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ABSTRACT
A general procedure is developed for bias-correcting the maximum likelihood esti-
mators (MLEs) of the parameters of Weibull regression model with either complete
or right-censored data. Following the bias correction, variance corrections and hence
improved t-ratios for model parameters are presented. Potentially improved t-ratios
for other reliability-related quantities are also discussed. Simulation results show
that the proposed method is effective in correcting the bias of the MLEs, and the
resulted t-ratios generally improve over the regular t-ratios.
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1. Introduction

To improve the efficiency of lifetime analysis, people usually incorporate auxiliary in-
formation (e.g., group indicators, individual characteristics, or environmental factors,
etc.) into lifetime models and treat them as covariates. Parametric regression is such
a model that generalizes a parametric probability distribution by treating some or all
parameters as functions of covariates [1, 4, 7]. In this paper, we consider a Weibull
regression model that is developed based on a Weibull distribution by allowing the
scale parameter to depend on covariates. This regression model has a wide application
in accelerated life test, and plays an important role as a type of accelerated life model
[7]. For example, Kalbfleisch and Prentice [7, p.70] suggested that a Weibll regression
model with temperature as a covariate would be preferred when modeling the number
of hours to failure of motorettes operating under various temperatures. The corre-
sponding data set that can be found in Kalbfleisch and Prentice [7, p.5] and Nelson
and Haln [12] are obtained from a real accelerated life test (replicated in Table 1 for
easy reference), which uses temperature as a stress factor to increase the rate of failure
so that the exact failure times of at least part of motorettes would be observed during
a shorter time period. Besides the Weibull regression model with covariate-dependent
scale parameter, if we further allow the shape parameter as a function of covariates, a
more general Weibull regression model can be obtained.

A lifetime random variable T is said to follow the Weibull distribution [10], denoted
by WB(α, β), if its probability density function (pdf) has the form,

f(t) = α−ββtβ−1 exp[−(t/α)β], t ≥ 0, (1)



Table 1. Hours to failure of mo-

torettes

150◦C 170◦C 190◦C 220◦C

8064+ 1764 408 408
8064+ 2772 408 408
8064+ 3444 1344 504
8064+ 3542 1344 504
8064+ 3780 1440 504
8064+ 4860 1680+ 528+
8064+ 5196 1680+ 528+
8064+ 5448+ 1680+ 528+
8064+ 5448+ 1680+ 528+
8064+ 5448+ 1680+ 528+

‘+’ indicates a censoring time.

where α > 0 is the scale parameter and β > 0 is the shape parameter. The
survival function (SF) is S(t) = exp[− (t/α)β] and the hazard function (HF) is
λ(t) = α−ββtβ−1. By allowing the scale parameter or the shape parameter or both to
depend on a p×1 vector of explanatory variables or covariates X (such as the temper-
ature in Table 1 or its function), the Weibull distribution is generalized to a Weibull
regression model. For example, if α = α(X), then we have a Weibull regression model
where the covariates affect the Weibull life through its scale parameter. There is an
issue on the choice of the functional form of α(X). The most natural choice may be
α(X) = exp(a′X) as in such a setting, α(X) > 0 is guaranteed without restrictions on
a and X, and the application of such an α(X) can be found in Sec. 6, in which the
data in Table 1 are analyzed. In this case, the vector a is referred to as the regres-
sion coefficients as in the regular linear regression models. Also, this choice leads to
a Weibull regression model that can be interpreted as both the proportional hazards
model and the accelerated failure time model (Kalbfleisch and Prentice [7], Cox and
Oakes [2], Lawless [9]), see next section for details. Note that this model can be further
extended by allowing the shape parameter β to depend on the covariates as well. To
ease the exposition, we focus on the former in this paper although all the methods we
develop can be extended to the more general model without much technical difficulty.

For estimating the common shape parameter β and the vector of coefficients a, the
maximum likelihood estimation method remains the popular method. However, similar
to the case of a Weibull distribution, the maximum likelihood estimators (MLEs)
for the Weibull regression model, especially the MLE of β, can be rather biased, in
particular when the sample size is small or data are heavily censored. Undoubtedly,
the biased parameter estimates would affect the subsequent statistical inferences, such
as constructing a confidence interval for β, estimating a future percentile life given
certain covariates values, and predicting a future lifetime at different covariates, etc.
It may also affect further experimental design that consists of the determination of
values of sample size, censoring times and covariate values [9]. Moreover, since there is
a regression part in the Weibull regression model, significance tests would be expected
to be carried out on the scale-related parameters for the purpose of model refinement
and variable selection. To improve the accuracy of the above mentioned statistical
inference problems, one may first consider to correct the bias of the MLEs of the
Weibull regression model, and then correct the bias of the variance estimates of the
MLEs and further develop improved t-ratios based on these bias-corrected estimates.

In the Weibull literature, several approaches were proposed to deal with the bias
problem for the shape parameter of the Weibull distribution, such as the bias-
expanding method by Hirose [5], the modified MLE by Yang and Xie [18] and the
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stochastic expansion method by Shen and Yang [14]. However, the bias problem for
the MLEs of the Weibull regression model and other parametric regression models was
rarely considered. A possible reason is that, unlike the explicitly expressed MLEs for
the parameters of a Weibull distribution, the MLEs for the Weibull regression param-
eters can only be obtained numerically, which increases the difficulty in correcting the
bias. Furthermore, the variances of the MLEs need to be corrected, which was also
seldom touched upon in the early works.

In this paper, we attempt to solve the bias-correction and the variance correction
problems for the Weibull regression model by extending the univariate method in Shen
and Yang [14] to a multivariate situation so that the MLEs of all parameters in the
model can be bias-corrected simultaneously. Following the bias correction, variance
corrections are also carried out, and improved t-ratios for the covariate effects, as well
as other reliability-related quantities are developed. The proposed correction method
is developed based on a multivariate third-order stochastic expansion for the MLE [13]
and a nonparametric bootstrap procedure for estimating various expectations involved
in the expansion [22]. The advantages of the proposed method in this work are that,
(i) it requires only the estimating function that is used to generate estimators, i.e. the
score function for the MLEs, (ii) it can deal with multivariate models and parameter
vectors, and (iii) it can be easily applied to other models. The simulation results show
that the new multivariate method is general and effective in correcting the bias of the
MLEs regardless of sample size and data type, i.e. complete or censored, and that the
resulted inference methods (t-ratios) indeed show improved performances.

Our paper is organized as follows. Section 2 describes the Weibull regression model
and the maximum likelihood estimation. Section 3 describes the general bias correction
methodology, and presents details for the Weibull regression model. Section 4 discusses
subsequent model inferences and presents some improved statistics. Section 5 presents
Monte Carlo results. Section 6 presents an illustrative example, and Section 7 concludes
the paper.

2. The Model and Maximum Likelihood Estimation

2.1. Weibull regression model

Let T1, . . . , Tn be life (failure) times of n patients (items) in a medical (reliability)
study. Let X1, . . . , Xn be the corresponding values of the p×1 vector of covariates. The
accelerated life (failure time) model (see, e.g., [2] and [7]) is to related the logarithms
of life (failure) times to their covariates through a loglinear regression equation

log Ti = a′Xi + εi, i = 1, . . . , n, (2)

where a is a p × 1 vector of parameters and εi are random errors, independent and
identically distributed (i.i.d.) with a specified cumulative distribution function (CDF)
G. Exponentiation gives Ti = exp(a′Xi)ξi, where ξi = exp(εi) has a hazard function
λ0(·). It follows that the hazard function for Ti can be written in terms of this baseline
hazard λ0(·) as

λ(ti|Xi) = exp(−a′Xi)λ0(e−a
′Xiti).
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This hazard function shows that the accelerated life model specifies the multiplicative
effect of the covariates X on time t, and in fact brings in the covariates to alter time
scale. This explains why the above model is called ‘accelerated life model’, as in an
accelerated life test, a testing process will subject products to severer conditions in
an effort to increase the failure rate and to uncover faults in a shorter period of time
[7, 17, 20, 21].

It is well known that if T has a Weibull distribution with scale parameter α and
shape parameter β, then log T has a type-I extreme value (EV-I) distribution, or
Gumbel distribution, with location parameter logα and scale parameter 1/β. Thus,
for the Weibull regression model with α(X) = exp(a′X) and constant β, if we let
Yi = log Ti, then Yi can be written as

Yi = a′Xi + Zi/β, (3)

where {Zi} are i.i.d. errors subject to a standard EV-I distribution with location
parameter 0 and scale parameter 1. This shows that the Weibull regression model
we consider is an accelerated life model as the covariates act additively on Yi or
multiplicatively on Ti. Some basic properties of the standard EV-I distribution are
useful for the latter developments. First, the mean, variance, pdf and SF of Zi are,
respectively, e0 = −0.5772, r0 = 1.6449,

f0(z) = exp(z − ez), and S0(z) = exp(−ez), −∞ < z <∞. (4)

As the EV-I distribution is closed under location and scale transformations, Y also fol-
lows an EV-I distribution with the SF, S(y|X) = exp {− exp [β(y − a′X)]} , −∞ <
y < ∞. Model (3) is equivalent to that given in Lawless [9, p.296] through a repa-
rameterization, 1/β = b. We maintain the current parameterization, β, for its easier
interpretability as a shape parameter.

Now, the hazard function for Ti, given the covariates Xi such that α(Xi) =
exp(a′Xi), is

λ(ti|Xi) = exp[−β(a′Xi)]βt
β−1
i = λ0(ti) exp(−βa′Xi),

where λ0(t) = βtβ−1 is the hazard function for the Weibull distribution with α = 1.
From this, one sees that the Weibull regression model is also a proportional hazards
model as the covariates act multiplicatively on the hazard function. It is easy to see that
λ(ti|Xi) = βe−a

′Xi(e−a
′Xiti)

β−1 = e−a
′Xiλ0(e−a

′Xiti), showing again that the Weibull
regression model is a special accelerated life model. The Weibull regression model
discussed above is the only accelerated life model that is also a Cox’s proportional
hazards model [7, 9]. When the CDF G in Model (2) is known, like the Weibull model,
the usual maximum likelihood method can be applied for statistical inference. When
no parametric assumptions are imposed on G, the rank estimation method (see, e.g.,
[23]) is often applied.

2.2. Maximum likelihood estimation

In this paper, we propose to estimate the model (3) by the maximum likelihood method
based on either complete or censored data. In practice, we may only observe Si =
Ti ∧ Ci, δi = I{Ti<Ci} and Xi, i = 1, . . . , n, where Ci (i = 1, . . . , n) are the censoring
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times. In such a case, we say that the observed lifetimes are right censored. Assume
that we have a censored random sample (si, δi, xi), i = 1, · · · , n, from a population
subject to the Weibull regression model with parameters β and α(xi) = exp(a′xi),
where si (i = 1, 2, . . . , n) are the observed lifetimes or censoring times of n randomly
selected ‘items’, δi (i = 1, 2, . . . , n) are the failure indicators with δi = 1 for the
actual lifetime and δi = 0 for the censoring time, and xi (i = 1, 2, . . . , n) are the
p× 1 covariates for the ith item. Denote by r =

∑n
i=1 δi the total number of observed

lifetimes.
Let θ = (a′, β)′, where a = (a1, a2, · · · , ap)′. Clearly, the first element of xi is one

so that when there are no covariate effect, i.e., a2 = · · · = ap = 0, the model reduces
to a single Weibull distribution. The Weibull loglikelihood function of θ, based on the
observed values (si, δi, xi), i = 1, · · · , n, is thus

`n(θ) = r log β +

n∑
i=1

(δizi(θ)− ezi(θ))−
n∑
i=1

δi log si, (5)

where zi(θ) = β(log si−a′xi) and ezi(θ) = [si exp(−a′xi)]β. Maximizing `n(θ) gives the

MLEs ân for a and β̂n for β, and thus θ̂n = (â′n, β̂n)′. Equivalently, θ̂n can be obtained
by solving the score equation ∂`n(θ)/∂θ = 0, where the score function

∂`n(θ)

∂θ
=

( ∂
∂a`n(θ)
∂
∂β `n(θ)

)
=

(
β
∑n

i=1(ezi(θ) − δi)xi
r
β −

1
β

∑n
i=1(ezi(θ) − δi)zi(θ)

)
. (6)

The consistency and asymptotic normality of the MLE θ̂n can be established based
on the following regularity conditions.

Assumption 1. The true value θ0 of θ is an interior point of an open subset of the
real (p+ 1)-dimensional space Θ.

Assumption 2. The distribution of the covariates X is not concentrated on a
(p− 1)-dimensional affine subspace of Rp.

Assumption 3. The (expected) number of observed failures times (E(r) or r) ap-
proaches ∞ at rate n as n→∞.

Assumption 2 guarantees the full rank of the covariate matrix X = (X1, . . . , Xn)′

and hence the uniqueness of the MLE θ̂n. Assumption 3 says that, when the data are
censored, the amount of available information needs to grow at the same rate as n
when n→∞, see Lawless [9, Sec. 2.2.3] for an interesting intuitive discussion. Under

Assumptions 1-3, we have θ̂n
p−→ θ0, and

√
n(θ̂n − θ0)

D−→ N
[
0, lim

n→∞
nI−1

n (θ0)
]
,

where In(θ0) = −E[∂2`(θ)/∂θ∂θ′]|θ=θ0 is the Fisher information matrix, which can
easily be shown to exist and to be positive definite for the Weibull regression model.
These large sample results can be proved by following Example 5.43, Theorem 5.41
and Theorem 5.42 in [15]. Alternatively, they can be proved using the counting process
and martingale theory outlined in Lawless [9, Appendix F]. As we are concerning more

on the finite sample properties of θ̂n, detailed proofs of the asymptotic properties
of of θ̂n are not provided. Inference for θ can be carried out based on the above
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large sample results, with In(θ) being estimated by the observed information matrix

Jn(θ̂n) = −∂2`n(θ)/∂θ∂θ′|θ=θ̂n .

When sample size is small or the censorship is heavy, the MLEs ân and β̂n, in
particular the latter, can be rather biased, which will likely have serious impacts on
the subsequent inferences. Therefore, it is highly desirable to bias-correct the MLEs
and their standard error estimates so that inferences concerning aj ’s and β can be
made more reliable. Moreover, for an accelerated life study, the main purpose is to
estimate certain percentile life at a designed operating condition (for more inference
issues, see e.g, Nelson [11]). In summary, bias corrections on the MLEs and their
variances can potentially improve inferences for all the reliability-related quantities.

3. Bias Correction and Variance Estimation on the MLEs

3.1. Stochastic expansion of the MLEs

Rilstone et al. [13] considered a class of
√
n-consistent estimators identified by esti-

mating equation: θ̂n = arg{ψn(θ) = 0}, where ψn(θ) is a vector-valued function of
the same dimension as θ and normalized to have order Op(n

−1/2), and obtained a

third-order stochastic expansion for θ̂n, assuming E[ψn(θ0)] = 0, where θ0 is the true
value of the parameter vector θ.

In our case, ψn(θ) is a (p+ 1)×1 joint estimating function obtained by dividing the
score function given in (6) by n, i.e.,

ψn(θ) =

{
β
n

∑n
i=1(ezi(θ) − δi)xi,

r
nβ −

1
nβ

∑n
i=1(ezi(θ) − δi)zi(θ),

(7)

and θ̂n is the MLE. Let Hkn(θ) be the kth-order partial derivative of ψn(θ) with
respect to θ′, k = 1, 2, 3, obtained sequentially and elementwise. Denote ψn ≡ ψn(θ0),
Hkn ≡ Hkn(θ0), H◦kn = Hkn − E(Hkn), k = 1, 2, 3, and Ωn = −[E(H1n)]−1. Under

some general smoothness conditions on ψn(θ) (see Rilstone et al. [13]), θ̂n possesses
the following third-order stochastic expansion at θ0:

θ̂n − θ0 = a−1/2 + a−1 + a−3/2 +Op(n
−2), (8)

where a−1/2 = Ωnψn, a−1 = ΩnH
◦
1na−1/2 + 1

2ΩnE(H2n)(a−1/2 ⊗ a−1/2), and

a−3/2 = ΩnH
◦
1na−1 + 1

2ΩnH
◦
2n(a−1/2⊗a−1/2) + 1

2ΩnE(H2n)(a−1/2⊗a−1a−1⊗a−1/2) +
1
6ΩnE(H3n)(a−1/2⊗ a−1/2⊗ a−1/2), representing terms of order Op(n

−s/2), s = 1, 2, 3,
respectively, E denotes the expectation corresponding to θ0, and ⊗ denotes the Kro-
necker product.

Proof of this third-order expansion in the context of Weibull regression model can
easily be done by verifying the conditions of Rilstone et al. [13]. However, we are

mostly interested in the finite sample bias of θ̂n, so the detail of this proof is omitted.
As θ is a (p + 1) × 1 vector, H1n(θ), H2n(θ), H3n(θ) are matrices of dimensions

(p + 1) × (p + 1), (p + 1) × (p + 1)2, (p + 1) × (p + 1)3, respectively. The detailed
expressions of Hkn(θ), k = 1, 2, 3 are given in Appendix A. It is interesting to note that
the elements of ψn(θ0) and Hkn(θ0) (k = 1, 2, 3) are all functions of only the shape
parameter β0 and the random terms zi ≡ zi(θ0), which is a realization of the standard
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EV-I random variable when δi = 1, or a censored observation on β0(logCi − a′0xi),
i = 1, . . . , n, when δi = 0. Therefore, it is expected that most bias would come from
the estimation of the shape parameter β.

Assumption 4. For θ in a neighborhood of θ0,
∣∣∑n

i=1(βezi(θ) − β0e
zi)
∣∣ /n = ‖θ −

θ0‖Bn,1,
∣∣∑n

i=1(βezi(θ)zi(θ)− β0e
zizi)

∣∣ /n = ‖θ − θ0‖Bn,2, where E|Bn,1| < c1 and
E|Bn,2| < c2, for some finite constants c1 and c2.

Theorem 3.1. Under Assumptions 1-4, we have the second-order (O(n−1)) bias and

the third-order (O(n−3/2)) bias for the MLEs θ̂n of θ0:

b2(θ0) = ΩnE(H1nΩnψn) +
1

2
ΩnE(H2n)E[(Ωnψn)⊗ (Ωnψn)], (9)

b3(θ0) = ΩnE(H◦1na−1) +
1

2
ΩnE[H◦2n(a−1/2 ⊗ a−1/2)] +

1

2
ΩnE(H2n)E(a−1/2 ⊗ a−1

+a−1 ⊗ a−1/2) +
1

6
ΩnE(H3n)E(a−1/2 ⊗ a−1/2 ⊗ a−1/2), (10)

where ψn ≡ ψn(θ0), Hkn ≡ Hkn(θ0), H◦kn ≡ Hkn − E(Hkn), k = 1, 2, 3, and Ωn =
−[E(H1n)]−1.

Note that the 2nd-order bias b2 ≡ b2(θ0) = E(a−1) as E(a−1/2) = 0, and the 3rd-
order bias b3 ≡ b3(θ0) = E(a−3/2). If the estimates of b2 and b3 are available, denoted

by b̂2 and b̂3, then the 2nd- or 3rd-order bias-corrected MLEs of θ can be obtained by

θ̂bc2
n = θ̂n − b̂2 and θ̂bc3

n = θ̂n − b̂2 − b̂3. (11)

It will be shown in next section that under some mild conditions, the extra variability
introduced by the estimation of the bias is not higher than the remainder.

Naturally, use of the bias corrected MLEs θ̂bc2
n or θ̂bc3

n , and the observed information

matrix evaluated at θ̂bc2
n or θ̂bc3

n should lead to improved inferences for θ. Further
improvements are possible by using the bias-corrected variance estimate as well. Based
on the stochastic expansion (8), a 2nd-order variance expansion of θ̂n can be directly
obtained,

V2(θ̂n) = Var(a−1/2 + a−1) +O(n−2)

= E[(a−1/2 + a−1)(a−1/2 + a−1)′] +O(n−2), (12)

noting E(a−1/2) = 0, E(a−1) = O(n−1), and E(a−1/2 +a−1)E(a−1/2 +a−1)′ = O(n−2).

Furthermore, it is easy to see that V2(θ̂bc2
n ) = V2(θ̂n)+O(n−2). Thus, further improved

inferences for θ can be expected, by using θ̂bc2
n in connection with V2(θ̂bc2

n ). The 3rd-
order variance correction can also be carried out by extending the above result. We
will concentrate on the 2nd-order results. Monte Carlo results presented in Section 5
show that the 2nd-order corrections are sufficient for most of the practical situations.

Question remains on the estimation of b2 and V2(θ̂bc2
n ). The explicit expressions

of these quantities are difficult if not impossible to obtain, and hence the standard
plug-in method can not be applied. Alternative methods are thus desired.
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3.2. Bootstrap estimates of bias correction and variance

Different from the Weibull distribution, Weibull regression model deals with not only
the lifetime data and censoring mechanism, but also the covariates, whose distributions
are unknown. Therefore generating bootstrap samples in a censored Weibull regression
model can be much tricker. Shen and Yang [14] introduced a parametric bootstrap
method to bias-correct the MLE of the common shape parameter of several Weibull
populations, based on complete or censored data. Although Weibull regression model is
also a parametric model, we consider to adopt a nonparametric bootstrap method here
to estimate the bias and variance corrections, concerning the involvement of covariates
in model. For the case of complete data, the bootstrap samples are drawn only on the
estimated errors, whereas for the censoring case, the bootstrap samples are drawn on
the triples: estimated errors, censoring indicators, and covariate values.

Note that the key quantities ψn(θ0) and Hkn(θ0) can be written as ψn(θ0) =
ψn(β0, zn) and Hkn(θ0) = Hkn(β0, zn), k = 1, 2, 3, where zn = (z1, . . . , zn)′, and
zi = zi(θ0) = β0(log si − a′0xi). When sample data are complete, the error terms
zi (i = 1, . . . , n) are subject to the standard EV-I distribution. Then the estimates of
zi (i = 1, . . . , n), which are called ML residuals in the MLE framework, can be resam-
pled by a regular nonparametric bootstrap method and used for estimating the desired
quantity expectations. Following the bootstrap steps in Yang [22], the nonparametric
bootstrap procedure can be carried out in this way:

(1) Compute the MLEs θ̂n = (â′n, β̂n)′ based on the original data;

(2) Compute ML residuals ẑi = zi(θ̂n) = β̂n(log si − â′nxi), i = 1, . . . , n;
(3) Resample {ẑi, · · · , ẑn} in a usual way, and denote the resampled vector by ẑ∗n,b;

(4) Compute ψ̂n,b = ψn,b(β̂n, ẑ
∗
n,b), and Ĥkn,b = Hkn,b(β̂n, ẑ

∗
n,b), k = 1, 2, 3, with the

original covariate matrix X = (X1, . . . , Xn)′ unchanged;
(5) Repeat the steps (3)-(4) B times to get a sequences of bootstrapped values

{ψ̂n,b, b = 1, . . . , B} for ψn, and {Ĥkn,b, b = 1, . . . , B} for Hkn, k = 1, 2, 3.

When the sample data are right censored, Step (3) and (4) in the above procedure
should be changed to Step (3’) and (4’) as follows,

(3’) Resample {(ẑi, xi, δi), · · · , (ẑn, xn, δn)} in a usual way, and denote the resampled

vectors by ẑ∗n,b, x̂
∗
n,b and δ̂

∗
n,b respectively;

(4’) Compute ψ̂n,b = ψn,b(β̂n, ẑ
∗
n,b, x̂

∗
n,b, δ̂

∗
n,b), and Ĥkn,b = Hkn,b(β̂n, ẑ

∗
n,b, x̂

∗
n,b, δ̂

∗
n,b),

k = 1, 2, 3;

The reason for involving covariates into bootstrapping is that, when δi = 0, the cen-
sored error observations zi = β0(logCi − a′0xi) (i = 1, . . . , n) rely on the covariates
xi’s, although the censoring distribution for Ci’s is independent of the covariates and
the failure times.

The bootstrap estimates of various expectations in b2(θ0) and b3(θ0) thus are simply
the averages of the corresponding B bootstrap values. For example, the bootstrap
estimates of E(ψn ⊗ ψn) and E(H1n) are, respectively,

Ê(ψn ⊗ ψn) = 1
B

∑B
b=1 ψ̂n,b ⊗ ψ̂n,b and Ê(H1n) = 1

B

∑B
b=1 Ĥ1n,b.

The latter gives Ω̂n = −[Ê(H1n)]−1, which leads to the bootstrap estimates of quan-
tities that contain Ωn, e.g. E(H1nΩnψn), by repeating the bootstrapping procedure
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based on the same set of bootstrap data ẑ∗n,b or (ẑ∗n,b, x̂
∗
n,b, δ̂

∗
n,b), b = 1, . . . , B, obtained

in Steps (3) and (4) or (3’) and (4’) above, i.e.,

Ê(H1nΩnψn) = 1
B

∑B
b=1 Ĥ1n,bΩ̂nψ̂n,b.

This is a ‘two-stage’ bootstrap procedure. After getting the estimates of all those
expectations, we can calculate b̂2 and b̂3, and thus θ̂bc2

n and θ̂bc3
n .

Note that the nonstochastic matrices such as Ωn, E(H1n) and E(H2n) are involved
in the expectation operator. Pulling these nonstochastic matrices outside the expec-
tation sign could simplify the evaluation of the expectations. Using the properties of
Kronecker product (A ⊗ B)(C ⊗D) = AC ⊗ BD and vec(ACB) = (B′ ⊗ A)vec(C),
where ‘vec’ vectorizes a matrix by stacking its columns (see, e.g., Horn and Johnson
[6]), b2 becomes

b2 = ΩnE(ψ′n ⊗H1n)vec(Ωn) +
1

2
ΩnE(H2n)(Ωn ⊗ Ωn)E(ψn ⊗ ψn).

Therefore, the bootstrap estimate of b2 can be realized in ‘one-stage’, instead of two-
stage described above. The same idea may apply to get the bootstrap estimate for the
3rd-order bias b3, but the expression becomes messy, in particular when the variance
correction is involved. We thus recommend the two-stage procedure as the added
computation is not at all an issue of concern due to the fact that the introduced
bootstrap procedure does not involve ‘re-estimation’ of the model parameters.

To estimate the 2nd-order variance V2(θ̂bc2
n ) in (12), an additional bootstrap pro-

cedure can be carried out after Step (5) but with bootstrap parameters θ̂bc2
n :

(6) Use the same resampled vector(s) ẑ∗n,b for complete data or (ẑ∗n,b, x̂
∗
n,b, δ̂

∗
n,b) for

censored data;
(7) Compute the quantities with θ̂bc2

n , i.e. ψ̂n,b = ψn,b(β̂
bc2
n , ẑ∗n,b), Ĥ1n,b =

H1n,b(β̂
bc2
n , ẑ∗n,b), and Ĥ2n,b = H2n,b(β̂

bc2
n , ẑ∗n,b) for complete data, or ψ̂n,b =

ψn,b(β̂
bc2
n , ẑ∗n,b, x̂

∗
n,b, δ̂

∗
n,b), Ĥ1n,b = H1n,b(β̂

bc2
n , ẑ∗n,b, x̂

∗
n,b, δ̂

∗
n,b), and Ĥ2n,b =

H2n,b(β̂
bc2
n , ẑ∗n,b, x̂

∗
n,b, δ̂

∗
n,b) for censored data;

(8) Repeat the steps (6)-(7) B times to get sequences of bootstrapped values

{ψ̂n,b, b = 1, . . . , B} for ψn, and {Ĥkn,b, b = 1, . . . , B} for Hkn, k = 1, 2.

After Steps (6)-(8), we can have the estimate of Ωn and also B values of of

a−1/2 + a−1 = Ωnψn + ΩnH
◦
1nΩnψn + 1

2ΩnE(H2n)(Ωnψn ⊗ Ωnψn) with θ̂bc2
n , denot-

ed by {a−1/2,b + a−1,b, b = 1, . . . , B}. Then a bootstrap estimate for V2(θ̂bc2
n ) is

V̂2(θ̂bc2
n ) = 1

B

∑B
b=1(a−1/2,b + a−1,b)(a−1/2,b + a−1,b)

′.

Remark 1. In case of complete data, the bootstrap procedure is much simpler, as it
depends only on the β̂n value, and the resampled samples are from the ML residuals.

Remark 2. It is easy to see that V2(θ̂n) = V2(θ̂bc2
n ) +O(n−2). Thus, θ̂n can be used

in estimating the 2nd-order variance of θ̂bc2
n as well. In this case, the additional steps

in the 2nd-order variance estimation are not needed.

Remark 3. The proposed method is computationally much more advantageous than
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the standard bootstrap correction method, which bootstraps θ̂n directly for bias-
reduction. The key difference between the two methods is that, the proposed method
does not require reestimation of the parameters in each bootstrap run, but the stan-
dard method does. Kundhi and Rilstone [8] also showed that the standard one was
unable to work well compared to their method.

3.3. Validity of the bootstrap method

We now present some results concerning the validity of the bootstrap methods for
estimating the bias and the variance of the MLE of θ.

Corollary 3.2. Under Assumptions 1-4, if further (i) ∂rbj(θ0)/∂θr0 ∼ bj(θ0), r =
1, 2, j = 2, 3, (ii) a quantity bounded in probability has a finite expectation, then the

bootstrap estimates of the 2nd- and 3rd-order biases for the MLE θ̂n are such that:

b̂2 = b2 +Op(n
−2) and b̂3 = b3 +Op(n

−5/2),

where ∼ indicates that the two quantities are of the same order of magnitude. It follows
that Bias(θ̂bc2

n ) = O(n−3/2) and Bias(θ̂bc3
n ) = O(n−2).

Corollary 3.3. Under Assumptions 1-4, if further (i) b̂2 − b2 = Op(n
−3/2) , (ii) a

quantity bounded in probability has a finite expectation, then the 2nd-order variances
and their the bootstrap estimates are such that:

V2(θ̂bc2
n ) = V2(θ̂n) +O(n−2),

V̂2(θ̂bc2
n ) = V2(θ̂bc2

n ) +O(n−2),

where b̂2 is the estimate of b2.

The results of Corollary 3.2 show that using the bootstrap method to estimate
the bias terms only (possibly) introduces additional bias of magnitude Op(n

−2) or
smaller. This guarantees the validity of the 2nd-order and the 3rd-order bootstrap
bias corrections. Assumption (ii) is to ensure E[Op(1)] = O(1), E[Op(n

−2)] = O(n−2),
etc., so that the expectation of a ‘stochastic’ remainder is of proper order. The proofs
of Corollaries 3.2 and 3.3 are given in Appendices C and D.

4. Inferences Following Bias and Variance Corrections

It is well known that inference concerning the covariate effects may be one of the most
important types of inference in the context of any regression analysis. In the special
case of accelerated life testing model, inference concerning a ‘future’ percentile life is
also of utmost importance. Given the fact that the MLEs of the Weibull regression
model can be seriously biased, it is important to study how this bias impacts the
subsequent inferences, and how the standard inference methods can be improved af-
ter corrections have been made on the points estimates of the model parameters. In
this section, we present improved inference methods for the Weibull regression model
following the bias and variance corrections on the MLEs of the model parameters.

10



4.1. Inferences concerning the covariates effects

Inferences concerning the covariates effects are typically based on the asymptotic t-
ratios, constructed based on the results that θ̂n is approximately (asymptotically)

normal with mean θ0 and variance J−1
n (θ̂n), where Jn(θ̂n) is the observed information

matrix. Note that Jn(θ) = −nH1n(θ). Partitioning J−1
n (θ̂n) according to a and β

and denoting the partitioned matrix by J−1
n (θ̂n) = (Ĵ11

n , Ĵ
12
n ; Ĵ21

n , Ĵ
22
n ), then Ĵ11

n gives

an estimate of the asymptotic variance-covariance (VC) matrix of ân, Ĵ22
n gives an

estimate of the asymptotic variance of β̂n, and Ĵ21
n gives an estimate of the asymptotic

covariance between ân and β̂n. Thus, an asymptotic t-statistic for inference for c′0a0,
a linear contrast of the regression coefficients, has the form,

tn =
c′0ân − c′0a0√

c′0Ĵ
11
n c0

. (13)

For the 2nd-order bias-corrected MLEs θ̂bc2
n , there are two available variance es-

timates: the inverse of the observed information matrix J−1
n (θ̂bc2

n ) and the 2nd-

order variance estimate V̂2(θ̂bc2
n ). We normally choose the latter for an obvious rea-

son. Let V̂ar(θ̂bc2
n ) = J−1

n (θ̂bc2
n ) or V̂2(θ̂bc2

n ). Denoting the partitioned V̂ar(θ̂bc2
n ) as

(V̂11, V̂12; V̂21, V̂22), a 2nd-order corrected t-statistic is thus,

tbc2
n =

c′0â
bc2
n − c′0a0√
c′0V̂11c0

. (14)

Both t-ratios (13) and (14) can be used for testing the significance of a regression
coefficient, or constructing a confidence interval of it. Both refer to the standard normal
distribution for the critical values. For example, to test the null hypothesis H0 : a2 = 0
verses a two-sided alternative, we set c0 = (0, 1, . . . , 0) and the reject region is the
compliment of the interval [−uγ/2, uγ/2], where uγ/2 is the upper (γ/2)-quantile of the
standard normal distribution. As expected, Monte Carlo results presented in Section
5 show that the 2nd-order corrected t-statistic offers a significant improvement over
the large sample t-statistic.

4.2. Inference concerning the shape parameter

Similarly, test and confidence intervals (CI) for β can be constructed based on two

sets of t-ratios. Based on the partitions of J−1
n (θ̂n) and V̂ar(θ̂bc2

n ) discussed above, we
have a large sample 100(1− γ)% CI for β:{

β̂n − uγ/2
√
Ĵ22
n , β̂n + uγ/2

√
Ĵ22
n

}
, (15)

and a 2nd-order bias-corrected CI for β:{
β̂bc2
n − uγ/2

√
V̂22, β̂bc2n + uγ/2

√
V̂22

}
. (16)
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4.3. Confidence intervals for a percentile

As discussed earlier, another interesting problem is to estimate a certain percentile
or quantile life under a regular operating condition in an accelerated life test, i.e.,
to estimate yp = a′xreg + zp/β and Tp = exp(yp), where zp is the pth-percentile of
the standard EV-I distribution with a predetermined p, and xreg is the values of the
covariates corresponding to the regular operating condition. The point estimators for
yp based on the original MLE θ̂n = (â′n, β̂n)′ and the 2nd-order bias-corrected MLE

θ̂bc2
n = ((âbc2

n )′, β̂bc2
n )′ are, respectively,

ŷn,p = â′nxreg + zp/β̂n and ŷbc2
n,p = (âbc2

n )′xreg + zp/β̂
bc2
n .

Applying the multivariate Delta theorem yields the following large sample results,

ŷn,p − yp ∼ N
(

0, c′nJ
−1
n (θ̂n)cn

)
ŷbc2
n,p − yp ∼ N

(
0, (cbc2

n )′V̂ar(θ̂bc2
n )cbc2

n

)
where cn = (x′reg,−zp/β̂2

n)′, cbc2
n = (x′reg,−zp/(β̂bc2

n )2)′, and V̂ar(θ̂bc2
n ) = J−1

n (θ̂bc2
n ) or

V̂2(θ̂bc2
n ). The corresponding two 100(1− γ)% CIs for yp are, respectively,

CI1(yp) =

{
ŷn,p − uγ/2

√
c′nJ

−1
n (θ̂n)cn, ŷn,p + uγ/2

√
c′nJ

−1
n (θ̂n)cn

}
,

CI2(yp) =

{
ŷbc2
n,p − uγ/2

√
(cbc2
n )′V̂ar(θ̂bc2

n )cbc2
n , ŷbc2

n,p + uγ/2

√
(cbc2
n )′V̂ar(θ̂bc2

n )cbc2
n

}
.

Confidence intervals for other reliability-related quantities, such as the survival func-
tion, mean lifetime, failure rate, etc., can be constructed in a similar manner.

5. Monte Carlo Simulations

To investigate the finite sample performances of the proposed bias correction method
and the improved inference methods, Monte Carlo simulation experiments are con-
ducted based on the following Weibull regression model with an intercept:

log T = a1 + a2X2 + a3X3 + Z/β.

Two scenarios are considered, (i) complete samples, and (ii) randomly censored sam-
ples. For all the Monte Carlo experiments, a′ = (a1, a2, a3) is set at {5, 1, 1}, β takes
values {0.5, 0.8, 1, 2, 5}, and n takes values {12, 20, 50} . The two covariates are gener-

ated independently, according to {xi2}
iid∼ N(0, 1)/

√
2 and {xi3}

iid∼ N(0, 1)/
√

2. (The
reason to choose n = 12 instead of n = 10 is to ensure enough number of observed
failure times in fitting a 4-parameter model.)

In the entire simulation study, the nonparametric bootstrap methods described in
Sec. 3.2 are followed. For all the experiments, 10,000 replications are run in each
simulation and the number of bootstrap B is set to be 699.

We consider both complete and censored data. In case of censored data, we consider
both the random censoring scheme and the Type-I censoring scheme. The latter is a

12



special case of the former with a degenerated censoring distribution, and is relatively
easier for controlling the censoring percentage. In the random censoring scheme, each
item is subject to a different censoring time. For each Monte Carlo replication, two
sets of observations T = {T1, . . . , Tn} and C = {C1, . . . , Cn} are generated, with
Tj from a Weibull regression model and Cj from any proper distribution. In this
paper, a Uniform distribution U(0.5ζ0.9, 1.5ζ0.9), where ζ0.9 = exp{5 + z0.9/β} and
z0.9 is the 90%-percentile of the standard EV-I distribution, is chosen to generate
the censoring times Cj ’s, considering its simple formulation and easy-handling. With
such a censoring distribution, the censoring percentages are around 13.78%, 17.72%,
20.12%, 29.87%, 41.40% for β = 0.5, 0.8, 1.0, 2.0, 5.0, respectively (estimated by
Monte Carlo simulation). Then the observed lifetimes {Sj = min(Tj , Cj), j = 1 . . . , n}
and the failure indicators {δj} are recorded. Based on these original observed lifetimes,
the ML residuals can be calculated and bootstrap samples of residuals can be generated
by carrying out the nonparametric bootstrap procedure discussed in Sec. 3.2. We will
first concentrated on the cases of complete and randomly censored data.

5.1. Performance of the 2nd-order bias corrected MLEs

Tables 2-3 summarize the empirical mean, root-mean-square-error (rmse) and stan-
dard error (se) of the original and 2nd-order bias-corrected MLEs under different
combinations of models, data types, and the values of n and β.

Table 2 presents the estimation results of all 4 parameters for the case of complete
samples. From the results in the table, we see that the 2nd-order bias-corrected MLE
θ̂bc2
n is generally nearly unbiased and is much superior to the original MLE θ̂n regardless

of the values of n. It is also shown that the estimation of the shape parameter β
incurs the most bias compared to the estimation of the scale parameters ai, i = 1, 2, 3,
which coincides with our discussions in Sec. 3.1. Some details are: (i) β̂n always over-

estimates the shape parameter, (ii) β̂bc2
n has a much smaller bias, and a smaller rmse

(se) compared with those of β̂n, (iii) although the improvements of âbc2
in over âin,

i = 1, 2, 3, are not so significant as that of β̂bc2
n , âbc2

in is still generally better than âin
in terms of bias, except some occasional cases for a3.

Table 3 summarizes the Monte Carlo results under the random censoring mechanis-
m. From the results we see that the bias-corrected MLE θ̂bc2

n can greatly reduce the

bias as well as the variability of θ̂n in all situations. Once more, the estimation of the
shape β is shown to incur the most bias.

Another important observation is that, different from the results for complete sam-
ples, the bias-corrected estimators for the scale-related parameters âbc2

in (i = 1, 2, 3)
outperform the original MLEs âin (i = 1, 2, 3) in most cases for randomly censored
samples, especially for the case of n = 12 and in terms of the bias reduction. There-
fore, based on these findings, we may conclude that the proposed method is a desirable
choice when dealing with randomly censored data.

5.2. Performance of the significance tests

To compare the performances of the two t-ratios tn and tbc2
n , we reset the covaraite

coefficients to a′ = (a1, a2, a3) = (5, 0, 1) and test H0 : a2 = 0. Tables 4 and 5 report the
empirical significance levels of tn and tbc2

n for the case of complete data and censored
data, respectively. The variance estimate used in tbc2

n is the inverse of the observed

information matrix, J−1
n (θ̂bc2

n ), which was shown leading to a better performance than
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Table 2. Empirical mean [rmse](se) of the estimators of all parameters, complete data
n = 12

β β̂n β̂bc2
n a1 â1n âbc21n

0.5 0.6969[.2971](.2225) 0.6055[.2492](.2257) 5.0 4.3345[1.720](1.587) 4.4482[1.804](1.717)
0.8 1.0248[.3674](.2906) 0.8705[.2583](.2486) 5.0 4.5486[1.320](1.241) 4.6172[1.318](1.261)
1.0 1.2676[.4685](.3846) 1.0691[.3247](.3173) 5.0 4.6486[1.148](1.093) 4.7044[1.146](1.108)
2.0 2.4938[.9885](.8564) 2.0917[.7081](.7022) 5.0 4.7102[1.040](.9991) 4.7388[1.040](1.006)
5.0 6.2837[2.577](2.234) 5.2447[1.873](1.857) 5.0 4.8228[.8171](.7976) 4.8341[.8169](.7999)

a2 â2n âbc22n a3 â3n âbc23n
1.0 1.1073[1.533](1.529) 1.0993[1.532](1.529) 1.0 1.1062[1.371](1.368) 1.1041[1.361](1.357)
1.0 0.9996[.5652](.5652) 0.9905[.5646](.5645) 1.0 1.0140[.6283](.6282) 1.0127[.6269](.6268)
1.0 1.0055[.4918](.4918) 0.9984[.4914](.4914) 1.0 1.0120[.4817](.4815) 1.0047[.4809](.4809)
1.0 0.9968[.2556](.2556) 0.9982[.2550](.2550) 1.0 0.9998[.2791](.2791) 1.0001[.2788](.2788)
1.0 1.0008[.1042](.1042) 0.9994[.1041](.1041) 1.0 1.0006[.1077](.1077) 1.0012[.1077](.1077)
n = 20

β β̂n β̂bc2
n a1 â1n âbc21n

0.5 0.5833[.1520](.1271) 0.5228[.1211](.1190) 5.0 4.8849[.6886](.6790) 4.9635[.6898](.6889)
0.8 0.9250[.2266](.1891) 0.8282[.1737](.1714) 5.0 4.9058[.5269](.5184) 4.9541[.5234](.5214)
1.0 1.1556[.2812](.2343) 1.0339[.2145](.2118) 5.0 4.9260[.4325](.4262) 4.9653[.4293](.4279)
2.0 2.2946[.5660](.4833) 2.0532[.4369](.4337) 5.0 4.9405[.4109](.4066) 4.9598[.4102](.4082)
5.0 5.7411[1.413](1.204) 5.1335[1.091](1.083) 5.0 4.9717[.2846](.2832) 4.9794[.2844](.2837)

a2 â2n âbc22n a3 â3n âbc23n
1.0 0.9939[.7912](.7912) 0.9976[.7918](.7919) 1.0 1.0018[.8571](.8572) 0.9954[.8544](.8544)
1.0 0.9950[.4703](.4703) 0.9977[.4699](.4699) 1.0 1.0096[.4533](.4532) 1.0080[.4531](.4530)
1.0 1.0048[.3621](.3621) 1.0027[.3618](.3618) 1.0 0.9996[.3803](.3803) 1.0044[.3802](.3802)
1.0 0.9943[.1837](.1836) 0.9960[.1836](.1836) 1.0 0.9979[.1883](.1882) 0.9997[.1881](.1881)
1.0 0.9998[.0762](.0762) 0.9998[.0761](.0761) 1.0 1.0022[.0741](.0741) 1.0017[.0740](.0740)
n = 50

β β̂n β̂bc2
n a1 â1n âbc21n

0.5 0.5287[.0686](.0624) 0.5041[.0599](.0597) 5.0 4.9636[.3068](.3046) 4.9971[.3039](.3039)
0.8 0.8439[.1091](.0998) 0.8047[.0959](.0958) 5.0 4.9818[.1933](.1924) 5.0025[.1920](.1920)
1.0 1.0566[.1373](.1251) 1.0076[.1203](.1201) 5.0 4.9812[.1547](.1536) 4.9978[.1532](.1532)
2.0 2.1134[.2727](.2480) 2.0152[.2380](.2376) 5.0 4.9921[.0868](.0864) 5.0004[.0863](.0863)
5.0 5.2728[.6830](.6262) 5.0288[.6015](.6008) 5.0 4.9961[.0308](.0305) 4.9994[.0304](.0304)

a2 â2n âbc22n a3 â3n âbc23n
1.0 0.9987[.4290](.4290) 0.9982[.4290](.4290) 1.0 0.9944[.4291](.4291) 0.9940[.4291](.4290)
1.0 1.0000[.2733](.2733) 0.9998[.2734](.2734) 1.0 0.9961[.2703](.2703) 0.9951[.2703](.2703)
1.0 1.0014[.2120](.2120) 1.0013[.2121](.2121) 1.0 1.0045[.2145](.2145) 1.0045[.2145](.2145)
1.0 0.9972[.1075](.1075) 0.9976[.1075](.1075) 1.0 1.0004[.1090](.1090) 0.9997[.1090](.1090)
1.0 1.0003[.0432](.0432) 1.0001[.0432](.0432) 1.0 0.9987[.0430](.0430) 0.9988[.0430](.0430)

the 2nd-order variance estimate V̂2(θ̂bc2
n ) (the corresponding Monte Carlo results are

not reported for brevity, but are available upon request).
In Tables 4 and 5, we observe that, (i) except the case of censored data with n = 12,

and β = 0.5, the asymptotic test tn can be very unreliable in the sense that it rejects
the true H0 much too often than it is supposed to. The test tbc2

n offers huge reduction
in significance level distortions, with the empirical levels getting close to their nominal
levels faster than tn; (ii) for both data types, the two tests converge in terms of
empirical significance level as n increases; (iii) the empirical significance level of tn is
always greater than the nominal level, while tbc2

n does not have obvious pattern; (iv)
the heavier the censorship, the greater is the distortion in empirical significance level
for the asymptotic test (see the cases of β = 5.0, and n = 12, 20).

In overall, the improved test tbc2
n outperforms the asymptotic test tn greatly, regard-

less of sample size, data type and nominal level. Thus for the purpose of significance
test, the test tbc2

n with variance estimate J−1
n (θ̂bc2

n ) is strongly recommended.

5.3. Confidence intervals for the shape parameter

Instead of J−1
n (θ̂bc2

n ) as a variance estimate, the 2nd-order variance estimate V̂2(θ̂bc2
n )

is shown to be a better choice in constructing confidence interval for β. The reason
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Table 3. Empirical mean [rmse](se) of the estimators of all parameters, randomly censored data
n = 12

β β̂n β̂bc2
n a1 â1n âbc21n

0.5 0.7625[.3540](.2376) 0.6943[.3260](.2617) 5.0 3.5975[2.455](2.015) 3.5876[2.482](2.041)
0.8 1.0202[.3602](.2850) 0.8846[.2606](.2465) 5.0 4.1830[1.811](1.616) 4.2038[1.812](1.627)
1.0 1.2432[.4560](.3858) 1.0601[.3221](.3164) 5.0 4.4734[1.433](1.333) 4.4920[1.432](1.339)
2.0 2.5003[1.075](.9515) 2.0789[.7728](.7688) 5.0 4.6646[1.145](1.094) 4.6709[1.145](1.097)
5.0 6.4759[3.007](2.621) 5.2765[2.125](2.107) 5.0 4.7791[.9177](.8908) 4.7815[.9178](.8915)

a2 â2n âbc22n a3 â3n âbc23n
1.0 1.2638[1.355](1.329) 1.1881[1.601](1.590) 1.0 1.2382[1.081](1.055) 1.1786[1.257](1.244)
1.0 1.1064[.5681](.5581) 1.0962[.5799](.5719) 1.0 1.0902[.5469](.5394) 1.0949[.5960](.5885)
1.0 1.0594[.4653](.4615) 1.0563[.4739](.4706) 1.0 1.0633[.4644](.4601) 1.0630[.4753](.4711)
1.0 1.0332[.3157](.3139) 1.0318[.3291](.3276) 1.0 1.0178[.2948](.2942) 1.0101[.3040](.3039)
1.0 1.0068[.1265](.1263) 1.0044[.1328](.1327) 1.0 1.0086[.1182](.1179) 1.0095[.1241](.1238)
n = 20

β β̂n β̂bc2
n a1 â1n âbc21n

0.5 0.5704[.1541](.1371) 0.5142[.1299](.1292) 5.0 4.8934[.7363](.7286) 4.9078[.7397](.7340)
0.8 0.9209[.2453](.2134) 0.8266[.1951](.1933) 5.0 4.9035[.6364](.6290) 4.9131[.6343](.6284)
1.0 1.1492[.3132](.2754) 1.0268[.2479](.2465) 5.0 4.9296[.5304](.5257) 4.9362[.5285](.5247)
2.0 2.3642[.7590](.6660) 2.0737[.5764](.5717) 5.0 4.9063[.6074](.6002) 4.9096[.6071](.6003)
5.0 6.3500[2.580](2.199) 5.3456[1.819](1.786) 5.0 4.9461[.4434](.4401) 4.9488[.4436](.4407)

a2 â2n âbc22n a3 â3n âbc23n
1.0 1.0425[.9219](.9209) 1.0202[.9618](.9616) 1.0 1.0590[.8648](.8628) 1.0441[.8760](.8749)
1.0 1.0593[.5626](.5595) 1.0481[.5673](.5653) 1.0 1.0577[.5726](.5697) 1.0509[.5751](.5729)
1.0 1.0456[.4819](.4798) 1.0299[.4802](.4792) 1.0 1.0478[.4803](.4779) 1.0369[.4803](.4789)
1.0 1.0325[.2641](.2621) 1.0275[.2676](.2662) 1.0 1.0356[.2729](.2706) 1.0298[.2755](.2739)
1.0 1.0127[.1343](.1337) 1.0130[.1391](.1385) 1.0 1.0144[.1324](.1317) 1.0169[.1385](.1375)
n = 50

β β̂n β̂bc2
n a1 â1n âbc21n

0.5 0.5232[.0721](.0682) 0.5015[.0655](.0655) 5.0 4.9737[.3258](.3248) 4.9888[.3226](.3224)
0.8 0.8418[.1211](.1136) 0.8054[.1089](.1088) 5.0 4.9876[.2086](.2083) 4.9966[.2070](.2070)
1.0 1.0540[.1530](.1432) 1.0075[.1372](.1370) 5.0 4.9874[.1714](.1710) 4.9942[.1704](.1703)
2.0 2.1340[.3339](.3059) 2.0274[.2920](.2907) 5.0 4.9943[.1001](.1000) 4.9982[.0997](.0997)
5.0 5.4230[.9435](.8434) 5.0876[.7907](.7859) 5.0 4.9975[.0527](.0526) 4.9999[.0528](.0528)

a2 â2n âbc22n a3 â2n âbc23n
1.0 1.0317[.4759](.4749) 1.0196[.4714](.4710) 1.0 1.0264[.4844](.4837) 1.0140[.4808](.4806)
1.0 1.0243[.3157](.3148) 1.0147[.3134](.3131) 1.0 1.0233[.3111](.3102) 1.0133[.3092](.3089)
1.0 1.0145[.2519](.2515) 1.0061[.2506](.2506) 1.0 1.0187[.2615](.2609) 1.0099[.2603](.2602)
1.0 1.0102[.1531](.1528) 1.0054[.1529](.1528) 1.0 1.0108[.1474](.1470) 1.0068[.1473](.1472)
1.0 1.0050[.0746](.0744) 1.0036[.0749](.0748) 1.0 1.0050[.0760](.0759) 1.0037[.0764](.0763)

Censoring percentage ≈ 13.78%, 17.72%, 20.12%, 29.87%, 41.40%, for β = 0.5, 0.8, 1.0, 2.0, 5.0.

behind selecting different variance estimators for ai’s and β may be that, the shape
parameter β has a more significant improvement after bias-correction compared to
the scale parameters ai, thus the 2nd-order variance estimate V̂2(θ̂bc2

n ), distinct from

J−1
n (θ̂n) more than J−1

n (θ̂bc2
n ), is more suitable for β.

The simulation results are given in Tables 6 and 7. The results show that, (i)

for complete data, CI2(β) with V̂2(θ̂bc2
n ) is able to provide a more accurate coverage

probability than CI1(β) in almost all situations except n = 50, 1 − γ = 0.99; (ii) for
censored data with n = 20, 1 − γ = 0.90, 0.95 and n = 50, 1 − γ = 0.90, CI2(β) with

V̂2(θ̂bc2
n ) has the coverage probabilities much closer to the nominal levels and is of

shorter length compared to CI1(β); (iii) for all censored situations with 1− γ = 0.99,
CI1(β) has better performances in terms of both coverage probability and interval
length; (iv) for other censored cases, CI2(β) still has the performances comparable
with CI1(β) in terms of coverage probability

Based on the simulation results, we may say that CI2(β) with V̂2(θ̂bc2
n ) is recom-

mended in constructing the confidence interval for complete data. When data are cen-
sored, CI2(β) is preferred for 1−γ = 0.90, 0.95 and CI1(β) is preferred for 1−γ = 0.99.
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Table 4. Empirical significance levels: two-sided tests of H0 : a2 = 0, complete data
β Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

n = 12 n = 20 n = 50
0.5 (1) 0.1481 0.0950 0.0349 0.1481 0.0881 0.0317 0.1207 0.0656 0.0169

(2) 0.0819 0.0434 0.0105 0.0998 0.0537 0.0147 0.0987 0.0506 0.0115
0.8 (1) 0.1537 0.0929 0.0300 0.1499 0.0893 0.0293 0.1230 0.0677 0.0157

(2) 0.0791 0.0379 0.0080 0.0987 0.0506 0.0147 0.1013 0.0514 0.0107
1.0 (1) 0.1594 0.0965 0.0339 0.1569 0.0935 0.0310 0.1170 0.0662 0.0188

(2) 0.0805 0.0411 0.0104 0.1057 0.0557 0.0136 0.0981 0.0533 0.0119
2.0 (1) 0.1631 0.0998 0.0378 0.1490 0.0910 0.0309 0.1230 0.0685 0.0176

(2) 0.0869 0.0466 0.0120 0.1019 0.0557 0.0152 0.1009 0.0516 0.0118
5.0 (1) 0.1825 0.1139 0.0468 0.1467 0.0904 0.0304 0.1222 0.0679 0.0170

(2) 0.1007 0.0564 0.0191 0.0975 0.0536 0.0134 0.1012 0.0510 0.0115

Test: (1) tn with J−1
n (θ̂n), (2) tbc2n with J−1

n (θ̂bc2n ); nominal significance levels: 10%, 5%, 1%

Table 5. Empirical significance levels: two-sided tests of H0 : a2 = 0, randomly censored data
β Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

n = 12 n = 20 n = 50
0.5 (1) 0.1080 0.0576 0.0159 0.1396 0.0796 0.0230 0.1186 0.0632 0.0155

(2) 0.0672 0.0317 0.0082 0.1023 0.0544 0.0133 0.0976 0.0498 0.0100
0.8 (1) 0.1310 0.0755 0.0218 0.1409 0.0795 0.0210 0.1173 0.0601 0.0154

(2) 0.0859 0.0456 0.0134 0.1026 0.0522 0.0111 0.0987 0.0467 0.0109
1.0 (1) 0.1417 0.0804 0.0219 0.1451 0.0831 0.0250 0.1165 0.0635 0.0160

(2) 0.0940 0.0469 0.0114 0.1036 0.0566 0.0138 0.0963 0.0511 0.0114
2.0 (1) 0.1486 0.0898 0.0334 0.1467 0.0885 0.0275 0.1254 0.0695 0.0171

(2) 0.0947 0.0520 0.0159 0.1114 0.0595 0.0143 0.1043 0.0557 0.0128
5.0 (1) 0.2092 0.1480 0.0754 0.1703 0.1125 0.0441 0.1304 0.0706 0.0211

(2) 0.1327 0.0807 0.0366 0.1281 0.0751 0.0255 0.1083 0.0558 0.0146

Test: (1) tn with J−1
n (θ̂n), (2) tbc2n with J−1

n (θ̂bc2n ); nominal significance levels: 10%, 5%, 1%; Cen-
soring percentage ≈ 13.78%, 17.72%, 20.12%, 29.87%, 41.40%, for β = 0.5, 0.8, 1.0, 2.0, 5.0.

5.4. Confidence intervals for percentiles with certain covariates

Monte Carlo simulation experiments are also designed for the confidence intervals for
percentile with given covariates, which are set as xreg = (1, 0, 0)′. Thus the percentile
we want to estimate is yp = 5 + zp/β or Tp = exp(yp), where the probability p = 0.5.
The two CIs, CI1(yp) and CI2(yp) are given in Sec. 4.3. Similar to the construction

of CI2(β) for the shape parameter, the 2nd-order variance estimate V̂2(θ̂bc2
n ) is also

adopted in constructing CI2(yp).
The results in Tables 8 and 9 show that the confidence interval based on the im-

proved t-ratio, CI2(yp), has a overwhelming superior performance compared to the
regular CI1(yp). The coverage probabilities are greatly improved, although as a com-
pensation the average length of the improved CI is slightly increased over the regular
CI. The superiority of CI2(yp) is demonstrated in almost all parameter combinations
in our experiment. Furthermore, the degree of censorship has a much greater impact
on the regular CI than on the improved CI(see Table 9 under n = 12).

Besides the median percentile y0.5, two tail percentiles y0.05 and y0.95 were also
considered in our experiment, and the results(unreported for conserving space but
available from the authors upon request) show a similar pattern. Therefore we may
conclude that the improved t-ratio and the resulted confidence interval CI2(yp) could
be the choice when concerning the inference for a percentile with certain covariates.

5.5. Monte Carlo results under Type-I censoring

To further investigate the effect of censoring on the performance of the original ML-
based and the proposed methods, more simulation experiments are carried out based
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Table 6. Empirical coverage probability (average length) of confidence intervals for β, complete data: β̂n
with variance J−1

n (θ̂n), β̂bc2
n with variance V̂2(θ̂bc2n )

β0
1− γ = 0.90 1− γ = 0.95 1− γ = 0.99

β̂n β̂bc2
n β̂n β̂bc2

n β̂n β̂bc2
n

n = 12
0.5 0.8493(0.539) 0.9143(0.555) 0.9185(0.624) 0.9512(0.643) 0.9796(0.791) 0.9809(0.816)
0.8 0.8527(0.815) 0.9243(0.833) 0.9276(0.953) 0.9610(0.974) 0.9898(1.222) 0.9906(1.250)
1.0 0.8449(1.000) 0.9238(1.018) 0.9251(1.178) 0.9618(1.200) 0.9894(1.525) 0.9910(1.554)
2.0 0.8374(1.939) 0.9188(1.981) 0.9195(2.297) 0.9591(2.346) 0.9881(2.996) 0.9910(3.061)
5.0 0.8283(4.886) 0.9218(4.997) 0.9154(5.814) 0.9599(5.946) 0.9897(7.629) 0.9904(7.802)
n = 20
0.5 0.8530(0.349) 0.9056(0.354) 0.9237(0.414) 0.9495(0.419) 0.9862(0.540) 0.9869(0.548)
0.8 0.8547(0.551) 0.9042(0.558) 0.9257(0.654) 0.9508(0.663) 0.9879(0.856) 0.9880(0.867)
1.0 0.8594(0.686) 0.9080(0.698) 0.9282(0.816) 0.9522(0.830) 0.9885(1.070) 0.9878(1.089)
2.0 0.8552(1.359) 0.9026(1.376) 0.9280(1.617) 0.9514(1.637) 0.9882(2.123) 0.9885(2.149)
5.0 0.8610(3.395) 0.9106(3.454) 0.9292(4.045) 0.9558(4.115) 0.9885(5.314) 0.9876(5.407)
n = 50
0.5 0.8778(0.194) 0.8881(0.192) 0.9398(0.231) 0.9416(0.228) 0.9897(0.304) 0.9869(0.300)
0.8 0.8761(0.310) 0.8909(0.307) 0.9387(0.370) 0.9405(0.366) 0.9871(0.486) 0.9832(0.481)
1.0 0.8809(0.388) 0.8934(0.384) 0.9377(0.463) 0.9432(0.458) 0.9871(0.608) 0.9869(0.602)
2.0 0.8822(0.777) 0.8933(0.768) 0.9394(0.925) 0.9435(0.916) 0.9876(1.216) 0.9861(1.203)
5.0 0.8756(1.937) 0.8854(1.910) 0.9378(2.308) 0.9370(2.275) 0.9883(3.034) 0.9842(2.990)

Table 7. Empirical coverage probability(average length) of confidence intervals for β, randomly censored

data: β̂n with variance J−1
n (θ̂n), β̂bc2

n with variance V̂2(θ̂bc2n )

β0
1− γ = 0.90 1− γ = 0.95 1− γ = 0.99

β̂n β̂bc2
n β̂n β̂bc2

n β̂n β̂bc2
n

n = 12
0.5 0.9016(0.714) 0.9340(0.718) 0.9521(0.781) 0.9607(0.785) 0.9917(0.911) 0.9868(0.917)
0.8 0.8894(0.929) 0.9248(0.936) 0.9468(1.061) 0.9589(1.070) 0.9916(1.320) 0.9872(1.331)
1.0 0.8746(1.152) 0.9178(1.164) 0.9402(1.345) 0.9529(1.358) 0.9910(1.721) 0.9843(1.738)
2.0 0.8484(2.570) 0.9156(2.637) 0.9315(3.044) 0.9552(3.124) 0.9924(3.970) 0.9859(4.075)
5.0 0.8257(7.427) 0.9291(7.747) 0.9170(8.837) 0.9620(9.218) 0.9920(11.59) 0.9877(12.09)
n = 20
0.5 0.8841(0.383) 0.8921(0.381) 0.9439(0.453) 0.9387(0.451) 0.9886(0.591) 0.9816(0.588)
0.8 0.8724(0.625) 0.8968(0.622) 0.9353(0.741) 0.9421(0.738) 0.9872(0.968) 0.9823(0.964)
1.0 0.8736(0.790) 0.8919(0.785) 0.9361(0.943) 0.9400(0.932) 0.9890(1.235) 0.9832(1.221)
2.0 0.8629(1.708) 0.9014(1.714) 0.9312(2.031) 0.9456(2.038) 0.9880(2.662) 0.9844(2.671)
5.0 0.8367(4.945) 0.9117(5.112) 0.9244(5.890) 0.9552(6.090) 0.9888(7.736) 0.9885(7.999)
n = 50
0.5 0.8949(0.218) 0.8963(0.216) 0.9522(0.260) 0.9474(0.257) 0.9913(0.341) 0.9875(0.338)
0.8 0.8893(0.357) 0.8927(0.351) 0.9454(0.425) 0.9411(0.419) 0.9908(0.558) 0.9864(0.550)
1.0 0.8857(0.449) 0.8902(0.442) 0.9449(0.535) 0.9409(0.527) 0.9897(0.702) 0.9842(0.693)
2.0 0.8818(0.937) 0.8899(0.922) 0.9375(1.117) 0.9390(1.099) 0.9894(1.468) 0.9837(1.444)
5.0 0.8780(2.537) 0.8958(2.510) 0.9424(3.023) 0.9462(2.990) 0.9888(3.973) 0.9869(3.930)

Censoring percentage ≈ 13.78%, 17.72%, 20.12%, 29.87%, 41.40%, for β = 0.5, 0.8, 1.0, 2.0, 5.0.

on the Type-I censored data, where for each set of (β, a1, a2, a3) values an overall
censoring time is set at the 0.1th, or 0.2th, or 0.3th empirical quantile of 100,000
random times generated from the Weibull regression model given at the beginning of
Section 5, resulting the censoring percentage (cp) close to be 10%, or 20%, or 30%.
To conserve space, we only report in Table 10 the results for the performance of point
estimators of β and in Table 11 the results for the significance tests of H0 : a2 = 0. A
more comprehensive set of results is available from the authors upon request.

The results in Table 10 show again that the 2nd-order bias-corrected MLE β̂bc2
n

is much superior to the MLE β̂n in terms of bias and rmse(se). As cp increases, (i)

the bias of β̂n increases and is typically large, but that of β̂bc2
n is fairly stable and is

small, and the rmse(se) is smaller than the rmse(se) of β̂n; and (ii) the rmses of both

estimators increase with the rmse of β̂bc2
n being consistently smaller than that of β̂n. It

is interesting to note that cp seems to have a greater impact on the rmse than does on
the bias of the two estimators. The results in Table 11 again show that the asymptotic
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Table 8. Empirical coverage probability(average length) of confidence intervals for y0.5, complete data: ŷn,0.5

with variance J−1
n (θ̂n), ŷbc2n,0.5 with variance V̂2(θ̂bc2n )

y0.5
1− γ = 0.90 1− γ = 0.95 1− γ = 0.99

ŷn,0.5 ŷbc2n,0.5 ŷn,0.5 ŷbc2n,0.5 ŷn,0.5 ŷbc2n,0.5

n = 12
4.2670 0.8604(2.050) 0.9192(2.586) 0.9133(2.426) 0.9586(3.064) 0.9676(3.159) 0.9851(3.998)
4.5419 0.8555(1.274) 0.9100(1.522) 0.9072(1.500) 0.9473(1.796) 0.9629(1.942) 0.9832(2.331)
4.6335 0.8438(1.069) 0.9018(1.264) 0.9034(1.258) 0.9430(1.491) 0.9629(1.628) 0.9800(1.934)
4.8167 0.8381(0.547) 0.8985(0.648) 0.8938(0.640) 0.9408(0.760) 0.9560(0.821) 0.9774(0.978)
4.9267 0.8250(0.237) 0.8913(0.280) 0.8837(0.274) 0.9363(0.325) 0.9507(0.346) 0.9776(0.414)
n = 20
4.2670 0.8609(1.642) 0.9025(1.873) 0.9181(1.955) 0.9456(2.229) 0.9719(2.565) 0.9839(2.926)
4.5419 0.8584(1.012) 0.9060(1.161) 0.9183(1.204) 0.9496(1.381) 0.9717(1.579) 0.9860(1.812)
4.6335 0.8469(0.817) 0.8941(0.936) 0.9082(0.972) 0.9436(1.114) 0.9706(1.275) 0.9845(1.461)
4.8167 0.8582(0.411) 0.9061(0.471) 0.9171(0.488) 0.9480(0.560) 0.9712(0.639) 0.9846(0.732)
4.9267 0.8545(0.169) 0.8986(0.192) 0.9114(0.200) 0.9447(0.228) 0.9703(0.261) 0.9853(0.298)
n = 50
4.2670 0.8831(1.065) 0.9045(1.137) 0.9360(1.269) 0.9490(1.355) 0.9826(1.668) 0.9888(1.780)
4.5419 0.8839(0.668) 0.9011(0.714) 0.9301(0.797) 0.9452(0.850) 0.9823(1.047) 0.9880(1.118)
4.6335 0.8779(0.532) 0.8991(0.569) 0.9348(0.634) 0.9482(0.677) 0.9819(0.833) 0.9871(0.890)
4.8167 0.8858(0.268) 0.9047(0.286) 0.9362(0.319) 0.9513(0.340) 0.9812(0.419) 0.9868(0.447)
4.9267 0.8840(0.107) 0.9054(0.114) 0.9370(0.127) 0.9506(0.136) 0.9826(0.167) 0.9876(0.178)

Note: Each 5 rows of data corresponds to β = 0.5, 0.8, 1.0, 2.0, 5.0.

test tn can be very unreliable and the test tbc2
n offers huge reduction in significance

level distortion. However, as cp increases, it is not necessary that the significance level
distortion increases, unlike the case of random censoring.

6. An Example

A set of real data from Nelson and Haln [12] or Kalbfleisch and Prentice [7, p.5],
which is reproduced in Sec. 1, is used to illustrate the application of the proposed bias-
correction method and the subsequent inferences. The interest of such an accelerated
life test is to determine the relationship between failure time and temperature for the
purpose of extrapolation to regular operating temperature of 130◦C.

From Table 1, we see that (i) under each of 4 temperatures, 10 motorettes are
subject to test; (ii) the data are type-I censored, that is, the failure had not occurred
prior to a predestined time at which the test was to be terminated and only censored
time was observed; (iii) the censoring is server with only 17 of 40 motorettes failing,
i.e. the censoring percentage is as high as 57.5%.

Based on the data, we want to model the failure time as a function of operating
temperatures of 150◦C, 170◦C, 190◦C, or 220◦C. Nelson and Haln [12] adopted a log-
normal regression model with the covariates X1 = 1 and X2 = 1000/(273.2 +◦ C).
Kalbfleisch and Prentice [7, p.70] suggested that a Weibll regression model would be
preferred, which has the form

log T = a1 + a2X2 + Z/β,

where T is the failure time and Z is subject to a standard EV-I distribution. To validate
the above model, we average the 10 failure or censored times in each temperature group
and denote the obtained four average times by Tavg. Simply plotting Tavg against X2

and the corresponding logarithm log(Tavg) against X2(Figure 1) reveals that log(Tavg)
is more linearly related to X2 than Tavg, which indicates that the setting of model and
covariate is appropriate.
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Table 9. Empirical coverage probability(average length) of confidence intervals for y0.5, randomly censored

data: ŷn,0.5 with variance J−1
n (θ̂n), ŷbc2n,0.5 with variance V̂2(θ̂bc2n )

y0.5
1− γ = 0.90 1− γ = 0.95 1− γ = 0.99

ŷn,0.5 ŷbc2n,0.5 ŷn,0.5 ŷbc2n,0.5 ŷn,0.5 ŷbc2n,0.5

n = 12
4.2670 0.8750(2.091) 0.9395(2.789) 0.9286(2.470) 0.9698(3.302) 0.9771(3.211) 0.9909(4.304)
4.5419 0.8702(1.379) 0.9365(1.787) 0.9272(1.623) 0.9705(2.109) 0.9777(2.100) 0.9913(2.738)
4.6335 0.8668(1.178) 0.9292(1.543) 0.9218(1.387) 0.9657(1.821) 0.9764(1.795) 0.9899(2.365)
4.8167 0.8467(0.673) 0.9167(1.100) 0.9003(0.785) 0.9517(1.294) 0.9590(1.003) 0.9828(1.673)
4.9267 0.7914(1.011) 0.8874(0.727) 0.8505(1.191) 0.9254(0.853) 0.9194(1.542) 0.9655(1.099)
n = 20
4.2670 0.8638(1.737) 0.9096(1.986) 0.9251(2.067) 0.9559(2.363) 0.9778(2.711) 0.9890(3.101)
4.5419 0.8639(1.095) 0.9069(1.255) 0.9218(1.301) 0.9535(1.492) 0.9772(1.705) 0.9883(1.956)
4.6335 0.8608(0.893) 0.9071(1.022) 0.9226(1.062) 0.9510(1.216) 0.9782(1.392) 0.9898(1.594)
4.8167 0.8647(0.509) 0.9025(0.583) 0.9244(0.602) 0.9512(0.690) 0.9768(0.785) 0.9856(0.901)
4.9267 0.8299(0.260) 0.8663(0.313) 0.8897(0.308) 0.9190(0.371) 0.9556(0.401) 0.9681(0.484)
n = 50
4.2670 0.8857(1.096) 0.9034(1.153) 0.9370(1.306) 0.9492(1.373) 0.9839(1.717) 0.9877(1.805)
4.5419 0.8777(0.695) 0.8987(0.731) 0.9318(0.828) 0.9439(0.871) 0.9831(1.088) 0.9875(1.145)
4.6335 0.8854(0.567) 0.9035(0.597) 0.9384(0.676) 0.9499(0.711) 0.9864(0.888) 0.9896(0.935)
4.8167 0.8803(0.316) 0.8942(0.331) 0.9331(0.376) 0.9448(0.394) 0.9834(0.495) 0.9867(0.518)
4.9267 0.8780(0.167) 0.8817(0.172) 0.9287(0.199) 0.9341(0.205) 0.9810(0.261) 0.9805(0.269)

Note: Each 5 rows of data corresponds to β = 0.5, 0.8, 1.0, 2.0, 5.0, and censoring percentage ≈ 13.78%, 17.72%,
20.12%, 29.87%, 41.40%, for β = 0.5, 0.8, 1.0, 2.0, 5.0.
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Figure 1. The plots of Tavg vs X2(left), and log(Tavg) vs X2(right).

Both estimating results in [12] and [7] excluded the 150◦C data, which are all cen-
sored. Here we use all n = 40 lifetimes to obtain the MLEs. The original MLEs for the
three parameters θ̂n = (â1,n, â2,n, β̂n) as well as the variance estimates J−1

n (θ̂n) are

â1,n = −13.3553, â2,n = 9.7260, β̂n = 3.0727,

J−1
n (θ̂n) =

 2.2522 −1.0433 0.1283

−1.0433 0.4850 −0.0714

0.1283 −0.0714 0.4167

 .

Since the data are heavily censored, the original MLEs, in particular β̂n, are usually
biased. Also, based on the simulation results for β = 2.0, 5.0, n = 50 in Table 3, which
are the two cases mostly close to this example in terms of β value, censoring percentage
and sample size, the existence of bias for the MLEs can be further confirmed.

Using the bias-correction method proposed in this paper, the 2nd-order bias-
corrected MLEs for the three parameters and the variance estimates are as follows,

âbc2
1,n = −13.2948, âbc2

2,n = 9.6958, β̂bc2
n = 2.8489,

19



Table 10. Empirical mean [rmse](se) of the estimators of β, Type-I censored data

n cp β̂n β̂bc2
n β̂n β̂bc2

n
β = 0.5 β = 1.0

12
10% 0.6340[.2445](.2045) 0.5272[.1745](.1724) 1.2849[.5036](.4153) 1.0642[.3528](.3469)
20% 0.6381[.2597](.2200) 0.5222[.1852](.1839) 1.2790[.5117](.4290) 1.0477[.3589](.3558)
30% 0.6556[.2987](.2549) 0.5225[.2071](.2059) 1.3124[.5936](.5048) 1.0396[.4032](.4013)

20
10% 0.5713[.1469](.1285) 0.5147[.1173](.1164) 1.1442[.2875](.2487) 1.0298[.2267](.2248)
20% 0.5715[.1551](.1376) 0.5117[.1246](.1240) 1.1438[.3021](.2657) 1.0218[.2395](.2386)
30% 0.5763[.1721](.1543) 0.5111[.1382](.1378) 1.1672[.3564](.3148) 1.0290[.2773](.2757)

50
10% 0.5250[.0762](.0720) 0.5036[.0701](.0700) 1.0499[.1434](.1345) 1.0055[.1288](.1287)
20% 0.5230[.0770](.0735) 0.5009[.0706](.0705) 1.0516[.1533](.1443) 1.0055[.1382](.1381)
30% 0.5237[.0834](.0800) 0.5003[.0766](.0766) 1.0550[.1683](.1590) 1.0058[.1520](.1519)

β = 2.0 β = 5.0

12
10% 2.6171[1.072](.8762) 2.1627[.7481](.7302) 6.7070[2.877](2.316) 5.4711[1.943](1.886)
20% 2.6957[1.239](1.025) 2.1616[.8330](.8173) 6.8373[3.113](2.513) 5.4668[2.057](2.004)
30% 2.7153[1.289](1.073) 2.1261[.8339](.8244) 7.1766[3.653](2.934) 5.4838[2.232](2.179)

20
10% 2.2982[.5884](.5073) 2.0653[.4607](.4561) 5.8061[1.573](1.351) 5.2069[1.228](1.211)
20% 2.3301[.6497](.5596) 2.0757[.5047](.4990) 5.9639[1.800](1.520) 5.2533[1.349](1.325)
30% 2.3750[.7612](.6624) 2.0758[.5781](.5732) 6.0464[1.963](1.661) 5.2771[1.453](1.426)

50
10% 2.0939[.3040](.2892) 2.0037[.2764](.2764) 5.2333[.8098](.7755) 5.0001[.7398](.7398)
20% 2.1112[.3147](.2944) 2.0149[.2816](.2812) 5.2913[.8462](.7945) 5.0302[.7546](.7541)
30% 2.1112[.3376](.3188) 2.0067[.3027](.3026) 5.3171[.8922](.8340) 5.0297[.7871](.7866)

J−1
n (θ̂bc2n ) =

 2.4330 −1.1247 0.1086
−1.1247 0.5216 −0.0600

0.1086 −0.0600 0.3435

 , V̂2(θ̂bc2n ) =

 1.7327 −0.8068 0.1662
−0.8068 0.3775 −0.0908

0.1662 −0.0908 0.5513

 .

Using the estimation results to test the null hypothesis H0 : a2 = 0 , we have
|tn| = |9.7260|/

√
0.4850 = 13.9657 with J−1

n (θ̂n) and |tbc2
n | = |9.6958|/

√
0.5216 =

13.4250 with J−1
n (θ̂bc2

n ) or |tbc2
n | = |9.6958|/

√
0.3775 = 15.7807 with V̂2(θ̂bc2

n ). The
absolute values of all three statistics are greater than u0.025 = 1.96, which is the critical
value corresponding to 5% significance level. These results indicate that the Weibull
regression model should include the covariate variable X2 into the scale parameter
with the expression a1 + a2X2.

At the regular operating temperature 130◦C, X2 = 1000/(273.2 + 130) = 2.4802, so
that the corresponding log-median lifetime is estimated by,

ŷn,0.5 = −13.3553 + 9.7260× 2.4802 + log(log(2))/3.0727 = 10.6498,

ŷbc2
n,0.5 = −13.2948 + 9.6958× 2.4802 + log(log(2))/2.8489 = 10.6261,

where log(log(2)) is the median of standard EV-I distribution z0.5. The two vectors of
coefficients are

cn = (1, 2.4802,− log(log(2))/β̂2
n)′ and cbc2

n = (1, 2.4802,− log(log(2))/(β̂bc2
n )2)′.

According to the formula in Sec. 4.3, the 90% confidence interval for y0.5 is
(10.2567, 11.0429) with ŷn,0.5 and J−1

n (θ̂n), and is (10.2232, 11.0289) with ŷbc2
n,0.5 and

J−1
n (θ̂bc2

n ), or (10.2625, 10.9896) with ŷbc2
n,0.5 and V̂2(θ̂bc2

n ), respectively. Further based

on the original MLE θ̂n, the estimate of the median lifetime is T̂n,0.5 = exp(10.6498) =
42184 with an associate approximate 90% confidence interval (28471, 62499). When

the 2nd-order bias-corrected MLE θ̂bc2
n is used, the estimate of the median life

is T̂ bc2
n,0.5 = exp(10.6261) = 41196 with an approximate 90% confidence interval

(27534, 61633) or (28640, 59253), corresponding to the variance estimate J−1
n (θ̂bc2

n )

or V̂2(θ̂bc2
n ). The CI with V̂2(θ̂bc2

n ) should be recommended as it is expected to have a
more accurate coverage probability as shown in Table 9.
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Table 11. Empirical significance levels: two-sided tests of H0 : a2 = 0, Type-I censored data
β cp Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

n = 12 n = 20 n = 50

0.5

10%
(1) 0.1518 0.0876 0.0234 0.1430 0.0816 0.0249 0.1208 0.0657 0.0165
(2) 0.0992 0.0508 0.0113 0.1032 0.0571 0.0137 0.1019 0.0523 0.0119

20%
(1) 0.1382 0.0740 0.0174 0.1359 0.0716 0.0200 0.1184 0.0620 0.0147
(2) 0.0876 0.0408 0.0095 0.0945 0.0475 0.0109 0.0994 0.0497 0.0099

30%
(1) 0.1139 0.0563 0.0125 0.1245 0.0629 0.0139 0.1157 0.0604 0.0138
(2) 0.0725 0.0321 0.0061 0.0907 0.0432 0.0069 0.0948 0.0481 0.0089

1.0

10%
(1) 0.1592 0.0964 0.0318 0.1528 0.0932 0.029 0.1194 0.0659 0.0162
(2) 0.1039 0.0590 0.0161 0.1145 0.0620 0.0171 0.1007 0.0511 0.0116

20%
(1) 0.1547 0.0887 0.0247 0.1442 0.0840 0.0250 0.1133 0.0625 0.0151
(2) 0.1038 0.0525 0.0145 0.1098 0.0562 0.0146 0.0947 0.0498 0.0112

30%
(1) 0.1372 0.0723 0.0189 0.1331 0.0733 0.0188 0.1127 0.0594 0.0130
(2) 0.0868 0.0415 0.0097 0.1018 0.0480 0.0096 0.0949 0.0470 0.0099

2.0

10%
(1) 0.1684 0.1045 0.0361 0.1478 0.0856 0.0274 0.1195 0.0655 0.0149
(2) 0.1115 0.0613 0.0168 0.1087 0.0596 0.0164 0.1016 0.0529 0.0110

20%
(1) 0.1622 0.0985 0.0362 0.1472 0.0819 0.0268 0.1242 0.0674 0.0142
(2) 0.1095 0.0584 0.0186 0.1058 0.0556 0.0156 0.1051 0.0527 0.0103

30%
(1) 0.1466 0.0892 0.0326 0.1465 0.0833 0.0270 0.1223 0.0627 0.0169
(2) 0.0949 0.0526 0.0151 0.1076 0.0580 0.0155 0.1012 0.0502 0.0114

5.0

10%
(1) 0.1877 0.1232 0.0519 0.1498 0.0883 0.0302 0.1248 0.0712 0.0196
(2) 0.1298 0.0759 0.0268 0.1099 0.0620 0.0179 0.1076 0.0568 0.0138

20%
(1) 0.2007 0.1372 0.0648 0.1535 0.0937 0.0317 0.1246 0.0705 0.0195
(2) 0.1413 0.0880 0.0332 0.1146 0.0635 0.0188 0.1055 0.0572 0.0147

30%
(1) 0.2056 0.1418 0.0669 0.1609 0.0951 0.0357 0.1255 0.0711 0.0195
(2) 0.1412 0.0869 0.0353 0.1159 0.0653 0.0219 0.1038 0.0564 0.0140

Test: (1) tn with J−1
n (θ̂n), (2) tbc2n with J−1

n (θ̂bc2n ); nominal significance levels: 10%, 5%, 1%.

We conclude this section by noting that the data used in this example correspond
to Type I censoring with 4 censoring times (8064, 5448, 1680, 528) for the 4 different
temperatures. The vector C of the censoring times has values Ci = 8064, for i =
1, ..., 10; 5448, for i = 11, ..., 20; 1680, for i = 21, ..., 30, and 528, for i = 31, ..., 40.

7. Discussion and Conclusion

In this paper, we proposed a general multivariate bias correction method for the MLEs
and the variances of the MLEs for a Weibull regression model, based on either com-
plete or randomly censored data. Following the bias and variance corrections, improved
t-ratios are given for the model parameters and the reliability-related quantities. The
method is based on a 3rd-order stochastic expansion for the MLEs and a simple non-
parametric bootstrap procedure. Formal justifications on the validity of the proposed
methods are given.

Extensive Monte Carlo experiments are conducted and the results(reported and
unreported) show that(i) the proposed bias-correction method performs very well,(ii)
the estimation of the shape parameter is the major source of the bias,(iii) the resulted
t-ratios following bias and variance corrections greatly improve the subsequent infer-
ences concerning the model parameters as well as the reliability-related quantities,
with the most noticeable case being the case of inference for percentile life.

Although only the Weibull regression model is considered in this paper, the proposed
method can be easily extended to other regression models. Furthermore, the proposed
method can be applied to other more complicated censoring mechanisms besides the
considered randomly censoring, such as progressively censoring, interval censoring,
etc. It would be interesting to evaluate the performances of the method for different
censoring mechanisms and censoring proportions. Also, a possible future work is to
compare the proposed bootstrap-based method to some existing likelihood-related
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approaches, such as profile-kernel likelihood inference, penalized maximum likelihood
approach, etc.
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Appendix A. The expressions of Hkn, k = 1, 2, 3

Recall that zi(θ) = β(log si − a′xi) and ezi(θ) = [si exp(−a′xi)]β, and that zi ≡ zi(θ0).
The (p+ 1)× (p+ 1) matrix H1n = ∂ψn(θ0)/∂θ′0 has the form:

H1n =
1

nβ2
0

(
−β4

0

∑n
i=1 e

zixix
′
i β2

0

∑n
i=1(ezizi + ezi − δi)xi

β2
0

∑n
i=1(ezizi + ezi − δi)x′i −r −

∑n
i=1 e

ziz2
i

)
.

The (p + 1) × (p + 1)2 matrix, H2n = ∂H1n(θ0)/∂θ′0, has its first (p + 1) × [p(p + 1)]
block:

1

nβ0

n∑
i=1

x′i ⊗
(

β4
0e
zixix

′
i −β2

0e
zi(2 + zi)xi

−β2
0e
zi(2 + zi)x

′
i ezizi(2 + zi)

)
,

and the last (p+ 1)× (p+ 1) block:

1

nβ3
0

(
−β4

0

∑n
i=1 e

zi(2 + zi)xix
′
i β2

0

∑n
i=1 e

zizi(2 + zi)xi
β2

0

∑n
i=1 e

zizi(2 + zi)x
′
i 2r −

∑n
i=1 e

ziz3
i

)
.

Finally, the (p+1)× (p+1)3 matrix, H3n(θ) = ∂H2n(θ0)/∂θ′0, has the following blocks
sorted in a row by (B1

1,B
2
1, · · · ,B1

p,B
2
p,B

1
p+1,B

2
p+2), where

B1
j =

1

n

n∑
i=1

I′jxix
′
i ⊗
(
−β4

0e
zixix

′
i β2

0e
zi(3 + zi)xi

β2
0e
zi(3 + zi)x

′
i −ezi(2 + 4zi + z2

i )

)
,

B2
j =

1

nβ2
0

n∑
i=1

I′jxi

(
β4

0e
zi(3 + zi)xix

′
i −β2

0e
zi(2 + 4zi + z2

i )xi
−β2

0e
zi(2 + 4zi + z2

i )x′i eziz2
i (3 + zi)

)
,

B1
p+1 =

1

nβ2
0

n∑
i=1

x′i ⊗
(

β4
0e
zi(3 + zi)xix

′
i −β2

0e
zi(2 + 4zi + z2

i )xi
−β2

0e
zi(2 + 4zi + z2

i )x′i eziz2
i (3 + zi)

)
,

B2
p+1 =

1

nβ4
0

(
−β4

0

∑n
i=1 e

zi(2 + 4zi + z2
i )xix

′
i β2

0

∑n
i=1 e

ziz2
i (3 + zi)xi

β2
0

∑n
i=1 e

ziz2
i (3 + zi)x

′
i −6r −

∑n
i=1 e

ziz4
i

)
,

and Ij is a p× 1 vector the jth element being 1, and the other elements being 0.
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Appendix B. Proof of Theorem 3.1

Given some regular conditions, the MLE θ̂n is
√
n-consistent. And the differentiability

and measureability of `n(θ) are obvious. These facts lead to the Taylor series expansion
of ψn(θ):

0 = ψn(θ̂n)

= ψn +H1n(θ̂n − θ0) + 1
2H2n[(θ̂n − θ0)⊗ (θ̂n − θ0)]

+1
6H3n[(θ̂n − θ0)⊗ (θ̂n − θ0)⊗ (θ̂n − θ0)]

+1
6 [H3n(θ̄n)−H3n][(θ̂n − θ0)⊗ (θ̂n − θ0)⊗ (θ̂n − θ0)],

where θ̄n lies between θ̂n and θ0. As θ̂n = θ0 +Op(n
−1/2), we have θ̄n = θ0 +Op(n

−1/2).
For T following the Weibull regression model, it can be shown that the moment

ET k| log T l| is finite for every k, l ≥ 0. This result further yields that (β/n)
∑n

i=1 e
zi =

E [(β/n)
∑n

i=1 e
zi ] + Op(n

−1/2), (β/n)
∑n

i=1 e
zizi = E [(β/n)

∑n
i=1 e

zizi] + Op(n
−1/2).

Together with Assumption 4, we have the following:

(1) ψn = Op(n
−1/2) and E(ψn) = O(n−1);

(2) E(Hkn) = O(1) and H◦kn = Op(n
− 1

2 ), k = 1,2,3;

(3) E(H1n)−1 = O(1) and H−1
1n = Op(1);

(4) ‖ Hkn(θ)−Hkn ‖≤‖ θ − θ0 ‖ Bn, for θ in a neighborhood of θ0, k = 1, 2, 3, and
E|Bn| < c <∞ for some constant c;

(5) H3n(θ̄n)−H3n = Op(n
−1/2).

The above proofs are straightforward and parallel those of [22] and [14]. The details are
available from the authors. These make the stochastic expansion(8) valid. Assumption
4 also guarantees the transition from the expansion(8) to the results of Theorem 3.1.

Appendix C. Proof of Corollary 3.2

Note that the 2nd-order bias b2 ≡ b2(θ0) is of order O(n−1), and the 3rd-order bias
b3 = b3(θ0) is of order O(n−3/2). If explicit expressions of b2(θ0) and b3(θ0) exist, then

the “plug-in” estimates of b2 and b3 would be, respectively, b̂2 = b2(θ̂n) and b̂3 = b3(θ̂n),

where θ̂n is the MLE of θ0 defined at the beginning of Section 3. Under the additional
assumptions in the corollary, we have ,

b2(θ̂n) = b2(θ0) +
∂b2(θ0)

∂θ0
(θ̂n − θ0) +Op(n

−2),

and E[b2(θ̂n)] = b2(θ0) + (∂b2(θ0)/∂θ0)E(θ̂n − θ0) + E[Op(n
−2)] = b2(θ0) + O(n−2),

noting that ∂b2(θ0)/∂θ0 = O(n−1) and E(θ̂n − θ0) = O(n−1). Similarly, E[b3(θ̂n)] =

b3(θ0)+O(n−5/2). These show that replacing θ0 by θ̂n only(possibly) imposes additional

bias of order Op(n
−2) for b2(θ̂n), and an additional bias of order Op(n

−5/2) for b3(θ̂n),

leading to Bias(θ̂bc2
n ) = O(n−3/2) and Bias(θ̂bc3

n ) = O(n−2).
Our bootstrap estimate has two step approximations, one is that described above,

and the other is the bootstrap approximations to the various expectations in (9) and

(10), given θ̂n. However, these approximations can be made arbitrarily accurate, for a
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given θ̂n, by choosing an arbitrarily large B. The results of Corollary 3.2 thus follow.

Appendix D. Proof of Corollary 3.3

The additional assumptions stated in the Corollary 3.3 ensure that the 2nd-order
variance for θ̂bc2

n has V2(θ̂bc2
n ) = V2(θ̂n − b̂2) = V2(θ̂n) − 2Cov(θ̂n, b̂2) + O(n−5/2) =

V2(θ̂n)+O(n−2) as the other terms can all be merged into O(n−5/2) and Cov(θ̂n, b̂2) =
O(n−2). This proves the first equation in Corollary 3.3.

The bootstrap approximation to the 2nd-order variance for θ̂bc2
n actually also re-

quires the approximations to various expectations, as shown by (12). Hence following

the proof in Corollary 3.2, we know that for a given θ̂bc2
n , choosing an arbitrarily

large B would make those approximations arbitrarily accurate. The second equation
in Corollary 3.3 thus holds.
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