to the asymptotic normality result:

C[ 1
N0

ISLE1(θ0)]−1 1√
N0

S?
SLE1(θ̃SLE1)

D−→ N
(
0, limN0→∞ΞSLE1(θ0)

)
.

The proofs of 1
N0

[ISLE1(θ̃SLE1)−ISLE1(θ0)]
p−→ 0 and 1

N0
[ΣSLE1(θ̃SLE1)−ΣSLE1(θ0)]

p−→ 0 are

again carried out by repeated applications of MVT under the
√

N0-consistency of θ̃SLE1.

For details on the estimation of cn, the skewness γ and excess kurtosis κ for the 1FE panel

SLE model, and the consistency of these estimates, see the end of Section 3.1. �

Proof of Theorem 3.2. Consider the AQS function S?
SLE2(θ) given in (3.13). We

need to show that 1√
N0

S?
SLE2(θ0)

D−→ N
(
0, limN0→∞

1
N0

ΣSLE2(θ0)
)
, as N0 →∞. We have

Ṽ ∗
nt ≡ Ṽ ∗

nt(β0,ρ0) = V ∗
nt −B∗

ntD∗−1
n

∑T
s=1 B∗′

nsV
∗
ns = F ′

n,n−1Z
�′
NtVN , and

W ∗
nY ∗

nt = G∗
nt(X

∗
ntβt0 + c∗n + B−∗1

nt V ∗
nt) = η∗nt + G∗

ntB
∗−1
nt F ′

n,n−1Z
′
NtVN .

Hence, the AQS function at true θ0 can be written as

S∗SLE2(θ0) =



Π′
1tVN , t = 1, . . . , T,

Π′
2tVN + V′NΦ1tVN − tr(R∗

ntG
∗
nt), t = 1, . . . , T,

V′NΦ2tVN − tr(S∗ntH
∗
nt), t = 1, . . . , T,

V′NΨVN − (n−1)(T−1)
2σ2 ,

(C.2)

where Π1t = 1
σ2
0
Z�∗

NtB
∗
ntX

∗
nt, Π2t = 1

σ2
0
Z�∗

NtB
∗
ntη

∗
nt, Φ1t = 1

σ2
0
Z∗

NtB
∗−1′
nt G∗′

ntB
∗′
ntZ

�∗′
Nt , Φ2t =

1
σ2
0
Z�∗

NtH
∗
ntZ

�∗′
Nt , and Ψ = 1

2σ4
0

∑T
t=1 Z�∗

NtZ
�∗′
Nt , with Z∗

Nt = ZNtFn,n−1 and Z�∗
Nt = Z�

NtFn,n−1;

ZNt = zt ⊗ In and zt is a T × 1 vector with tth element being 1 and other elements being

zero; and Z�′
Nt = [Z ′

Nt −BntD−1
n (l′T ⊗ In)BN ] and BN = blkdiag(Bn1, . . . , BnT ).

First, as the elements of Xnt are non-stochastic and uniformly bounded (by Assump-
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tion 3), the row and column sums of B∗
nt are uniformly bounded in absolute values by

Assumption 5 and Lemma A.1. It follows that the elements of Π1t are uniformly bounded.

By Assumption A.4 and Lemma A.1(i), Gnt is uniformly bounded in both row and column

sums. By Lemma A.2 of Lee and Yu (2010),

(In − λF ′
n,n−1WnFn,n−1)−1 = F ′

n,n−1(In − λWn)−1Fn,n−1. (C.3)

We have A∗−1
nt = F ′

n,n−1A
−1
nt Fn,n−1. Thus, G∗

nt is uniformly bounded in both row and

column sums by Lemma A.1(iii), and the elements of η∗nt = G∗
nt(X

∗
ntβt0 + c∗n) are uni-

formly bounded by Assumption A3. It follows that the elements of Π2t are uniformly

bounded. Similarly, B∗−1
nt = F ′

n,n−1B
−1
nt Fn,n−1, and therefore the elements of H∗

nt is uni-

formly bounded in both row and column sums. With these and the definitions of ZNt

and Z�
Nt, it is easy to show that Φ1t, Φ2t and Ψ are uniformly bounded in both row and

column sums. Thus, under Assumptions 1-5, the central limit theorem (CLT) of linear-

quadratic (LQ) form of Kelejian and Prucha (2001) or its simplified version (under iid

errors) given in Lemma A.3 can be applied to each element of S?
SLE2(θ0) to establish its

asymptotic normality. Then, an application of Cramér-Wold device under a finite T gives,
1√
N0

S?
SLE2(θ0)

D−→ N
(
0, limN0→∞

1
N0

ΣSLE2(θ0)
)
, as N0 →∞. Then, by (2.11) and (2.12),

C[ 1
N0

ISLE2(θ0)]−1 1√
N0

S?
SLE2(θ̃SLE2)

D−→ N
(
0, limN0→∞ΞSLE2(θ0)

)
.

It left to show that, as N0 →∞,

(a) 1
N0

[ISLE2(θ̃SL1)− ISLE2(θ0)]
p−→ 0,

(b) 1
N0

[ΣSLE2(θ̃SLE2)− ΣSL1(θ0)]
p−→ 0.

Under the
√

N0-consistency of θ̃SLE2 and with the analytical expressions of ISLE2(θ0)

and ΣSLE2(θ0) given in Appendix B.4, the proofs of these results are repeated applications

of the mean value theorem (MVT) to each component of 1
N0

[ISLE2(θ̃SLE2)− ISLE2(θ0)] and

each component of 1
N0

[ΣSLE2(θ̃SLE2)− ΣSLE2(θ0)].

To show (a), we pick a typical element of ISLE2(θ0) given in Appendix B.4,

Iλλ = blkdiag
{

1
σ2
0
η∗′ntD

∗
ntη

∗
nt + tr(S∗ntḠ

∗s
ntḠ

∗
nt)
}
−
{

1
σ2
0
η∗′ntD

∗
ntD∗−1

n D∗
nsη

∗
ns

}
to show that 1

N0
(Ĩλλ − Iλλ)

p−→ 0. The proofs for the other components follow similarly.

Recall: η∗nt = G∗
nt(X

∗
ntβt0 + c∗n), D∗n(ρ) =

∑T
t=1 D∗

n(ρt), D∗
n(ρt) = B∗′

n (ρt)B∗
n(ρt), B∗

n(ρt) =

In−1 − ρtM
∗
n, S∗nt(ρ) = In−1 −B∗

nt(ρt)D∗−1
n (ρ)B∗′

nt(ρt), and Ḡ∗
nt = B∗

ntG
∗
ntB

∗−1
nt .

By Assumptions 4 and 5 and Lemma A.1(i), it is straightforward to show the two

matrices, D∗
n(ρt) and Ḡ∗

nt(λt, ρt), are uniformly bounded in both row and column sums

in a neighborhood of (λt0, ρt0) for each t, and so are their derivatives. Clearly with the

properties of D∗
n(ρt) and a finite T , D∗n(ρ) is uniformly bounded in both row and column

sums in a neighborhood of ρ0, and so are its derivatives.

By Assumption 5 and Lemma A.1(i), D∗−1
n (ρt) is uniformly bounded in both row and

11



column sums in a neighborhood of ρt0 for each t, and so are its derivatives. By a matrix

result that for two invertible matrices An and Bn, (An + Bn)−1 = A−1
n + 1

1+cA
−1
n BnA−1

n ,

where c = tr(BnA−1
n ), we infer that for a finite T , D∗n(ρ) is uniformly bounded in both

row and column sums in a neighborhood of ρ0, and so are its derivatives. It follows that

S∗nt(ρ) is uniformly bounded in both row and column sums in a neighborhood of ρ0, and

so are its derivatives. Noting that Ĩλλ = Iλλ(θ̃SLE2) and Iλλ = Iλλ(θ0), we have by MVT,

for each component of Iλλ(θ) denoted as Iλλ,ts(θ), t, s = 1, . . . , T ,

1
N0

Iλλ,ts(θ̃SLE2) = 1
N0

Iλλ,ts(θ0) + [ 1
N0

∂
∂θ′ Iλλ,ts(θ̄)](θ̃SLE2 − θ0),

where θ̄ lies elementwise between θ̃SLE2 and θ0, with θ̄ being
√

N0-consistent as θ̃SLE2 is.

With the above argument and Lemma A.1(ii), we have 1
N0

∂
∂θ′ Iλλ,ts(θ̄) = Op(1). Therefore,

1
N0

[Iλλ,ts(θ̃SLE2) − Iλλ,ts(θ0) = op(1) for each (t, s), and 1
N0

[Iλλ(θ̃SLE2) − Iλλ(θ0) = op(1).

Note that the easily proved results such as 1
N0

(c̃nG̃ntc̃n − cnGntcn)
p−→ 0, has been used.

The proofs of the other components of 1
N0

[ISLE2(θ̃SL1)− ISL1(θ0)]
p−→ 0 proceeds similarly.

To show (b), we again choose the most complicated term, f(Φ1t,Π2t; Φ1s,Π2s) that

corresponds to λ, to show in details where the quantities involved are given at the end of

Appendix B.4: Π1t = 1
σ2
0
Z�∗

NtB
∗
ntX

∗
nt, Π2t = 1

σ2
0
Z�∗

NtB
∗
ntη

∗
nt, Φ1t = 1

σ2
0
Z∗

NtB
∗−1′
nt G∗′

ntB
∗′
ntZ

�∗′
Nt ,

and Φ2t = 1
σ2
0
Z�∗

NtH
∗
ntZ

�∗′
Nt , where Z∗

Nt = ZNtFn,n−1 and Z�∗
Nt = Z�

NtFn,n−1.

By (A.1) in Lemma A.2, replace Ant by Φ1t, ant by φ1t = diagv(Φ1t), and cnt by Π2t

(similarly for the quantities with subscript s), and note µ3 = γ and µ4 = κ, we have,

f(Φ1t,Π2t; Φ1s,Π2s) = σ4
0tr[(Φ

′
1t + Φ1t)Φ1s] + γφ′1tΠ2s + γΠ′

2tφ1s + κφ′1tφ1s + σ2
0Π

′
2tΠ2s.

Applying MVT and following the similar arguments as in (a), the convergence of the

relevant terms can easily be proved, e.g., 1
N0
{tr[(Φ̃′1t + Φ̃1t)Φ̃1s] − tr[(Φ′1t + Φ1t)Φ1s]} =

op(1), 1
N0

[φ′1tΠ2s − φ′1tΠ2s] = op(1), etc. Furthermore, σ̃2
SLE2 − σ2

0 = op(1), and hence

σ̃4
SLE2 − σ4

0 = op(1); for the estimates obtained from Lemma 4.1(a) of Yang et al. (2016),

it is easy to show that γ̃ − γ
p−→ 0 and κ̃− κ

p−→ 0. It follows that

[f̃(Φ̃1t, Π̃2t; Φ̃1s, Π̃2s)− f(Φ1t,Π2t; Φ1s,Π2s)] = op(1).

Similarly, the convergence of the other elements of 1
N0

[ΣSLE2(θ̃SLE2)−ΣSLE2(θ0)] is proved.

�
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Appendix D: Estimation of Null Models

Homogeneous Panel SL model with 1FE. The construction of the AQS tests re-

quire the estimation of the null model, which could be the homogeneous model as specified

by HTH
0 in (2.2), the model with homogeneity in β’s only, the model with homogeneity in

λ’s only, or the model with change points as specified by HCP
0 in (2.3), etc. Each null model

can estimated by solving the simplified AQS equations by simplifying S?
SL1(θ) according to

the null hypothesis, which is clearly inconvenient to the applied researchers. To facilitate

practical applications of our methods, a general Lagrange Multiplier (LM) method is

introduced. Let lSL1(θ) be the objective function to be maximized subject to Cθ0 = 0,

with S?
SL1(θ) given in (2.7) being its partial derivatives. Define the Lagrangian

LSL1(θ) = lSL1(θ)− φ′(Cθ),

where φ is a kp×1 vector of Lagrange multipliers. Taking partial derivatives and equating

to 0, we have kq equations ∂LSL1

∂θ
= S∗SL1(θ) − C ′φ = 0. Together with the kp constraints

Cθ = 0, we have kq + kp equations for the kq + kp unknowns θ and φ, leading to(
θ̃SL1

φ̃SL1

)
= arg

{
S?
SL1(θ)− C ′φ = 0

Cθ = 0

}
(A.1)

To further aid the applications, we make the Matlab codes available upon request, or

online at http://www.mysmu.edu/faculty/zlyang/SubPages/research.htm.

Finally, from the expressions of ISL1(θ0) and ΣSL1(θ0) given in Appendix B1, we see

that they both contain cn, which is estimated by plugging the null estimates β̃SL1 and λ̃SL1

into c̃n(β,λ). Furthermore, in case of nonnormality, the VC matrix ΣSL1(θ0) contains two

additional parameters, the skewness γ and excess kurtosis κ of the idiosyncratic errors

Vn,it, and their estimates are obtained by applying Lemma 4.1 (a) of Yang et al. (2016).

However, as the hypothesis HHT
0 given in (2.2) and the corresponding homogeneous

model plays an important role, we present some details to show how S?
SL1(θ) is simplified

and how it leads to constrained AQS estimators with the desired asymptotic properties

needed in the implementation of the AQS tests. This simplified AQS function is also

useful in Monte Carlo simulation for computational efficiency. Let θ = (β′, λ, σ2)′. The

constrained estimate of cn given (β, λ) becomes c̃◦n(β, λ) = An(λ)Ȳn − X̄nβ where Ȳn and

X̄n are the averages of {Ynt} and {Xnt}, respectively. Along the same line leading to (2.7),

one can easily show that AQS function for the null model takes the form:

S◦SL1(θ) =


1
σ2

∑T
t−1 X◦′

ntṼ
◦
nt(β, λ),

1
σ2

∑T
t−1(WnY ◦

nt)
′Ṽ ◦

nt(β, λ)− (T − 1)tr[Gn(λ)],

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

◦′
nt (β, λ)Ṽ ◦

nt(β, λ),

(A.2)

Ṽ ◦
nt(β, λ) = An(λ)Ynt − Xntβ − c̃◦n(β, λ) = An(λ)Y ◦

nt − X◦
ntβ, where Y ◦

nt = Ynt − Ȳn and

13



X◦
nt = Xnt − X̄n. Solving the estimating equations, S◦SL1(θ) = 0, gives the null estimator

θ̃SL1 of θ. The process can be simplified by first solving the first set of equations and the

last equation of (A.2), giving the constrained estimators of β and σ2 (for a given λ) as

β̃SL1(λ) = (
∑T

t=1 X◦′
ntX

◦
nt)

−1
∑T

t=1 X◦
ntAn(λ)Y ◦

nt,

σ̃2
SL1(λ) = 1

n(T−1)

∑T
t=1 Ṽ

◦′
nt (β̂SL1(λ), λ)Ṽ ◦

nt(β̂SL1(λ), λ).

Substituting β̃SL1(λ) and σ̃2
SL1(λ) into the middle equation of (A.2) and solving the resulted

concentrated estimating equation lead to the AQS estimator λ̃SL1 of the common λ, which

in turn gives the AQS estimator β̃SL1 = β̃SL1(λ̃SL1) of the common β, and the AQS estimator

σ̃2
SL1 = σ̃2

SL1(λ̃SL1) of σ2. Finally, the AQS estimator of θ is θ̃SL1 = (β̃′SL1, λ̃SL1, σ̃
2
SL1)

′. The

proposed null estimator based on the AQS function provides an alternative to the direct

and transformation approaches of Lee and Yu (2010). It can be shown to be asymptotically

equivalent to the estimator based on an orthogonal transformation given in Lee and Yu

(2010). Thus, θ̃SL1 is
√

n(T − 1)-consistent for θ.

Homogeneous Panel SL model with 2FE. The LM procedure presented at the

end of Sec. 2.1 for 1FE panel SL model directly applies to 2FE panel SL model to give

constrained estimates of various null models. Again, the homogeneous model specified

by Hth
0 in (2.2) and its AQS estimation play important roles in studying the asymptotic

properties and performing Monte Carlo simulations, and therefore some details are given

on the estimation procedures based on the simplified AQS function. The constrained

estimate of c∗n, given (β, λ), becomes c̃∗◦n (β, λ) = A∗
n(λ)Ȳ ∗

n − X̄∗
nβ, where Ȳ ∗

n and X̄∗
n are

the averages of {Y ∗
nt} and {X∗

nt}, respectively. Along the same line leading to (2.15), we

have the AS or AQS function for the 2FE panel SL null model:

S◦SL2(θ) =


1
σ2

∑T
t−1 X∗◦′

nt Ṽ ∗◦
nt (β, λ),

1
σ2

∑T
t−1(W

∗
nY ∗◦

nt )′Ṽ ∗◦
nt (β, λ)− (T − 1)tr[G∗

n(λ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗◦′
nt (β, λ)Ṽ ∗◦

nt (β, λ),

(A.3)

where Ṽ ∗◦
nt (β, λ) = A∗

n(λ)Y ∗
nt −X∗

ntβ − c̃∗◦n (β, λ) = An(λ)Y ∗◦
nt −X∗◦

nt β, Y ∗◦
nt = Y ∗

nt − Ȳ ∗
n and

X∗◦
nt = X∗

nt − X̄∗
n. Solving the estimating equations, S◦SL2(θ) = 0, gives the null estimator

θ̃SL2 of θ, which is obtained by first solving the first and last sets of equations of (A.3) to

give the constrained estimators of β and σ2, given λ, as

β̃SL2(λ) = (
∑T

t=1 X◦∗′
nt X◦∗

nt )
−1
∑T

t=1 X◦∗
nt A

∗
n(λ)Y ◦∗

nt ,

σ̃2
SL2(λ) = 1

n(T−1)

∑T
t=1 Ṽ ◦∗′

nt (β̂SL2(λ), λ)Ṽ ◦∗
nt (β̂SL2(λ), λ),

and then substituting β̃SL2(λ) and σ̃2
SL2(λ) into the middle equation of (A.3) and solving

the resulted concentrated estimating equation to give the null AQS estimators λ̃SL2 of the

common λ, which in turn gives the AQS estimator β̃SL2 = β̃SL2(λ̃SL2) of the common β, and

the AQS estimator σ̃2
SLE2 = σ̃2

SL2(λ̃SL2) of σ2. Denote the AQS estimator of the parameter
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vector θ in the null model as θ̃SL2 = (β̃′SL2, λ̃SL2, σ̃
2
SL2)

′.

The proposed null estimator based on the AQS function provides an alternative to the

transformation approaches of Lee and Yu (2010). It can be shown to be asymptotically

equivalent to the estimator based on an orthogonal transformation given in Lee and Yu

(2010). Thus, θ̃SL2 is
√

(n− 1)(T − 1)-consistent for θ. However, the AQS approach

is more general as it allows the estimation of a non-homogeneous model. Finally, the

estimation of cn and γ and κ contained in ISL2(θ0) and ΣSL2(θ0) proceeds similarly.

Homogeneous Panel SLE model with 1FE. The general LM procedure presented

in Sec. 2.1 can be applied to estimate a null (1FE-SLE) model based on S?
SLE1(θ) and

a properly specified linear contrast matrix C. To estimate the homogeneous null model,

whhich is important for the asymptotic arguments and for Monte Carlo simulation, let θ =

(β′, λ, ρ, σ2)′. Under H0, the constrained estimate of cn given (β, λ) becomes c̃◦n(β, λ) =

An(λ)Ȳn − X̄nβ, and the error vector becomes Ṽ ◦
nt(β, λ, ρ) = Bn(ρ)[An(λ)Y ◦

nt − X◦
ntβ],

where Y ◦
nt = Ynt − Ȳn, X◦

nt = Xnt − X̄n, and Ȳn = 1
T

∑T
t=1 Ynt and X̄n = 1

T

∑T
t=1 Xnt.

Along the same line leading to (3.7), one can easily show that AQS function for the null

model takes the form:

S◦SLE1(θ) =



1
σ2

∑T
t=1 X◦

ntB
′
n(ρ)Ṽ ◦

nt(β, λ, ρ),
1
σ2

∑T
t=1(WnY ◦

nt)
′B′

n(ρ)Ṽ ◦
nt(β, λ, ρ)− (T − 1)tr[Gn(λ)],

1
σ2

∑T
t=1 Ṽ ◦′

nt(β, λ, ρ)Hn(ρ)Ṽ ◦
nt(β, λ, ρ)− (T − 1)tr[Hn(ρ)],

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ◦′

nt(β, λ)Ṽ ◦
nt(β, λ).

(A.4)

Solving the estimating equations, S◦SLE1(θ) = 0, gives the null estimator θ̃SLE1 of θ. The

process can be simplified by first solving the first set of equations and the last equation of

(A.4), giving the constrained estimators of β and σ2 (for given λ and ρ) as

β̃SLE1(λ, ρ) = (
∑T

t=1 X◦′
ntDn(ρ)X◦

nt)
−1
∑T

t=1 X◦
ntDn(ρ)An(λ)Y ◦

nt,

σ̃2
SLE1(λ, ρ) = 1

n(T−1)

∑T
t=1 Ṽ ◦′

nt(β̂SLE1(λ, ρ), λ, ρ)Ṽ ◦
nt(β̂SLE1(λ, ρ), λ, ρ).

Substituting β̃SLE1(λ, ρ) and σ̃2
SLE1(λ, ρ) into the middle two equations of (A.4) and solving

the resulted concentrated estimating equations lead to the AQS estimators (λ̃SLE1, ρ̃SLE1)

of (λ, ρ), which in turn give the AQS estimator β̃SLE1 = β̃SLE1(λ̃SLE1, ρ̃SLE1) of β, and

the AQS estimator σ̃2
SLE1 = σ̃2

SLE1(λ̃SLE1, ρ̃SLE1) of σ2. Finally, the AQS estimator of θ is

θ̃SLE1 = (β̃′SLE1, λ̃SLE1, σ̃
2
SLE1)

′, which is asymptotically equivalent to the estimator based

on an orthogonal transformation given in Lee and Yu (2010), and thus is
√

n(T − 1)-

consistent. To estimate cn, γ and κ, refer to the discussions at the end of Section 2.1.

Homogeneous Panel SLE model with 2FE. Again, the general LM procedure

can be adapted to estimated a null (panel SLE-2FE) model based on the AQS function

S?
SLE2(θ) and a properly specified linear contrast matrix C. To estimate the homogeneous

null model, let θ = (β′, λ, ρ, σ2)′. Under H0, the constrained estimate of cn given (β, λ)
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becomes c̃◦∗n (β, λ) = A∗
n(λ)Ȳ ∗

n − X̄∗
nβ where Ȳ ∗

n and X̄∗
n are the averages of {Y ∗

nt} and

{X∗
nt}, respectively. Along the same line leading to (3.13), one can easily show that AQS

function for the null homogeneous model takes the form:

S◦∗SLE2(θ) =



1
σ2

∑T
t=1 X◦∗′

nt B∗′
n (ρ)Ṽ ◦∗

nt (β, λ, ρ),
1
σ2

∑T
t=1(W

∗
nY ◦∗

nt )′B∗′
n (ρ)Ṽ ◦∗

nt (β, λ, ρ)− (T − 1)tr[G∗
n(λ)],

1
σ2

∑T
t=1 Ṽ ◦∗′

nt (β, λ, ρ)H∗
n(ρ)Ṽ ◦∗

nt (β, λ, ρ)− (T − 1)tr[H∗
n(λ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ ◦∗′

nt (β, λ, ρ)Ṽ ◦∗
nt (β, λ, ρ),

(A.5)

Ṽ ◦∗
nt (β, λ, ρ) = B∗

n(ρ)[A∗
n(λ)Y ∗

nt − X∗
ntβ − c̃◦∗n (β, λ)] = B∗

n(ρ)[A∗
n(λ)Y ◦∗

nt − X◦∗
nt β], where

Y ◦∗
nt = Y ∗

nt − Ȳ ∗
n and X◦∗

nt = X∗
nt − X̄∗

n. Solving the estimating equations, S◦∗SLE2(θ) = 0,

gives the null estimator θ̃SLE2 of θ, which is obtained by first solving the first and last sets

of equations of (A.5) to give the constrained estimators of β and σ2, given λ and ρ, as

β̃SLE2(λ, ρ) = (
∑T

t=1 X◦∗′
nt B∗′

n (ρ)B∗
n(ρ)X◦∗

nt )
−1
∑T

t=1 X◦∗
nt B

∗′
n (ρ)B∗

n(ρ)A∗
n(λ)Y ◦∗

nt ,

σ̃2
SLE2(λ, ρ) = 1

n(T−1)

∑T
t=1 Ṽ ◦∗′

nt (β̂SLE2(λ, ρ), λ, ρ)Ṽ ◦∗
nt (β̂SLE2(λ, ρ), λ, ρ),

and then substituting β̃SLE2(λ, ρ) and σ̃2
SLE2(λ, ρ) into the middle equations of (A.5) and

solving the resulted concentrated estimating equation to give the null AQS estimators λ̃SLE2

of the common λ and ρ̃SLE2 of the common ρ, which in turn gives the AQS estimator β̃SLE2 =

β̃SLE2(λ̃SLE2, ρ̃SLE2) of the common β, and the AQS estimator σ̃2
SLE2 = σ̃2

SLE2(λ̃SLE2, ρ̃SLE2) of

σ2. Finally, the AQS estimator of θ is θ̃SLE2 = (β̃′SLE2, λ̃SLE2, ρ̃SLE2, σ̃
2
SLE2)

′. The proposed null

estimator based on the AQS function provides an alternative to the direct and transforma-

tion approaches of Lee and Yu (2010). It can be shown to be asymptotically equivalent to

the estimator based on an orthogonal transformation given in Lee and Yu (2010). Thus,

θ̃SLE2 is
√

(n− 1)(T − 1)-consistent for θ. Estimation of cn, γ and κ proceeds similarly.
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