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Abstract

A general procedure is developed for bias-correcting the maximum likelihood esti-

mators (MLEs) of the parameters of Weibull regression model with either complete or

right-censored data. Following the bias correction, variance corrections and hence im-

proved t-ratios for model parameters are presented. Potentially improved t-ratios for

other reliability-related quantities are also discussed. Simulation results show that the

proposed method is effective in correcting the bias of the MLEs, and the resulted t-ratios

generally improve over the regular t-ratios.

Key Words: Bias correction; Variance correction; Bootstrap; Improved t-ratios; Stochas-

tic expansion; Right censoring.

1 Introduction

To improve the efficiency of lifetime analysis, people usually incorporate auxiliary infor-

mation (e.g., group indicators, individual characteristics, or environmental factors, etc.) into

lifetime models and treat them as covariates. Parametric regression is such a model that gen-

eralizes a parametric probability distribution by treating some or all parameters as functions

of covariates [1, 4, 7]. In this paper, we consider a Weibull regression model that is developed

based on a Weibull distribution by allowing the scale parameter to depend on covariates.

This regression model has a wide application in accelerated life test, and plays an important

role as a type of accelerated life model [7]. By further allowing the shape parameter as a

function of covariates, a more general Weibull regression model can be obtained.
∗Corresponding author: South Siming Road, No. 422, Xiamen, Fujian, China. 361005.
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A lifetime random variable T is said to follow the Weibull distribution, denoted by

WB(α, β), if its probability density function (pdf) has the form,

f(t) = α−ββtβ−1 exp[−(t/α)β], t ≥ 0, (1)

where α > 0 is the scale parameter and β > 0 is the shape parameter. The survival function

(SF) is S(t) = exp[− (t/α)β ] and the hazard function (HF) is λ(t) = α−ββtβ−1. By allowing

the scale parameter or the shape parameter or both to depend on a p×1 vector of explanatory

variables (or covariates) X , the Weibull distribution is generalized to a Weibull regression

model. For example, if α = α(X), then we have a Weibull regression model where the

covariates affect the Weibull life through its scale parameter. There is an issue on the choice

of the functional form of α(X). The most natural choice may be α(X) = exp(a′X) as in such

a setting, α(X) > 0 is guaranteed without restrictions on a and X . In this case, the vector

a is referred to as the regression coefficients as in the regular linear regression models. Also,

this choice leads a Weibull regression model that can be interpreted as both the proportional

hazards model and the accelerated failure time model (Kalbfleisch and Prentice [7], Cox and

Oakes [2], Lawless [9]), see next section for details. Note that this model can be further

extended by allowing the shape parameter β to depend on the covariates as well. To ease the

exposition, we focus on the former in this paper although all the methods can be extended

to the more general model without much technical difficulty.

For estimating the common shape parameter β and the vector of coefficients a, the max-

imum likelihood estimation (MLE) method remains the popular method. However, similar

to the case of a Weibull distribution, the MLEs for the Weibull regression model, especially

the MLE of β, can be rather biased, in particular when the sample size is small or data are

heavily censored. Undoubtedly, the biased parameter estimates would affect the subsequent

statistical inferences, such as constructing a confidence interval for β, estimating a future

percentile life given certain covariates values, and predicting a future lifetime at different co-

variates, etc. It may also affect further experimental design that consists of the determination

of values of sample size, censoring times and covariate values [9]. Moreover, since there is a

regression part in the Weibull regression model, significance tests would be expected to be

carried out on the scale-related parameters for the purpose of model refinement and variable
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selection. To improve the accuracy of the above mentioned statistical inference problems, one

may first consider to correct the bias of the MLEs of the Weibull regression model, and then

correct the bias of the variance estimates of the MLEs and further develop improved t-ratios

based on these bias-corrected estimates.

In the Weibull literature, several approaches were proposed to deal with the bias problem

for the shape parameter of the Weibull distribution, such as the bias-expanding method by

Hirose [5], the modified MLE by Yang and Xie [18] and the stochastic expansion method

by Shen and Yang [13]. However, the bias problem for the MLEs of the Weibull regression

model and other parametric regression models was rarely considered. A possible reason is

that, unlike the explicitly expressed MLE for the Weibull distribution’s parameter, the MLEs

for the Weibull regression parameters can only be obtained numerically, which increases the

difficulty in correcting the bias. Furthermore, the variances of corrected MLEs need to be

corrected, which was also seldom touched upon in the early works.

In this paper, we attempt to solve the bias-correction and the variance-estimation prob-

lems for the Weibull regression model by extending the univariate method in Shen and Yang

[13] to a multivariate situation so that the MLEs of all parameters in the model can be bias-

corrected simultaneously, and the variances for the corrected MLEs as well as some improved

inferences can be obtained. The proposed correction method is developed based on a mul-

tivariate third-order stochastic expansion for the MLE [12] and a nonparametric bootstrap

procedure for estimating various expectations involved in the expansion [22]. The advantages

of the proposed method in this work are that, (i) it requires only the estimating function

that is used to generate estimators, i.e. the score function for the MLEs, (ii) it can deal with

multivariate models and parameter vectors, and (iii) it can be easily applied to other models.

The simulation results show that the new multivariate method is general and effective in

correcting the bias of the MLEs regardless of sample size and data type, i.e. complete or

censored. Based on the corrected MLEs, the variance estimate can also be corrected and the

resulted inference methods (t-ratios) show improved performances.

Our paper is organized as follows. Section 2 describes the Weibull regression model and the

maximum likelihood estimation. Section 3 describes the general bias correction methodology,

and presents details for the Weibull regression model. Section 4 discusses subsequent model

inferences and presents some improved statistics. Section 5 presents Monte Carlo results.
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Section 6 presents an illustrative example, and Section 7 concludes the paper.

2 The Model and Maximum Likelihood Estimation

2.1 Weibull regression model

Let T1, . . . , Tn be life (failure) times of n patients (items) in a medical (reliability) study.

Let X1, . . . , Xn be the corresponding values of the p× 1 vector of covariates. The accelerated

life (failure time) model (see, e.g., [2] and [7]) is to related the logarithms of life (failure)

times to their covariates through a loglinear regression equation

logTi = a′Xi + εi, i = 1, . . . , n, (2)

where a is a p×1 vector of parameters and εi are random errors, independent and identically

distributed (i.i.d.) with a specified cumulative distribution function (CDF) G. Exponentia-

tion gives Ti = exp(a′Xi)ξi, where ξi = exp(εi) has a hazard function λ0(·). It follows that

the hazard function for Ti can be written in terms of this baseline hazard λ0(·) as

λ(ti|Xi) = exp(−a′Xi)λ0(e−a′Xiti).

This hazard function shows that the accelerated life model specifies the multiplicative effect

of the covariates X on time t, and in fact brings in the covariates to alter time scale. This

explains why the above model is called ‘accelerated life model’, as in an accelerated life test,

a testing process will subject products to severer conditions in an effort to increase the failure

rate and to uncover faults in a shorter period of time [7, 17, 20].

It is well known that if T has a Weibull distribution with scale parameter α and shape

parameter β, then log T has a type-I extreme value (EV-I) distribution, or Gumbel distribu-

tion, with location parameter logα and scale parameter 1/β. Thus, for the Weibull regression

model with α(X) = exp(a′X) and constant β, if we let Yi = logTi, then Yi can be written as

Yi = a′Xi + Zi/β, (3)

where {Zi} are i.i.d. errors subject to a standard EV-I distribution with location parameter
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0 and scale parameter 1. This shows that the Weibull regression model we consider is an

accelerated life model as the covariates act additively on Yi or multiplicatively on Ti. Some

basic properties of the standard EV-I distribution are useful for the latter developments.

First, the mean, variance, pdf and SF of Zi are, respectively, e0 = −0.5772, r0 = 1.6449,

f0(z) = exp(z − ez), and S0(z) = exp(−ez), −∞ < z <∞. (4)

As the EV-I distribution is closed under location and scale transformations, Y also follows

an EV-I distribution with the SF, S(y|X) = exp {− exp [β(y − a′X)]} , −∞ < y <∞.

Now, the hazard function for Ti, given the covariates Xi such that α(Xi) = exp(a′Xi), is

λ(ti|Xi) = exp[−β(a′Xi)]βt
β−1
i = λ0(ti) exp(−βa′Xi),

where λ0(t) = βtβ−1 is the hazard function for the Weibull distribution with α = 1. From

this, one sees that the Weibull regression model is also a proportional hazards model as

the covariates act multiplicatively on the hazard function. It is easy to see that λ(ti|Xi) =

βe−a′Xi(e−a′Xiti)β−1 = e−a′Xiλ0(e−a′Xiti), showing again that the Weibull regression model

is a special accelerated life model. The Weibull regression model discussed above is the only

accelerated life model that is also a Cox’s proportional hazards model [7, 9]. When the CDF

G in Model (2) is known, like the Weibull model, the usual maximum likelihood method can

be applied for statistical inference. When no parametric assumptions are imposed on G, the

rank estimation method (see, e.g., [23]) is often applied.

2.2 Maximum likelihood estimation

In this paper, we propose to estimate the model (3) by the maximum likelihood method

based on either complete and censored data. In practice, we may only observe Si = Ti ∧Ci,

δi = I{Ti<Ci} and Xi, i = 1, . . . , n, where Ci (i = 1, . . . , n) are the censoring times. In

such a case, we say that the observed lifetimes are right censored. Assume that we have a

censored random sample (si, δi, xi), i = 1, · · · , n, from a population subject to the Weibull

regression model with parameters β and α(xi) = exp(a′xi), where si (i = 1, 2, . . . , n) are the

observed lifetimes or censoring times of n randomly selected ‘items’, δi (i = 1, 2, . . . , n) are
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the failure indicators with δi = 1 for the actual lifetime and δi = 0 for the censoring time,

and xi (i = 1, 2, . . . , n) are the p× 1 covariates for the ith item. Denote by r =
∑n

i=1 δi the

total number of observed lifetimes.

Let θ = (a′, β)′ = (a1, a2, · · · , ap, β)′. Clearly, the first element of xi is one so that when

there are no covariate effect, i.e., a2 = · · · = ap = 0, the model reduces to a single Weibull

distribution. The Weibull loglikelihood function of θ, based on the observed values (si, δi, xi),

i = 1, · · · , n, is thus

	n(θ) = r logβ +
n∑

i=1

(δizi(θ) − ezi(θ)) −
n∑

i=1

δi log si, (5)

where zi(θ) = β(log si −a′xi) and ezi(θ) = [si exp(−a′xi)]β. Maximizing 	n(θ) gives the MLEs

ân for a and β̂n for β, and thus θ̂n = (â′n, β̂n)′. Equivalently, θ̂n can be obtained by solving

the score equation ∂
∂θ	n(θ) = 0, where the score function

∂	n(θ)
∂θ

=

⎛
⎝ ∂

∂a	n(θ)
∂
∂β 	n(θ)

⎞
⎠ =

⎛
⎝ β

∑n
i=1(e

zi(θ) − δi)xi

r
β − 1

β

∑n
i=1(e

zi(θ) − δi)zi(θ)

⎞
⎠ . (6)

The consistency and asymptotic normality of the MLE θ̂n can be established based on

the following regularity conditions.

Assumption 1. The true value θ0 of θ is an interior point of an open subset of the real

(p+ 1)-dimensional space Θ.

Assumption 2. The distribution of the covariates X is not concentrated on a (p − 1)-

dimensional affine subspace of R
p.

Assumption 3. The (expected) number of observed failures times (E(r) or r) approaches

∞ at rate n as n→ ∞.

Assumption 2 guarantees the full rank of the covariate matrix X = (X1, . . . , Xn)′ and

hence the uniqueness of the MLE θ̂n. Assumption 3 says that, when the data are censored,

the amount of available information needs to grow at the same rate as n when n → ∞, see

(Lawless [9], Sec. 2.2.3) for an interesting intuitive discussion. Under Assumptions 1-3, we

have θ̂n
p−→ θ0, and

√
n(θ̂n − θ0)

D−→ N
[
0, limnI−1(θ0)

]
,
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where I(θ0) = −E[ ∂2

∂θ∂θ′ 	(θ)]|θ=θ0 is the Fisher information matrix, which can easily be shown

to exist and to be positive definite for the Weibull regression model. These large sample

results can be proved by following Example 5.43, Theorem 5.41 and Theorem 5.42 in [15].

Alternatively, they can be proved using the counting process and martingale theory outlined

in (Lawless [9], Appendix F). As we are concerning more on the finite sample properties of

θ̂n, detailed proofs of the asymptotic properties of of θ̂n are not provided. Inference for θ

can be carried out based on the above large sample results, with I(θ) being estimated by the

observed information matrix Jn(θ̂n) = − ∂2

∂θ∂θ′ 	n(θ)|
θ=θ̂n

.

When sample size is small or the censorship is heavy, the MLEs ân and β̂n, in particular

the latter, can be rather biased, which will likely have serious impacts on the subsequent

inferences. Therefore, it is highly desirable to bias-correct the MLEs and their standard error

estimates so that inferences concerning aj’s and β can be made more reliable. Moreover,

for an accelerated life study, the main purpose is to estimate certain percentile life at a

designed operating condition (for more inference issues, see e.g, Nelson [10]). In summary,

bias corrections on the MLEs and their variances can potentially improve inferences for all

the reliability-related quantities.

3 Bias Correction and Variance Estimation on the MLEs

3.1 Stochastic expansion of the MLEs

Rilstone et al. [12] considered a class of
√
n-consistent estimators identified by estimating

equation: θ̂n = arg{ψn(θ) = 0}, where ψn(θ) is a vector-valued function of the same dimension

as θ and normalized to have order Op(n−1/2), and obtained a third-order stochastic expansion

for θ̂n, assuming E[ψn(θ0)] = 0, where θ0 is the true value of the parameter vector θ.

In our case, ψn(θ) is a (p+1)×1 joint estimating function obtained by dividing the score

function given in (6) by n, i.e.,

ψn(θ) =

⎧⎪⎨
⎪⎩

β
n

∑n
i=1(e

zi(θ) − δi)xi,

r
nβ − 1

nβ

∑n
i=1(e

zi(θ) − δi)zi(θ),
(7)

and θ̂n is the MLE. Let Hkn(θ) be the kth-order partial derivative of ψn(θ) with respect to
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θ′, k = 1, 2, 3, obtained sequentially and elementwise. Denote ψn ≡ ψn(θ0), Hkn ≡ Hkn(θ0),

H◦
kn = Hkn − E(Hkn), k = 1, 2, 3, and Ωn = −[E(H1n)]−1. Under some general smoothness

conditions on ψn(θ) (see Rilstone et al. [12]), θ̂n possesses the following third-order stochastic

expansion at θ0:

θ̂n − θ0 = a−1/2 + a−1 + a−3/2 +Op(n−2), (8)

where a−1/2 = Ωnψn, a−1 = ΩnH
◦
1na−1/2+1

2ΩnE(H2n)(a−1/2⊗a−1/2), and a−3/2 = ΩnH
◦
1na−1+

1
2ΩnH

◦
2n(a−1/2⊗a−1/2)+ 1

2ΩnE(H2n)(a−1/2⊗a−1a−1 ⊗a−1/2)+ 1
6ΩnE(H3n)(a−1/2⊗a−1/2 ⊗

a−1/2), representing terms of order Op(n−s/2), s = 1, 2, 3, respectively, E denotes the expec-

tation corresponding to θ0, and ⊗ denotes the Kronecker product.

Proof of this third-order expansion in the context of Weibull regression model can easily

be done by verifying the conditions of Rilstone et al. [12]. However, we are mostly interested

in the finite sample bias of θ̂n, the detail of this proof is omitted.

As θ is a (p + 1) × 1 vector, H1n(θ), H2n(θ), H3n(θ) are matrices of dimensions (p +

1) × (p + 1), (p + 1) × (p + 1)2, (p + 1) × (p + 1)3, respectively. The detailed expressions

of Hkn(θ), k = 1, 2, 3 are given in Appendix A. It is interesting to note that the elements of

ψn(θ0) and Hkn(θ0) (k = 1, 2, 3) are all functions of only the shape parameter β0 and the

random terms zi ≡ zi(θ0), which is a realization of the standard EV-I random variable when

δi = 1, or a censored observation on β0(logCi − a′0xi), i = 1, . . . , n, when δi = 0. Therefore,

it is expected that most bias would come from the estimation of the shape parameter β.

Assumption 4. For θ in a neighborhood of θ0, 1
n

∣∣∑n
i=1(βe

zi(θ) − β0e
zi)

∣∣ = ‖θ− θ0‖Bn,1,
1
n

∣∣∑n
i=1(βe

zi(θ)zi(θ) − β0e
zizi)

∣∣ = ‖θ − θ0‖Bn,2, where E|Bn,1| < c1 and E|Bn,2| < c2, for

some finite constants c1 and c2.

Theorem 1 Under Assumptions 1-4, we have the 2nd-order (O(n−1)) bias and the 3rd-

order (O(n−3/2)) bias for the MLEs θ̂n of the model parameters θ0:

b2(θ0) = ΩnE(H1nΩnψn) +
1
2
ΩnE(H2n)E[(Ωnψn)⊗ (Ωnψn)], (9)

b3(θ0) = ΩnE(H◦
1na−1) +

1
2
ΩnE[H◦

2n(a−1/2 ⊗ a−1/2)] +
1
2
ΩnE(H2n)E(a−1/2 ⊗ a−1

+a−1 ⊗ a−1/2) +
1
6
ΩnE(H3n)E(a−1/2 ⊗ a−1/2 ⊗ a−1/2), (10)
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where ψn ≡ ψn(θ0), Hkn ≡ Hkn(θ0), H◦
kn ≡ Hkn−E(Hkn), k = 1, 2, 3, and Ωn = −[E(H1n)]−1.

Note that the second-order bias b2 ≡ b2(θ0) = E(a−1) noting that E(a−1/2) = 0, and the

third-order bias b3 ≡ b3(θ0) = E(a−3/2). If the estimates of b2 and b3 are available, denoted

by b̂2 and b̂3, then the second- or third-order bias-corrected MLEs of θ can be obtained by

θ̂bc2
n = θ̂n − b̂2 and θ̂bc3

n = θ̂n − b̂2 − b̂3. (11)

It will be shown in next section that under some mild conditions, the extra variability intro-

duced by the estimation of the bias is not higher than the remainder.

Naturally, use of the bias corrected MLEs θ̂bc2
n or θ̂bc3

n , and the observed information

matrix evaluated at θ̂bc2
n or θ̂bc3

n should lead improved inferences for θ. Further improvements

are possible by using the bias-corrected variance estimate as well. Based on the stochastic

expansion (8), a 2nd-order variance expansion of θ̂n can be directly obtained,

V2(θ̂n) = Var(a−1/2 + a−1) + O(n−2)

= E[(a−1/2 + a−1)(a−1/2 + a−1)′] +O(n−2), (12)

noting E(a−1/2) = 0, E(a−1) = O(n−1), and E(a−1/2 + a−1)E(a−1/2 + a−1)′ = O(n−2).

Furthermore, it is easy to see that V2(θ̂bc2
n ) = V2(θ̂n) + O(n−2). Thus, further improved

inferences for θ can be expected, by using θ̂bc2
n in connection with V2(θ̂bc2

n ). Third-order

variance correction can also be carried out by extending the above result. We will concentrate

on the second-order results. Monte Carlo results presented in Section 5 show that the second

corrections are sufficient for most of the practical situations.

Question remains on the estimation of b2 and V2(θ̂bc2
n ). The explicit expressions of these

quantities are difficult if not impossible to obtain, and hence the standard plug-in method

can not be applied. Alternative methods are thus desired.

3.2 Bootstrap estimates of bias correction and variance

Different from the Weibull distribution, Weibull regression model deals with not only

the lifetime data and censoring mechanism, but also the covariates, whose distributions are

unknown. Therefore generating bootstrap samples in a censored Weibull regression model
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can be much tricker. Shen and Yang [13] introduced a parametric bootstrap method to bias-

correct the MLE of the common shape parameter of several Weibull populations, based on

complete or censored data. Although Weibull regression model is also a parametric model, we

consider to adopt a nonparametric bootstrap method here to estimate the bias and variance

corrections, concerning the involvement of covariates in model. For the case of complete data,

the bootstrap samples are drawn only on the estimated errors, whereas for the censoring case,

the bootstrap samples are drawn on the triples: estimated errors, censoring indicators, and

covariate values.

Note that the key quantities ψn(θ0) and Hkn(θ0) can be written as ψn(θ0) = ψn(β0, zn)

and Hkn(θ0) = Hkn(β0, zn), k = 1, 2, 3, where zn = (z1, . . . , zn)′, and zi = zi(θ0) = β0(log si−
a′0xi). When sample data are complete, the error terms zi (i = 1, . . . , n) are subject to the

standard EV-I distribution. Then the estimates of zi (i = 1, . . . , n), which are called ML

residuals in the MLE framework, can be resampled by a regular nonparametric bootstrap

method and used for estimating the desired quantity expectations. Following the bootstrap

steps in Yang [22], the nonparametric bootstrap procedure can be carried out in this way:

(1) Compute the MLEs θ̂n = (â′n, β̂n)′ based on the original data;

(2) Compute ML residuals ẑi = zi(θ̂n) = β̂n(log si − â′nxi), i = 1, . . . , n;

(3) Resample {ẑi, · · · , ẑn} in a usual way, and denote the resampled vector by ẑ∗n,b;

(4) Compute ψ̂n,b = ψn,b(β̂n, ẑ∗n,b), and Ĥkn,b = Hkn,b(β̂n, ẑ∗n,b), k = 1, 2, 3, with the original

covariate matrix X = (X1, . . . , Xn)′ unchanged;

(5) Repeat the steps (3)-(4) B times to get a sequences of bootstrapped values {ψ̂n,b, b =

1, . . . , B} for ψn, and {Ĥkn,b, b = 1, . . . , B} for Hkn, k = 1, 2, 3.

When the sample data are right censored, Step (3) and (4) in the above procedure should

be changed to Step (3’) and (4’) as follows,

(3’) Resample {(ẑi, xi, δi), · · · , (ẑn, xn, δn)} in a usual way, and denote the resampled vectors

by ẑ∗n,b, x̂∗
n,b and δ̂∗

n,b respectively;

(4’) Compute ψ̂n,b = ψn,b(β̂n, ẑ∗n,b, x̂
∗
n,b, δ̂

∗
n,b), and Ĥkn,b = Hkn,b(β̂n, ẑ∗n,b, x̂

∗
n,b, δ̂

∗
n,b), k =

1, 2, 3;
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The reason for involving covariates into bootstrapping is that, when δi = 0, the censored

error observations zi = β0(logCi − a′0xi) (i = 1, . . . , n) rely on the covariates xi’s, although

the censoring distribution for Ci’s is independent of the covariates and the failure times.

The bootstrap estimates of various expectations in b2(θ0) and b3(θ0) thus are simply the

averages of the corresponding B bootstrap values. For example, the bootstrap estimates of

E(ψn ⊗ ψn) and E(H1n) are, respectively,

Ê(ψn ⊗ ψn) = 1
B

∑B
b=1 ψ̂n,b ⊗ ψ̂n,b and Ê(H1n) = 1

B

∑B
b=1 Ĥ1n,b.

The latter gives Ω̂n = −[Ê(H1n)]−1, which leads to the bootstrap estimates of quantities that

contain Ωn, e.g. E(H1nΩnψn), by repeating the bootstrapping procedure based on the same

set of bootstrap data ẑ∗n,b or (ẑ∗n,b, x̂
∗
n,b, δ̂

∗
n,b), b = 1, . . . , B, obtained in Steps (3) and (4) or

(3’) and (4’) above, i.e.,

Ê(H1nΩnψn) = 1
B

∑B
b=1 Ĥ1n,bΩ̂nψ̂n,b.

This is a ‘two-stage’ bootstrap procedure. After getting the estimates of all those expecta-

tions, we can calculate b̂2 and b̂3, and thus θ̂bc2
n and θ̂bc3

n .

Note that the nonstochastic matrices such as Ωn, E(H1n) and E(H2n) are involved in

the expectation operator. Pulling these nonstochastic matrices outside the expectation sign

could simplify the evaluation of the expectations. Using the properties of Kronecker product

(A ⊗ B)(C ⊗ D) = AC ⊗ BD and vec(ACB) = (B′ ⊗ A)vec(C), where ‘vec’ vectorizes a

matrix by stacking its columns (see, e.g., Horn and Johnson [6]), b2 becomes

b2 = ΩnE(ψ′
n ⊗H1n)vec(Ωn) +

1
2
ΩnE(H2n)(Ωn ⊗ Ωn)E(ψn ⊗ ψn).

Therefore, the bootstrap estimate of b2 can be realized in ‘one-stage’, instead of two-stage

described above. The same idea may apply to get the bootstrap estimate for the third-

order bias b3, but the expression becomes messy, in particular when the variance correction

is involved. We thus recommend the two-stage procedure as the added computation is not

at all an issue of concern due to the fact that the introduced bootstrap procedure does not

involve ‘re-estimation’ of the model parameters.
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To estimate the 2nd-order variance V2(θ̂bc2
n ) in (12), an additional bootstrap procedure

can be carried out after Step (5) but with bootstrap parameters θ̂bc2
n :

(6) Use the same resampled vector(s) ẑ∗n,b for complete data or (ẑ∗n,b, x̂
∗
n,b, δ̂

∗
n,b) for censored

data;

(7) Compute the quantities with θ̂bc2
n , i.e. ψ̂n,b = ψn,b(β̂bc2

n , ẑ∗n,b), Ĥ1n,b = H1n,b(β̂bc2
n , ẑ∗n,b),

and Ĥ2n,b = H2n,b(β̂bc2
n , ẑ∗n,b) for complete data, or ψ̂n,b = ψn,b(β̂bc2

n , ẑ∗n,b, x̂
∗
n,b, δ̂

∗
n,b),

Ĥ1n,b = H1n,b(β̂bc2
n , ẑ∗n,b, x̂

∗
n,b, δ̂

∗
n,b), and Ĥ2n,b = H2n,b(β̂bc2

n , ẑ∗n,b, x̂
∗
n,b, δ̂

∗
n,b) for censored

data,;

(8) Repeat the steps (6)-(7) B times to get sequences of bootstrapped values {ψ̂n,b, b =

1, . . . , B} for ψn, and {Ĥkn,b, b = 1, . . . , B} for Hkn, k = 1, 2.

After Steps (6)-(8), we can have the estimate of Ωn and also B values of of a−1/2 +a−1 =

Ωnψn + ΩnH
◦
1nΩnψn + 1

2ΩnE(H2n)(Ωnψn ⊗ Ωnψn) with θ̂bc2
n , denoted by {a−1/2,b + a−1,b,

b = 1, . . . ,B}. Then a bootstrap estimate for V2(θ̂bc2
n ) is

V̂2(θ̂bc2
n ) = 1

B

∑B
b=1(a−1/2,b + a−1,b)(a−1/2,b + a−1,b)′.

Remark 1 In case of complete data, the bootstrap procedure is much simpler, as it de-

pends only on the β̂n value, and the resampled samples are from the ML residuals.

Remark 2 It is easy to see that V2(θ̂n) = V2(θ̂bc2
n ) + O(n−2). Thus, θ̂n can be used in

estimating the second-order variance of θ̂bc2
n as well. In this case, the additional steps in the

second-order variance estimation are not needed.

3.3 Validity of the bootstrap method

We now present some results concerning the validity of the bootstrap methods for esti-

mating the bias and the variance of the MLE of θ.

Corollary 1 Under Assumptions 1-4, if further (i) ∂r

∂θr
0
bj(θ0) ∼ bj(θ0), r = 1, 2, j = 2, 3,

(ii) a quantity bounded in probability has a finite expectation, then the bootstrap estimates of

12



the 2nd- and 3rd-order biases for the MLE θ̂n are such that:

b̂2 = b2 +Op(n−2) and b̂3 = b3 + Op(n−5/2),

where ∼ indicates that the two quantities are of the same order of magnitude. It follows that

Bias(θ̂bc2
n ) = O(n−3/2) and Bias(θ̂bc3

n ) = O(n−2).

Corollary 2 Under Assumptions 1-4, if further (i) b̂2 − b2 = Op(n−3/2) , (ii) a quantity

bounded in probability has a finite expectation, then the 2nd-order variances and their the

bootstrap estimates are such that:

V2(θ̂bc2
n ) = V2(θ̂n) +O(n−2),

V̂2(θ̂bc2
n ) = V2(θ̂bc2

n ) +O(n−2),

where b̂2 is the estimate of b2.

The results of Corollary 1 show that using the bootstrap method to estimate the bias

terms only (possibly) introduces additional bias of order Op(n−2) or lower. This guarantees

the validity of the second-order and the third-order bootstrap bias corrections. Assumption

(ii) is to ensure E[Op(1)] = O(1), E[Op(n−2)] = O(n−2), etc., so that the expectation of

a ‘stochastic’ remainder is of proper order. The proofs of Corollaries 1 and 2 are given in

Appendix B.

4 Inferences Following Bias and Variance Corrections

It is well known that inference concerning the covariate effects may be one of the most

important types of inference in the context of any regression analysis. In the special case of

accelerated life testing model, inference concerning a ‘future’ percentile life is also of utmost

importance. Given the fact that the MLEs of the Weibull regression model can be seriously

biased, it is important to study how this bias impacts the subsequent inferences, and how the

standard inferences methods can be improved after corrections have been made on the points

estimates of the model parameters. In this section, we present some improved inferences for

the Weibull regression model following the bias and variance corrections on the MLEs of the
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model parameters.

4.1 Inferences concerning the covariates effects

Inferences concerning the covariates effects are typically based on the asymptotic t-ratios,

constructed based on the results that θ̂n is approximately (asymptotically) normal distributed

with mean θ0 and variance J−1
n (θ̂n), where Jn(θ̂n) is the observed information matrix. Note

that Jn(θ) = −nH1n(θ). Partitioning J−1
n (θ̂n) according to a and β and denoting the parti-

tioned matrix by J−1
n (θ̂n) = (Ĵ11

n , Ĵ12
n ; Ĵ21

n , Ĵ22
n ), then Ĵ11

n gives an estimate of the asymptotic

variance-covariance (VC) matrix of ân, and Ĵ22
n gives an estimate of the asymptotic vari-

ance β̂n, and Ĵ21
n gives an estimate of the asymptotic covariance between ân and β̂n. Thus,

an asymptotic t-statistic for inference for a linear contrast of c′0a0, a linear contrast of the

parameter a0 = (a10, . . . , ap0)′, has the form,

tn =
c′0ân − c′0a0√

c′0Ĵ11
n c0

. (13)

For the 2nd-order bias-corrected MLEs θ̂bc2
n , there are two available variance estimates:

the inverse of the observed information matrix J−1
n (θ̂bc2

n ) and the 2nd-order variance estimate

V̂2(θ̂bc2
n ). We normally choose the latter for an obvious reason. Let V̂ar(θ̂bc2

n ) = J−1
n (θ̂bc2

n )

or V̂2(θ̂bc2
n ). Denoting the partitioned V̂ar(θ̂bc2

n ) as (V̂11, V̂12; V̂21, V̂22), a 2nd-order corrected

t-statistic is thus,

tbc2
n =

c′0â
bc2
n − c′0a0√
c′0V̂11c0

. (14)

Both t-ratios (13) and (14) can be used for testing the significance of a regression coef-

ficient, or constructing a confidence interval of it. Both refer to the standard normal distri-

bution for the critical values. For example, to test the null hypothesis H0 : a2 = 0 verses a

two-sided alternative, we set c0 = (0, 1, . . . , 0) and the reject region is the compliment of the

interval [−uγ/2, uγ/2], where uγ/2 is the (γ/2)-quantile of the standard normal distribution.

As expected, Monte Carlo results presented in Section 5 show that the second-order corrected

t-statistic offers a significant improvement over the large sample t-statistic.
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4.2 Inference concerning the shape parameter

Similarly, tests and confidence intervals (CI) for β can be constructed based on two sets

of t-ratios. Based on the partitions of J−1
n (θ̂n) and V̂ar(θ̂bc2

n ) discussed above, we have a large

sample 100(1− γ)% CI for β:

{
β̂n − uγ/2

√
Ĵ22

n , β̂n + uγ/2

√
Ĵ22

n

}
, (15)

and a 2nd-order bias-corrected CI for β:

{
β̂bc2

n − uγ/2

√
V̂22, β̂bc2

n + uγ/2

√
V̂22

}
. (16)

4.3 Confidence intervals for a percentile

As discussed earlier, another interesting problem is to estimate a certain percentile or

quantile life under a regular operating condition in an accelerated life test, i.e., to estimate

yp = a′xreg + zp/β and Tp = exp(yp), where zp is the pth-percentile of the standard EV-I

distribution with a predetermined p, and xreg is the values of the covariates corresponding

to the regular operating condition. The point estimators for yp based on the original MLE

θ̂n = (â′n, β̂n)′ and the 2nd-order bias-corrected MLE θ̂bc2
n = ((âbc2

n )′, β̂bc2
n )′ are, respectively,

ŷn,p = â′nxreg + zp/β̂n and ŷbc2
n,p = (âbc2

n )′xreg + zp/β̂
bc2
n .

Applying the multivariate Delta theorem yields the following large sample results,

ŷn,p − yp ∼ N
(
0, c′nJ

−1
n (θ̂n)cn

)
ŷbc2
n,p − yp ∼ N

(
0, (cbc2

n )′V̂ar(θ̂bc2
n )cbc2

n

)

where cn = (x′reg,−zp/β̂2
n)′, cbc2

n = (x′reg,−zp/(β̂bc2
n )2)′, and V̂ar(θ̂bc2

n ) = J−1
n (θ̂bc2

n ) or V̂2(θ̂bc2
n ).

The corresponding two 100(1− γ)% CIs for yp are, respectively,

CI1(yp) =
{
ŷn,p − uγ/2

√
c′nJ

−1
n (θ̂n)cn, ŷn,p + uγ/2

√
c′nJ

−1
n (θ̂n)cn

}
,

CI2(yp) =
{
ŷbc2
n,p − uγ/2

√
(cbc2

n )′V̂ar(θ̂bc2
n )cbc2

n , ŷbc2
n,p + uγ/2

√
(cbc2

n )′V̂ar(θ̂bc2
n )cbc2

n

}
.
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Confidence intervals for other reliability-related quantities, such as the survival function,

mean lifetime, failure rate, etc., can be constructed in a similar manner.

5 Monte Carlo Simulations

To investigate the finite sample performances of the proposed method of bias-correcting

the MLEs of the Weibull regression parameters and the followed inferences, Monte Carlo

simulation experiments are performed along the design in Shen and Yang [13]. Two scenarios

are considered, which include (i) complete samples, and (ii) randomly censored samples.

In Monte Carlo experiments, we consider a Weibull regression model with an intercept:

log T = a1 + a2X2 + a3X3 + Z/β.

For all the Monte Carlo experiments, a′ = (a1, a2, a3) is set at {5, 1, 1}, β takes values

{0.5, 0.8, 1, 2, 5}, and n takes values {20, 50, 100}. The two covariates are generated indepen-

dently, according to {xi2} iid∼ N (0, 1)/
√

2 and {xi3} iid∼ N (0, 1)/
√

2.

In the entire simulation study, the nonparametric bootstrap is adopted, which (i) fits

original data to the above Weibull regression model, (ii) computes the ML residuals, and

then (iii) draws random samples with replacement directly from the ML residuals with the

size being the same as the original sample size, and also records the corresponding covariates

and censoring indicators if the original data are right censored. For all the experiments,

10,000 replications are run in each simulation and the number of bootstrap B is set to be

699.

5.1 Performance of the second-order bias corrected MLEs

Tables 1-2 summarize the empirical mean, root-mean-square-error (rmse) and standard

error (se) of the original and 2nd-order bias-corrected MLEs under different combinations of

models, data types, and the values of n and β.

Table 1 presents the estimation results of all 4 parameters for the case of complete samples.

From the results in the table, we see that the 2nd-order bias-corrected MLE θ̂bc2
n is generally

nearly unbiased and is much superior to the original MLE θ̂n regardless of the values of n. It
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is also shown that the shape parameter β incurs most bias compared to the scale parameters

ai, i = 1, 2, 3, which coincides with our expectation mentioned in Sec. 3.1. Some details

are: (i) β̂n always over-estimates the shape parameter, (ii) β̂bc2
n has smaller rmse’s and se’s

compared with those of β̂n, (iii) although the improvements of âbc2
in over âin, i = 1, 2, 3, are

not so significant as that of β̂bc2
n , âbc2

in is still generally better than âin in terms of mean,

except some occasional cases for a3.

We also consider the case of samples with random censoring, which includes Type-I cen-

soring as a special form by treating censoring time fixed. In the random censoring scheme,

each item is subject to a different censoring time. For each Monte Carlo replication, two sets

of observations T = {T1, . . . , Tn} and C = {C1, . . . , Cn} are generated, with Tj from a Weibull

regression model and Cj from any proper distribution. In this paper, a Uniform distribution

U(0.5ζ0.9, 1.5ζ0.9), where ζ0.9 = exp{5 + z0.9/β} and z0.9 is the 90%-percentile of the stan-

dard EV-I distribution, is chosen to generate the censoring times Cj ’s, considering its simple

formulation and easy-handling. Then the observed lifetimes {Sj = min(Tj, Cj), j = 1 . . . , n}
and the failure indicators {δj} are recorded. 1 Based on these original observed lifetimes,

the ML residuals can be calculated and bootstrap samples of residuals can be generated by

carrying out the nonparametric bootstrap procedure discussed in Sec. 3.2.

The Monte Carlo results are summarized in Table 2. From the results we see that the

bias-corrected MLE θ̂bc2
n can greatly reduce the bias as well as the variability of θ̂n in all

combinations under the random censoring mechanism. Moreover, the shape β is shown once

more to be the parameter that would incur most bias.

Another important observation is that, different from the results for complete samples,

the bias-corrected estimators for the scale-related parameters âbc2
in (i = 1, 2, 3) significantly

outperform the original MLEs âin (i = 1, 2, 3) for randomly censored samples, especially in

terms of the reduced bias. Therefore, based on these findings, we may conclude that the

proposed method is a desirable choice when dealing with randomly censored data.
1With the uniform distributed censoring times, the non-censoring proportions are around 86.22%, 82.28%,

79.88%, 70.13%, 58.60% for β = 0.5, 0.8, 1.0, 2.0, 5.0 respectively.
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5.2 Performance of the significance tests

To compare the performances of the two t-ratios tn and tbc2
n , we reset the covaraite

coefficients to a′ = (a1, a2, a3) = (5, 0, 1) and test H0 : a2 = 0. Table 3 and 4 report

the simulation results of empirical significance levels of tn and tbc2
n for complete data and

censored data respectively. The variance estimate used in tbc2
n is the inverse of the observed

information matrix, J−1
n (θ̂bc2

n ), which was shown leading to a better performance than the

2nd-order variance estimate V̂2(θ̂bc2
n ) (experiment results available upon request).

In Tables 3 and 4, we can observe that, (i) the asymptotic test tn can be very unreliable

in the sense that it rejects the true H0 much too often than it is supposed to. The test tbc2
n

offers huge reduction in significance level distortions, with the empirical levels getting close

to their nominal levels faster than tn; (ii) for both data types, the two tests converge in terms

of empirical significance level with n increases; (iii) the empirical significance level of tn is

always greater than the nominal level, while tbc2
n does not have obvious pattern. In overall,

the improved test tbc2
n outperforms the asymptotic test tn greatly, regardless of sample size,

data type and nominal level. Thus for the purpose of significance test, the test tbc2
n with

variance estimate J−1
n (θ̂bc2

n ) is strongly recommended.

5.3 Confidence intervals for the shape parameter

Instead of J−1
n (θ̂bc2

n ) as a variance estimate, the 2nd-order variance estimate V̂2(θ̂bc2
n ) is

a better choice in constructing confidence interval for β. The simulation results are given

in Tables 5 and 6. It is shown that, (i) for complete data, CI2(β) with V̂2(θ̂bc2
n ) is able to

provide a more accurate coverage probability than CI1(β) in almost all situations for the

case of small sample size n = 20; (ii) for censored data with n = 20, 1 − γ = 0.90, 0.95 and

n = 50, 1 − γ = 0.90, CI2(β) with V̂2(θ̂bc2
n ) has the coverage probabilities much closer to

the nominal levels and is of shorter length compared to CI1(β); (iii) for other complete or

censored cases, CI2(β) still has the performances comparable with CI1(β) in terms of coverage

probability but also with even shorter lengths.

Based on the simulation results, we may say that CI2(β) with V̂2(θ̂bc2
n ) is recommended in

constructing the confidence interval for β when sample size is small. For median or large-size

samples, CI2(β) may be also preferred as it not only has the coverage probability close to
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nominal level but also owns the advantage in confidence length in most situations.

5.4 Confidence intervals for percentiles with certain covariates

Monte Carlo simulation experiments are also designed for the confidence intervals for

percentile with given covariates, which are set as xreg = (1, 0, 0)′. Thus the percentile we

want to estimate is yp = 5 + zp/β or Tp = exp(yp), where the probability p = 0.5. The two

CIs, CI1(yp) and CI2(yp) are given in Sec. 4.3. Similar to the construction of CI2(β) for the

shape parameter, the 2nd-order variance estimate V̂2(θ̂bc2
n ) is also adopted in constructing

CI2(yp).

The results in Tables 7 and 8 show that the confidence interval based on the improved

t-ratio, CI2(yp), has a overwhelming superior performance compared to the regular CI1(yp).

We can find that the coverage probabilities are greatly improved and get much closer to

the nominal levels when using the confidence interval CI2(yp), which has an appropriately

enlarged length compared to CI1(yp). The superiority of CI2(yp) is demonstrated in almost all

parameter combinations in our experiment, except three cases for censored data with β = 5

and y0.5 = 4.9267. This exception may be due to the relatively high censoring proportion for

β = 5, which is 42.41% compared to the less than 30% censoring proportions for other values

of β.

Besides the median percentile y0.5, two tail percentiles y0.05 and y0.95 were also taken in

to account in our experiment, although the experiment results (available upon request) are

not presented here due to the limit of space. Once more, the results substantially support the

satisfying performances of CI2(yp) in terms of coverage probability, regardless of sample size,

parameter value and type of data. Therefore we may conclude that the improved t-ratio and

the resulted confidence interval CI2(yp) should be the choice when concerning the inference

for a percentile with certain covariates.

6 An Example

A set of real data from Nelson and Haln [11] or Kalbfleisch and Prentice ([7], p.5) is

used to illustrate the application of the proposed bias-corrected method and the subsequent

inferences. The data given (replicated in Table 9 for easy reference) describe the number of
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hours to failure of motorettes operating under various temperatures, and are obtained from

an accelerated life test. The test uses temperature as a stress factor to increase the rate

of failure so that the exact failure times of at least part of motorettes would be observed

during a shorter time period. The interest of such a test is to determine the relationship

between failure time and temperature for the purpose of extrapolation to regular operating

temperature of 130◦C.

From Table 9, we see that (i) under each of 4 temperatures, 10 motorettes are subject

to test; (ii) the data are type-I censored, that is, the failure had not occurred prior to a

predestined time at which the test was to be terminated and only censored time was observed;

(iii) the censoring is server with only 17 of 40 motorettes failing.

Based on the data, we want to model the failure time as a function of operating tempera-

tures of 150◦C, 170◦C, 190◦C, or 220◦C. Nelson and Haln [11] adopted a log-normal regression

model with the covariates X1 = 1 and X2 = 1000/(273.2+◦C). Kalbfleisch and Prentice ([7],

p.70) suggested that a Weibll regression model would be preferred, which has the form

logT = a1 + a2X2 + Z/β,

where T is the failure time and Z is subject to a standard EV-I distribution. Both estimating

results excluded the 150◦C data, which are all censored. Here we use all 40 lifetimes and obtain

the original and the 2nd-order bias-corrected MLEs for the three parameters as follows,

â1,40 = −13.3553, â2,40 = 9.7260, β̂40 = 3.0727;

âbc2
1,40 = −13.2948, âbc2

2,40 = 9.6958, β̂bc2
40 = 2.8489.

The variance estimates J−1
n (θ̂n), J−1

n (θ̂bc2
n ) and V̂2(θ̂bc2

n ) are, respectively,
0
BBB@

2.2522 −1.0433 0.1283

−1.0433 0.4850 −0.0714

0.1283 −0.0714 0.4167

1
CCCA ,

0
BBB@

2.4330 −1.1247 0.1086

−1.1247 0.5216 −0.0600

0.1086 −0.0600 0.3435

1
CCCA ,

0
BBB@

1.7327 −0.8068 0.1662

−0.8068 0.3775 −0.0908

0.1662 −0.0908 0.5513

1
CCCA

To test the null hypothesis H0 : a2 = 0, we have |tn| = |9.7260|/√0.4850 = 13.9657

and |tbc2
n | = |9.6958|/√0.5216 = 13.4250 or |tbc2

n | = |9.6958|/√0.3775 = 15.7807. The ab-

solute values of all three statistics are greater than u0.025 = 1.96, which is the critical value
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corresponding to 5% significance level. These results indicate that the Weibull regression

model should include the covariate variable X2 into the scale parameter with the expression

a1 + a2X2.

At the regular operating temperature 130◦C, X2 = 1000/(273.2+ 130) = 2.4802, so that

the corresponding log-median lifetime is estimated by,

ŷ40,0.5 = −13.3553 + 9.7260× 2.4802 + log(log(2))/3.0727 = 10.6498,

ŷbc2
40,0.5 = −13.2948 + 9.6958× 2.4802 + log(log(2))/2.8489 = 10.6261,

where log(log(2)) is the median of standard EV-I distribution z0.5. The two vectors of coef-

ficients are

cn = (1, 2.4802,− log(log(2))/β̂2
40)

′ and cbc2
n = (1, 2.4802,− log(log(2))/(β̂bc2

40 )2)′.

Based on the formula in Sec. 4.3, the 90% confidence interval for y0.5 is (10.2567, 11.0429)

with ŷ40,0.5 and J−1
n (θ̂n), and is (10.2232, 11.0289)with ŷbc2

40,,0.5 and J−1
n (θ̂bc2

n ), or (10.2625, 10.9896)

with ŷbc2
40,,0.5 and V̂2(θ̂bc2

n ), respectively. Further based on the original MLE θ̂n, the estimate

of the median lifetime is T̂40,0.5 = exp(10.6498) = 42184 with an associate approximate 90%

confidence interval (28471, 62499). When the 2nd-order bias-corrected MLE θ̂bc2
n is used,

the estimate of the median life is T̂ bc2
40,0.5 = exp(10.6261) = 41196 with an approximate 90%

confidence interval (27534, 61633) or (28640, 59253), corresponding to the variance estimate

J−1
n (θ̂bc2

n ) or V̂2(θ̂bc2
n ).

Note: In this example, it is type-I censoring with 4 censoring times (i.e., 8064, 5448, 1680,

528) for 4 subgroups respectively. Thus the censoring times C = (C1, . . . , C40) are, respec-

tively, {Ci = 8064, i = 1, . . . , 10}, {Ci = 5448, i = 11, . . . , 20}, {Ci = 1680, i = 21, . . . , 30},
{Ci = 528, i = 31, . . . , 40}.

7 Discussion and Conclusion

In this paper, we proposed a general multivariate bias-correction method for correcting

the MLE and the variance, and hence improving t-ratios for the parameters of the Weibull
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regression model for both complete and randomly censored data. The method, based on a

third-order stochastic expansion for the MLE, and a simple bootstrap procedure, is an exten-

sion of the bias-correction method in [13] by generalizing the method to a multi-dimensional

version but adopting a nonparametric bootstrap procedure instead. Asymptotic properties

of the proposed bias-corrected estimators are provided under some mild assumptions.

The results of several Monte Carlo simulation experiments show that, (i) the proposed

method performs very well in correcting the bias rooted in the parameter MLEs for finite

sample size data, and the shape parameter incurs most bias; (ii) with the corrected MLEs

and second-order variance estimator, the improved t-ratios are able to greatly enhance the

performances of some sequent inferences, including the significance test for scale-related pa-

rameters, and the construction of confidence intervals for the shape parameter and percentile.

In particular, the superiority of the proposed method with respect to the significance test

and the confidence interval for percentile is significant.

Although only the Weibull regression model is considered in this paper, the proposed

method can be easily extended to other regression models. Furthermore, the proposed method

can be applied to other more complicated censoring mechanisms besides the considered ran-

domly censoring, such as progressively censoring [24], interval censoring [21], etc. It would

be interesting to evaluate the performances of the method for different censoring mecha-

nisms and censoring proportions. Also, a possible future work is to compare the proposed

bootstrap-based method to some existing likelihood-related approaches, such as profile-kernel

likelihood inference [8], penalized maximum likelihood approach [14], etc.
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Appendix A: The expressions of Hkn, k = 1, 2, 3

Recall that zi(θ) = β(log si−a′xi) and ezi(θ) = [si exp(−a′xi)]β, and that zi ≡ zi(θ0). The

(p+ 1) × (p+ 1) matrix H1n = ∂
∂θ′0
ψn(θ0) has the form:

H1n =
1
nβ2

0

⎛
⎝ −β4

0

∑n
i=1 e

zixix
′
i β2

0

∑n
i=1(e

zizi + ezi − δi)xi

β2
0

∑n
i=1(e

zizi + ezi − δi)x′i −r − ∑n
i=1 e

ziz2
i

⎞
⎠ .

The (p+ 1)× (p+ 1)2 matrix, H2n = ∂
∂θ′0
H1n(θ0), has its first (p+ 1)× [p(p+ 1)] block:

1
nβ0

n∑
i=1

x′i ⊗
⎛
⎝ β4

0e
zixix

′
i −β2

0e
zi(2 + zi)xi

−β2
0e

zi(2 + zi)x′i ezizi(2 + zi)

⎞
⎠ ,

and the last (p+ 1)× (p+ 1) block:

1
nβ3

0

⎛
⎝−β4

0

∑n
i=1 e

zi(2 + zi)xix
′
i β2

0

∑n
i=1 e

zizi(2 + zi)xi

β2
0

∑n
i=1 e

zizi(2 + zi)x′i 2r − ∑n
i=1 e

ziz3
i

⎞
⎠ .

Finally, the (p+1)×(p+1)3 matrix, H3n(θ) = ∂
∂θ′0
H2n(θ0), has the following blocks sorted

in a row by (B1
1,B

2
1, · · · ,B1

p,B
2
p,B

1
p+1,B

2
p+2), where

B1
j =

1
n

n∑
i=1

I′jxix
′
i ⊗

⎛
⎝ −β4

0e
zixix

′
i β2

0e
zi(3 + zi)xi

β2
0e

zi(3 + zi)x′i −ezi(2 + 4zi + z2
i )

⎞
⎠ ,

B2
j =

1
nβ2

0

n∑
i=1

I′jxi

⎛
⎝ β4

0e
zi(3 + zi)xix

′
i −β2

0e
zi(2 + 4zi + z2

i )xi

−β2
0e

zi(2 + 4zi + z2
i )x′i eziz2

i (3 + zi)

⎞
⎠ ,

B1
p+1 =

1
nβ2

0

n∑
i=1

x′i ⊗
⎛
⎝ β4

0e
zi(3 + zi)xix

′
i −β2

0e
zi(2 + 4zi + z2

i )xi

−β2
0e

zi(2 + 4zi + z2
i )x′i eziz2

i (3 + zi)

⎞
⎠ ,

B2
p+1 =

1
nβ4

0

⎛
⎝−β4

0

∑n
i=1 e

zi(2 + 4zi + z2
i )xix

′
i β2

0

∑n
i=1 e

ziz2
i (3 + zi)xi

β2
0

∑n
i=1 e

ziz2
i (3 + zi)x′i −6r − ∑n

i=1 e
ziz4

i

⎞
⎠ ,

and Ij is a p× 1 vector the jth element being 1, and the other elements being 0.

Proof of Theorem 1: Given some regular conditions, the MLE θ̂n is
√
n-consistent. And
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the differentiability and measureability of 	n(θ) are obvious. These facts lead to the Taylor

series expansion of ψn(θ):

0 = ψn(θ̂n)

= ψn +H1n(θ̂n − θ0) +
1
2
H2n[(θ̂n − θ0) ⊗ (θ̂n − θ0)]

+
1
6
H3n[(θ̂n − θ0) ⊗ (θ̂n − θ0)⊗ (θ̂n − θ0)]

+
1
6
[H3n(θ̄n)−H3n][(θ̂n − θ0) ⊗ (θ̂n − θ0)⊗ (θ̂n − θ0)],

where θ̄n lies between θ̂n and θ0. As θ̂n = θ0 + Op(n−1/2), we have θ̄n = θ0 +Op(n−1/2).

For T following the Weibull regression model, it can be shown that the moment ET k| logT l|
is finite for every k, l ≥ 0. This result further yields that β

n

∑n
i=1 e

zi = E
[

β
n

∑n
i=1 e

zi

]
+

Op(n−1/2), β
n

∑n
i=1 e

zizi = E
[

β
n

∑n
i=1 e

zizi

]
+ Op(n−1/2). Together with Assumption 4, we

have the following:

1) ψn = Op(n−1/2) and E(ψn) = O(n−1);

2) E(Hkn) = O(1) and H◦
kn = Op(n−

1
2 ), k = 1,2,3;

3) E(H1n)−1 = O(1) and H−1
1n = Op(1);

4) ‖ Hkn(θ) − Hkn ‖≤‖ θ − θ0 ‖ Bn, for θ in a neighborhood of θ0, k = 1, 2, 3, and

E|Bn| < c <∞ for some constant c;

5) H3n(θ̄n) −H3n = Op(n−1/2).

The above proofs are straightforward and parallel those of [22] and [13]. The details are

available from the authors. These make the stochastic expansion (8) valid. Assumption 4

also guarantees the transition from the stochastic expansion (8) to the results of Theorem 1.

Proof of Corollary 1: Note that the second-order bias b2 ≡ b2(θ0) is of order O(n−1), and

the third-order bias b3 = b3(θ0) is of order O(n−3/2). If explicit expressions of b2(θ0) and

b3(θ0) exist, then the “plug-in” estimates of b2 and b3 would be, respectively, b̂2 = b2(θ̂n) and

b̂3 = b3(θ̂n), where θ̂n is the MLE of θ0 defined at the beginning of Section 3. Under the

additional assumptions in the corollary, we have ,

b2(θ̂n) = b2(θ0) +
∂

∂θ0
b2(θ0)(θ̂n − θ0) +Op(n−2),
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and E[b2(θ̂n)] = b2(θ0) + ∂
∂θ0
b2(θ0)E(θ̂n − θ0) + E[Op(n−2)] = b2(θ0) + O(n−2), noting that

∂
∂θ0
b2(θ0) = O(n−1) and E(θ̂n−θ0) = O(n−1). Similarly, E[b3(θ̂n)] = b3(θ0)+O(n−5/2). These

show that replacing θ0 by θ̂n only (possibly) imposes additional bias of order Op(n−2) for

b2(θ̂n), and an additional bias of order Op(n−5/2) for b3(θ̂n), leading to Bias(θ̂bc2
n ) = O(n−3/2)

and Bias(θ̂bc3
n ) = O(n−2).

Our bootstrap estimate has two step approximations, one is that described above, and the

other is the bootstrap approximations to the various expectations in (9) and (10), given θ̂n.

However, these approximations can be made arbitrarily accurate, for a given θ̂n, by choosing

an arbitrarily large B. The results of Corollary 1 thus follow.

Proof of Corollary 2: The additional assumptions stated in the Corollary 2 ensure that the

2nd-order variance for θ̂bc2
n has V2(θ̂bc2

n ) = V2(θ̂n − b̂2) = V2(θ̂n)−2Cov(θ̂n, b̂2)+O(n−5/2) =

V2(θ̂n)+O(n−2) as the other terms can all be merged intoO(n−5/2) and Cov(θ̂n, b̂2) = O(n−2).

This proves the first equation in Corollary 2.

The bootstrap approximation to the second-order variance for θ̂bc2
n actually also requires

the approximations to various expectations, as shown by (12). Hence following the proof in

Corollary 1, we know that for a given θ̂bc2
n , choosing an arbitrarily large B would make those

approximations arbitrarily accurate. The second equation in Corollary 2 thus holds.
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Table 1: Empirical mean [rmse](se) of the estimators of all parameters, complete data

n = 20

β β̂n β̂bc2
n a1 â1n âbc2

1n

0.5 0.5833 [.1520](.1271) 0.5228 [.1211](.1190) 5.0 4.8849 [.6886](.6790) 4.9635 [.6898](.6889)

0.8 0.9250 [.2266](.1891) 0.8282 [.1737](.1714) 5.0 4.9058 [.5269](.5184) 4.9541 [.5234](.5214)

1.0 1.1556 [.2812](.2343) 1.0339 [.2145](.2118) 5.0 4.9260 [.4325](.4262) 4.9653 [.4293](.4279)

2.0 2.2946 [.5660](.4833) 2.0532 [.4369](.4337) 5.0 4.9405 [.4109](.4066) 4.9598 [.4102](.4082)

5.0 5.7411 [1.413](1.204) 5.1335 [1.091](1.083) 5.0 4.9717 [.2846](.2832) 4.9794 [.2844](.2837)

a2 â2n âbc2
2n a3 â3n âbc2

3n

1.0 0.9939 [.7912](.7912) 0.9976 [.7918](.7919) 1.0 1.0018 [.8571](.8572) 0.9954 [.8544](.8544)

1.0 0.9950 [.4703](.4703) 0.9977 [.4699](.4699) 1.0 1.0096 [.4533](.4532) 1.0080 [.4531](.4530)

1.0 1.0048 [.3621](.3621) 1.0027 [.3618](.3618) 1.0 0.9996 [.3803](.3803) 1.0044 [.3802](.3802)

1.0 0.9943 [.1837](.1836) 0.9960 [.1836](.1836) 1.0 0.9979 [.1883](.1882) 0.9997 [.1881](.1881)

1.0 0.9998 [.0762](.0762) 0.9998 [.0761](.0761) 1.0 1.0022 [.0741](.0741) 1.0017 [.0740](.0740)

n = 50

β β̂n β̂bc2
n a1 â1n âbc2

1n

0.5 0.5287 [.0686](.0624) 0.5041 [.0599](.0597) 5.0 4.9636 [.3068](.3046) 4.9971 [.3039](.3039)

0.8 0.8439 [.1091](.0998) 0.8047 [.0959](.0958) 5.0 4.9818 [.1933](.1924) 5.0025 [.1920](.1920)

1.0 1.0566 [.1373](.1251) 1.0076 [.1203](.1201) 5.0 4.9812 [.1547](.1536) 4.9978 [.1532](.1532)

2.0 2.1134 [.2727](.2480) 2.0152 [.2380](.2376) 5.0 4.9921 [.0868](.0864) 5.0004 [.0863](.0863)

5.0 5.2728 [.6830](.6262) 5.0288 [.6015](.6008) 5.0 4.9961 [.0308](.0305) 4.9994 [.0304](.0304)

a2 â2n âbc2
2n a3 â3n âbc2

3n

1.0 0.9987 [.4290](.4290) 0.9982 [.4290](.4290) 1.0 0.9944 [.4291](.4291) 0.9940 [.4291](.4290)

1.0 1.0000 [.2733](.2733) 0.9998 [.2734](.2734) 1.0 0.9961 [.2703](.2703) 0.9951 [.2703](.2703)

1.0 1.0014 [.2120](.2120) 1.0013 [.2121](.2121) 1.0 1.0045 [.2145](.2145) 1.0045 [.2145](.2145)

1.0 0.9972 [.1075](.1075) 0.9976 [.1075](.1075) 1.0 1.0004 [.1090](.1090) 0.9997 [.1090](.1090)

1.0 1.0003 [.0432](.0432) 1.0001 [.0432](.0432) 1.0 0.9987 [.0430](.0430) 0.9988 [.0430](.0430)

n = 100

β β̂n β̂bc2
n a1 â1n âbc2

1n

0.5 0.5137 [.0436](.0414) 0.5012 [.0404](.0404) 5.0 4.9860 [.2157](.2153) 5.0029 [.2150](.2150)

0.8 0.8209 [.0691](.0659) 0.8009 [.0645](.0645) 5.0 4.9878 [.1333](.1327) 4.9983 [.1327](.1327)

1.0 1.0268 [.0875](.0833) 1.0017 [.0814](.0814) 5.0 4.9914 [.1066](.1063) 4.9998 [.1061](.1061)

2.0 2.0532 [.1735](.1652) 2.0036 [.1617](.1616) 5.0 4.9952 [.0540](.0538) 4.9995 [.0537](.0537)

5.0 5.1303 [.4333](.4133) 5.0050 [.4051](.4051) 5.0 4.9984 [.0214](.0214) 5.0001 [.0213](.0214)

a2 â2n âbc2
2n a3 â3n âbc2

3n

1.0 0.9974 [.2931](.2931) 0.9978 [.2933](.2933) 1.0 0.9988 [.2967](.2967) 0.9985 [.2971](.2971)

1.0 0.9998 [.1813](.1813) 0.9997 [.1814](.1814) 1.0 1.0011 [.1840](.1840) 1.0000 [.1842](.1842)

1.0 1.0009 [.1471](.1471) 1.0009 [.1471](.1471) 1.0 1.0011 [.1442](.1442) 1.0012 [.1443](.1443)

1.0 0.9995 [.0738](.0738) 0.9995 [.0738](.0738) 1.0 1.0005 [.0743](.0743) 1.0004 [.0744](.0744)

1.0 1.0004 [.0292](.0292) 1.0003 [.0292](.0292) 1.0 0.9997 [.0292](.0292) 0.9998 [.0292](.0292)
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Table 2: Empirical mean [rmse](se) of the estimators of all parameters, censored data

n = 20

β β̂n β̂bc2
n a1 â1n âbc2

1n

0.5 0.5704 [.1541](.1371) 0.5142 [.1299](.1292) 5.0 4.8934 [.7363](.7286) 4.9078 [.7397](.7340)

0.8 0.9209 [.2453](.2134) 0.8266 [.1951](.1933) 5.0 4.9035 [.6364](.6290) 4.9131 [.6343](.6284)

1.0 1.1492 [.3132](.2754) 1.0268 [.2479](.2465) 5.0 4.9296 [.5304](.5257) 4.9362 [.5285](.5247)

2.0 2.3642 [.7590](.6660) 2.0737 [.5764](.5717) 5.0 4.9063 [.6074](.6002) 4.9096 [.6071](.6003)

5.0 6.3500 [2.580](2.199) 5.3456 [1.819](1.786) 5.0 4.9461 [.4434](.4401) 4.9488 [.4436](.4407)

a2 â2n âbc2
2n a3 â3n âbc2

3n

1.0 1.0425 [.9219](.9209) 1.0202 [.9618](.9616) 1.0 1.0590 [.8648](.8628) 1.0441 [.8760](.8749)

1.0 1.0593 [.5626](.5595) 1.0481 [.5673](.5653) 1.0 1.0577 [.5726](.5697) 1.0509 [.5751](.5729)

1.0 1.0456 [.4819](.4798) 1.0299 [.4802](.4792) 1.0 1.0478 [.4803](.4779) 1.0369 [.4803](.4789)

1.0 1.0325 [.2641](.2621) 1.0275 [.2676](.2662) 1.0 1.0356 [.2729](.2706) 1.0298 [.2755](.2739)

1.0 1.0127 [.1343](.1337) 1.0130 [.1391](.1385) 1.0 1.0144 [.1324](.1317) 1.0169 [.1385](.1375)

n = 50

β β̂n β̂bc2
n a1 â1n âbc2

1n

0.5 0.5232 [.0721](.0682) 0.5015 [.0655](.0655) 5.0 4.9737 [.3258](.3248) 4.9888 [.3226](.3224)

0.8 0.8418 [.1211](.1136) 0.8054 [.1089](.1088) 5.0 4.9876 [.2086](.2083) 4.9966 [.2070](.2070)

1.0 1.0540 [.1530](.1432) 1.0075 [.1372](.1370) 5.0 4.9874 [.1714](.1710) 4.9942 [.1704](.1703)

2.0 2.1340 [.3339](.3059) 2.0274 [.2920](.2907) 5.0 4.9943 [.1001](.1000) 4.9982 [.0997](.0997)

5.0 5.4230 [.9435](.8434) 5.0876 [.7907](.7859) 5.0 4.9975 [.0527](.0526) 4.9999 [.0528](.0528)

a2 â2n âbc2
2n a3 â2n âbc2

3n

1.0 1.0317 [.4759](.4749) 1.0196 [.4714](.4710) 1.0 1.0264 [.4844](.4837) 1.0140 [.4808](.4806)

1.0 1.0243 [.3157](.3148) 1.0147 [.3134](.3131) 1.0 1.0233 [.3111](.3102) 1.0133 [.3092](.3089)

1.0 1.0145 [.2519](.2515) 1.0061 [.2506](.2506) 1.0 1.0187 [.2615](.2609) 1.0099 [.2603](.2602)

1.0 1.0102 [.1531](.1528) 1.0054 [.1529](.1528) 1.0 1.0108 [.1474](.1470) 1.0068 [.1473](.1472)

1.0 1.0050 [.0746](.0744) 1.0036 [.0749](.0748) 1.0 1.0050 [.0760](.0759) 1.0037 [.0764](.0763)

n = 100

β β̂n β̂bc2
n a1 â1n âbc2

1n

0.5 0.5109 [.0479](.0466) 0.5001 [.0456](.0457) 5.0 4.9915 [.2230](.2229) 5.0001 [.2222](.2222)

0.8 0.8198 [.0786](.0761) 0.8016 [.0745](.0745) 5.0 4.9946 [.1451](.1450) 4.9996 [.1446](.1446)

1.0 1.0254 [.0999](.0966) 1.0018 [.0945](.0944) 5.0 4.9951 [.1190](.1189) 4.9992 [.1186](.1186)

2.0 2.0627 [.2096](.2000) 2.0082 [.1949](.1948) 5.0 4.9972 [.0691](.0691) 4.9996 [.0691](.0691)

5.0 5.1994 [.5734](.5376) 5.0319 [.5197](.5188) 5.0 4.9990 [.0349](.0349) 5.0005 [.0350](.0350)

a2 â2n âbc2
2n a3 â3n âbc2

3n

1.0 1.0181 [.3275](.3270) 1.0096 [.3249](.3248) 1.0 1.0170 [.3336](.3332) 1.0076 [.3311](.3310)

1.0 1.0096 [.2122](.2120) 1.0025 [.2113](.2113) 1.0 1.0070 [.2181](.2180) 1.0002 [.2172](.2173)

1.0 1.0082 [.1771](.1769) 1.0022 [.1765](.1765) 1.0 1.0089 [.1778](.1775) 1.0029 [.1771](.1771)

1.0 1.0059 [.1024](.1023) 1.0028 [.1022](.1022) 1.0 1.0034 [.1026](.1025) 1.0002 [.1026](.1026)

1.0 1.0027 [.0478](.0477) 1.0017 [.0479](.0479) 1.0 1.0027 [.0488](.0487) 1.0017 [.0489](.0489)
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Table 3: Empirical significance levels: two-sided tests of H0 : a2 = 0, complete data
β Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

n = 20 n = 50 n = 100

0.5 (1) 0.1481 0.0881 0.0317 0.1207 0.0656 0.0169 0.1094 0.0601 0.0132

0.5 (2) 0.0998 0.0537 0.0147 0.0987 0.0506 0.0115 0.1005 0.0521 0.0107

0.8 (1) 0.1499 0.0893 0.0293 0.1230 0.0677 0.0157 0.1100 0.0533 0.0136

0.8 (2) 0.0987 0.0506 0.0147 0.1013 0.0514 0.0107 0.0975 0.0458 0.0101

1.0 (1) 0.1569 0.0935 0.0310 0.1170 0.0662 0.0188 0.1110 0.0599 0.0160

1.0 (2) 0.1057 0.0557 0.0136 0.0981 0.0533 0.0119 0.1001 0.0511 0.0131

2.0 (1) 0.1490 0.0910 0.0309 0.1230 0.0685 0.0176 0.1071 0.0547 0.0119

2.0 (2) 0.1019 0.0557 0.0152 0.1009 0.0516 0.0118 0.0949 0.0490 0.0089

5.0 (1) 0.1467 0.0904 0.0304 0.1222 0.0679 0.0170 0.1023 0.0556 0.0132

5.0 (2) 0.0975 0.0536 0.0134 0.1012 0.0510 0.0115 0.0919 0.0481 0.0114

Test: (1) tn with J−1
n (θ̂n), (2) tbc2

n with J−1
n (θ̂bc2

n ); nominal significance levels: 10%, 5%, 1%

Table 4: Empirical significance levels: two-sided tests of H0 : a2 = 0, censored data
β Test 10% 5% 1% 10% 5% 1% 10% 5% 1%

n = 20 n = 50 n = 100

0.5 (1) 0.1396 0.0796 0.0230 0.1186 0.0632 0.0155 0.1129 0.0613 0.0125

0.5 (2) 0.1023 0.0544 0.0133 0.0976 0.0498 0.0100 0.1026 0.0519 0.0101

0.8 (1) 0.1409 0.0795 0.0210 0.1173 0.0601 0.0154 0.1099 0.0574 0.0135

0.8 (2) 0.1026 0.0522 0.0111 0.0987 0.0467 0.0109 0.1003 0.0507 0.0108

1.0 (1) 0.1451 0.0831 0.0250 0.1165 0.0635 0.0160 0.1104 0.0559 0.0133

1.0 (2) 0.1036 0.0566 0.0138 0.0963 0.0511 0.0114 0.0981 0.0487 0.0112

2.0 (1) 0.1467 0.0885 0.0275 0.1254 0.0695 0.0171 0.1105 0.0596 0.0147

2.0 (2) 0.1114 0.0595 0.0143 0.1043 0.0557 0.0128 0.0993 0.0529 0.0119

5.0 (1) 0.1703 0.1125 0.0441 0.1304 0.0706 0.0211 0.1134 0.0614 0.0155

5.0 (2) 0.1281 0.0751 0.0255 0.1083 0.0558 0.0146 0.101 0.0528 0.0111

Test: (1) tn with J−1
n (θ̂n), (2) tbc2

n with J−1
n (θ̂bc2

n ); nominal significance levels: 10%, 5%, 1%
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Table 5: Empirical coverage probability (average length) of confidence intervals for β, complete data:
β̂n with variance J−1

n (θ̂n), β̂bc2
n with variance V̂2(θ̂bc2

n )

β0
1 − γ = 0.90 1 − γ = 0.95 1 − γ = 0.99

β̂n β̂bc2
n β̂n β̂bc2

n β̂n β̂bc2
n

n = 20

0.5 0.8530 (0.3492) 0.9056 (0.3538) 0.9237 (0.4139) 0.9495 (0.4194) 0.9862 (0.5403) 0.9869 (0.5476)

0.8 0.8547 (0.5506) 0.9042 (0.5578) 0.9257 (0.6539) 0.9508 (0.6625) 0.9879 (0.8558) 0.9880 (0.8671)

1.0 0.8594 (0.6861) 0.9080 (0.6981) 0.9282 (0.8160) 0.9522 (0.8304) 0.9885 (1.0701) 0.9878 (1.0889)

2.0 0.8552 (1.3589) 0.9026 (1.3755) 0.9280 (1.6173) 0.9514 (1.6371) 0.9882 (2.1225) 0.9885 (2.1485)

5.0 0.8610 (3.3951) 0.9106 (3.4544) 0.9292 (4.0446) 0.9558 (4.1153) 0.9885 (5.3139) 0.9876 (5.4068)

n = 50

0.5 0.8778 (0.1942) 0.8881 (0.1917) 0.9398 (0.2314) 0.9416 (0.2284) 0.9897 (0.3041) 0.9869 (0.3002)

0.8 0.8761 (0.3102) 0.8909 (0.3071) 0.9387 (0.3696) 0.9405 (0.3659) 0.9871 (0.4858) 0.9832 (0.4809)

1.0 0.8809 (0.3884) 0.8934 (0.3841) 0.9377 (0.4628) 0.9432 (0.4577) 0.9871 (0.6083) 0.9869 (0.6015)

2.0 0.8822 (0.7765) 0.8933 (0.7684) 0.9394 (0.9252) 0.9435 (0.9156) 0.9876 (1.2159) 0.9861 (1.2032)

5.0 0.8756 (1.9373) 0.8854 (1.9096) 0.9378 (2.3084) 0.9370 (2.2754) 0.9883 (3.0338) 0.9842 (2.9904)

n = 100

0.5 0.8910 (0.1327) 0.8952 (0.1303) 0.9472 (0.1581) 0.9433 (0.1552) 0.9891 (0.2078) 0.9874 (0.2040)

0.8 0.8903 (0.2119) 0.8931 (0.2083) 0.9475 (0.2525) 0.9425 (0.2482) 0.9902 (0.3319) 0.9884 (0.3262)

1.0 0.8905 (0.2651) 0.8884 (0.2606) 0.9452 (0.3159) 0.9433 (0.3106) 0.9887 (0.4152) 0.9862 (0.4082)

2.0 0.8916 (0.5304) 0.8896 (0.5192) 0.9456 (0.6320) 0.9425 (0.6187) 0.9905 (0.8305) 0.9871 (0.8131)

5.0 0.8906 (1.3244) 0.8916 (1.3000) 0.9445 (1.5781) 0.9407 (1.5491) 0.9893 (2.0739) 0.9861 (2.0358)

Table 6: Empirical coverage probability (average length) of confidence intervals for β, censored data:
β̂n with variance J−1

n (θ̂n), β̂bc2
n with variance V̂2(θ̂bc2

n )

β0

1 − γ = 0.90 1 − γ = 0.95 1 − γ = 0.99

β̂n β̂bc2
n β̂n β̂bc2

n β̂n β̂bc2
n

n = 20

0.5 0.8841 (0.3826) 0.8921 (0.3810) 0.9439 (0.4530) 0.9387 (0.4511) 0.9886 (0.5907) 0.9816 (0.5881)

0.8 0.8724 (0.6247) 0.8968 (0.6223) 0.9353 (0.7409) 0.9421 (0.7381) 0.9872 (0.9681) 0.9823 (0.9644)

1.0 0.8736 (0.7903) 0.8919 (0.7845) 0.9361 (0.9425) 0.9400 (0.9324) 0.9890 (1.2348) 0.9832 (1.2214)

2.0 0.8629 (1.7076) 0.9014 (1.7135) 0.9312 (2.0306) 0.9456 (2.0377) 0.9880 (2.6620) 0.9844 (2.6713)

5.0 0.8367 (4.9445) 0.9117 (5.1124) 0.9244 (5.8895) 0.9552 (6.0895) 0.9888 (7.7364) 0.9885 (7.9993)

n = 50

0.5 0.8949 (0.2178) 0.8963 (0.2155) 0.9522 (0.2596) 0.9474 (0.2568) 0.9913 (0.3411) 0.9875 (0.3375)

0.8 0.8893 (0.3566) 0.8927 (0.3512) 0.9454 (0.4249) 0.9411 (0.4185) 0.9908 (0.5584) 0.9864 (0.5500)

1.0 0.8857 (0.4485) 0.8902 (0.4423) 0.9449 (0.5345) 0.9409 (0.5270) 0.9897 (0.7024) 0.9842 (0.6926)

2.0 0.8818 (0.9374) 0.8899 (0.9222) 0.9375 (1.1170) 0.9390 (1.0989) 0.9894 (1.4680) 0.9837 (1.4442)

5.0 0.8780 (2.5368) 0.8958 (2.5093) 0.9424 (3.0228) 0.9462 (2.9901) 0.9888 (3.9726) 0.9869 (3.9296)

n = 100

0.5 0.8963 (0.1502) 0.8926 (0.1491) 0.9451 (0.1790) 0.9417 (0.1776) 0.9881 (0.2353) 0.9856 (0.2335)

0.8 0.8940 (0.2439) 0.8895 (0.2410) 0.9490 (0.2907) 0.9445 (0.2871) 0.9895 (0.3820) 0.9875 (0.3774)

1.0 0.8925 (0.3079) 0.8918 (0.3038) 0.9445 (0.3669) 0.9416 (0.3620) 0.9884 (0.4822) 0.9839 (0.4757)

2.0 0.8938 (0.6381) 0.8970 (0.6255) 0.9479 (0.7603) 0.9447 (0.7454) 0.9892 (0.9993) 0.9859 (0.9795)

5.0 0.8877 (1.6825) 0.8938 (1.6506) 0.9416 (2.0048) 0.9413 (1.9668) 0.9891 (2.6348) 0.9866 (2.5848)
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Table 7: Empirical coverage probability (average length) of confidence intervals for y0.5, complete
data: ŷn,0.5 with variance J−1

n (θ̂n), ŷbc2
n,0.5 with variance V̂2(θ̂bc2

n )

y0.5

1 − γ = 0.90 1 − γ = 0.95 1− γ = 0.99

ŷn,0.5 ŷbc2
n,0.5 ŷn,0.5 ŷbc2

n,0.5 ŷn,0.5 ŷbc2
n,0.5

n = 20

4.2670 0.8609 (1.6421) 0.9025 (1.8727) 0.9181 (1.9545) 0.9456 (2.2293) 0.9719 (2.5651) 0.9839 (2.9262)

4.5419 0.8584 (1.0123) 0.9060 (1.1611) 0.9183 (1.2041) 0.9496 (1.3814) 0.9717 (1.5788) 0.9860 (1.8119)

4.6335 0.8469 (0.8170) 0.8941 (0.9358) 0.9082 (0.9721) 0.9436 (1.1136) 0.9706 (1.2752) 0.9845 (1.4611)

4.8167 0.8582 (0.4113) 0.9061 (0.4711) 0.9171 (0.4883) 0.9480 (0.5595) 0.9712 (0.6387) 0.9846 (0.7323)

4.9267 0.8545 (0.1686) 0.8986 (0.1922) 0.9114 (0.2000) 0.9447 (0.2281) 0.9703 (0.2613) 0.9853 (0.2982)

n = 50

4.2670 0.8831 (1.0650) 0.9045 (1.1369) 0.9360 (1.2690) 0.9490 (1.3547) 0.9826 (1.6678) 0.9888 (1.7804)

4.5419 0.8839 (0.6684) 0.9011 (0.7137) 0.9301 (0.7965) 0.9452 (0.8504) 0.9823 (1.0467) 0.9880 (1.1176)

4.6335 0.8779 (0.5321) 0.8991 (0.5685) 0.9348 (0.6340) 0.9482 (0.6774) 0.9819 (0.8333) 0.9871 (0.8903)

4.8167 0.8858 (0.2675) 0.9047 (0.2855) 0.9362 (0.3188) 0.9513 (0.3401) 0.9812 (0.4189) 0.9868 (0.4470)

4.9267 0.8840 (0.1068) 0.9054 (0.1139) 0.9370 (0.1272) 0.9506 (0.1358) 0.9826 (0.1672) 0.9876 (0.1784)

n = 100

4.2670 0.8857 (0.7630) 0.8975 (0.7909) 0.9405 (0.9092) 0.9492 (0.9424) 0.9869 (1.1949) 0.9889 (1.2386)

4.5419 0.8940 (0.4779) 0.9062 (0.4949) 0.9446 (0.5695) 0.9519 (0.5897) 0.9871 (0.7484) 0.9899 (0.7750)

4.6335 0.8960 (0.3819) 0.9075 (0.3957) 0.9460 (0.4551) 0.9532 (0.4715) 0.9867 (0.5981) 0.9888 (0.6196)

4.8167 0.8868 (0.1911) 0.8992 (0.1980) 0.9414 (0.2277) 0.9483 (0.2359) 0.9860 (0.2992) 0.9882 (0.3100)

4.9267 0.8888 (0.0765) 0.9008 (0.0792) 0.9444 (0.0911) 0.9507 (0.0944) 0.9861 (0.1197) 0.9880 (0.1241)

Note: Each 5 rows of data corresponds to β = 0.5, 0.8, 1.0, 2.0, 5.0.
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Table 8: Empirical coverage probability (average length) of confidence intervals for y0.5, censored
data: ŷn,0.5 with variance J−1

n (θ̂n), ŷbc2
n,0.5 with variance V̂2(θ̂bc2

n )

y0.5

1 − γ = 0.90 1 − γ = 0.95 1− γ = 0.99

ŷn,0.5 ŷbc2
n,0.5 ŷn,0.5 ŷbc2

n,0.5 ŷn,0.5 ŷbc2
n,0.5

n = 20

4.2670 0.8638 (1.7367) 0.9096 (1.9856) 0.9251 (2.0666) 0.9559 (2.3631) 0.9778 (2.7112) 0.9890 (3.1010)

4.5419 0.8639 (1.0950) 0.9069 (1.2553) 0.9218 (1.3014) 0.9535 (1.4923) 0.9772 (1.7047) 0.9883 (1.9556)

4.6335 0.8608 (0.8933) 0.9071 (1.0222) 0.9226 (1.0620) 0.9510 (1.2156) 0.9782 (1.3917) 0.9898 (1.5936)

4.8167 0.8647 (0.5088) 0.9025 (0.5828) 0.9244 (0.6021) 0.9512 (0.6903) 0.9768 (0.7846) 0.9856 (0.9005)

4.9267 0.8299 (0.2602) 0.8663 (0.3131) 0.8897 (0.3077) 0.9190 (0.3708) 0.9556 (0.4007) 0.9681 (0.4836)

n = 50

4.2670 0.8857 (1.0962) 0.9034 (1.1525) 0.9370 (1.3062) 0.9492 (1.3733) 0.9839 (1.7166) 0.9877 (1.8049)

4.5419 0.8777 (0.6947) 0.8987 (0.7308) 0.9318 (0.8277) 0.9439 (0.8708) 0.9831 (1.0878) 0.9875 (1.1445)

4.6335 0.8854 (0.5673) 0.9035 (0.5967) 0.9384 (0.6760) 0.9499 (0.7110) 0.9864 (0.8884) 0.9896 (0.9345)

4.8167 0.8803 (0.3159) 0.8942 (0.3306) 0.9331 (0.3764) 0.9448 (0.3939) 0.9834 (0.4947) 0.9867 (0.5177)

4.9267 0.8780 (0.1667) 0.8817 (0.1719) 0.9287 (0.1987) 0.9341 (0.2048) 0.9810 (0.2611) 0.9805 (0.2692)

n = 100

4.2670 0.8939 (0.7785) 0.9059 (0.7987) 0.9456 (0.9276) 0.9519 (0.9517) 0.9871 (1.2191) 0.9888 (1.2507)

4.5419 0.8903 (0.4954) 0.9007 (0.5083) 0.9431 (0.5903) 0.9494 (0.6057) 0.9884 (0.7758) 0.9900 (0.7960)

4.6335 0.8927 (0.4035) 0.9008 (0.4140) 0.9463 (0.4808) 0.9511 (0.4933) 0.9881 (0.6319) 0.9895 (0.6483)

4.8167 0.8848 (0.2250) 0.8913 (0.2302) 0.9365 (0.2680) 0.9432 (0.2743) 0.9884 (0.3523) 0.9889 (0.3605)

4.9267 0.8855 (0.1145) 0.8870 (0.1157) 0.9418 (0.1364) 0.9405 (0.1378) 0.9864 (0.1793) 0.9858 (0.1811)

Note: Each 5 rows of data corresponds to β = 0.5, 0.8, 1.0, 2.0, 5.0.

Table 9: Hours to failure of motorettes

150◦C 170◦C 190◦C 220◦C

8064+ 1764 408 408

8064+ 2772 408 408

8064+ 3444 1344 504

8064+ 3542 1344 504

8064+ 3780 1440 504

8064+ 4860 1680+ 528+

8064+ 5196 1680+ 528+

8064+ 5448+ 1680+ 528+

8064+ 5448+ 1680+ 528+

8064+ 5448+ 1680+ 528+

‘+’ indicates a censoring time.
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