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Abstract

We propose a spatial quantile autoregression (SQAR) model, which allows cross-sectional de-

pendence among the responses, unknown heteroscedasticity in the disturbances, and heterogeneous

impacts of covariates on different points (quantiles) of a response distribution. The instrumental

variable quantile regression (IVQR) method of Chernozhukov and Hansen (2006) is generalized to

allow the data to be non-identically distributed and dependent, an IVQR estimator for the SQAR

model is then defined, and its asymptotic properties are derived. Simulation results show that

this estimator performs well in finite samples at various quantile points. In the special case of

spatial median regression, it outperforms the conventional QML estimator without taking into ac-

count of heteroscedasticity in the errors; it also outperforms the GMM estimators with or without

heteroscedasticity. An empirical illustration is provided.
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1 Introduction

In recent years spatial dependence among the cross-sectional units has become a standard notion of

economic research activities in relation to social interactions, spill-overs, copy-cat policies, externalities,

etc., and has received an increasing attention by theoretical econometricians and applied researchers.

Among the various models involving spatial dependence, the most popular one is perhaps the spatial

autoregressive (SAR) model of Cliff and Ord (1973, 1981), in which the outcome of a spatial unit is

allowed to depend linearly on the outcomes of its neighboring units and the values of covariates, i.e.,

Yn = λ0WnYn +Xnβ0 + Un, (1.1)

where n is the total number of spatial units, Yn ≡ (yn,1, · · · , yn,n)′ is an n× 1 vector of response values,

λ0 is the spatial lag parameter, Wn ≡ {wn,ij} is a known n×n spatial weight matrix with zero diagonal

elements, WnYn is the spatial lagged variable, Xn ≡ (x′n,1, · · · , x′n,n)′ is an n× p matrix containing the

values of the regressors, β0 is a p-vector of regression coefficients, and Un ≡ (un,1, · · · , un,n)′ denotes an

n-vector of independent and identically distributed (iid) random disturbances with zero means.1

While the spatial models with iid innovations have been extensively studied and applied, researchers

have realized that an important issue in modelling the spatial data, the heteroscedasticity, has not been

adequately addressed. Spatial units are often heterogeneous in important characteristics such as size,

location and area; spatial units interact with the strength and structure of social interactions changing

across groups; and as a result, spatial observations are heteroscedastic, a phenomenon often observed in

unemployment or crime rates data, housing prices, etc. See, e.g., Anselin (1988), Glaeser et al. (1996),

LeSage (1999) for more discussions on spatial heteroscedasticity. Lin and Lee (2010) extended the GMM

method to allow for heteroscedasticity in the SAR model, and Kelejian and Prucha (2010) considered the

GMM estimation with heteroscedasticity for a more general spatial model. Clearly, all these models are

“spatial”extensions of the usual mean regressions where model estimations are based primarily on the

restriction that the error terms have zero means. As such, possible heterogeneous impacts of covariates

on different points (quantiles) of a response distribution cannot be captured.

Koenker and Bassett (1978) made an important extension of the standard mean regression to the

quantiles of the responses, giving what is called the quantile regression (QR). Since then, the QR model

has been extensively studied in theoretical works and widely used in empirical applications. It has

become an important tool for estimating quantile-specific effects. See Koenker (2005) for an excellent

exposition of the quantile regression. If the τ th conditional quantile function of yn,i given xn,i is given

by Qy(τ |xn,i) = x′n,iβ0τ for i = 1, · · · , n, then the standard linear QR model takes the form

Yn = Xnβ0τ + Uτn, (1.2)
1The existence of endogeneity in this model renders the ordinary least squares (OLS) estimator generally inconsistent.

There are two types of estimators that have been extensively studied and commonly used in the literature. One is the

maximum likelihood (ML) or quasi-maximum likelihood (QML) estimator; see, among the others, Ord (1975), Anselin

(1988), and Lee (2004). The other is the generalized method of moment (GMM) estimator; see, among the others, Kelejian

and Prucha (1998, 1999), and Lee (2003, 2007). Both estimators are under the assumption that the disturbances are iid.

Robinson (2010) proposed an efficient estimator for the semiparametric spatial autoregressive model.
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where Uτn ≡ (uτn,1, · · · , uτn,n)′ and uτn,i ≡ yn,i − x′n,iβ0τ satisfying the quantile restriction

Pr(uτn,i ≤ 0 | xn,i) = τ ∀i = 1, · · · , n. (1.3)

Here and below for notational simplicity we will suppress the dependence of Uτn and uτn,i on the

quantile index τ , and write Un ≡ Uτn and un,i ≡ uτn,i. The method of estimating the linear QR model

is to minimize the average of asymmetric absolute deviations, which in the special case of τ = 0.5 gives

the well-known least absolute deviations (LAD) estimator. Two most appealing features of the quantile

regression are (i) its ability to allow for a separate modelling at different points of a response distribution

so that the heterogeneous impacts of explanatory variables can be characterized and differentiated, and

(ii) its robustness to the error distributions including outliers and heteroscedasticity.

While both SAR and QR can be considered as stepping-stone models in their own fields (i.e., spa-

tial econometrics and quantile regression), a combination of the two may open up a new and exciting

research direction – leading to the first model of this kind which we term in this paper as the spatial

quantile autoregression (SQAR). Indeed, the SQAR model offers an alternative way for allowing un-

known heteroscedasticity in the SAR model, and gives an important method for modeling heterogeneous

effects of variables on different quantiles of a response, taking into account of unobserved heterogeneity

and spatial dependence. Unfortunately, the SQAR model contains an endogenous covariate (the spatial

lag), rendering the ordinary QR techniques inapplicable and new methods of inference to be called for.

Having realized the limitation of the ordinary QR model in addressing typical economics problems,

researchers have considered ways to “endogenize” the QR models and have developed methods for esti-

mating them. To the best of our knowledge, Amemiya (1982) was the first to do so under the framework

of a two-stage median regression. His work was then extended by Powell (1983), Chen and Portony

(1996), and Kim and Muller (2004). In their seminal paper, Chernozhukov and Hansen (2005) proposed

an IV model of quantile treatment effects and studied the issue of model identification. Subsequently,

Chernozhukov and Hansen (2006, CH hereafter) proposed an instrumental variable quantile regression

(IVQR) method for model estimation and introduced a class of tests based on it.2 A typical linear

quantile regression model with endogenous regressors can be written in the following form

Yn = Dnα0τ +Xnβ0τ + Un, (1.4)

where Dn ≡ (dn,1, ..., dn,n)′ is an n× k matrix of endogenous regressors, α0τ is the τ -dependent coeffi-

cients representing the structural quantile-specific effects of dn,i on yn,i, and for an instrument vector

zn,i, un,i satisfies the following structural quantile restriction

Pr(un,i ≤ 0 | xn,i, zn,i) = τ ∀i = 1, · · · , n. (1.5)

(1.4) and (1.5) specify SY (τ |d, x) ≡ d′α0τ + x′β0τ as the structural quantile function (SQF) defined

by CH. However, previous literature focuses on the estimation of the structural quantile regression
2Chernozhukov and Hansen (2008) and Chernozhukov et al. (2007, 2009) proposed various alternative inference meth-

ods. Other related works on quantile regression with endogenous regressors include Abadie, Angrist and Imbens (2002),

Sakata (2007), Ma and Koenker (2006), Hong and Tamer (2003), Honoré and Hu (2004), Sokbae Lee (2007), and Blundel

and Powell (2007).
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coefficients only under the assumption that the data are iid. Obviously, this iid assumption is not

satisfied by our SQAR model due to the spatial dependence and unknown heteroscedasticity.

This paper contributes to the literature by introducing the SQAR model, which on one hand extends

the conventional SAR models by allowing quantile specific effects and unknown heteroscedasticity, and

on other hand extends the conventional QR models by allowing cross-sectional dependence among

the responses. Such an extension seems very interesting as it allows for different degrees of spatial

dependence at different quantile points of the response distribution, i.e., it allows the spatial parameter

(λ ≡ λτ ) to be dependent on the quantile index τ . At the same time, it also allows, as in the ordinary

quantile regression, the impact (β ≡ βτ ) of the covariate xn,i on the response yn,i to be different at

different quantile points. Taking, for example, the housing prices, while it is certainly reasonable to

think that the way the price relates to the covariates at a high quantile point (τ = 0.9, say) is different

from that at a low quantile point (τ = 0.1, say), i.e., β0.9 �= β0.1; at the same time, it should also be

very reasonable to think that the way the prices of high-end houses spatially related to each other to be

different to the way the prices of low-end houses related to each other, e.g., λ0.9 �= λ0.1. Interestingly,

since the first version of the paper appeared, some empirical works have already been carried out using

our SQAR model and the empirical evidence obtained does support the above arguments, see Kostov

(2009) for agricultural land prices, Liao and Wang (2010) and Zietz et al. (2010) for housing prices. We

also present in Section 4 an empirical illustration of our methodology using the popular Boston housing

price data.

We propose an IVQR estimator for the SQAR model by generalizing the IVQR method for iid data

of CH to allow for spatial dependence, heteroscedasticity, and possibly additional endogeneity (other

than spatial lag). We derive the asymptotic properties of our IVQR estimator. Simulation results show

that this estimator performs well in finite samples at various quantile points. Specifically, at the median

point, it outperforms the conventional QML estimator without taking into account of heteroscedasticity

in the errors; it also outperforms the GMM estimators with or without heteroscedasticity.

The rest of the paper is organized as follows. Section 2 introduces the SQAR model and the IVQR

estimator. Section 3 studies the asymptotic properties of the IVQR estimator. Section 4 presents Monte

Carlo results for the finite sample properties of the IVQR estimator, and for the comparisons with the

conventional GMM and QML estimators for the case of median regression. Also in Section 4 an empirical

illustration is provided. Section 5 concludes the paper. All proofs are relegated to the appendix.

2 The Model and the Method of Estimation

In this section, we first introduce our SQAR model, and then we outline how CH’s IVQR method for

iid data is extended to our SQAR model.

2.1 Spatial Quantile Autoregression

A natural extension of the ordinary SAR model given in (1.1) is to assume the τ th quantile of un,i to

be zero, and a natural extension of the ordinary QR model given in (1.2) is to allow a spatial lag in
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the model. Both extensions lead to a model, termed in this paper as the spatial quantile autoregression

(SQAR) model. We shall motivate our SQAR model from two perspectives: the traditional quantile

regression and the structural equation.

The traditional quantile regression perspective. Following the lead of Koenker and Bassett

(1982), we consider the following location-scale model

yn,i = λ0ȳn,i + β′
0xn,i + σn,iεn,i with σn,i = 1 + λȳn,i + β′xn,i (2.1)

where ȳn,i ≡ ∑n
j=1wn,ijyn,j denotes the ith element of Ȳn ≡ WnYn, xn,i is a p × 1 vector of strictly

exogenous regressors, and εn,i are iid unobservable error terms that are independent of Xn. Clearly,

(2.1) is a fairly general class of linear location-scale models that can incorporate many classical models

as special cases. First, if λ0 = λ = 0, (2.1) reduces to the classical linear location-scale model studied

by Koenker and Bassett (1982) where endogeneity is ruled out. If in addition β = 0, (2.1) becomes

the location model with neither endogeneity nor heteroscedasticity. Second, if λ = 0, (2.1) becomes

the traditional SAR model with heteroscedastic error term under the assumption that εn,i has mean 0.

Third, if λ = 0 and β = 0, (2.1) becomes the classical SAR model with iid error terms where the spatial

lagged dependent variable ȳn,i only enters the location part of the model. In this paper, in addition

to allowing β �= 0, we also allow λ �= 0. By doing so, we also permit ȳn,i to enter the scale part of the

model. Intuitively speaking, it is not difficult to imagine that the spatial lagged dependent variable may

have an influence not only on the location of an individual’s outcome but also its scale.

Let Qε(τ ) denote the τ th quantile of εn,i. Under the condition that min1≤i≤n σn,i > cσ > 0 and

that εn,i is independent of Xn for all i, we have

τ = Pr [εn,i ≤ Qε(τ ) | Xn]

= Pr [yn,i − λ0ȳn,i − β′
0xn,i ≤ σn,iQε(τ ) | Xn]

= Pr [yn,i − λ∗(τ )ȳn,i − β∗(τ )′xn,i ≤ 0 | Xn] , (2.2)

where λ∗(τ ) = λ0 + λQε(τ ), β∗(τ ) = β0 + β∗Qε(τ ), and β∗ = β + (1, 0, ..., 0)′ with (1, 0, ..., 0) being a

p× 1 vector. Let u∗n,i ≡ u∗τn,i = yn,i − λ∗ (τ ) ȳn,i − β∗(τ )′xn,i, we have

yn,i = λ∗(τ )ȳn,i + β∗(τ )′xn,i + u∗n,i, (2.3)

for i = 1, · · · , n, or in matrix form

Yn = λ∗(τ )WnYn +Xnβ
∗(τ ) + U∗

n , (2.4)

where U∗
n ≡ (u∗n,1, · · · , u∗n,n

)′ and by (2.2) u∗n,i satisfies the following quantile restriction

Pr
(
u∗n,i ≤ 0 | Xn

)
= τ ∀i. (2.5)

As before, we have suppressed the dependence of U∗
n and u∗n,i on the quantile index τ for notational

simplicity. We call the model in (2.3) or (2.4) together with the quantile restriction in (2.5) as the

SQAR model. It is worth mentioning in passing that (2.1) can be rewritten as

yn,i = (λ0 + λεn,i) ȳn,i + (β0 + β∗εn,i)′xn,i, (2.6)
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which leads to the random coefficient interpretation of our SQAR model discussed below.

The random coefficient structural model perspective. Suppose that we have a structural

relationship defined by

yn,i = λ(vn,i)ȳn,i + β(vn,i)′xn,i, i = 1, · · · , n, (2.7)

where vn,i is a scalar random variable that aggregates all of the unobserved factors affecting the structural

outcome yn,i for individual i and is independent of xn,j for all i, j. Following the lead of CH, we assume

that vn,i are independent U(0, 1), and that the so-called structural equation function (SQF):

Sy(τ | ȳ, x) = λ(τ )ȳ + β(τ )′x (2.8)

is strictly increasing in τ for each (ȳ, x) in the support of (ȳn,i, xn,i).3

Observing that the event {yn,i ≤ λ(τ )ȳn,i + β(τ )′xn,i} is equivalent to {vn,i ≤ τ} for any τ ∈ (0, 1)

and that vn,i is independent of Xn, we have the following quantile restriction

Pr(yn,i ≤ λ(τ )ȳn,i + β(τ )′xn,i | Xn) = Pr(vn,i ≤ τ ) = τ ∀i. (2.9)

Letting un,i ≡ uτn,i = yn,i − λ(τ )ȳn,i − β(τ )′xn,i, we can reach the SQAR model specified in (2.3)-(2.5)

with λ∗(τ ), β∗(τ ), u∗n,i and U∗
n being replaced by λ(τ ), β(τ ), un,i and Un, respectively. In addition, by

the independence of the uniform random variables vn,i’s, we have

Pr (un,1 ≤ 0, · · · , un,n ≤ 0 | Xn) = Pr (vn,1 ≤ τ, · · · , vn,n ≤ τ ) = τn, (2.10)

implying that conditional on Xn, the indicator functions 1(un,i ≤ 0), i = 1, · · · , n, are iid Bernoulli

random variables.

Unifying the two perspectives. Clearly both (2.6) and (2.7) specify the data generating process

(DGP) for Yn as a system of simultaneous equations where the outcome yn,i for individual i is endoge-

nously affected by the outcome yn,j for all j �= i, and the non-observable scalar random variables εn,i

or vn,i. Despite the fact that εn,i enters the coefficient of ȳn,i and xn,i linearly in (2.6) and vn,i enters

the coefficient of ȳn,i and xn,i nonlinearly in (2.7), we will show that the two specifications of DGPs are

equivalent under some restrictions.

Let Fn (·) denote the distribution function of the iid variables εn,i with the inverse given by F−1
n (·) .

Let vn,i ≡ Fn (εn,i) . Then it is easy to see that under the restrictions:

λ (vn,i) = λ0 + λF−1
n (vn,i) and β(vn,i) = β0 + β∗F−1

n (vn,i), (2.11)

the two DGPs are equivalent, and thus we can study the SQAR model by using either specification of the

underlying DGP. When the above relationship holds, we will denote the population quantile residuals
3The strict monotonicity of Sy(τ | ȳ, x) can easily be satisfied for economic data where both outcome and exogenous

variables take only positive values. Since the elements of Yn and the spatial weight matrix Wn only take nonnegative

values, the support for the spatial lagged variable lies on the positive part of the real line. In this case, a sufficient condition

for Sy(τ | ȳ, x) to be strictly increasing in τ for each (ȳ, x) in the support of (ȳn,i, xn,i) would be ∂λ(τ )/∂τ > 0 and

∂β(τ )/∂τ > 0.
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and coefficients simply as un,i and (λ(τ ), β(τ )) without starring as in (2.3)-(2.5). That is, our study will

be based on the following formulation of the SQAR model

yn,i = λ(τ )ȳn,i + β(τ )′xn,i + un,i, i = 1, · · · , n, (2.12)

or in matrix form,

Yn = λ(τ )WnYn +Xnβ(τ ) + Un, (2.13)

where

Pr (un,i ≤ 0 | Xn) = τ ∀ i.4 (2.14)

Without assuming the uniform distribution of vn,i, the strict exogeneity of Xn, and the strict mono-

tonicity of the SQF, we find that it is too complicated to study (2.7). Nevertheless, under these three

conditions, we can study (2.12)-(2.14) for any particular τ ∈ (0, 1). In the following analysis, we al-

ways assume that this τ is fixed (say, τ = 0.5) and then study the estimation and inferential problems

associated with this SQAR model.5

Despite the independence of the Bernoulli random variables 1(un,i ≤ 0), nothing in (2.7) or in the

above assumptions guarantees the independence of un,i across different individuals. In fact, under the

restrictions in (2.11), we can show that

un,i = yn,i − λ(τ )ȳn,i − β(τ )′xn,i = σn,i[εn,i −Qε(τ )] (2.15)

where we recall σn,i = 1 + λȳn,i + β′xn,i and εn,i = F−1
n (vn,i). Noting that σn,i are dependent of each

other unless λ = 0, un,i are thus generally dependent across different individual units.

The DGP in (2.7) can be further extended to include some additional endogenous regressors without

much of further technical difficulties, but to simplify our exposition we will concentrate on (2.7) and

the associated SQAR model described above.

2.2 The IVQR Estimator of the SQAR Model

An important development in the literature of quantile regression is to allow endogeneity in the model

and to introduce IV technique to handle the endogeneity (Chernozhukov and Hansen, 2005, 2006, 2008).

If there exists an n× q instrument matrix Zn ≡ (zn,1, ..., zn,n)
′ such that

Pr(yn,i ≤ λ0τ ȳn,i + β′
0τxn,i|xn,i, zn,i) = τ a.s. (2.16)

then we can simply rely on CH’s idea and extend their IVQR estimation method to our SQAR model.

Clearly, under the strict exogeneity of Xn and the quantile restriction in (2.15), we can simply choose,
4In spatial econometrics the exogenous regressor matrix Xn is often assumed to be a nonrandom matrix. In this case,

(2.14) can be simply rewritten as Pr(un,i ≤ 0) = τ .
5As kindly indicated by a referee, for median regression Yn = λWnYn + Xnβ + Un can simply be treated as the

DGP with Un satisfying the median restriction Pr(un,i ≤ 0|Xn) = 0.5, i = 1, · · · , n. We are interested in the consistent

estimation of the structural parameters λ and β, thus it seems natural to directly impose conditions on un,i in order to

study the asymptotic properties of the estimators of these parameters.
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as in typical GMM estimation of SAR models, the instrument matrix Zn as the matrix consisting of

linearly independent columns of WnXn or [WnXn W
2
nXn], such that (2.16) holds for the model specified

in (2.13) and (2.15).

The IVQR idea can be made much simpler if the data {yn,i, ȳn,i, xn,i, zn,i} were iid. Note that the

conditional probability Pr(yn,i ≤ λ0τ ȳn,i + β′
0τxn,i|xn,i, zn,i) is a measurable function of (xn,i, zn,i). It

follows from CH that to solve (2.16) is to find (λ0τ , β0τ) such that 0 is a solution to the ordinary QR

of yn,i − λ0τ ȳn,i − β′
0τxn,i on (xn,i, zn,i):

0 ∈ arg min
g∈G

E [ρτ (yn,i − λ0τ ȳn,i − β′
0τxn,i − g(xn,i, zn,i))] , (2.17)

where ρτ (u) ≡ [τ−1(u ≤ 0)]u with 1(·) being the usual indicator function, and G is a class of measurable

functions of (x, z) that is suitably restricted in applications. CH refer to this as the instrumental variable

quantile regression (IVQR). Following CH we restrict G to the class of linear functions

G = {g (x, z) = γ′z : γ ∈ Γ}

where Γ is a compact set in R
q. In this case, the objective function in (2.17) leads immediately to the

following finite sample analogue

Qnτ(λ, β, γ) ≡ 1
n

n∑
i=1

ρτ (yn,i − λȳn,i − β′xn,i − γ′zn,i). (2.18)

That is, we restrict our attention to linear quantile regressions. Following CH’s arguments leading

to (2.17) at the population level, if the finite sample objective function Qnτ(λ, β, γ) meets certain

identification conditions we expect that the estimate of γ is close to zero when (λ, β) is close to the true

population values (λ0τ , β0τ). Then the estimation may proceed as in CH.

However, as discussed earlier, our data {yn,i, ȳn,i, xn,i, zn,i} are not iid due to the spatial dependence

reflected in {ȳn,i} and the unknown heteroscedasticity in {yn,i}. The question is whether the objective

function Qnτ(λ, β, γ) motivated by the iid data still remains valid for the spatial data. The theoretical

results presented in the next section show it is still a valid objective function under certain additional

regularity conditions. In this sense the IVQR estimator for our SQAR model can be defined in ex-

actly the same way as that based on iid data. The difference is that the asymptotic properties under

spatial dependence and unknown heteroscedasticity are much more involved than those under the iid

assumption.

Let ξn,i ≡ (x′n,i, z
′
n,i)

′. The steps leading to the IVQR estimator of the SQAR model are summarized

as follows:

(i) for a given value of λ, run an ordinary QR of yn,i − λȳn,i on ξn,i to obtain

(β̂nτ (λ), γ̂nτ(λ)) ≡ arg min
(β,γ)

Qnτ(λ, β, γ); (2.19)

(ii) minimize a weighted norm of γ̂nτ(λ) over λ to obtain the IVQR estimator of λ0τ , i.e.,

λ̂nτ = arg min
λ

γ̂nτ(λ)′ Ânγ̂nτ (λ) (2.20)

8



where Ân = A+ op(1) for some positive definite matrix A; and finally

(iii) run an ordinary QR of yn,i − λ̂nτ ȳn,i on ξn,i to obtain the IVQR estimator of β0τ , i.e.,

β̂nτ ≡ β̂nτ (λ̂nτ). (2.21)

Intuitively, to find λ̂nτ in step (ii), we look for a value of λ that makes the coefficient γ̂nτ (λ) of the

instrumental variable as close to 0 as possible. The weight matrix Ân is used for asymptotic efficiency

purpose. A convenient choice is to set A equal to the inverse of the asymptotic covariance matrix of√
n(γ̂nτ(λ) − γ0τ (λ)) where γ0τ (λ) denotes the probability limit of γ̂nτ (λ), but that would require the

consistent estimation of A at each point λ. For simplicity, we can simply set Ân to be an identity matrix;

see Chernozhukov and Hansen (2006, 2008) for the case of iid data.

Remark 1. It is simple to implement the above IVQR procedure in practice: (i) for a given

probability index τ of interest (e.g., τ = 0.5 as for IV median regression), define a fine grid of values

{λj , j = 1, · · · , J} that lie in a compact space (e.g., a compact subset of the interval (−1, 1) when

Wn is row normalized), (ii) for each j, run an ordinary QR of yn,i − λj ȳn,i on ξn,i to obtain the

coefficients (β̂nτ (λj), γ̂nτ(λj)), and (iii) choose λ̂nτ as the value among {λj, j = 1, · · · , J} that makes

γ̂nτ (λ)′ Ân γ̂nτ(λ) closest to zero.

Remark 2. There are other approaches to obtain estimates of (λ0τ , β0τ). For example, one can

follow Honoré and Hu (2004) and propose a method of moments approach that attempts to minimize

S0
nτ (λ, β)′P̂nS

0
nτ (λ, β) over (λ, β), where

S0
nτ (λ, β) =

1
n

n∑
i=1

ψτ (yn,i − λȳn,i − β′xn,i)ξn,i, (2.22)

ψτ (u) ≡ τ − 1(u ≤ 0) signifies the (directional) derivative of ρτ (u), and P̂n is an estimated weight

matrix. See also Abadie (1995) in a different context. Another example is to generalize the median

estimator of Sakata (2007) to our spatial context. In contrast to the IVQR approach studied in this

paper, these alternative approaches involve highly non-convex, multi-modal, and non-smooth objective

functions over many parameters, which make them difficult to be implemented in practice, and thus are

not considered in this paper. However, the function S0
nτ(·, ·) remains very important to the theoretical

developments in this paper.

3 Asymptotic Properties of the IVQR Estimator

To study the asymptotic properties of the IVQR estimator for the SQAR model, we introduce some

notation. For a matrix An, its Frobenius norm is denoted as ‖An‖ = [tr(AnA
′
n)]1/2, and its (i, j)th

element as an,ij. Similarly, for a vector an, an,i denotes its ith element. Further, An is said to be

uniformly bounded in absolute value if sup1≤i≤n,1≤j≤n |an,ij| < ∞, and is uniformly bounded in row

sums (or column sums) if sup1≤i≤n

∑n
j=1 |an,ij| ≤ ca (or sup1≤j≤n

∑n
i=1 |an,ij| ≤ ca) for some constant

ca < ∞. Let en,i be an n × 1 vector with 1 in the ith place and 0 elsewhere, and In the n × n
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identity matrix. Let Λ and B denote the parameter spaces for λ and β, respectively, and “E” denote

the expectation operator corresponding to the true parameter values (λ0τ , β0τ ).

Let Sn(λ) ≡ In − λWn and Gn(λ) ≡ WnS
−1
n (λ) for any value of λ. Let λ0τ ≡ λ(τ ), β0τ ≡ β(τ ),

Sn ≡ Sn(λ0τ), and Gn ≡ Gn(λ0τ ). Noting that Sn(In + λ0τGn) = In, (2.13) has the reduced form

Yn = S−1
n (Xnβ0τ + Un) = Xnβ0τ + λ0τGnXnβ0τ + S−1

n Un, (3.1)

provided that Sn is nonsingular. This reduced form will be frequently used in the derivation of the

asymptotic properties of the estimator proposed below.6

3.1 Assumptions

First we make some assumptions on the quantile residuals, the spatial weight matrix, and the parameter

space for the spatial parameter.

Assumption 1. (i) Pr(un,i ≤ 0) = τ for all i = 1, · · · , n. (ii) supn≥1max1≤i≤nE|un,i| ≤ μ < ∞.

(iii) The conditional distribution function Fn,i (·|ūn,i) of un,i given ūn,i exhibits a conditional probability

density function (pdf) fn,i (·|ūn,i) that is uniformly bounded with bounded continuous first derivatives,

where ūn,i ≡
∑n

k �=i gn,ikun,k and gn,ik denotes the (i, k)th element of Gn.

Assumption 1 is a high level assumption because it imposes conditions on the quantile residual

un,i = uτn,i directly as in the case of conditional mean or median regression. Under Assumption

3(i) below, Assumption 1(i) is equivalent to the quantile restriction in (2.14) which is implied by the

DGP in (2.7) under the stated three conditions. Assumption 1(ii) is weak because it only requires the

existence of the first moment of un,i as in traditional quantile regressions. Even so, it is worthwhile

to see some primitive conditions that ensure it to hold. Let Λ̄n ≡ diag{λ(vn,1), · · · , λ(vn,n)} and

Bjn ≡ diag{βj(vn,1), · · · , βj(vn,n)}, where βj(·) denotes the jth component of β(·), and j = 1, · · · , p. If

‖Λ̄nWn‖ ≤ cλ < 1 almost surely (a.s.) for the Frobenius norm ‖ · ‖ (or any other matrix norm), then

by Horn and Johnson (1985, Corollary 5.6.16) the reduced form for (2.7) exists and is given by

Yn =
(
In − Λ̄nWn

)−1
p∑

j=1

BjnXjn =
∞∑

k=0

(
Λ̄nWn

)k p∑
j=1

BjnXjn,

where Xjn denotes the jth column of Xn. Under Assumptions 2-3 specified below, we can apply Lemma

A.1 in the Appendix and (2.15) to show that the following three conditions are sufficient for Assumption

1(ii) to hold: a) limsupn‖Λ̄nWn‖ ≤ cλ < 1 a.s., b) β(vn,i) are uniformly bounded a.s., and c) E(ε2n,i) =

σ2
ε <∞.

Assumption 1(iii) specifies the conditions on the conditional density of un,i given ūn,i, which may

not be straightforward to verify except for some special cases. For example, if λ(vn,i) = λ0 a.s. for

all i in (2.11), (2.15) suggests that un,i is independent of un,j for all j �= i and thus of ūn,i under

6Lee (2004) showed a sufficient condition for the global identification of the SAR model given in (1.1) is that Xn and

Gn(λ0)Xnβ0 are not asymptotically multicolinear. Similarly, Xn and GnXnβ0τ in (3.1) and their relationship play a key

role in the identification of the SQAR model as well.
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Assumptions 3(i)-(ii) below. In this case, fn,i (·|ūn,i) reduces to the unconditional pdf of un,i, whose

uniform boundedness can be easily ensured by specifying weak conditions on the marginal density of

εn,i. This last assumption distinguishes our study significantly from that of Chernozhukov and Hansen

(2006, 2008) in which iid quantile residuals are guaranteed and one only needs to specify conditions on

the marginal pdf of the quantile residuals.

It is worth mentioning that despite the fact Fn,i(0|ūn,i) = Pr(un,i ≤ 0 |ūn,i) �= τ in general, we show

in the proof of Theorem 3.2 that E[Fn,i(0|ūn,i)] = τ under Assumptions 1(i) and (iii). This result plays

an important role in the derivation of the asymptotic properties of our IVQR estimators.

Assumption 2. The spatial weight matrix Wn is such that (i) its diagonal elements wn,ii are

0 for all i, (ii) the matrix Sn is nonsingular, (iii) the sequences of matrices {Wn} and {S−1
n } are

uniformly bounded in both row and column sums, (iv) {S−1
n (λ)} are uniformly bounded in either row or

column sums, uniformly in λ ∈ Λ, where the parameter space Λ is compact with λ0τ being an interior

point, and (v) the diagonal elements gn,ii of Gn satisfy limn→∞ min1≤i≤n infλ∈Λ bn,i(λ) = cg > 0 where

bn,i(λ) = 1 + (λ0τ − λ)gn,ii.

Like Lee (2004), Assumptions 2(i)-(iv) provide the essential features of the weight matrix for the

model. Assumption 2(i) plays the normalization rule and it implies that no unit is viewed as its own

neighbor. Assumption 2(ii) guarantees that the system of simultaneous equations has an equilibrium

and that the reduced form is well defined. Kelejian and Prucha (1998, 1999, 2001) and Lee (2002, 2004)

also assume Assumption 2(iii), which limits the spatial correlation to some degree but facilitates the

study of the asymptotic properties of the spatial parameter estimators. By Horn and Johnson (1985,

Corollary 5.6.16), we see that the condition limsupn‖λ0τWn‖ < 1 is sufficient for S−1
n being uniformly

bounded in both row and column sums. In practice Wn is often specified to be row normalized in that∑n
j=1wn,ij = 1 for all i. In many of these cases, no unit is assumed to be a neighbor to more than a given

number, say, k of the other units. That is, for every j the cardinality of the set {wn,ij �= 0, i = 1, ..., n}
is less than or equal to k. In such cases, Assumption 2(iii) is satisfied. In the cases where the spatial

weights are formulated in such a way that they decline as a function of some measure of physical or

economic distance between individual units, Assumption A2(iii) will be typically satisfied. In particular,

Lee (2002) demonstrates that Assumption 2(iii) is satisfied when Wn is row normalized with elements

that are all nonnegative and are uniformly of order O (1/n) . It is worth mentioning that Assumptions

2(i)-(iii) are satisfied for the empirical models of Case (1991, 1992) and Case et al. (1993). The Wn

and Sn matrices in Case (1991, 1992) are symmetric, and the row-normalization of Wn guarantees that

A2(iii) is satisfied.

Assumption 2(iii) implies that {S−1
n (λ)} are uniformly bounded in both row and column sums

uniformly in a neighborhood of λ0τ . Assumption 2(iv) requires this to be true uniformly in λ ∈ Λ.

Assumption 2(v) restricts both Wn and the parameter space for λ. It is not as restrictive as it appears.

For example, if we further assume that the elements wn,ij of Wn are uniformly at most of order �−1
n such

that as n → ∞, �n → ∞ and �n/n→ 0, then by Lemma A.1 in Appendix A, gn,ii = O(1/�n) = o(1) so

that Assumption 2(v) is automatically satisfied. One can consider relaxing Assumption 2(v) but at the
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cost of lengthier proofs.

For the regressors xn,i, instruments zn,i, and weight Ân, we make the following assumption.

Assumption 3. (i) The regressors xn,i are nonstochastic and uniformly bounded in absolute value,

and Xn has full column rank and contains a column of ones. (ii) The instruments zn,i are nonstochastic

and uniformly bounded in absolute value, and the instrument matrix Zn has full column rank q ≥ 1.

(iii) Ân = A+ op(1), where A is symmetric and positive definite.

Assumptions 3(i)-(ii) are standard in spatial econometrics; see Kelejian and Prucha (1998, 1999).

As remarked by Lee (2004), the regressors can be stochastic satisfying certain finite moment conditions.

In most applications, Zn is composed of linearly independent columns of WnXn or [WnXn,W
2
nXn],

where the subset contains at least the linearly independent columns of WnXn that are also linearly

independent of the columns of Xn. The Zn matrix chosen this way satisfies Assumption 3(ii) due to

Assumptions 2(iii) and 3(i).

The formal study on the asymptotic properties (root-n consistency and asymptotic normality) relies

on some additional assumptions on some important functions, all related to the sample objective function

Qnτ(λ, β, γ) defined in (2.18). First, for identification purpose, define the population counter part of

Qnτ(λ, β, γ) as

Qτ(λ, β, γ) = lim
n→∞E[Qnτ(λ, β, γ)], (3.2)

and define, for a given λ,

(β0τ (λ), γ0τ (λ)) = arg min(β,γ)Qτ (λ, β, γ), (3.3)

which gives the population counter part of (β̂nτ (λ), γ̂nτ (λ)) defined in (2.19). Clearly, β0τ(λ0τ ) = β0τ

and γ0τ (λ0τ) = γ0τ = 0. The former is obvious and the latter (saying that the true value for γτ is zero)

follows from the arguments leading to (2.17). Next define

Snτ (λ, β, γ) =
1
n

n∑
i=1

ψτ (yn,i − λȳn,i − β′xn,i − γ′zn,i)ξn,i, (3.4)

which is the negative partial (directional) derivative of Qnτ(λ, β, γ) with respect to (β′, γ′)′, which, when

γ = 0, reduces to S0
nτ (λ, β), the function introduced in (2.22). Finally, similar to Qτ(λ, β, γ), define the

population quantities in relation to Snτ (λ, β, γ) and S0
nτ (λ, β) as:

Sτ (λ, β, γ) = lim
n→∞E[Snτ (λ, β, γ)] and S0

τ (λ, β) = lim
n→∞E[S0

nτ (λ, β)]. (3.5)

We impose the following assumption.

Assumption 4. (i) (λ0τ , β
′
0τ)′ is in the interior of a convex compact set Λ × B ⊂ R

1+p; (ii)

∂Sτ (λ, β, γ)/∂(β′, γ′) is continuous and has full rank at (β0τ (λ), γ0τ (λ)) uniformly in λ ∈ Λ; (iii)

∂S0
τ (λ, β)/∂(λ, β′) is continuous and has full column rank at (λ0τ , β0τ); (iv) If S0

τ (λ∗, β∗) = 0, then

λ∗ = λ0τ and β∗ = β0τ ; and (v) β0τ (λ) and γ0τ(λ) are both continuous in λ ∈ Λ.

Assumption 4(i) imposes compactness on the parameter space. Note that the objective function in

the first step estimation is convex in (β, γ) for each λ. Assumption 4(ii) imposes a local identification
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condition for the conventional QR of yn,i − λȳn,i on ξn,i and Assumption A4(iii) requires implicitly

the relevance between the instruments zn,i and the endogenous variable ȳn,i. The former is crucial

in establishing the uniform Bahadur representation for (β̂nτ (λ), γ̂nτ (λ)), and the latter is critical in

establishing the asymptotic normality of our IVQR estimators λ̂nτ and β̂nτ . Their importance warrants

a detailed discussion.

To simplify the presentation, let α = (β′, γ′)′, and similarly are α0τ , α0τ(λ), and α̂nτ(λ) defined.

Also, let θ = (λ′, β′)′ and θ0τ and θ̂nτ be similarly defined. First, from (3.1), Ȳn = GnXnβ0τ +GnUn.

It follows that

yn,i − λȳn,i = bn,i(λ)un,i + (λ0τ − λ)cn,i + β′
0τxn,i, (3.6)

where bn,i(λ) is defined in Assumption 2(v) and cn,i = e′n,iGnXnβ0τ +
∑n

k �=i gn,ikun,k. By the law of

iterative expectations,

E[Snτ (λ, α)] =
1
n

n∑
i=1

E
[
τ − Fn,i

(
an,i(λ, α)
bn,i(λ)

∣∣∣∣ ūn,i

)]
ξn,i, (3.7)

where an,i(λ, α) = (λ − λ0τ )cn,i + (α − α0τ)′ξn,i. Denote Jnτ(λ, α) = −∂E[Snτ (λ, α)]/∂(λ, α′). Differ-

entiating under the integral sign, we obtain

Jnτ(λ, α) =
1
n

n∑
i=1

E
{
fn,i

(
an,i(λ, α)
bn,i(λ)

∣∣∣∣ ūn,i

)
ξn,i

bn,i(λ)
[
cn,i(λ, α), ξ′n,i

]}
, (3.8)

where cn,i(λ, α) = cn,i + an,i(λ, α)gn,ii/bn,i(λ). This leads to two important quantities:

Jnτ(λ) ≡ Jnτ [λ, α0τ(λ)] =
1
n

n∑
i=1

E
{
fn,i

(
an,i(λ)
bn,i(λ)

∣∣∣∣ ūn,i

)
ξn,i

bn,i(λ)
[
cn,i(λ), ξ′n,i

]}
, (3.9)

Jnτ ≡ Jnτ(λ0τ , α0τ) =
1
n

n∑
i=1

fn,i(0|ūn,i)ξn,i

[
E(cn,i), ξ′n,i

]
, (3.10)

where an,i(λ) ≡ an,i[λ, α0τ(λ)] and cn,i(λ) ≡ cn,i[λ, α0τ(λ)]. Note that cn,i(λ0τ , α0τ) = cn,i. Note that

the S-quantities defined in (3.4) and (3.5) are all (p + q) × 1 vectors, and the J-quantities defined in

(3.8)-(3.10) are all (p+ q) × (1 + p+ q) matrices. Partitioning Jnτ (λ) into [Jnτλ(λ), Jnτα(λ)] according

to λ and α′, and partitioning Jnτ into [Jnτθ, Jnτγ ] according to θ′ and γ′, we show under Assumptions

1(iii) and 2(v) that

(∂/∂α′)Sτ (λ, α)|α=α0τ(λ) = − lim
n→∞Jnτα(λ) and (∂/∂θ′)S0

τ (θ)
∣∣
θ=λ0τ

= − lim
n→∞Jnτθ.

Thus, the local identification condition of Assumption 4(ii) boils down to requiring the (p+ q)× (p + q)

matrix Jnτα(λ) to be positive definite for large enough n uniformly in λ ∈ Λ. Similarly, requiring

∂S0
τ (θ)/∂θ′ to have full column rank at θ0τ in Assumption 4(iii) is equivalent to requiring Jnτθ to have

full column rank for large enough n, or ξn,i to be closely enough related to ȳn,i as e′n,iGnXnβ0τ is the

leading term in E(cn,i) and also in ȳn,i.7

7As kindly pointed out by a referee, this assumption can be relaxed to allow for IVQR inference with weak identification.

The dual approach considered in Chernozhukov and Hansen (2008) does not depend on it.

13



Noting that S0
τ (θ0τ ) = 0 by Assumption 1(ii), Assumption A4(iv) requires that θ0τ be the unique

solution to S0
τ (θ) = 0. This assumption is needed for the consistency of our estimator. It is weaker than

the condition: E[S0
nτ (θ∗)] = 0 implies θ∗ = θ0τ . The latter condition is usually satisfied when the data

are iid or stationary time series. See Hong and Tamer (2003) for detailed discussions on conditions under

which quantile regression models with endogeneity are identified. In the study of spatial discrete-choice

models, Pinkse and Slade (1998) made a similar assumption, and Pinkse et al. (2006) assumed a slightly

weaker condition.

To proceed with our further discussions on the regularity conditions in allowing for dependence in

the data, and in establishing the stochastic equicontinuity of certain functions, let un,i(λ) = yn,i −
λȳn,i − α′

0τ(λ)ξn,i. Then un,i(λ0τ) = un,i. Define

ηn,i(λ,Δ) = −
{
ψτ [un,i(λ) − n− 1

2 Δ′ξn,i] − ψτ [un,i(λ)]
}
ξn,i.

Now, we state the following high level assumption.

Assumption 5. Var [n−1
2
∑n

i=1 ηn,i(λ,Δ)] = o(1) for each λ ∈ Λ and ‖Δ‖ ≤M <∞.

Assumption 5 restricts the degree of dependence in the data. If un,i ≡ uτn,i are independent across

i (say, when λ= 0 in the definition of σn,i), we verify in an early version of the paper that under

Assumptions 1-3, the following conditions are sufficient for Assumption 5 to hold: (i) the elements

wn,ij of Wn are uniformly at most of order �−1
n such that as n → ∞, �n → ∞ and �n/n → 0, (ii)

supnmax1≤i≤nEu2
n,i ≤ cu < ∞. (i) requires that the elements wn,ij of Wn tend to zero uniformly as

n → ∞. This assumption is reasonable when each spatial unit is affected by an infinite number of

neighbors such that the effect from any individual unit is negligible but the aggregate effect is not.

Nevertheless, it rules out the case where �n does not converge to infinity, which is very important in

many applications when a spatial unit is only affected by a finite number of neighbors. In addition, the

above conditions become insufficient if un,i’s are dependent across i.

Following Pinkse et al. (2007), we can control the variance of n− 1
2
∑n

i=1 ηn,i(λ,Δ) by borrowing

the notion of “mixing” from the time series analysis. To proceed, we divide the observations into non-

overlapping groups Gn1, · · · , GnJ , 1 ≤ J <∞. For each j = 1, · · · , J , there are mnj mutually exclusive

subgroups, Gnj1, · · · , Gnjmnj . Group membership of each observation can vary with the sample size n

and so can the number of subgroups mnj in each group j. Let njt denote the number of observations

in subgroup Gnjt. The following assumption is adapted from Pinkse et al. (2007).

Assumption 5∗. (i) Let ηn,ik(λ,Δ) denote the kth element of ηn,i(λ,Δ), k = 1, · · · , p + q. For

any j = 1, · · · , J , let G∗
n, G∗

n ⊂ Gnj be any sets for which ∀t = 1, · · · , mnj, if Gnjt ∩ G∗
n �= ∅ then

Gnjt ∩ G∗∗
n = ∅. Let S∗

nk(λ) = 1√
n

∑
s∈G∗

n
ηn,sk(λ,Δ) and S∗∗

nk(λ) = 1√
n

∑
s∈G∗∗

n
ηn,sk(λ,Δ). Then for

each λ ∈ Λ,

‖Cov (S∗
nk(λ), S∗∗

nk(λ))‖ ≤
√

Var (S∗
nk(λ)) Var (S∗∗

nk(λ)) αmnj , k = 1, · · · , p+ q,

for some “mixing” numbers αmnj such that limn→∞
∑J

j=1m
2
njαmnj = cα ∈ [0,∞). (ii) For each

j = 1, · · · , J , limn→∞ maxt≤mnj njt/n = 0.
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Assumption 5∗(i) requires a bound on the correlation between two quantities, corresponding to two

different sets of subgroups of the same group. It is weaker than Assumption A in Pinkse et al. (2007).

See that paper for a discussion on the need of dividing observations into finite J groups. Assumption

5∗(ii) requires that the number of observations in each subgroup is relatively small. This is needed

for controlling the variance of the partial sums over each subgroup. We show in the appendix that

Assumption 5∗ suffices to ensure Assumption 5.

Finally, define υnτ(λ) = −√
n [Snτ (λ) − ESnτ(λ)], where Snτ(λ) ≡ Snτ [λ, α0τ(λ)]. Define Sτ (λ) ≡

Sτ [λ, α0τ(λ)]. We make the following assumption.

Assumption 6. (i) ESnτ (λ) − Sτ (λ) = O(n−1/2) uniformly in λ. (ii) supλ∈Λ ‖υnτ (λ)‖ = Op(1)

and supλ∈Λsup|λ−λ∗|<δn
‖υnτ(λ) − υnτ (λ∗)‖ = op(1) for every sequence {δn} converging to zero.

Assumption 6(i) specifies the rate at which ESnτ (λ) converges to its limit. If the convergence holds

pointwise, we can show that it must hold uniformly in λ by using the monotone properties of the

indicator function. Assumption 6(i) is automatically satisfied for iid data and stationary time series

data in which case ESnτ (λ) = Sτ (λ). Assumption 6(ii) is a stochastic equicontinuity condition. Let

ξ = (x′, z′)′. Consider the class of functions

M = {g(y, ȳ, ξ; λ) = 1(y − λȳ − α′
0τ(λ)ξ ≤ 0)ξ : λ ∈ Λ} .

If (yn,i, ȳn,i, ξn,i) are iid with probability law Pn, it is easy to verify that {g(·; λ) : λ ∈ Λ} is an Euclidean

class with envelope g such that g(y, ȳ, ξ) ≡ ‖ξ‖ and
∫
g(y, ȳ, ξ)dPn = E‖ξ‖ <∞. Then by Lemma 2.17

of Pakes and Pollard (1989), Assumption 6 holds for iid data. It also holds for time series data under

weak data dependence conditions [e.g., Andrews (1994)]. For spatial data, we can show that Assumption

6 holds provided limn→∞�n/
√
n = c ∈ (0,∞]. This latter condition with c = ∞ has been assumed in

Lee (2002) for the consistency of least squares estimation of SAR models and in Robinson (2010) for

the adaptive estimation of SAR models. Nevertheless, it is not necessary here because there may exist

other cases where Assumption 6 holds.

3.2 Asymptotic Distribution

We are now ready to state the asymptotic property of the IVQR estimators defined in (2.19)-(2.21)

above. The following theorem shows that the QR estimator α̂nτ(λ) has a Bahadur representation

uniformly in λ.

Theorem 3.1 Suppose Assumptions 1-6 hold. Then, we have

√
n[α̂nτ(λ) − α0τ(λ)] = J−1

nτα(λ)
√
nSnτ(λ) + op(1) uniformly in λ ∈ Λ.

Note that supλ |√nSnτ (λ)| = Op(1) by Lemma A.4 and supλ|Jnτ(λ)| = O(1) by Assumptions 1-3

and Lemma A.1. An immediate consequence of Theorem 3.1 is that ‖α̂nτ(λ) − α0τ(λ)‖ = Op(n−1/2)

uniformly in λ ∈ Λ. This uniform
√
n-consistency for α̂nτ(λ) is crucial in proving the

√
n-consistency

of θ̂nτ presented in the next theorem.
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Let Jτ = limn→∞ Jnτ with Jnτ being defined in (3.10), partitioned as Jτ = [Jτλ, Jτβ, Jτγ ] according

to λ, β′ and γ′. Partition conformably [Jτβ , Jτγ ]−1 = [J̄ ′
τβ , J̄

′
τγ ]′, where J̄τβ is p × (p + q) and J̄τγ is

q × (p+ q). We have the main results for the asymptotic normality of our IVQR estimator.

Theorem 3.2 Suppose that Jnτα is of full rank and Assumptions 1-6 hold. Then, we have

√
n(θ̂nτ − θ0τ ) d−→ N [0, Ωτ(A)Σ0τΩ′

τ (A)],

where Σ0τ ≡ limn→∞ Var[
√
nSnτ (λ0τ)] = τ (1 − τ ) limn→∞ 1

n

∑n
i=1 ξn,iξ

′
n,i,

Ωτ (A) ≡ [Hτ (A)Jτλ[J ′
τλHτ (A)Jτλ]−1, {Ip+q − Jτλ[J ′

τλHτ(A)Jτλ]−1J ′
τλHτ(A)}J̄ ′

τβ

]′
,

and Hτ(A) = J̄ ′
τγAJ̄τγ .

The asymptotic variance of
√
n(θ̂nτ − θ0τ ) depends on the choice of the weight matrix A in the case

of over-identification (q > 1). In the case of just identification (q = 1), however, A becomes a scalar

which is canceled out in the variance formula, and hence the choice of A does not affect the asymptotic

variance of
√
n(θ̂nτ − θ0τ ). A much simpler result thus follows, writing Jτθ = [Jτλ, Jτβ ],

Corollary 3.3 Suppose that q = 1 and the conditions of Theorem 3.2 hold. Then

√
n(θ̂nτ − θ0τ) d−→ N [0, J−1

τθ Σ0τ(J−1
τθ )′].

Remark 3. In the case of over-identification (q > 1), the choice of the weight matrix Ân in the

objective function γ̂nτ (λ)′Ânγ̂nτ (λ) generally matters. As discussed in Section 2, it is natural to choose

Ân to be a consistent estimator of the inverse of the asymptotic covariance matrix of
√
n[γ̂nτ(λ)−γ0τ (λ)].

In this case, since A is generally λ-dependent, it needs to be estimated at each grid point of λ in the

process of optimization.

Remark 4. Consider θ̃nτ = arg minθ S
0
nτ (θ)′P̂nS

0
nτ (θ), the method of moments (MM) estimator

with S0
nτ (θ) being defined in (2.22). Under conditions similar to those imposed in Assumptions 1-

6, we can establish the asymptotic normality of θ̃nτ In particular, when we choose the optimal weight

P̂n = (n−1
∑n

i=1 ξn,iξ
′
n,i)

−1, the asymptotic covariance of θ̃nτ is equal to (J ′
τθΣ

−1
0τ Jτθ)−1, which becomes

J−1
τθ Σ0τ(J−1

τθ )′ in the case of just identification (q = 1). Consequently, if we restrict our attention to

the MM estimator θ̃nτ by choosing only one IV for ȳn,i with the above optimal weight, and the IVQR

estimator θ̂nτ based on the same IV, then the two estimators are asymptotically equivalent. Nevertheless,

θ̂nτ is usually less efficient than the MM estimator θ̃nτ that uses more than one IV in the optimal way.

3.3 Estimation of VC Matrix

For statistical inferences based on our model, we need to provide a method of estimating the asymp-

totic variance-covariance matrix Ωτ (A)Σ0τΩ′
τ(A). The definition of Σ0τ leads naturally to a consistent

estimator of it as Σnτ ≡ τ (1 − τ ) 1
n

∑n
i=1 ξn,iξ

′
n,i. The estimation of Ωτ (A) depends on the estimation
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of A and Jτ . The former is discussed in Remark 3 above. For the latter, we follow Powell (1991) and

estimate Jτ = [Jτλ, Jτα] by Ĵτ = [Ĵτλ, Ĵτα], where

Ĵτλ ≡ (2nh)−1
n∑

i=1

1 {|ûn,i| ≤ h} ξn,iĉn,i,

Ĵτα ≡ (2nh)−1
n∑

i=1

1 {|ûn,i| ≤ h} ξn,iξ
′
n,i,

ĉn,i = e′n,iGnXnβ̂τ +
∑n

k �=i gn,ikûn,k, ûn,i = yn,i−λ̂τyn,i− x′n,iβ̂τ , and h ≡ h(n) is a bandwidth parameter

such that as n→ ∞, h→ 0 and nh2 → ∞. Following Koenker (2005, pp. 80-81), we set

h = κ̂
[
Φ−1(τ + cn−1/3) − Φ−1(τ − cn−1/3)

]
,

where Φ−1 is the inverse of the standard normal CDF, κ̂ is a robust estimate of scale/standard deviation,

e.g., κ̂ = median|ûn,i-median(ûn,i)|/0.6745 (Hogg and Craig, 1995, p. 390), and c is a proportional

constant. In the application below we set c = 0.5. 8

4 Simulation and Application

In this section we report some simulation results to investigate the finite sample performance of our

IVQR estimator of the SQAR model. Also, in the special case of median regression with symmetric

errors, we compare our estimator with the QMLE without taking into account of heteroscedasticity

(Lee, 2004), the 2SLS and GMM estimators of Lee (2007) with iid assumption, and the robust GMM

estimator of Lin and Lee (2010). The GMM estimator of Lee (2007) denoted by GMM0 and the robust

GMM estimator of Lin and Lee (2010) denoted by GMMR require initial estimates of λ and β and a

weight matrix. We follow exactly Lin and Lee (2010, p. 40, paragraph 3) for the definitions of 2SLS,

GMM0 and GMMR. In particular, GMM0 uses (Gn− 1
ntrGnIn) as the weight matrix and (GnXnβ,Xn)

as the IV matrix, GMMR uses the same IV but a different weight Gn−Diag(Gn), and 2SLS is what they

called the simple 2SLS which uses the linearly independent columns of (WnXn, Xn) as the IV matrix.

This 2SLS also serves as initial estimates for GMM0 and GMMR. Note that the estimator proposed by

Kelejian and Prucha (2010) is essentially the 2SLS estimator when their SARAR model is reduced to

SAR model.

The DGP employed in the simulations takes the form of (2.7): yn,i = λ(vn,i)ȳn,i +β(vn,i)′xn,i, where

xn,i =
(
1, x0

i

)
,
{
x0

i

}
are iid N(0, 1),

λ(vn,i) = 0.5 + 0.1 F−1
n (vn,i), and

β(vn,i) = (2.0, 1.0)′ + (0.5, 0.5)′F−1
n (vn,i),

for i = 1, · · · , n, where {vn,i} are iid U(0, 1), and Fn is chosen to be (i) standard normal, (ii) standardized

t3, and (iii) standardized χ2
3. With these specifications, the values for λ(τ ) and β(τ )′ = {β1(τ ), β2(τ )}

under different τ and Fn are summarized as follows.
8Alternatively one could follow Pakes and Pollard (1989) and Honoré and Hu (2004) and estimate the Jτ -quantities

using numerical derivatives.
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Table 1. Summary of True Quantile Parameters used in Simulations
Standard normal Standardized t3 Standardized χ2

3

τ λ(τ ) β1(τ ) β2(τ ) λ(τ ) β1(τ ) β2(τ ) λ(τ ) β1(τ ) β2(τ )
0.25 0.4326 1.6628 0.6628 0.4558 1.7792 0.7792 0.4270 1.6351 0.6351
0.50 0.5000 2.0000 1.0000 0.5000 2.0000 1.0000 0.4741 1.8706 0.8706
0.75 0.5674 2.3372 1.3372 0.5442 2.2208 1.2208 0.5452 2.2262 1.2262

The weight matrix Wn is generated under two scenarios: (i) Rook contiguity, and (ii) large group

interaction. The former corresponds to the case where �n is bounded, whereas the latter corresponds

to the case where �n goes to infinity as n does but at a slower rate. To be exact, in case (i) we first

randomly generate n integers from 1 to n without repetition and arrange them in five rows, then form

the neighborhood matrix according to the Rook contiguity and row-normalize; in case (ii) we choose

the number of groups R = �n0.6�, and then generate the group sizes (mr , r = 1, · · · , R) uniformly from

the interval (m/2, 3m/2) where m(≈ n/R) is the average group size.9 The sample sizes used are 100,

200, 500, and 1000. Each set of simulation results is based 1,000 Monte Carlo samples.

The first set of Monte Carlo experiments is carried out at τ = 0.5, which allows comparisons of our

method with the existing QMLE and GMM methods, in particular when the errors are symmetrically

distributed. This is because the latter methods are applicable to the standard SAR model with the

zero mean (in errors) restriction. Also note that, in finding the IVQR estimate, we used the grid

search method (as indicated in the Remark 1 of Section 2.2) combined with an auto search. This is

because a fine grid search alone may be too time consuming, and an auto search alone may lead to local

minima.10 Tables 2 and 3 summarize the Monte Carlo bias, the standard deviation (StDev) and the

root mean squared errors (RMSE) of the various estimators, where Table 2 corresponds to the spatial

parameter λ(0.5), and Table 3 the slope parameter β2(0.5). From Table 2 we see that all estimators

(except 2SLS) of λ(0.5) perform similarly, although a slight edge may go to our IVQR estimator when

errors are nonnormal. However, the results in Table 3 clearly show that our IVQR estimator of β2(0.5)

outperforms all others, in particular when the errors are positively skewed. These results show the

robustness of IVQR estimator against both excess skewness and kurtosis.

The second set of Monte Carlo experiments focuses on the behavior of IVQR estimator at other

quantile points. Tables 4 and 5 present results for τ = 0.25 and 0.75, where Table 4 corresponds to

λ(τ ), and Table 5 corresponds to β2(τ ). The results indicate that the IVQR estimator for the SQAR

model behaves quite well in general, and are consistent with the theoretical predictions. It is generally

robust against nonnormality and heteroscedasticity, and as the sample size increases, both StDev and

RMSE decline and the magnitude of decrease is generally consistent with the
√
n-asymptotics.

9Under Rook contiguity, spatial units are considered as the neighbors of a certain spatial unit if they fall above, below,

left or right of this spatial unit. Under group interaction, one needs to make a final adjustment to make sure that
PR

r=1 mr = n. Note that this spatial layout generalizes that considered in Case (1991) and used in Lee (2004). See these

two papers for more discussions on group interactions.
10We first find the interval where the global minimum lies in by the grid search method, and then do an auto search

within this smaller interval. In our simulation, we have used 200 points within [−0.99,0.99].

18



Table 2. Empirical Bias [StDev]{RMSE} for Estimators of λ(τ ), τ = 0.5
n Estimator Standard Normal Standized t3 Standardized χ2

3

(a) Spatial Layout: Rook Contiguity
100 QML -0.0191 [.0826]{.0848} -0.0179 [.0767]{.0788} 0.0046 [.0818]{.0819}

2SLS -0.0051 [.1223]{.1224} -0.0040 [.1230]{.1231} 0.0163 [.1246]{.1257}
GMM0 -0.0159 [.0822]{.0837} -0.0129 [.0941]{.0950} 0.0083 [.0817]{.0821}
GMMR -0.0182 [.0820]{.0840} -0.0150 [.0924]{.0936} 0.0064 [.0813]{.0815}
IVQR 0.0006 [.0948]{.0948} 0.0001 [.0604]{.0604} 0.0019 [.0776]{.0776}

200 QML -0.0103 [.0665]{.0673} -0.0115 [.0627]{.0638} 0.0131 [.0694]{.0706}
2SLS -0.0047 [.1177]{.1178} -0.0057 [.1173]{.1174} 0.0197 [.1223]{.1238}
GMM0 -0.0066 [.0671]{.0674} -0.0074 [.0671]{.0675} 0.0166 [.0698]{.0718}
GMMR -0.0066 [.0671]{.0674} -0.0076 [.0659]{.0663} 0.0165 [.0698]{.0717}
IVQR -0.0006 [.0852]{.0852} -0.0006 [.0543]{.0543} -0.0010 [.0711]{.0711}

500 QML -0.0040 [.0430]{.0432} -0.0046 [.0423]{.0425} 0.0221 [.0452]{.0503}
2SLS -0.0051 [.0764]{.0766} -0.0044 [.0774]{.0775} 0.0208 [.0779]{.0807}
GMM0 -0.0028 [.0433]{.0434} -0.0033 [.0423]{.0425} 0.0239 [.0456]{.0515}
GMMR -0.0019 [.0433]{.0434} -0.0025 [.0423]{.0423} 0.0247 [.0455]{.0518}
IVQR -0.0034 [.0534]{.0535} -0.0022 [.0335]{.0336} -0.0028 [.0453]{.0453}

1000 QML 0.0017 [.0296]{.0297} 0.0006 [.0310]{.0310} 0.0268 [.0333]{.0427}
2SLS 0.0018 [.0516]{.0517} 0.0011 [.0522]{.0522} 0.0274 [.0544]{.0609}
GMM0 0.0027 [.0297]{.0298} 0.0019 [.0309]{.0309} 0.0280 [.0336]{.0437}
GMMR 0.0026 [.0297]{.0298} 0.0017 [.0307]{.0308} 0.0278 [.0336]{.0436}
IVQR 0.0001 [.0385]{.0385} 0.0001 [.0240]{.0240} 0.0008 [.0331]{.0331}

(b) Spatial Layout: Group Interaction

100 QML -0.0278 [.0844]{.0889} -0.0263 [.0804]{.0846} -0.0065 [.0842]{.0845}
2SLS -0.0301 [.1592]{.1621} -0.0306 [.1640]{.1668} -0.0066 [.1631]{.1632}
GMM0 -0.0203 [.0833]{.0857} -0.0192 [.0789]{.0812} 0.0015 [.0829]{.0829}
GMMR -0.0154 [.0832]{.0846} -0.0149 [.0787]{.0801} 0.0061 [.0820]{.0823}
IVQR -0.0131 [.1141]{.1149} -0.0061 [.0699]{.0702} -0.0136 [.1052]{.1060}

200 QML -0.0123 [.0717]{.0728} -0.0116 [.0681]{.0691} 0.0116 [.0702]{.0711}
2SLS -0.0180 [.1204]{.1217} -0.0198 [.1271]{.1286} 0.0074 [.1223]{.1226}
GMM0 -0.0078 [.0707]{.0712} -0.0079 [.0675]{.0679} 0.0167 [.0696]{.0715}
GMMR -0.0120 [.0707]{.0717} -0.0114 [.0668]{.0677} 0.0121 [.0679]{.0690}
IVQR -0.0067 [.0764]{.0767} -0.0039 [.0497]{.0499} -0.0031 [.0652]{.0653}

500 QML -0.0077 [.0521]{.0527} -0.0073 [.0511]{.0517} 0.0169 [.0533]{.0559}
2SLS -0.0202 [.1126]{.1144} -0.0204 [.1159]{.1176} 0.0071 [.1095]{.1098}
GMM0 -0.0040 [.0520]{.0522} -0.0042 [.0510]{.0512} 0.0204 [.0530]{.0568}
GMMR -0.0063 [.0518]{.0522} -0.0060 [.0503]{.0506} 0.0178 [.0521]{.0551}
IVQR -0.0125 [.0914]{.0922} -0.0056 [.0551]{.0554} -0.0080 [.0740]{.0744}

1000 QML -0.0063 [.0405]{.0410} -0.0074 [.0399]{.0406} 0.0181 [.0422]{.0459}
2SLS -0.0090 [.0719]{.0725} -0.0102 [.0706]{.0713} 0.0148 [.0745]{.0760}
GMM0 -0.0044 [.0401]{.0404} -0.0054 [.0395]{.0399} 0.0202 [.0419]{.0465}
GMMR -0.0036 [.0401]{.0402} -0.0043 [.0392]{.0395} 0.0209 [.0418]{.0467}
IVQR -0.0030 [.0471]{.0472} -0.0013 [.0295]{.0295} -0.0018 [.0399]{.0400}
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Table 3. Empirical Bias [StDev]{RMSE} for Estimators of β2(τ ), τ = 0.5
n Estimator Standard Normal Standardized t3 Standardized χ2

3

(a) Spatial Layout: Rook Contiguity
100 QML 0.0139 [.1325]{.1332} 0.0450 [.8882]{.8893} 0.1490 [.1398]{.2043}

2SLS 0.0068 [.1381]{.1383} 0.0534 [1.5992]{1.6001} 0.1416 [.1440]{.2020}
GMM0 0.0073 [.1326]{.1328} 0.0626 [1.6636]{1.6648} 0.1418 [.1399]{.1993}
GMMR 0.0077 [.1327]{.1329} 0.0631 [1.6664]{1.6676} 0.1422 [.1402]{.1997}
IVQR 0.0007 [.1028]{.1028} 0.0000 [.0653]{.0653} 0.0055 [.0864]{.0865}

200 QML 0.0060 [.0914]{.0916} 0.0081 [.0931]{.0934} 0.1354 [.0951]{.1655}
2SLS 0.0013 [.0918]{.0918} 0.0033 [.0926]{.0926} 0.1302 [.0951]{.1612}
GMM0 0.0017 [.0911]{.0911} 0.0039 [.0929]{.0930} 0.1309 [.0947]{.1616}
GMMR 0.0017 [.0911]{.0911} 0.0039 [.0929]{.0930} 0.1309 [.0947]{.1616}
IVQR -0.0036 [.0684]{.0685} -0.0020 [.0438]{.0438} -0.0011 [.0584]{.0584}

500 QML 0.0105 [.0556]{.0566} 0.0107 [.0597]{.0607} 0.1395 [.0580]{.1511}
2SLS 0.0092 [.0570]{.0578} 0.0090 [.0605]{.0611} 0.1381 [.0593]{.1503}
GMM0 0.0089 [.0557]{.0564} 0.0091 [.0595]{.0602} 0.1376 [.0579]{.1493}
GMMR 0.0087 [.0557]{.0564} 0.0089 [.0596]{.0602} 0.1374 [.0579]{.1491}
IVQR 0.0019 [.0402]{.0403} 0.0015 [.0252]{.0253} 0.0023 [.0341]{.0342}

1000 QML 0.0105 [.0404]{.0418} 0.0103 [.0411]{.0423} 0.1403 [.0416]{.1463}
2SLS 0.0097 [.0417]{.0428} 0.0094 [.0427]{.0438} 0.1394 [.0433]{.1459}
GMM0 0.0096 [.0404]{.0416} 0.0093 [.0410]{.0421} 0.1393 [.0416]{.1454}
GMMR 0.0096 [.0404]{.0416} 0.0094 [.0410]{.0420} 0.1393 [.0416]{.1454}
IVQR 0.0002 [.0276]{.0276} 0.0002 [.0174]{.0174} 0.0005 [.0235]{.0235}

(b) Spatial Layout: Group Interaction

100 QML 0.0139 [.1169]{.1177} 0.0112 [.1146]{.1151} 0.1421 [.1188]{.1852}
2SLS 0.0068 [.1192]{.1194} 0.0041 [.1215]{.1216} 0.1342 [.1199]{.1800}
GMM0 0.0071 [.1168]{.1170} 0.0047 [.1159]{.1160} 0.1349 [.1181]{.1793}
GMMR 0.0067 [.1167]{.1169} 0.0043 [.1167]{.1168} 0.1346 [.1180]{.1790}
IVQR 0.0031 [.1002]{.1003} 0.0024 [.0633]{.0634} 0.0080 [.0855]{.0859}

200 QML 0.0075 [.0798]{.0802} 0.0076 [.0814]{.0818} 0.1370 [.0820]{.1597}
2SLS 0.0040 [.0804]{.0805} 0.0045 [.0827]{.0829} 0.1330 [.0823]{.1564}
GMM0 0.0020 [.0796]{.0797} 0.0028 [.0814]{.0815} 0.1313 [.0815]{.1546}
GMMR 0.0029 [.0797]{.0797} 0.0036 [.0816]{.0816} 0.1323 [.0817]{.1555}
IVQR -0.0002 [.0655]{.0655} 0.0001 [.0421]{.0421} 0.0016 [.0565]{.0565}

500 QML 0.0036 [.0572]{.0573} 0.0028 [.0576]{.0576} 0.1337 [.0589]{.1461}
2SLS 0.0022 [.0577]{.0577} 0.0014 [.0581]{.0581} 0.1322 [.0592]{.1448}
GMM0 0.0021 [.0572]{.0572} 0.0014 [.0576]{.0576} 0.1322 [.0588]{.1447}
GMMR 0.0022 [.0572]{.0572} 0.0015 [.0576]{.0576} 0.1323 [.0589]{.1448}
IVQR 0.0005 [.0390]{.0390} 0.0003 [.0245]{.0245} 0.0008 [.0329]{.0329}

1000 QML 0.0023 [.0390]{.0390} 0.0018 [.0394]{.0395} 0.1314 [.0392]{.1371}
2SLS 0.0017 [.0392]{.0392} 0.0013 [.0396]{.0397} 0.1308 [.0393]{.1366}
GMM0 0.0015 [.0390]{.0390} 0.0011 [.0395]{.0395} 0.1307 [.0392]{.1364}
GMMR 0.0015 [.0390]{.0390} 0.0011 [.0395]{.0395} 0.1306 [.0391]{.1364}
IVQR -0.0006 [.0271]{.0271} -0.0004 [.0171]{.0171} 0.0001 [.0234]{.0234}
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Table 4. Empirical Bias [StDev]{RMSE} for IVQR Estimate of λ(τ ), τ = 0.25, 0.75
τ n Standard Normal Standardized t3 Standardized χ2

3

(a) Spatial Layout: Rook Contiguity

0.25 100 -0.0084 [.1613]{.1615} 0.0213 [.1298]{.1316} 0.0006 [.0894]{.0894}
200 -0.0067 [.0999]{.1001} 0.0042 [.1010]{.1011} -0.0066 [.0737]{.0740}
500 0.0095 [.0579]{.0587} -0.0023 [.0460]{.0461} 0.0052 [.0321]{.0325}
1000 0.0059 [.0420]{.0424} -0.0022 [.0325]{.0326} 0.0026 [.0235]{.0236}

0.75 100 0.0185 [.1675]{.1685} -0.0022 [.1229]{.1229} -0.0059 [.2214]{.2214}
200 -0.0214 [.1166]{.1185} -0.0138 [.0693]{.0707} -0.0420 [.1108]{.1184}
500 -0.0256 [.0596]{.0649} -0.0131 [.0449]{.0468} -0.0319 [.0806]{.0867}
1000 -0.0130 [.0419]{.0439} -0.0017 [.0324]{.0324} -0.0064 [.0526]{.0530}

(b) Spatial Layout: Group Interaction

0.25 100 -0.0162 [.1666]{.1674} -0.0270 [.1282]{.1310} -0.0158 [.1316]{.1325}
200 0.0080 [.1117]{.1120} -0.0330 [.1280]{.1322} -0.0116 [.0588]{.0599}
500 -0.0201 [.1117]{.1135} 0.0097 [.0550]{.0559} -0.0015 [.0391]{.0391}
1000 0.0051 [.0415]{.0418} -0.0021 [.0383]{.0384} 0.0025 [.0290]{.0291}

0.75 100 -0.0360 [.1606]{.1646} -0.0490 [.1946]{.2006} -0.0294 [.2015]{.2036}
200 -0.0203 [.0761]{.0788} -0.0214 [.1358]{.1375} -0.0308 [.1241]{.1279}
500 -0.0208 [.0590]{.0626} -0.0147 [.0665]{.0681} 0.0023 [.0849]{.0850}
1000 -0.0125 [.0544]{.0558} -0.0054 [.0541]{.0543} -0.0227 [.0569]{.0612}

Table 5. Empirical Bias [StDev]{RMSE} for IVQR Estimate of β2(τ ), τ = 0.25, 0.75
τ n Standard Normal Standardized t3 Standardized χ2

3

(a) Spatial Layout: Rook Contiguity

0.25 100 0.0633 [.1138]{.1302} 0.0648 [.0863]{.1080} 0.0195 [.0592]{.0623}
200 0.0809 [.0762]{.1111} 0.0359 [.0573]{.0677} 0.0151 [.0444]{.0469}
500 0.0469 [.0405]{.0620} 0.0457 [.0306]{.0550} 0.0231 [.0258]{.0346}
1000 0.0585 [.0296]{.0656} 0.0284 [.0223]{.0361} 0.0211 [.0184]{.0280}

0.75 100 -0.1007 [.1089]{.1483} -0.0316 [.0856]{.0912} -0.0436 [.1564]{.1624}
200 -0.0406 [.0843]{.0936} -0.0408 [.0571]{.0702} -0.0567 [.0880]{.1047}
500 -0.0353 [.0476]{.0593} -0.0298 [.0365]{.0471} -0.0515 [.0557]{.0758}
1000 -0.0531 [.0331]{.0625} -0.0352 [.0226]{.0419} -0.0527 [.0384]{.0652}

(b) Spatial Layout: Group Interaction

0.25 100 0.0702 [.1158]{.1354} 0.0485 [.0698]{.0850} 0.0076 [.0786]{.0790}
200 0.0452 [.0729]{.0858} 0.0509 [.0487]{.0704} 0.0414 [.0454]{.0614}
500 0.0401 [.0496]{.0638} 0.0240 [.0317]{.0398} 0.0226 [.0266]{.0349}
1000 0.0398 [.0313]{.0506} 0.0283 [.0210]{.0352} 0.0183 [.0181]{.0257}

0.75 100 -0.0354 [.1196]{.1247} -0.0510 [.1034]{.1153} -0.0536 [.1346]{.1449}
200 -0.0307 [.0869]{.0921} -0.0354 [.0507]{.0618} -0.0647 [.0805]{.1033}
500 -0.0528 [.0458]{.0699} -0.0379 [.0331]{.0503} -0.0552 [.0535]{.0768}
1000 -0.0371 [.0331]{.0497} -0.0267 [.0226]{.0349} -0.0431 [.0417]{.0600}
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An empirical illustration. The popular Boston house price data of Harrison and Rubinfeld

(1978), corrected and augmented with longitude and latitude by Gilley and Pace (1996), is used to

illustrate the application of our model and method. The data contains 506 observations (1 observation

per census tract) from Boston Metropolitan Statistical Area, and is now freely available through the

sedep package of the open source software R. The response variable is the median value (corrected) of

owner-occupied homes in 1000’s (MEDV), and the thirteen explanatory variables are: per capita crime

rate by town (crime); proportion of residential land zoned for lots over 25,000 square feet (zoning);

proportion of non-retail business acres per town (industry); Charles River dummy variable (= 1 if

tract bounds river; 0 otherwise) (charlesr); nitric oxides concentration (parts per 10 million)(nox);

average number of rooms per dwelling (room); proportion of owner-occupied units built prior to 1940

(houseage); weighted distances to five Boston employment centres (distance); index of accessibility

to radial highways (access); full-value property-tax rate per 10,000 (taxrate); pupil-teacher ratio by

town (ptratio); 1000(Bk− 0.63)2 where Bk is the proportion of blacks by town (blackpop); and lower

status of the population proportion (lowclass).

We use the Euclidean distance in terms of longitude and latitude to set up the spatial weight

matrix. We choose the threshold distance to be 0.05 which gives a Wn matrix with 19.08% non-

zero elements. The instrumental variables are WnX
∗
n, where X∗

n contains variables access, taxrate,

ptratio, blackpop, and lowclass, chosen by excluding the explanatory variables that are not signif-

icant in the OLS regression, dummy variables, and the variables causing strong correlation among the

columns of (WnXn, Xn).

The results are summarized in Table 6 where all regressors are standardized.11 From the results

we see that while the regression coefficients under the SQAR model all have the same sign as those

under OLS regression, their magnitude do change across the quantile points. Thus, the way that the

explanatory variable affect the house price is different at different points of the distribution of house

price. More interestingly, we observe that the spatial effect also changes across the quantile points,

confirming our arguments in motivating our SQAR model given in the introduction.

5 Concluding Remarks

We proposed a SAR model under quantile restrictions, referred to as the spatial quantile autoregression

(SQAR) in this article. The IVQR method of Chernozhukov and Hansen (2005, 2006, 2008) is extended

to allow for heteroscedasticity and dependence in data for estimating the proposed SQAR model. Large

sample properties of the IVQR estimator for the SQAR are examined. Monte Carlo evidence is provided

for the good finite sample performance of the IVQR estimator. In the special case of median restric-

tion with symmetric error distributions, the IVQR estimator compares favorably against the existing

GMM estimators with or without taking into account of the heteroscedasticity. Furthermore, the IVQR

method is less demanding on the moments of the error and is quite robust against nonnormality and

heteroscedasticity of the errors.
11Note that in calculating these standard errors based on the method introduced in Sec. 3.3, it is important to

standardize the exogenous regressors for numerical stability.
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Table 6. Summary of IVQR Estimates (SEs) for Boston House Price Data
τ = .1 τ = .25 τ = .5 τ = .75 τ = .9

constant 10.4743 (0.128) 14.9486 (0.206) 18.7180 (0.099) 20.1739 (0.143) 19.6130 (0.807)
crime -0.7244 (0.323) -0.8797 (0.091) -1.2385 (0.083) -0.5911 (0.244) -1.3094 (0.137)

zoning 0.0994 (0.121) 0.4723 (1.063) 0.7923 (0.304) 1.5696 (0.753) 1.1969 (0.448)
industry -0.0985 (0.582) -0.0749 (0.838) -0.0111 (0.509) -0.4280 (0.194) -0.4731 (0.237)
charlesrv -0.0099 (0.829) 0.0851 (1.287) 0.1949 (0.989) 0.6660 (1.215) 1.5411 (0.239)

noxsq -0.3783 (2.703) -0.2933 (1.805) -0.7690 (1.618) -1.3224 (1.502) -2.6972 (0.425)
rooms2 2.3250 (1.146) 2.8882 (2.203) 3.2511 (1.723) 3.7818 (1.404) 3.6638 (0.354)

houseage -0.6176 (0.749) -0.6554 (0.909) -0.6162 (0.238) -0.3174 (0.332) -0.1104 (0.268)
distance -1.2191 (2.237) -1.5622 (0.426) -2.1310 (1.282) -2.7019 (0.827) -2.7668 (0.551)

access -0.1021 (0.587) 0.8546 (0.168) 1.5911 (0.145) 2.6215 (0.288) 3.9468 (0.235)
taxrate -1.6277 (0.739) -2.1223 (0.440) -1.7878 (0.254) -1.9147 (0.382) -1.0539 (0.125)
ptratio -0.5355 (1.014) -0.8589 (2.049) -1.3303 (1.852) -1.8904 (1.484) -2.6259 (0.341)

blackpop 0.7180 (0.201) 0.8437 (0.225) 1.0651 (0.304) 1.2466 (0.160) 1.2037 (0.162)
lowclass -2.8720 (0.422) -2.2938 (0.472) -2.4619 (0.477) -2.4131 (0.423) -2.8703 (0.293)

spatial 0.3512 (0.054) 0.2177 (0.051) 0.1282 (0.050) 0.1812 (0.098) 0.3464 (0.116)

The new model and estimation method give important extensions to both the standard spatial

regression models and the standard quantile regression models. It also extends the IVQR technique to

allow for dependence and heteroscedasticity. These extensions prove to be very useful to the applied

researchers.
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Appendix: Proof of the Main Results

Lemma A.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two sequences of n× n
matrices that are uniformly bounded in both row and column sums. Let Cn be a sequence of conformable
matrices whose elements are uniformly O(�−1

n ). Then
(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and
(iii) the elements of AnCn and CnAn are uniformly O(�−1

n ).

To proceed with the proofs of our main results, it is helpful to review the frequently used notation

and functions. Recall that λ and β denote generically the spatial lag parameter and the coefficients of

the covariates xn,i, and γ the coefficients of the instruments zn,i.

Notation:

θ0τ = (λ0τ , β
′
0τ)′ : true value of θ = (λ, β′)′ at a fixed τ point,

θ̂nτ = (λ̂nτ , β̂
′
nτ)′ : IVQR estimator of θ0τ ,

α0τ = (β′
0τ , 0

′)′ : true value of α = (β′, γ′)′ at a fixed τ point,

α0τ(λ) = (β′
0τ (λ), γ′0τ (λ))′ : true value of α given τ and λ, defined in (3.3),

α̂nτ(λ) = (β̂′
nτ (λ), γ̂′nτ (λ))′ : QR estimator of α0τ(λ) given λ, defined in (2.19),

σn,i = 1 + λȳn,i + β′xn,i : used in the expression un,i = σn,i[εn,i −Qε(τ )],

ūn,i =
∑n

k �=i gn,ikun,k independent of un,i if the un,k’s are independent,

cn,i = e′n,iGnXnβ0τ + ūn,i : defined below (3.6).

Functions:

ρτ (u) = [τ − 1(u ≤ 0)]u, where 1(·) is the usual indicator function,

ψτ(u) = τ − 1(u ≤ 0), which is the directional derivative of ρτ (u),

bn,i(λ) = 1 + (λ0τ − λ)gn,ii, as in Assumption 2(v), gn,ii is the (i, i) element of Gn,

un,i(λ) = yn,i − λȳn,i − α′
0τ(λ)ξn,i, where ξn,i = (x′n,i, z

′
n,i)

′,

an,i(λ, α) = (λ− λ0τ)cn,i + (α− α0τ)′ξn,i, defined below (3.7),

cn,i(λ, α) = cn,i + an,i(λ, α)gn,ii/bn,i(λ), defined below (3.8),

Qnτ(λ, α) = 1
n

∑n
i=1 ρτ (yn,i − λȳn,i − α′ξn,i), as in (2.18), expectation has limit Qτ (λ, α),

Snτ(λ, α) = 1
n

∑n
i=1 ψτ(yn,i − λȳn,i − α′ξn,i)ξn,i, as in (3.4), expectation has limit Sτ (λ, α),

Jnτ(λ, α) = 1
n

∑n
i=1 E

{
fn,i

(
an,i(λ,α)
bn,i(λ)

∣∣∣ ūn,i

)
ξn,i

bn,i(λ)

[
cn,i(λ, α), ξ′n,i

]}
, as in (3.8).

A notational convention is followed for a concentrated function, i.e., an,i(λ) ≡ an,i[λ, α0τ(λ)], and

similarly defined for cn,i(λ), Jnτ(λ), and Snτ (λ). Also, a function evaluated at the true parameter value

is denoted by dropping the parentheses, e.g., Jnτ ≡ Jnτ(λ0τ , α0τ).

Proof of Theorem 3.1.

Let Δ ≡ Δ(λ, τ ) =
√
n[α(λ, τ )−α0τ(λ)] and Δ̂nτ(λ) =

√
n[α̂nτ(λ)−α0τ (λ)]. Let u∗n,i(λ,Δ(λ, τ )) =

un,i(λ) −n−1/2Δ(λ, τ )′ξn,i = yn,i − λȳn,i − α(λ, τ )′ξn,i. It follows from Step (iii) leading to (2.21) that

Δ̂nτ(λ) = arg min
Δ∈Rp+q

1
n

n∑
i=1

ρτ (u∗n,i(λ,Δ)). (A.1)
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Set

Vnτ(λ; Δ) =
1√
n

n∑
i=1

ψτ (u∗n,i(λ,Δ))ξn,i, (A.2)

which is
√
nSnτ (λ, α(λ, τ )), rewritten in terms of Δ. Noting that −Δ′Vnτ (λ; κΔ) is an increasing

function of κ ≥ 1, the result of Theorem 3.1 then follows from the following three lemmas, according to

Lemma A.4 of Koenker and Zhao (1996).

Lemma A.2 Let M <∞ and Vnτ (λ; Δ) ≡ −{Vnτ(λ; Δ)−Vnτ(λ; 0)−E[Vnτ(λ; Δ)−Vnτ(λ; 0)]}. Suppose
Assumptions 1-6 hold. Then

sup
λ∈Λ

sup
‖Δ‖≤M

‖Vnτ (λ; Δ)‖ = op(1).

Proof. We first establish a pointwise convergence result. We need to show

‖Vnτ(λ; Δ)‖ = op(1) for each fixed λ and Δ, (A.3)

which holds if the kth component of the (p+ q) × 1 vector Vnτ(λ; Δ),

Vnτk(λ; Δ) = op(1) for each fixed λ, Δ, andk = 1, · · · , p+ q. (A.4)

By construction, EVnτk(λ; Δ) = 0. By Assumption 5, Var(Vnτk(λ; Δ)) = o(1). Thus (A.4) holds by the

Chebyshev’s inequality.

Let α0τλ ≡ α0τ(λ) and

ān,i(λ,Δ) ≡ (λ− λ0τ)cn,i + (α0τλ + n−1/2Δ − α0τ)′ξn,i. (A.5)

Clearly, ān,i(λ, 0) = an,i(λ, α0τ(λ)) = an,i(λ), and ān,i(λ,Δ) = an,i(λ, α(λ, τ )) for Δ =
√
n(α(λ, τ ) −

α0τλ). Noting that

yn,i − λȳn,i − (α0τλ + n−1/2Δ)′ξn,i

= un,i − (λ − λ0τ)ȳn,i − (α0τλ + n−1/2Δ − α0τ)′ξn,i

= [1 + (λ0τ − λ)gn,ii] un,i − (λ − λ0τ )
n∑

l�=i

gn,ilun,l

−[(λ− λ0τ)e′n,iGnXnβ0τ + (α0τλ + n−1/2Δ − α0τ)′ξn,i]

= bn,i(λ)un,i − ān,i(λ,Δ),

we have

1[yn,i − λȳn,i ≤ (α0τλ + n−1/2Δ)′ξn,i] = 1[bn,i(λ)un,i ≤ ān,i(λ,Δ)]. (A.6)

We next show that (A.3) holds uniformly over (λ,Δ) ∈ λ × Γ, where Γ ≡ {Δ : ‖Δ ≤ M‖}, and

M ∈ (0,∞). This will hold by the triangle inequality provided

sup
λ∈Λ

sup
‖Δ‖≤M

∣∣V+
nτk(λ; Δ)

∣∣ = op(1) and sup
λ∈Λ

sup
‖Δ‖≤M

∣∣V−
nτk(λ; Δ)

∣∣ = op(1), (A.7)

where V+
nτk and V−

nτk are defined analogously to Vnτk but with the kth element ξn,ik of ξn,i being replaced

by ξ+n,ik ≡ max(ξn,ik, 0) and ξ−n,ik ≡ max(−ξn,ik, 0), respectively. We will only show the first part of
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(A.7) since the other case is similar. Define for every κ ∈ R, ān,i(λ,Δ, κ) = ān,i(λ,Δ) + κ‖n−1/2ξn,i‖,
and

Ṽ+
nτk(λ; Δ, κ) =

1√
n

n∑
i=1

{1 [bn,i(λ)un,i ≤ ān,i(λ,Δ, κ)]− E1 [bn,i(λ)un,i ≤ ān,i(λ,Δ, κ)]

−1 [bn,i(λ)un,i ≤ ān,i(λ, 0)] + E1 [bn,i(λ)un,i ≤ ān,i(λ, 0)]} ξ+n,ik.

Note that Ṽ+
nτk(λ; Δ, 0) = V+

nτk(λ; Δ). We follow Koul (1991) and Bai (1994) to show that the first part

of (A.7) is a consequence of the following result

sup
λ∈Λ

∣∣∣Ṽ+
nτk(λ; Δ, κ)

∣∣∣ = op(1) for every given Δ and κ. (A.8)

Since Γ is compact, we can partition it into a finite number N(σ) of subsets {Γ1, · · · ,ΓN(σ)} such that

the diameter of each subset is not greater than σ. Fix s ∈ {1, · · · , N(σ)} and Δs ∈ Γs. Noting that

Δ′ξn,i ≤ Δ′
sξn,i +σ‖ξn,i‖ for any Δ ∈ Γs, it follows from the monotonicity of the indicator function and

the nonnegativity of ξ+n,ik that for any Δ ∈ Γs,

V+
nτk(λ; Δ) − Ṽ+

nτk(λ; Δs, σ)

=
1√
n

n∑
i=1

E {1 [bn,i(λ)un,i ≤ ān,i(λ,Δs, σ)] − 1 [bn,i(λ)un,i ≤ ān,i(λ,Δ)]} ξ+n,ik

+
1√
n

n∑
i=1

{1 [bn,i(λ)un,i ≤ ān,i(λ,Δ)] − 1 [bn,i(λ)un,i ≤ ān,i(λ,Δs, σ)]} ξ+n,ik

≤ 1√
n

n∑
i=1

E {1 [bn,i(λ)un,i ≤ ān,i(λ,Δs, σ)] − 1 [bn,i(λ)un,i ≤ ān,i(λ,Δ)]} ξ+n,ik.

A reverse inequality holds with σ replaced by −σ for all Δ ∈ Γs. By the triangle inequality, Taylor

expansions, and Assumptions 1(iii), 2(v), and 3(i)-(ii), we have for sufficiently large n,

sup
Δ∈Γs

∣∣∣∣∣ 1√
n

n∑
i=1

E {1 [bn,i(λ)un,i ≤ ān,i(λ,Δs, σ)] − 1 [bn,i(λ)un,i ≤ ān,i(λ,Δ)]} ξ+n,ik

∣∣∣∣∣
≤ sup

Δ∈Γs

1√
n

n∑
i=1

∣∣∣∣E
[
Fn,i

(
ān,i(λ,Δs, σ)

bn,i(λ)

∣∣∣∣ ūn,i

)
− Fn,i

(
ān,i(λ,Δ)
bn,i(λ)

∣∣∣∣ ūn,i

)]∣∣∣∣ ξ+n,ik

≤ 1√
n

n∑
i=1

∣∣∣∣E
[
Fn,i

(
ān,i(λ,Δs, σ)

bn,i(λ)

∣∣∣∣ ūn,i

)
− Fn,i

(
ān,i(λ,Δs)
bn,i(λ)

∣∣∣∣ ūn,i

)]∣∣∣∣ ξ+n,ik

+ sup
Δ∈Γs

1√
n

n∑
i=1

∣∣∣∣E
[
Fn,i

(
ān,i(λ,Δs)
bn,i(λ)

∣∣∣∣ ūn,i

)
− Fn,i

(
ān,i(λ,Δ)
bn,i(λ)

∣∣∣∣ ūn,i

)]∣∣∣∣ ξ+n,ik

≤ 1
n

n∑
i=1

Efn,i

(
ān,i(λ,Δs, c

∗
i σ)

bn,i(λ)

∣∣∣∣ ūn,i

)
σ ‖ξn,i‖
|bn,i(λ)| ξ

+
n,ik

+ sup
Δs∈Γs

1
n

n∑
i=1

Efn,i

(
ān,i(λ,Δ∗

s)
bn,i(λ)

∣∣∣∣ ūn,i

)
σ ‖ξn,i‖
|bn,i(λ)| ξ

+
n,ik

≤ Cσ

n

n∑
i=1

‖ξn,i‖ ξ+n,ik

|bn,i(λ)| = σO(1),
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where c∗i lies between 0 and 1 and Δ∗
s lies between Δs and Δ. Consequently,

sup
λ∈Λ

sup
‖Δ‖≤M

∥∥V+
nτk(λ; Δ)

∥∥ ≤ sup
s≤N(σ)

sup
λ∈Λ

∣∣∣Ṽ+
nτk(λ; Δs, σ)

∣∣∣+ sup
s≤N(σ)

sup
λ∈Λ

∣∣∣Ṽ+
nτk(λ; Δs,−σ)

∣∣∣+ σOp(1).

By the compactness of Γ, the term σ can be made arbitrarily small and N(σ) is finite. So we can prove

(A.7) by proving (A.8).

To show (A.8), we use similar arguments. Let Δ and κ be fixed. Without loss of generality, assume

the support of λ can be written as λ = [c1, c2]. Partition the interval λ into N(δ∗) subintervals at

the points c1 = λ0 < λ1 < · · · < λN1 = c2, where δ∗ denotes the length of each interval. Let

αni(λ,Δ) ≡ [ān,i(λ,Δ) − ān,i(λ, 0)]/bn,i(λ). Then αni(λ,Δ) = n−1/2Δ′ξn,i/bn,i(λ). By Assumption

2(v), min1≤i≤n infλ∈Λ |1−(λ − λ0τ ) gn,ii| ≥ cg/2 for sufficiently large n. It follows that for any λ, λ∗ ∈ λ

and sufficiently large n,

sup
|λ−λ∗|≤δ∗

|αni(λ,Δ) − αni(λ∗,Δ)| = sup
|λ−λ∗|≤δ∗

∣∣∣∣ (λ − λ∗)n−1/2Δ′ξn,i

[1 − (λ− λ0τ) gn,ii] [1 − (λ∗ − λ0τ) gn,ii]

∣∣∣∣
≤ 4n−1/2δ∗c−2

g ‖Δ‖ max
1≤i≤n

‖ξn,i‖ ≤ Cn−1/2δ∗,

where C is a large finite constant and the last inequality holds because max1≤i≤n ‖ξn,i‖ is finite by

Assumptions 3(i)-(ii). Define

V̄+
nτk(λ; Δ, κ, ς)

=
1√
n

n∑
i=1

{
1
(
un,i ≤ ān,i(λ,Δ, κ)

bn,i(λ)
+ ςn−1/2Cδ∗

)
− EFn,i

(
ān,i(λ,Δ, κ)
bn,i(λ)

+ ςn−1/2Cδ∗
∣∣∣∣ ūn,i

)

−1
(
un,i ≤ ān,i(λ, 0)

bn,i(λ)

)
+ EFn,i

(
ān,i(λ, 0)
bn,i(λ)

∣∣∣∣ ūn,i

)}
ξ+n,ik.

Then V̄+
nτk(λ; Δ, κ, 0) = Ṽ+

nτk(λ; Δ, κ) for sufficiently large n. By the monotonicity of the indicator

function and cumulative distribution function (cdf) and the nonnegativity of ξ+n,ik, we have that for all

λ with |λ − λs| ≤ δ∗ and sufficiently large n,

Ṽ+
nτk(λ; Δ, κ)− V̄+

nτk(λs; Δ, κ, 1)

≤ 1√
n

n∑
i=1

{
EFn,i

(
ān,i(λs,Δ, κ)
bn,i(λs)

+Cn−1/2δ∗
∣∣∣∣ ūn,i

)
− EFn,ii

(
ān,i(λs,Δ, κ)
bn,i(λs)

∣∣∣∣ ūn,i

)}
ξ+n,ik

+
1√
n

n∑
i=1

{
1
(
un,i ≤ ān,i(λs, 0)

bn,i(λs)

)
− EFn,i

(
ān,i(λs, 0)
bn,i(λs)

∣∣∣∣ ūn,i

)

−1
(
un,i ≤ ān,i(λ, 0)

bn,i(λ)

)
+ EFn,i

(
ān,i(λ, 0)
bn,i(λ)

∣∣∣∣ ūn,i

)}
ξ+n,ik,

and a reverse inequality holds with C replaced by −C. By the monotonicity of cdf, for sufficiently large
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n, we have

sup
λ∈Λ

∣∣∣Ṽ+
nτk(λ; Δ, κ)

∣∣∣
≤ max

s

∣∣V̄+
nτk(λs; Δ, κ, 1)

∣∣+ max
s

∣∣V̄+
nτk(λs; Δ, κ,−1)

∣∣
+max

s

1√
n

n∑
i=1

E
[
Fn,i

(
ān,i(λs,Δ, κ)
bn,i(λs)

+
Cδ∗√
n

∣∣∣∣ ūn,i

)
− Fn,i

(
ān,i(λs,Δ, κ)
bn,i(λs)

− Cδ∗√
n

∣∣∣∣ ūn,i

)]
ξ+n,ik

+ sup
λl,λm∈λ,

|λl−λm|≤δ∗

1√
n

∣∣∣∣∣
n∑

i=1

{[
1
(
un,i ≤ ān,i(λl, 0)

bn,i(λl)

)
− EFn,i

(
ān,i(λl, 0)
bn,i(λl)

∣∣∣∣ ūn,i

)]

−
[
1
(
un,i ≤ ān,i(λm, 0)

bn,i(λm)

)
− EFn,i

(
ān,i(λm, 0)
bn,i(λm)

∣∣∣∣ ūn,i

)]}
ξ+n,ik

∣∣∣∣ . (A.9)

The first two terms on the right hand side of (A.9) are op(1) because
∥∥V̄+

nτk(λ; Δ, κ, ς)
∥∥ = op(1) for every

given ς due to an argument similar to the proof of (A.4). They are in fact the maximum of finite number

of op(1) terms. The third term is no greater than 2Ccfcξδ∗ with cf ≡ supn≥1 max1≤i≤n sup(u,ū) fn,i (u|ū) <
∞ by Assumption 1(iii) and cξ ≡ supn≥1

1
n

∑n
i=1 ξ

+
n,ik <∞ by Assumptions 3(i)-(ii), which can be made

arbitrarily small by choosing small enough δ∗. The last term in (A.9) is ensured to be small due to the

stochastic equicontinuity property by Assumption 6. Hence supλ∈Λ |Ṽ+
nτk(λ; Δ, κ)| = op (1) as n → ∞

and δ∗ → 0. �

Lemma A.3 Recall Jnτα(λ) = n−1
∑n

i=1E
[
fn,i

(
an,i(λ)
bn,i(λ)

∣∣∣ ūn,i

)]
ξn,iξ

′
n,i

bn,i(λ) by (3.9) and the remarks after
(3.10). Suppose Assumptions 1-6 hold. Then

sup
λ∈Λ

sup
‖Δ‖≤M

‖E[Vnτ(λ; Δ) − Vnτ (λ; 0)] + Jnτα(λ)Δ‖ = o(1).

Proof. Let ān,i(λ,Δ) and bn,i(λ) be defined in (A.5) and Assumption A2(v), respectively. By Taylor

expansions, we have for sufficiently large n:

sup
λ∈Λ

sup
‖Δ‖≤M

‖E[Vnτ(λ; Δ)− Vnτ(λ; 0)] + Jnτα(λ)Δ‖

= sup
λ∈Λ

sup
‖Δ‖≤M

∥∥∥∥∥ 1√
n

n∑
i=1

E
{

1
(
un,i ≤ ān,i(λ,Δ)

bn,i(λ)

)
− 1

(
un,i ≤ ān,i(λ, 0)

bn,i(λ)

)}
ξn,i − Jnτα(λ)Δ

∥∥∥∥∥
= sup

λ∈Λ
sup

‖Δ‖≤M

∥∥∥∥∥ 1√
n

n∑
i=1

E
[
Fn,i

(
ān,i(λ,Δ)
bn,i(λ)

∣∣∣∣ ūn,i

)
− Fn,i

(
ān,i(λ, 0)
bn,i(λ)

∣∣∣∣ ūn,i

)]
ξn,i − Jnτα(λ)Δ

∥∥∥∥∥
= sup

λ∈Λ
sup

‖Δ‖≤M

∥∥∥∥∥ 1
n

n∑
i=1

∫ 1

0

E
[
fn,i

(
ān,i(λ, 0) + sn−1/2Δ′ξn,i

bn,i(λ)

∣∣∣∣ ūn,i

)
− fn,i

(
ān,i(λ, 0)
bn,i(λ)

∣∣∣∣ ūn,i

)]
ds

×ξn,iξ
′
n,iΔ

bn,i(λ)

∥∥∥∥
≤ sup

λ∈Λ
sup

‖Δ‖≤M

c̄f
n

n∑
i=1

∥∥∥∥
∫ 1

0

n−1/2Δ′ξn,i

bn,i(λ)
sds

∥∥∥∥
∥∥∥∥ξn,iξ

′
n,iΔ

bn,i(λ)

∥∥∥∥
≤ sup

λ∈Λ

c̄fM
2

2n3/2

n∑
i=1

‖ξn,i‖3

bn,i(λ)2
≤ cfM

2

2n3/2

n∑
i=1

‖ξn,i‖3

infλ∈Λ bn,i(λ)2
= o(1),
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where c̄f = supn≥1 max1≤i≤n sup(u,ū) |f(1)
n,i (u|ū) | with f(1)

n,i (·|ū) denoting the first derivative of fn,i (·|ū) ,
the first inequality follows from the Taylor expansion and Assumption 1(iii), and the last inequality

follows from the fact that ξn,i is uniformly bounded under Assumptions 3(i)-(ii) and the fact that

limn→∞ min1≤i≤n infλ∈Λ |bn,i(λ)| > cg > 0 by Assumption 2(v). �

Lemma A.4 Suppose Assumptions 1-6 hold. Then

sup
λ∈Λ

∥∥∥Vnτ (λ; Δ̂nτ(λ))
∥∥∥ = O(n−1/2) and sup

λ∈Λ
‖Vnτ (λ; 0)‖ = Op(1).

Proof. By the computational properties of quantile regression [e.g., Theorem 3.3 of Koenker and

Bassett (1978), Lemma A2 in Ruppert and Carroll (1980)] and Assumptions 3(i),

sup
λ∈Λ

∥∥∥Vnτ (λ; Δ̂nτ(λ))
∥∥∥ = sup

λ∈Λ

∥∥∥∥∥ 1√
n

n∑
i=1

ψτ(yn,i − λȳn,i − α̂′
λτξn,i)ξn,i

∥∥∥∥∥
≤ sup

λ∈Λ

1√
n

n∑
i=1

1(yn,i − λȳn,i − α̂′
λτξn,i = 0) ‖ξn,i‖

≤ 2(p+ q)n−1/2 max
1≤i≤n

‖ξn,i‖ = O(n−1/2).

By the definition of α0τ(λ) ≡ (β0τ (λ)′, γ0τ(λ)′)′ below (3.2), Sτ (λ, α0τ(λ)) = 0. It follows that

sup
λ∈Λ

‖Vnτ (λ; 0)‖ = sup
λ∈Λ

∥∥√nSnτ(λ;α0τ(λ))
∥∥

≤ sup
λ∈Λ

‖√n{Snτ (λ;α0τ(λ)) − E[Snτ(λ, α0τ(λ))]}‖

+sup
λ∈Λ

‖√n{E[Snτ(λ, α0τ(λ))] − Sτ (λ, α0τ(λ))}‖
= Op(1) +Op(1) = Op(1) by Assumption 6. �

Proof of Theorem 3.2.

Refer to the notation listed at the beginning of the appendix, and define

λ∗τ ≡ arg min
λ

‖γ0τ (λ)‖A β∗
τ ≡ β0τ (λ∗τ ), and γ∗τ ≡ γ0τ (λ∗τ ),

where ‖B‖A = {B′AB}1/2. Following CH, we prove the theorem in three steps: (i) Show that θ0τ =

(λ0τ , β
′
0τ)′ uniquely solves the limit problem, i.e., λ∗τ = λ0τ and β∗

τ = β0τ ; (ii) λ̂nτ
p→ λ0τ and α̂nτ

p→ α0τ ;

(iii)
√
n(θ̂nτ − θ0τ ) d→ N(0,Ωτ(A)Σ0τΩτ (A)′).

Step (i): By Assumptions 1(ii) and 4(iv), θ0τ = (λ0τ , β
′
0τ)′ is the unique solution to S0

τ (θ) = 0,

which implies that it uniquely solves the equation

lim
n→∞

1
n

n∑
i=1

E[ψτ(yn,i − λȳn,i − β′xn,i − 0′zn,i)]ξn,i = 0. (A.10)

By the global convexity of Qτ (λ, α) in α for each λ, and the fact that α0τ(λ) = (β0τ(λ)′, γ0τ(λ)′)′ is in

the interior of B × R
q, α0τ(λ) uniquely solves the first order condition of minimizing Qτ(λ, α) over α:

lim
n→∞

1
n

n∑
i=1

E[ψτ (yn,i − λȳn,i − α0τ(λ)′ξn,i)]ξn,i = 0. (A.11)
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We now show that λ∗τ = λ0τ uniquely minimizes ‖γ0τ(λ)‖A over λ subject to the constraint in (A.11).

Clearly, ‖γ0τ (λ0τ)‖ = 0 by (A.10) and λ0τ satisfies (A.11). That is, λ0τ ∈ arg minλ ‖γ0τ(λ)‖A subject

to the constraint in (A.11). It is also the unique solution by (A.10). Now βτ (λ∗τ ) = βτ (λ0τ ) = β0τ by

(A.11).

Step (ii): Let o∗p(1) denote op(1) uniformly in λ ∈ Λ. By the remark after Theorem 3.1,

‖α̂nτ(λ) − α0τ(λ)‖ = o∗p(1), and ‖γ̂nτ (λ) − γ0τ (λ)‖ = o∗p(1) in particular. (A.12)

By Assumption 3(iii), Ân = A+op(1). It follows that ‖γ̂nτ (λ)‖Ân
−‖γ0τ(λ)‖A = o∗p(1). By Assumption

4(v), ‖γ0τ (λ)‖A is continuous in λ; it is uniquely minimized at λ∗τ = λ0τ by Step (i). It follows that

λ̂nτ
p→ λ0τ . Now let λnτ

p→ λ0τ . By (A.12) and the continuity of α0τ(λ) in λ, α̂nτ(λnτ ) p→ α0τ(λ0τ) =

α0τ . In particular, α̂nτ = α̂nτ(λ̂nτ )
p→ α0τ as desired.

Step (iii): Consider a small ball Bεn(λ0τ) of radius εn centered at λ0τ . Let λn ∈ Bεn(λ0τ )

where εn → 0 slowly enough. Let mni(λ, α) ≡ ψτ (yn,i − λȳn,i − α′ξn,i)ξn,i, Emni(λn, α̂nτ (λn)) ≡
E[mni(λ, α)](λ,α)=(λn,α̂nτ (λn)), and Mn ≡ n−1/2

∑n
i=1[mni(λ0τ , α0τ(λ0τ )) − Emni(λ0τ , α0τ(λ0τ))]. By

Lemma A.4 and the stochastic equicontinuity condition in Assumption 6(ii),

O(n−1/2) =
1√
n

n∑
i=1

ψτ(yn,i − λnȳn,i − α̂nτ (λn)′ ξn,i)ξn,i

=
1√
n

n∑
i=1

[mni(λn, α̂nτ (λn)) − Emni(λn, α̂nτ (λn))] +
1√
n

n∑
i=1

Emni(λn, α̂nτ (λn))

= Mn +
1√
n

n∑
i=1

Emni(λn, α̂nτ (λn)) + op(1). (A.13)

By Assumptions 1(i) and (iii) and the Fubini’s theorem,

E [Fn,i(0 |ūn,i)] = E
[∫ 0

−∞
fn,i(u |ūn,i)du

]
=
∫ 0

−∞

∫ ∞

−∞
fn,i(u |ū)fūn,i (ū) dūdu

=
∫ 0

−∞
fun,i(u)du = Pr (un,i ≤ 0) = τ,

where fūn,i and fun,i denotes the marginal pdf’s of ūn,i and un,i, respectively. With this, by Assumptions

1(iii) and 3(i)-(ii), the mean value theorem, and dominated convergence arguments, we have

1√
n

n∑
i=1

Emni(λn, α̂nτ (λn))

=
1√
n

n∑
i=1

E [Fn,i(0 |ūn,i) − Fn,i (χn,i(λn, α̂nτ (λn)) |ūn,i)] ξn,i

= − 1
n

n∑
i=1

E
[
fn,i (s∗i χn,i(λn, α̂nτ (λn)) |ūn,i) ξn,i

ūn,i + e′n,iGnξnα̂nτ (λn)
bn,i(λn)

]√
n(λn − λ0τ )

− 1
n

n∑
i=1

E [fn,i(s∗i χn,i(λn, α̂nτ (λn)) |ūn,i)]
ξn,iξ

′
n,i

bn,i(λn)
√
n(α̂nτ (λn) − α0τ)

= −(Jτλ + op(1))
√
n(λn − λ0τ ) − (Jτα + op(1))

√
n(α̂nτ (λn) − α0τ), (A.14)
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where χn,i(λ, α) ≡ ān,i(λ, α)/bn,i(λ) with ān,i(·, ·) and bn,i(·) being defined, respectively, in (A.5) and

Assumption 2(v), and s∗i lies between 0 and 1. The last line follows from the definitions of Jτλ and Jτα

and the fact that ān,i(λn, α̂nτ (λn)) → 0 and bn,i(λn) → 1 as εn → 0. This is because
∑n

l�=i gn,ilEun,l ≤
μ
∑n

l=1 |gn,il| = O(1) by Assumptions 1(ii), 2(iii) and Lemma A.2, e′n,iGnξn = O(1) by Assumptions

2(iii) and 3(i)-(ii) and Lemma A.2, and (λn, α̂nτ (λn)) → (λ0τ , α0τ) as εn → 0. Putting (A.13) and

(A.14) together, we have

O(n−1/2) = Mn − (Jτλ + op(1))
√
n(λn − λ0τ ) − (Jτα + op(1))

√
n(α̂nτ (λn) − α0τ), (A.15)

which implies that

√
n(α̂nτ (λn) − α0τ) = J−1

τα Mn − J−1
τα Jτλ(1 + op(1))

√
n(λn − λ0τ) + op(1).

Partition conformably J−1
τα = [J̄ ′

τβ , J̄
′
τγ ]′, where J̄τβ and J̄τγ are p × (p + q) and q × (p + q) matrices,

respectively. Then

√
n(β̂nτ (λn) − β0τ) = J̄τβMn − J̄τβJτλ(1 + op(1))

√
n(λn − λ0τ) + op(1),

and √
n(γ̂nτ (λn) − 0) = J̄τγMn − J̄τγJτλ(1 + op(1))

√
n(λn − λ0τ ) + op(1).

By Step (ii), with probability approaching one,

λ̂nτ = arg min
λn∈Bεn (λ0τ)

‖γ̂nτ(λn)‖Ân
.

By Liapounov’s central limit theorem, Mn
d→ N(0, S0). Hence

√
n ‖γ̂nτ(λn)‖Ân

=
∥∥Op(1) − J̄τγJτλ(1 + op(1))

√
n(λn − λ0τ )

∥∥
A+op(1)

It follows that
√
n(λ̂nτ − λ0τ ) = Op(1) by the full rank properties of J̄τγJτλ and A. Consequently,

√
n(λ̂nτ − λ0τ ) = arg min

s∈R

∥∥J̄τγMn − J̄τγJτλs
∥∥

A
+ op(1)

= (J ′
τλJ̄

′
τγAJ̄τγJτλ)−1J ′

τλJ̄
′
τγAJ̄τγMn + op(1).

Simple algebra shows that

√
n(α̂nτ(λ̂nτ ) − α0τ) = J−1

τα [Ip+q − Jτλ(J ′
τλJ̄

′
τγAJ̄τγJτλ)−1J ′

τλJ̄
′
τγAJ̄τγ ]Mn + op(1), (A.16)

and ( √
n(λ̂nτ − λ0τ)√
n(β̂nτ − β0τ )

)
=

(
(J ′

τλJ̄
′
τγAJ̄τγJτλ)−1J ′

τλJ̄
′
τγAJ̄τγ

J̄τβ [Ip+q − Jτλ(J ′
τλJ̄

′
τγAJ̄τγJτλ)−1J ′

τλJ̄
′
τγAJ̄τγ ]

)
Mn + op(1).

The conclusion then follows from the fact that Mn
d→ N(0, S0). �
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Proof of Corollary 3.3.

When q = 1, J̄τγJτλ is a nonzero scalar. By (A.16) and the fact that Mn = Op(1), we have

√
n(γ̂nτ (λ̂τ ) − 0) = J̄τγ [Ip+1 − Jτλ(J̄τγJτλ)−1J̄τγ ]Mn + op(1) = op(1). (A.17)

By (A.15) and (A.17) and the fact that λ̂τ
p→ λ0τ , we have

[Jτλ Jτα,1:p]

( √
n(λ̂nτ − λ0τ )√

n(β̂nτ (λ̂nτ) − β0τ )

)
= Mn + op(1),

where Jτα,1:p is the first p columns of Jτα. The result then follows from the fact that J0 = [Jτλ Jτα,1:p]

and Mn
d→ N(0, S0). �

Proof of the Result: Assumption 5∗ ⇒ Assumption 5.

Let Snk,j and Snk,jt denote the partial sums of n−1/2ηn,ik over observations in group j and subgroup

t of group j, respectively, i.e., Snk,j =
∑mnj

t=1 Snk,jt, where Snk,jt =
∑

s∈Gnjt
n−1/2ηn,sk and we suppress

the dependence of the S-quantities and ηn,sk on (λ,Δ) . Let Snk =
∑J

j=1 Snk,j. Because J and p + q

are finite, by Cauchy-Schwarz inequality it suffices to show that Var(Snk,j) = o(1) for each j = 1, · · · , J
and k = 1, · · · , p+ q. Fix j ∈ {1, · · · , J} and k ∈ {1, · · · , p+ q}. Write

Var(Snk,j) =
mnj∑
t=1

Var(Snk,jt) + 2
mnj−1∑

l=1

mnj∑
t=l+1

Cov(Snk,jl,Snk,jt) ≡ In1 + In2

First we can show that Var(ηn,sk(λ)) ≤ C1n
−1/2 and Cov(ηn,ik(λ), ηn,sk(λ)) ≤ C2n

−1 for i �= s and

finite constants C1, C2. It follows that

Var(Snk,jt) =
1
n

∑
s∈Gnjt

Var(ηn,sk) +
1
n

∑
i∈Gnjt

∑
s∈Gnjt,s �=i

Cov(ηn,ik, ηn,sk) ≤ C1n
−3/2njt + C2n

−2n2
jt,

which implies that In1 ≤ C1n
−3/2

∑mnj

t=1 njt +C2n
−2
∑mnj

t=1 n
2
jt ≤ C1n

−1 +C2njt/n = o(1) by Assump-

tion 5∗∗(ii). Now by Assumption 5∗∗(i),

In2 ≤ 2
mnj−1∑

l=1

mnj∑
t=l+1

√
Var(Snk,jl)Var(Snk,jt)αmnj = o(1)

mnj−1∑
l=1

mnj∑
t=l+1

αmnj = o(m2
njαmnj ) = o(1).

Consequently, Var(Snk,j) = o(1). This completes the proof. �
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