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Abstract

The score test and the GOF test for the inverse Gaussian distribution, in particular

the latter, are known to have large size distortion and hence unreliable power when refer-

ring to the asymptotic critical values. We show in this paper that with the appropriately

bootstrapped critical values, these tests become second-order accurate, with size distortion

being essentially eliminated and power more reliable. Two major generalizations of the score

test are made: one is to allow the data to be right-censored, and the other is to allow the

existence of covariate effects. A data mapping method is introduced for bootstrap to be able

to produce censored data that are conformable with the null model. Monte Carlo results

clearly favour the proposed bootstrap tests. Real data illustrations are given.
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1 Introduction

The inverse Gaussian distribution has become a popular model in a variety of application
areas in the past few decades (Lancaster, 1972; Banerjee and Bhattacharyya, 1976; Chhikara
and Folks, 1977, 1978, 1989; Whitmore, 1979, 1986; Edgeman, 1989, 1990; Pavur et al., 1992;
Seshadri, 1993, 1998; Desmond and Chapman, 1993; Johnson et al., 1994; Hawkins and Olwell,
1997; Ducharme, 2001; Lee and Whitmore, 2006, 2010; Desmond and Yang, 2011). The suit-
ability of the inverse Gaussian model can be assessed via goodness of fit (GOF) tests. This has
been studied previously based on the empirical distribution function (EDF) (Edgeman, 1990;
Pavur et al., 1992), a graphical method with standardized recursive residuals (Letac et al.,
1985), GOF tests (Ducharme, 2001), and score tests (Desmond and Yang, 2011).

Our motivation is based on the underlying Wiener process model. Even with the inclusion
of covariates in the drift parameter, there may be unexplained heterogeneity, which varies from
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individual to individual. This is analogous to a frailty effect in more conventional survival
models. Testing for the existence of frailty effects is an important topic in conventional models;
this motivates our emphasis on testing versus IG models with random drift. Our motivation
for using the refined bootstrap methods is that first order tests are known to be very poor in
this case. In particular, conventional score tests need very large samples in order to be at all
accurate in terms of level. The very unique feature of the score test, i.e., requiring only the
estimation of the null model, makes it practically feasible to bootstrap the finite sample critical
values, resulting in second-order accurate score tests. Also another important motivation is to
extend goodness of fit tests to IG regression and censored data situations. Neither of these
aspects has been treated, at all, previously in the literature, with the exception of Ducharme
(2001), who has a short section on the censored situation but without covariates.

In this paper, we present asymptotically refined score and GOF tests of an inverse Gaussian
distribution. We first show that the score test of Desmond and Yang (2011) and the GOF test
of Ducharme (2001) have a second-order accuracy in rejection probability when referring to the
appropriately bootstrapped critical values. Then, two major generalizations of the score test
are made: one is to allow data to be right-censored, and the other is to allow the existence of
covariate effects. To generate censored bootstrap samples that mimic the samples from the null
model, a data mapping method is introduced. The same types of generalizations do not seem to
be as simple for the other type of tests such as Ducharme’s GOF test. Extensive Monte Carlo
results clearly favour the proposed bootstrap tests.

Section 2 gives a complete treatment of the score and GOF tests for inverse Gaussian
distribution based on a complete sample. Section 3 generalizes the score test to the case of
a censored sample along with its bootstrap version. Section 4 further generalizes the score
and bootstrap score tests to the case of an inverse Gaussian regression model, with complete
or censored data. Section 5 presents Monte Carlo results. Section 6 provides some real data
illustrations. Section 7 concludes the paper.

2 Score and GOF Tests based on a Complete Sample

2.1 Inverse Gaussian and inverse Gaussian mixtures

It is well known that the inverse Gaussian (IG) distribution arises as the first hitting time T

of a Wiener process (with a drift coefficient μ, diffusion coefficient σ, starting at position ‘zero’)
to a boundary or barrier ω. It has the following probability density function (pdf):

f(t|ω, μ, σ2) =
ω√

2πσ2t3
exp

(
−(μt − ω)2

2σ2t

)
, t ≥ 0, (2.1)

where ω > 0, μ > 0, and σ2 > 0. See, e.g., Chhikara and Folks (1989) and Aalen et al. (2008).
Its cumulative distribution function (CDF) takes the form:
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F (t|ω, μ, σ2) = Φ
(

μt − ω√
σ2t

)
+ exp

(
2ωμ

σ2

)
Φ
(
−μt + ω√

σ2t

)
, (2.2)

where Φ(·) is the CDF of the standard normal distribution. Clearly, the pdf (2.1) is proper
when μ > 0 in the sense that it integrates to one or the limit of CDF (2.2) is 1 as t → ∞. When
μ < 0, (2.1) is not a proper pdf in the sense that it does not integrate to one. When μ = 0,
the distribution is proper, i.e. integrates to 1. However, it is not of inverse Gaussian form and
the mean does not exist (i.e. is infinite). It is a stable distribution of index .5; see Feller (1966,
Vol.2, p.170). We will consider in this paper only the proper IG distribution.

There are three parameters in (2.1) but only two of them are free, which can easily be seen
through reparameterization: δ = μ/ω and λ = ω2/σ2, which is in fact a more popular form of
parameterization and is followed in Desmond and Yang (2011):

f(t|δ, λ) =
(

λ

2πt3

)1/2

exp
(
−λ(δt − 1)2

2t

)
, t ≥ 0, δ ≥ 0, λ ≥ 0. (2.3)

To remove the redundant parameter in (2.1), we follow the arguments of Lee and Whitmore
(2006) (the underlying stochastic process used to describe an individual’s ‘health status’ is
usually latent, and an arbitrary unit can be used to measure such a process) and set σ = 1.
Both parameterizations have merits: the former, IG(μ, ω), allows the covariate effects to be
incorporated more naturally through the drift parameter μ as well as the barrier ω, whereas
the latter, IG(δ, λ), gives a simpler expression for the maximum likelihood estimators (MLE).
In this paper, we will mainly use the (μ, ω) parameterization.

The pure IG distribution described above assumes that the individuals are homogeneous
in the sense that they ‘drift’ in the same manner to the boundary. The drift may vary from
individual to individual as some degree of “tracking” can often take place. In this case, it is
typical to treat μ as a random variable, e.g., μ ∼ N (m, υ). Now (2.1) is viewed as the conditional
pdf of T given μ. Integrating the joint pdf of T and μ with respect to the pdf of μ leads to the
‘marginal’ distribution of T as

g(t|ω, m, υ) =
ω√
2π

1√
t3(tυ + 1)

exp
(
−(mt − ω)2

2t(tυ + 1)

)
, (2.4)

where ω > 0 and υ ≥ 0. This distribution is often referred to as the inverse Gaussian mixture
(IGM) in the literature (Whitmore, 1986, Aalen, 1994), which offers a natural way to test the
goodness of fit of the pure inverse Gaussian models. Clearly, it is a defective pdf as the inte-
gration w.r.t. μ is done over the entire real line, where whenever μ is negative, the conditional
pdf of T given μ is an improper pdf. This can be seen from its CDF as well:

G(t|ω, m, υ) = Φ
(

mt − ω√
t2υ + t

)
+ exp(2ωm + 2ω2υ) Φ

(
−ω + 2ωυt + mt√

t2υ + t

)
, (2.5)
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(see, e.g, Aalen, 1994). From (2.5) above, it is easy to see that

π(ω, m, υ) = lim
t→∞G(t|ω, m, υ) = Φ

(
m√
υ

)
+ exp(2ωm + 2ω2υ) Φ

(
−2ωυ + m√

υ

)
,

which is less than 1 when v > 0 as it corresponds to the inverse Gaussian CDF evaluated at
v−1 (see Whitmore, 1986). Clearly, as υ → 0, π(ω, m, υ)→ 1 and G(t|ω, m, υ) → F (t|ω, m).

While the defective feature of (2.4) may not affect the null behavior of the tests for an IG

distribution, to implement the bootstrap procedure, a proper mixture distribution is needed
(see the discussions later). This can be obtained in several ways, of which the simplest may be
through rescaling:

h1(t|ω, m, υ) = g(t|ω, m, υ)/π(ω, m, υ). (2.6)

Desmond and Yang (2011) considered a truncated normal mixing distribution to restrict μ to
be positive so that the resulting IGM is a proper distribution:

h2(t|ω, m, υ) = g(t|ω, m, υ)Φ
(

(υ + m)ω√
υ2t + υ

)
Φ−1

(
mω√

υ

)
, (2.7)

and they further proposed a general way of handling the problems with the defective mixtures
by allowing the mixing distribution to be an arbitrary distribution with mean m and variance
υ. The resulting marginal distribution of T is approximately

h3(t|ω, m, υ) = f(t|ω, m)
[
1 +

1
2
υ(ω2(mt − 1)2 − t)

]
, (2.8)

which is shown to be a proper pdf if m > υ
4 (1 +

√
1 + 2

ω2υ
).

2.2 The score and GOF tests

When υ = 0, the IGM distribution reduces to the IG(m, ω) distribution. Desmond and Yang
(2011) propose a score test of goodness of fit of IG distribution by testing H0 : υ = 0 vs
Ha : υ > 0, based on a complete sample {T1, T2, . . . , Tn}. The test takes the form:

SCIG =

(
λ̃δ̃

6n

)1/2 n∑
i=1

(
λ̃(δ̃Ti − 1)2 − Ti

)
, (2.9)

where, as in Desmond and Yang (2011), we adopt the parameterization in (2.3), and δ̃ =
T̄−1 and λ̃ = (T̃ − T̄−1)−1 are the constrained MLEs of δ and λ under H0, with T̄ and T̃

denoting, respectively, the arithmetic and harmonic means of {T1, T2, . . . , Tn}. The limiting
null distribution of SCIG is N (0, 1). Desmond and Yang (2011) argued that the test takes the
same form when the alternative is the IGM given in (2.8), which is obtained from an arbitrary
mixing distribution with mean m and variance υ satisfying a mild condition. Thus, the test is
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valid against various IGM alternatives, including those given above.
Ducharme (2001) proposes a general purpose goodness of fit (GOF) test of inverse Gaussian

distribution: RK = V2 + . . . , VK, where each VK is asymptotically independent χ2
1 under H0 :

Ti iid IG(δ, λ), and recommended the use of R3. The terms V2 and V3 take the forms:

V2 = nϕ̂4

24+6ϕ̂

(
Z̄2 −

(
1 + 3

ϕ̂ + 3
ϕ̂2

))2
,

V3 = nϕ̂6

a(ϕ̂)

(
Z̄3(4 + ϕ̂) − Z̄2

(
60
ϕ̂ + 30 + 4ϕ̂

)
+ b(ϕ̂)

)2
,

where Z̄r = n−1
∑n

i=1(T̄ /Ti)r, ϕ̂ is the constrained MLE of ϕ = δλ under H0, a(ϕ) = 24(4 +
ϕ)(120+75ϕ+15ϕ2 +ϕ3), and b(ϕ) = 120ϕ−3 +195ϕ−2 +123ϕ−1 +32+3ϕ. The limiting null
distribution of R3 is thus χ2

2. For general principles on score tests, see Cox and Hinkley (1974);
for general principles on GOF tests, see Rayner et al. (2009).

2.3 The score and GOF tests based on bootstrap critical values

The standard testing procedure approximates the finite sample null distribution of SCIG by
N (0, 1) and the finite sample critical values by those of N (0, 1), say zα, for α = 0.1, 0.05, 0.01.
However, the finite sample null distribution may be ‘far’ from N (0, 1), and thus its finite sample
critical values may be ‘far’ from these of N (0, 1), leading to tests with large size distortions.
The more skewed the IG distribution, the larger the size distortion; also the heavier the cen-
sorship, the larger the size distortion as well. Hence, it is highly desirable to have methods
that approximate better the finite sample critical values of the test statistic. We suggest the
following simple procedure to obtain the bootstrap critical values:

(i) Compute (m̈, ω̈):
√

n-consistent estimators of (m, ω) whether or not H0 is true;

(ii) Draw a random sample (T b
1 , T b

2 , . . . , T b
n) from IG(m̈, ω̈);

(iii) Compute SCIG based on (T b
1 , T b

2 , . . . , T b
n), and denote the resulting value by SCb

IG;

(iv) Repeat (i)-(iii) B times, and compute the sample upper α-quantile, qα(m̈, ω̈), of {SCb
IG, b =

1, 2, . . . , B}, which gives the bootstrap critical value for SCIG at H0, or SCIG|H0.

Yang (2015) points out that in bootstrapping the critical values of a score statistic, it is
important to use parameter estimates that are consistent whether or not H0 is true. This is
because in real applications one does not know whether H0 is true or not. In order to be able
to mimic the parent distribution at the null, IG(m, ω), the distribution used to generate the
bootstrap sample, IG(m̈, ω̈), must converge to IG(m, ω) as n gets large, whether or not H0 is
true, and thus it is necessary that (m̈, ω̈) be consistent for (m, ω) whether or not H0 is true.
With this requirement, it is clear that the choice of constrained estimates (m̃, ω̃), under H0,
is not valid as they may not be consistent for (m, ω) when H0 is false. Thus, unconstrained
estimates (m̂, ω̂), say, based on an IGM distribution, given in (2.6)-(2.8), should be used. The
formal argument is in Section 2.4 below.
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Finite sample performance of Ducharme’s GOF test R3 is much worse than that of SCIG,
with larger size distortions (see Table 2 of this paper) and lower size-adjusted power (see Ta-
bles IV and V of Desmond and Yang (2011)). Ducharme (2001) provides a table method for
approximating the finite sample critical values of R3. We show that an identical procedure as
above for the SCIG test can be followed to give bootstrap critical values of R3 that essentially
does an equivalent job to Ducharme’s method (see Table 2 in Section 5). However, our method
can easily be extended to the case of censored data, and the case of censored IG regression,
to give asymptotically refined score tests, whereas Ducharme’s GOF test does not seem to be
extendible in a straightforward manner.

2.4 Validity of the bootstrap method

We now provide some formal arguments to show that with a proper choice of (m̈, ω̈), qα(m̈, ω̈)
is able to provide a second-order approximation to qα(m, ω), the finite sample α-quantile of
SCIG|H0, i.e., the error of approximation is of order O(n−1). In contrast, the asymptotic critical
value zα gives only a first-order approximation to qα(m, ω), i.e., the error of approximation is
of order O(n−1/2). Let θ = (m, ω)′. Denote by Fn(·, θ) the finite sample null CDF of SCIG. Let
κj,n ≡ κj,n(θ) be the jth cumulant of SCIG|H0. If κ4,n exists, and κj,n can be expanded by a
power series expansion in n−1:

κj,n = n− (j−2)
2 (kj,1 + n−1kj,2 + n−2kj,3 + . . .), j = 1, 2, 3,

where k1,1 = 0 and k2,1 = 1, then Fn(·, θ) admits the following asymptotic expansion:

Fn(s, θ) = Φ(s) + n− 1
2 φ(s)p(s, θ) + O(n−1), (2.10)

where p(s, θ) = −k1,2 + 1
6k3,1(1 − s2). See Hall (1992, p.46-48), or Yang (2015, Lemma A.7)

for some more details. See also Hall and Horowitz (1996) for the application of the methods
in the GMM context. From the expansion for κj,n, we see that k1,2 = limn→∞

√
nκ1,n, and

k3,1 = limn→∞
√

nκ3,n. Note that k1,1 = 0 and k2,1 = 1 correspond to the fact that the limiting
mean and variance of SCIG are 0 and 1.

Similar to the result that SCIG
D−→ N (0, 1), the bootstrap analogue SCb

IG of SCIG is such

that SCb
IG

Db−→ N (0, 1), where Db denotes that the convergence is with respect to the bootstrap
distribution, i.e., IG(μ̈, ω̈), the estimated IG(μ, ω). Furthermore, the bootstrap CDF of SCb

IG

must be of the form Fn(·, θ̈), and similar to (2.10), admits the following expansion:

Fn(s, θ̈) = Φ(s) + n− 1
2 φ(s)p(s, θ̈) + Op(n−1). (2.11)

Taking the difference between (2.10) and (2.11), we obtain

Fn(s, θ̈)− Fn(s, θ) = n− 1
2 φ(s)[p(s, θ̈) − p(s, θ)] + Op(n−1),

6
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which is clearly of the order Op(n−1) if θ̈ is a
√

n-consistent estimator of θ whether or not the
null is true. This explains why the tests based on the proposed bootstrap critical values are able
to provide a second-order approximation to the rejection probability, compared with the tests
referring to the asymptotic critical values which give only a first order approximation to the
rejection probability. The Monte Carlo results given in Section 5 show that using the constrained
estimate θ̃ leads to bootstrap critical values that are unstable, which can be significantly different
from the ‘true’ ones, whereas using the unconstrained estimate θ̂ leads to very stable, close to
truth, bootstrap critical values.

We note that for Ducharme’s GOF test, the test statistic depends only on ϕ = mω, suggest-
ing that the finite sample null CDF of R3 depends only on ϕ. Hence, for generating bootstrap
samples from the estimated IG(m, ω) distribution, it is only necessary to have an estimator of
ϕ that is

√
n-consistent whether or not H0 is true. Very interestingly, we see from the Monte

Carlo results given in Section 5, that the bootstrap critical values of Ducharme’s GOF test is
quite insensitive to the choice of estimators of ϕ.

3 Score Tests Based on a Censored Sample

In this section, and the one which follows, we show how the score test considered in Section
2 can be easily extended to the case of a single right-censored sample, and the case of an inverse
Gaussian regression model with complete or right-censored data. It is difficult, if possible at all,
to derive the expected information-based score test, and the Hessian-based score test may have
a complicated expression. We choose to present score tests based on outer-product-of-gradients
(OPG), taking advantage of the fact that the observations are independent and hence the score
functions can be written as sums of independent quantities. Again, we are concerned with
the finite sample performance of the score tests. As noted above, to implement the bootstrap
methods of Yang (2015), all that is needed is that the test statistic is an asymptotic pivot under
the null, and that the estimators of the nuisance parameters (the parameters other than υ) are
consistent whether or not the null is true.

Let t = {t1, t2, . . . , tn} denote the observed values and r = {r1, r2, . . . , rn} be the censoring
indicators, i.e., ri = 1 indicates that ti is the observed failure time and ri = 0 indicates it is a
censored time. As for the case of a complete sample, derivation of the score test can simply be
done based on the defective IGM given in (2.4), as all the other proper IGM distributions lead
to the same expression when letting υ → 0. The loglikelihood is, dropping the constants,


(θ|t, r) = nr log(ω)− 1
2

n∑
i=1

ri log(υti + 1)− 1
2

n∑
i=1

ri(mti − ω)2

ti(υti + 1)
+

n∑
i=1

(1− ri) log Ḡ(ti|θ), (3.1)

where θ = (ω, m, υ)′, nr =
∑n

i=1 ri, and Ḡ(t|θ) = 1 − G(t|θ); see Lawless (2003). The score
functions are

7

Accepted by Journal of Statistical Computation and Simulation on 24/02/2016



Sω(θ) =
n∑

i=1

(
ri

ω
+

ri(mti − ω)
ti(υti + 1)

+ (1− ri)
Ḡω(ti|θ)
Ḡ(ti|θ)

)
≡

n∑
i=1

sω,i(θ),

Sm(θ) =
n∑

i=1

(
−ri(mti − ω)

υti + 1
+ (1 − ri)

Ḡm(ti|θ)
Ḡ(ti|θ)

)
≡

n∑
i=1

sm,i(θ),

Sυ(θ) =
n∑

i=1

(
− riti

2(υti + 1)
+

ri(mti − ω)2

2(υti + 1)2
+ (1 − ri)

Ḡυ(ti|θ)
Ḡ(ti|θ)

)
≡

n∑
i=1

sυ,i(θ),

where Ḡ�(ti|θ) denotes the partial derivatives of Ḡ(ti|θ) with respect to � = ω, m, and υ,
respectively ; their exact expressions can easily be obtained and are given in the Appendix.
Define an n × 3 matrix G(θ) with its ith row being (sω,i(θ), sm,i(θ), sυ,i(θ)). Let ω̃ and m̃ be
the estimates of ω and m under H0 : υ = 0, and θ̃ = (ω̃, m̃, 0)′. Let τ(θ) be the square root of
the bottom-right corner element of [G ′(θ)G(θ)]−1. Then, the score test for testing H0 : υ = 0,
based on a censored sample takes the form:

SC∗IG = Sυ(θ̃)τ(θ̃). (3.2)

The asymptotic null distribution of SC∗IG is N (0, 1), and the standard test is to refer to the
standard normal critical values. These critical values give first-order approximations to the
finite sample critical values of SC∗IG of which the exact finite sample distribution is unknown.

Bootstrap critical values. Censoring complicates the procedure for bootstrapping the
score test statistic, as in practice one knows neither the censoring distribution nor whether
or not H0 is true. This is in a clear contrast to bootstrapping censored data for estimation
or confidence interval construction where one faces the ‘correct’ model, and, if the censoring
variable is independent of the failure time variable, a general and yet simple semiparametric
procedure (with censoring distribution nonparametrically estimated) can be followed:

(1) Draw a random sample (T b
1 , T b

2 , . . . , T b
n) from IG(m̈, ω̈);

(2) Sort the observed lifetimes as (t(1), t(2), . . . , t(n)), and denote the corresponding failure
indicators by (r(1), r(2), . . . , r(n));

(3) If r(i) = 0, then the bootstrap censoring time Cb
i = t(i); otherwise Cb

i is a value randomly
chosen from (t(i), ..., t(n));

(4) For i = 1, . . . , n, set tbi = min(T b
i , Cb

i ), and rb
i = 1 if T b

i < Cb
i otherwise 0.

See Davison and Hinkley (1997, Sec. 3.5) on this procedure. See also Efron (1981) for the very
original idea on use of the bootstrap with censored data.

However, this procedure cannot be directly followed as steps (2) and (3) only mimic the
true model (which may correspond to Ha). To bootstrap the finite sample critical value of
the score test statistic it is necessary that the bootstrap procedure be able to mimic the null

8
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model whether it is true or not. To overcome this difficulty, we propose to map (or convert) the
original data to a data set that is conformable with the null model. The details are as follows.

Data Mapping Method: compute p̂i = G(ti|m̂, ω̂, v̂) and t̂i = F−1(p̂i|m̂, ω̂), i = 1, 2, . . . , n,
and then replace the original data used in steps (2)-(3) above by the mapped data (t̂i, ri), where
(m̂, ω̂, v̂) are the full estimates, and F and G are the IG and IGM CDFs given in Sec. 2.

The above algorithm can be simplified if knowledge about the censoring distribution is
available. For example, if it is known that censoring is fixed at one time point, say c0, then the
censoring time used to generate bootstrap samples is ĉ = F−1(p̂|m̈, ω̈) where p̂ = 1

n

∑n
i=1 ri; if it

is known that the censoring is done uniformly around c0, say U(0.8c0, 1.2c0), then the bootstrap
censoring times can be n random draws from U(0.8ĉ, 1.2ĉ). Monte Carlo results presented in
Section 5 show these procedures perform well.

Clearly, the proposed bootstrap procedure makes the censoring proportions under the ‘true’
world and the ‘null’ world conformable to each other. This is important as a valid bootstrap
procedure should be one that is able to mimic the ‘null’ world even if it may not represent
the true one. Based on this method for generating a censored bootstrap sample, the detailed
procedure for obtaining the bootstrap critical values for SC∗IG is as follows:

(i) Compute (m̈, ω̈):
√

n-consistent estimators of (m, ω) whether or not H0 is true;

(ii) Draw a censored bootstrap sample {(tbi , rb
i), i = 1, . . . , n} based on IG(m̈, ω̈) according to

the procedure described above;

(iii) Compute SC∗IG based on {(tbi , rb
i ), i = 1, . . . , n} and denote the resulting value by SC∗b

IG;

(iv) Repeat (i)-(iii) B times, and compute the sample upper α-quantile, q∗α(m̈, ω̈), of {SC∗b
IG, b =

1, 2, . . . , B}, which gives the bootstrap critical value for SC∗IG|H0.

It can be argued in a similar manner that the bootstrap critical value q∗α(m̈, ω̈) is able to
provide a second-order approximation to the finite sample critical value of SC∗IG|H0.

From the above discussions, we see that it is indeed quite straightforward to extend the
bootstrap score test to the case of a censored random sample. However, such an extension for
Ducharme’s GOF test is not straightforward. Ducharme (2001) describes a bootstrap test for
Type I censored data, which is a special case of our random censoring scheme. It is not clear
how to extend it to the general random censoring scheme. Further, the suggested parametric
bootstrap method is questionable in the way the censoring times for the bootstrap samples
are chosen, and in that the test is constructed by bootstrapping the score function and its
variance. The score function itself is not an asymptotic pivot, and hence such a bootstrap
procedure cannot achieve a second-order approximation. To construct a score pivot, it requires
the explicit form of the survivor function under the alternative as seen above.

The issue left is how to obtain
√

n-consistent estimators of ω and m without knowing
whether or not H0 is true, to give a valid bootstrap test. If the class of the models considered
are IGM, then general consistent estimators for ω and m can be obtained by maximizing the IGM
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likelihood. However, if the alternatives do not nest the null model as in the general purpose GOF
test of Ducharme (2001), a different method is required to give generally consistent estimators
of ω and m in order for the bootstrap method to be valid.

4 Score Tests for Inverse Gaussian Regression Model

4.1 The IG Regression Model

Moving from a constant drift to a random drift is one step accounting for the heterogeneity
among individuals. Individuals may also differ in their initial health status (ω), and in their
proclivity to drift to or away from the boundary, depending on their intrinsic health-related
characteristics. Thus, as in the regular linear regression or generalized linear regression models,
it is natural to assume that the mean (drift) of the underlying stochastic process is affected
by some covariates. It is also natural to assume that the initial health status is affected by
covariates. Consider a set of n randomly selected individuals with health-related characteristics
(covariates) X1, . . . , Xk, initial values ω = (ω1, . . . , ωn)′, and drifts m = (m1, . . . , mn)′. As
ωi > 0 and mi ≥ 0, plausible ways that link ω and m to the covariates are:

ln(ω) = γ01n + γ1X1 + . . . + γkXk = Xγ, (4.1)

ln(m) = β01n + β1X1 + . . . + βkXk = Xβ, (4.2)

where 1n is an n-vector of ones. Now, the test of H0 : υ = 0 corresponds to whether the IG

regression model gives an adequate fit to the data or whether an alternative IGM regression
model should be used. The link functions in (4.1) and (4.2) can be of other forms, and it is not
necessary that they contain the same set of covariates.

4.2 Score tests based on complete data

Let θ = (γ ′, β′, υ)′. The loglikelihood function is, omitting the constant terms,


(θ|t, X) =
n∑

i=1

log(ωi)− 1
2

n∑
i=1

log(υti + 1) − 1
2

n∑
i=1

(miti − ωi)2

ti(υti + 1)
, (4.3)

where ωi = exp(x′
iγ), mi = exp(x′

iβ), and x′
i is the ith row of X . The score functions are

Sγ(θ) =
n∑

i=1

(
1 +

(miti − ωi)ωi

ti(υti + 1)

)
xi ≡

n∑
i=1

sγ,i(θ), (4.4)

Sβ(θ) =
n∑

i=1

(
−(miti − ωi)mi

υti + 1

)
xi ≡

n∑
i=1

sβ,i(θ), (4.5)

Sυ(θ) =
n∑

i=1

1
2

((
miti − ωi

υti + 1

)2

− ti
υti + 1

)
≡

n∑
i=1

sυ,i(θ). (4.6)
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Let γ̃ and β̃ be the MLEs of γ and β under the null, and θ̃ = (γ̃ ′, β̃, 0)′. Let G(θ) be an
n× [2(k+ 1) + 1] matrix with its ith row being {sγ,i(θ)′, sβ,i(θ)′, sυ,i(θ)} and τ(θ) be the square
root of the bottom-right corner element of [G(θ)′G(θ)]−1. The score test is

SCIGR = Sυ(θ̃)τ(θ̃). (4.7)

The asymptotic null distribution of SCIGR is N (0, 1), and the test refers to the asymptotic critical
values Zα.

Bootstrap critical values. For IG regressions with complete data, the procedure for
bootstrapping the critical values is a straightforward extension of that based on a complete
sample. The details are as follows.

(i) Compute (γ̈, β̈):
√

n-consistent estimators of (γ, β) whether or not H0 is true;

(ii) Draw tbi from IG(m̈i, ω̈i), where m̈i = exp(x′
iγ̈) and ω̈i = exp(x′

iβ̈), independently for
i = 1, . . . , n;

(iii) Compute SCIGR based on {(tbi , xi), i = 1, . . . , n}, and denote the resulting value by SCb
IGR;

(iv) Repeat (i)-(iii) B times, and compute the sample upper α-quantile, qα(γ̈, β̈), of {SCb
IGR, b =

1, 2, . . . , B}, which gives the bootstrap critical value for SCIGR|H0.

It can be argued in a similar manner that the bootstrap critical value qα(γ̈, β̈) is able to
provide a second-order approximation to the finite sample critical value of SCIGR.

4.3 Score tests based on right-censored data

With the censored regression data {(ti, ri, xi), i = 1, . . . , n}, the loglikelihood is, omitting the
constants,


(θ|t, r, X) =
n∑

i=1

ri

(
log(ωi) − 1

2
log(υti + 1) − 1

2
(miti − ωi)2

ti(υti + 1)

)
+

n∑
i=1

(1−ri) log Ḡi(ti|θ), (4.8)

where Ḡi(ti|θ) = ϕ[−ai(ti, θ)] − ci(θ)Φ[−bi(ti, θ)], with ai(ti, θ) = mi(β)ti−ωi(γ)

(υt2i +ti)1/2 , bi(ti, θ) =
ωi(γ)+2ωi(γ)υti+mi(β)ti

(υt2i +ti)1/2 , and ci(θ) = exp[2ωi(γ)mi(β) + 2ω2
i (γ)υ]. The score functions can simply

be written as:

S∗
γ(θ) =

n∑
i=1

risγ,i(θ) +
n∑

i=1

(1− ri)
Ḡi,γ(ti|θ)
Ḡi(ti|θ)

≡
n∑

i=1

s∗γ,i(θ),

S∗
β(θ) =

n∑
i=1

risβ,i(θ) +
n∑

i=1

(1 − ri)
Ḡi,β(ti|θ)
Ḡi(ti|θ) ≡

n∑
i=1

s∗β,i(θ),

S∗
υ(θ) =

n∑
i=1

risυ,i(θ) +
n∑

i=1

(1 − ri)
Ḡi,υ(ti|θ)
Ḡi(ti|θ) ≡

n∑
i=1

s∗υ,i(θ),
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where Ḡi,�(ti|θ) = ∂
∂� Ḡi(ti|θ), for � = γ, β and υ; their expressions are given in the Appendix.

Let γ̃ and β̃ be the MLEs of γ and β under the null, and θ̃ = (γ̃ ′, β̃, 0)′. Let G∗(θ) be an
n× [2(k+1)+1] matrix with its ith row being {s∗γ,i(θ)

′, s∗β,i(θ)
′, s∗υ,i(θ)} and τ∗(θ) be the square

root of the bottom-right corner element of [G∗(θ)′G∗(θ)]−1. The score test is

SC∗IGR = S∗
υ(θ̃)τ∗(θ̃), (4.9)

of which the null distribution is asymptotically N (0, 1). However, the finite sample null behavior
of SC∗IGR is unclear.

Bootstrap critical values. Generating bootstrap samples in a censored IG regression
is trickier. The simplest way is to treat the censoring distribution to be independent of the
covariates, besides being independent of the failure times. In this case, the bootstrap censoring
times can be generated in a similar manner as that described in the data mapping method given
in Section 3 for one sample problems. Now to map the original data (ti, ri) into the null world
in a regression framework, compute p̂i = G(ti|m̂i, ω̂i, v̂), and t̂i = F−1(p̂i|m̂i, ω̂i), i = 1, 2, . . . , n.
The mapped data are thus {(t̂i, ri), i = 1, . . . , n}. The details for generating bootstrap data are:

(1) Draw T b
i from IG(m̈i, ω̈i), independently for i = 1, . . . , n;

(2) Sort the mapped lifetimes in ascending order, and denote the results by (t̂(1), t̂(2), . . . , t̂(n))
and the corresponding failure indicators by (r(1), r(2), . . . , r(n));

(3) If r(i) = 0, then the bootstrap censoring time Cb
i = t̃(i); otherwise Cb

i is a value randomly
chosen from (t̂(i), ..., t̂(n));

(4) For i = 1, . . . , n, set tbi = min(T b
i , Cb

i ), and rb
i = 1(T b

i < Cb
i ).

Now, based on this method for generating the censored bootstrap data, the procedure for
bootstrapping the critical values of SC∗IGR|H0 is as follows:

(i) Compute (γ̈, β̈):
√

n-consistent estimators of (γ, β) whether or not H0 is true;

(ii) Obtain the bootstrap data {(tbi , ri), 1, . . . , n} based on the procedure given above;

(iii) Compute SC∗IGR based on {(tbi , ri, xi), 1, . . . , n}, and denote the resulting value by SC∗,b
IGR;

(iv) Repeat (i)-(iii) B times, and compute the sample upper α-quantile, q∗α(γ̈, β̈), of {SC∗,b
IGR, b =

1, 2, . . . , B}, giving the bootstrap critical value for SCIGR|H0.

It can be shown that if γ̈ and β̈ are consistent estimators of γ and β, q∗α(γ̈, β̈) offers a
second-order approximation to q∗α(γ, β), the unknown finite sample critical value of SC∗IGR|H0. If
the censoring distribution depends the covariates, the proposed data mapping method can still
be applied as the null and the alternative correspond to the same set of covariates.
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5 A Monte Carlo comparison

Extensive Monte Carlo experiments are run to investigate the finite sample performance of
the tests when referring to the asymptotic critical values (ACRs), or the bootstrap critical values
(BCRs) based on the restricted MLEs, or the BCRs based on the unrestricted estimates. As
remarked in Yang (2015), in investigating the finite sample behavior of a bootstrap test it is
important to see whether the bootstrap critical values are stable with respect to the alternatives,
in our context, the value of υ. Thus, the stability of the two types of bootstrap critical values
with respect to the change in the value of υ is also assessed. The methods for generating the
IG and IGM random variates can be found in, e.g., Desmond and Yang (2011).

The case of a complete sample. Consider first the one-sample test with complete data.
For simplicity, we use the defective IGM given in (2.4) to estimate jointly the parameters (m, ω, υ),
and use the resulting MLEs m̂ and ω̂ as the bootstrap parameters to generate bootstrap samples
from the IG(m̂, ω̂). We choose the parameter values so that the (2.4) is essentially a proper pdf
so that (m̂, ω̂) is

√
n-consistent for (m, ω) whether or not υ = 0. The results are summarized in

Tables 1a, 1b and 2a and 2b. Each set of results (corresponding to one parameter configuration)
is based on M = 5000 Monte Carlo samples and B = 999 bootstrap samples from each Monte
Carlo sample.

First from Table 1a we see that exactly as the theory predicts, the BCR for the score test
based on the restricted MLE (rMLE) varies significantly with the alternative value υ. In contrast,
the BCR for the score test based on the unconstrained MLE (uMLE) is very stable with respect
to the change of the υ value. Furthermore, BCRs based on uMLE are very close to the ‘true’
finite sample critical values (FCRs), obtained from the Monte Carlo simulation based on 50,000
Monte Carlo runs. This confirms our theory that the bootstrap critical value is a second-order
approximation to the finite sample critical values of the test statistic. The consequence of using
rMLE, as seen clearly from the results in Table 2a, is that the power of the test is unreliable –
it tends to give higher power due to the fact that the test is based on a smaller critical value
(than the true one). The score test referring to ACRs can be severely undersized for the 90%
and 95% tests, but oversized for the 1% test. In contrast, the test referring to BCRs have sizes
very close to their nominal levels.

The results in Tables 1b and 2b show a similar pattern for Ducharme’s GOF test as for
the score test. Some noticeable differences are as follows. The GOF test referring to ACRs has
much larger and much more persistent size distortions, showing the stronger need of using the
bootstrap critical values. When the size of the test is adjusted (by referring to the appropriate
BCRs), the GOF test is seen to have a significantly lower power than the score test. Again,
the BCRs based on uMLE are more stable than those based on rMLE, and are very close to the
corresponding FCRs obtained from Monte Carlo simulation.

Interestingly, we note that while the BCRs under uMLEs are very close to the corresponding
FCRs for any sample size, which are correct from our theoretical point of view, the convergence
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of FCRs to the corresponding ACRs is very slow, in particular for the GOF test. In other words,
the convergence at the null of the score test to N (0, 1) is very slow, and that of GOF test to χ2

2

is even slower. These observations further reinforce the need to use BCRs in performing tests.
The advantage of the bootstrap method is that it does not require the knowledge of the limiting
distribution of the test statistic, as long as it is asymptotically pivotal.

The case of a censored sample. We consider various censoring schemes such as Type
I, Type II, random censoring with known censoring distribution, and random censoring with
unknown censoring distribution where the proposed data mapping method is applied. For each
Monte Carlo samples, two sets of observations {T ∗

1 , . . . , T ∗
n} and {C1 . . . , Cn} are generated, with

T ∗
i from the ‘true’ distribution (IG or IGM), and Ci from any proper distribution referred to as

the censoring distribution. Tables 3a and 3b summarize the bootstrap critical values and the
rejection rates under the fixed-time censoring (Type I) scheme with c0 being the 90th percentile
of the true distribution, where the bootstrap censoring time is the estimate ĉ = F−1(p̂|m̈, ω̈)
with p̂ = 1

n

∑n
i=1 ri as described in Section 3. Tables 4a and 4b replicate the results in Tables

3a and 3b with c0 changed to the 80th percentile of the true distribution. Tables 5a, 5b and 5c
contain the bootstrap critical values and rejection rates where the censoring times are random
draws from U(0.8c0, 1.2c0) with c0 being the 80th percentile of the true distribution. Table
5b corresponds to the case of a known censoring distribution, and in this case the bootstrap
censoring times are random draws from U(.8ĉ, 1.2ĉ), whereas Table 5c corresponds to the case
of an unknown censoring distribution, and the bootstrap censoring times are generated from
the data mapping method described in Section 3. As computation under censored data is more
demanding, we reduce the number of Monte Carlo samples to M = 2000 and the number of
bootstrap samples to B = 699.

The results reveal a similar general pattern as in the case of complete data: (i) the score
test referring to the asymptotic critical values can have large size distortion, (ii) bootstrap
critical values are very close to the finite sample critical values (obtained from the Monte Carlo
simulation), and the test referring to the bootstrap critical values has sizes very close to the
nominal levels. Furthermore, comparing the results in Table 4b with these in Table 3b we
see the heavier the censorship, the larger the size distortion of the asymptotic test. Again, the
results show that the convergence of the score test under the null to N (0, 1) is very slow. Finally
and very interestingly, the results in Table 5c show that the proposed data mapping method

for generating bootstrap censoring times performs very well in terms of the size of the test,
although it has slightly lower power than the case where the censoring distribution is treated
as known (Table 5b). Results under Type II censoring are omitted due to space limitations.

IG regression with complete data. Consider the following models:

ln(mi) = β0 + β1x1i + β2x2i and ln(ωi) = γ0 + γ1x1i + γ2x2i, i = 1, 2, . . . , n,

where the values {x1i} and {x2i} of the two covariates X1 and X2 are generated independently

14

Accepted by Journal of Statistical Computation and Simulation on 24/02/2016



from N (0, .52) and are fixed in the subsequent Monte Carlo runs. The values of the γ-parameters
are chosen to be (.5, .25, .25) and so are the values of the β-parameters. In choosing the param-
eter values for an IG regression model, it may be helpful to recall that the mean and variance
for an IG(μ, ω) distribution are, respectively, ω/μ and ω/μ3. This choice of parameter values
thus gives δi = μi/ωi = 1 as in the one sample case, and λi = ω2

i with a similar magnitude as in
the one sample case. Monte Carlo results under other parameter values (unreported to conserve
space) show the parameter values may affect the finite sample performance of the test. We use
again M = 2000 and B = 699 as numerical maximization needs to be done for estimating any
of the model parameters.

Table 6a contains Monte Carlo results corresponding to the finite sample distribution of
the score test statistic SCIGR defined in (4.7). The results show that SCIGR can be very much
negatively skewed, and that the convergence of SCIGR to N (0, 1) is extremely slow and is much
worse than the case of a complete sample. Interestingly, the positive part of SCIGR is much
closer to N (0, 1) than its negative part. This is a desirable feature as only right-tailed tests are
concerned. However, there must be scenarios under which SCIGR becomes positively skewed.
More research is desirable but is beyond the scope of this paper.

Table 6b contains the bootstrap critical values based on the restricted and the unrestricted
parameter estimates. From the results we see that the bootstrap critical values are in general
very close to the finite sample critical values. It is very interesting to note that, similar to the
case of a single censored sample, the bootstrap critical values in the inverse Gaussian regression
models with complete data are quite robust to the choice of the parameter estimates, although
in general the bootstrap critical values based on the unrestricted estimates are more stable.

Table 6c contains the rejection probabilities for the IG regression model with complete data.
From the results, we see that the size and power of the test based on the asymptotic critical
values can be quite unreliable. Both size and power can be too small relative to the ‘true’ size
and power, even when the sample size is very large (e.g., n = 2000, as the results of Table 6a
suggest). In contrast, the test based on the bootstrap critical values are much more reliable.

IG regression with censored data. We consider the same models as in the case of
complete data. Censoring makes the estimation of IGM regression model more difficult when n

is not so large. Considering the fact that the bootstrap critical values are quite robust against
the choice of parameter estimates, we focus on comparing the results based on ACR and BCR

under rMLE. We consider various censoring schemes such as Type I, Type II and random
censoring. The Type I censoring time is fixed at c0 = 90th percentile of IGM(m̄, ω̄, υ), where m̄

and ω̄ are the averages of m and ω, respectively; the bootstrap censoring time ĉ = F−1(p̂| ¯̃m, ¯̃ω),
where p̂ is defined above, and ¯̃m and ¯̃ω are the averages of the restricted estimates m̃ and ω̃. In
the case of random censoring, as the data mapping method described in Section 3 requires the
estimation of the IGM regression model, we focus on the case of a known censoring distribution:
the censoring times are random draws from U(0.8c0, 1.2c0), and bootstrap censoring times are
random draws from U(0.8ĉ, 1.2ĉ). For Type II censoring, the censoring time is the (.9n)th order
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statistic, and the bootstrap censoring time is the (.9n)th order statistic of the sample generated
from IG(m̃i, ω̃i), i = 1, 2, . . . , n.

Tables 7a, 7b, and 7c contain partial results under Type II censoring, Tables 8a, 8b and
8c contain partial results under random censoring, and for the Type I censoring case, only the
finite sample critical values are given in Table 9, as Type I censoring can be considered as a
special case of random censoring. From the results, it is interesting to see that the finite sample
null behaviour of the score test for IG regression under censoring is ‘nicer’ compared with the
case of complete data – it is more symmetrically distributed and it converges to N (0, 1) faster,
in particular under Type I and random censorship. The bootstrap critical values based on the
restricted parameter estimates are quite stable with respect to alternative values, and the tests
referring to BCRr have much more reliable size and power.

6 Real Data Illustrations

In this section, we provide some real data illustrations on the practical implementations of
the score and GOF tests referring to the asymptotic as well as the bootstrap critical values.

(1) The repair time data (Whitmore, 1986). The data consist of 46 repair times (in
hours) for an airborne communication transceiver. The restricted and unrestricted estimates of
(δ, λ) are both (0.2773, 1.6589) as the unrestricted estimate υ̂ of υ is 0. The score test statistic
SCIG = −0.2899, and the GOF test R3 = 0.0093, both suggesting that the IG fits the data
well. The table below gives the bootstrap critical values (BCR), showing that they may differ
dramatically from the corresponding asymptotic critical values (ACR).

Bootstrap Critical Values: Repair Time Data
Nominal Score Test GOF Test
size ACR BCR ACR BCR

10% 1.2816 0.4586 4.6052 2.8401
5% 1.6449 0.8468 5.9915 4.2406
1% 2.3263 2.0395 9.2103 9.5741

(2) The Reaction Time Data (Whitmore, 1986). Based on a complete sample of 180 reac-
tion times with origin shifted by 337.5, the restricted estimates are (δ̃, λ̃) = (0.0026457, 1019.5)
and the unrestricted estimates are (δ̂, λ̂, υ̂) = (0.0030534, 1744.8, 0.0017134). The score test
with SCIG = 3.6678 and the GOF test with R3 = 14.0502 both reject the null hypothesis of IG
distribution, based on either the ACRs or the BCRs, shown in the table below.

Bootstrap Critical Values: Reaction Time Data
Nominal Score Test GOF Test

size ACR BCRr BCRu ACR BCRr BCRu

10% 1.2816 1.3590 1.4692 4.6052 3.5703 3.8021
5% 1.6449 1.9740 2.0179 5.9915 5.4046 5.5016
1% 2.3263 3.2080 2.8182 9.2103 11.469 11.919
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Even with a complete sample of size 180, we see that the bootstrap critical values differ signif-
icantly from the asymptotic ones. Use of restricted or unrestricted estimates as the bootstrap
parameters also makes a noticeable difference on the BCRs for the score test, but not much for
the GOF test. This is consistent with the Monte Carlo results presented earlier.

(3) The Failure Age Data (Whitmore, 1983). This is a censored data set with 20 ob-
servations (three censored) on the failure age of aluminum-reduction cells and one regressor,
the time since the cell was first installed. For details, see Whitmore (1983). As in Whitmore
(1983), we first analyze the failure ages treated as one sample, and then analyze the whole data
using our proposed regression model. First, for the single-sample analysis, both restricted and
unrestricted estimates of δ and λ are 77.2058 and 0.0479 as the unrestricted estimate of υ is 0.
The score test statistic has a value of −0.7590, leading to non-rejection of the IG hypothesis.
The BCRs are (1.9611, 2.4404, 3.0520), which are much larger than the corresponding ACRs.

For the regression analysis we use Models (4.1) and (4.2) with the sole regressor and an inter-
cept appearing in both terms. Both restricted and unrestricted estimates of (γ0, γ1, β0, β1) are
(4.374, .0012388,−3.4142, .0086256) as the estimate of υ is 0. The score test statistic has a value
of −2.1467, leading to a non-rejection of IG hypothesis. The BCRs are (2.7596, 3.2072, 3.7156),
significantly larger than the corresponding ACRs, showing the importance of using the bootstrap
critical values for inference.

(4) The Motorettes Failure Data (Whitmore, 1983). This is a Type I censored regression
data with 10 observations corresponding to each of the four levels of the sole regressor, which is
temperature in degrees Celsius. The first 10 observations are all censored. We follow Whitmore
(1983) to use the remaining 30 observations to perform a regression analysis. We use the same
model as that in (3) above, which is different from the model used in Whitmore (1983). The
restricted and unrestricted estimates of (γ0, γ1, β0, β1) are (4.5342,−.0015461,−11.471, .042144)
and (4.1385, .0038305,−12.489, .049489). The estimate of υ is .015343. The score statistic has
a value of −2.0875, leading to non-rejection of the IG assumption. BCRr = (2.14, 2.6578, 3.5585)
and BCRu = (3.1731, 3.8742, 5.2737). Unlike the case in (3), this is a heavily censored data set,
causing the unrestricted estimation and the BCRu values to be sensitive to the initial values,
because the true υ is at or close to the boundary value 0. In this case, inference based on BCRr

is recommended, in line with the discussions given at the end of Sec. 5.

7 Conclusion and Discussion

Score tests for inverse Gaussian models are considered. Bootstrap methods are proposed to
give a second-order approximation to the finite sample critical values of the score test statistic.
Implementation of the bootstrap method in the complete data case is quite straightforward, but
not in the censored data case. We propose a data mapping method that maps the real data into
the null model to make sure the resulting censoring observations mimic those under the real
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world. This method is valid as long as the censoring distribution is independent of the lifetime
distribution. Extensive Monte Carlo experiments demonstrate excellent performance of the
proposed bootstrap score tests for inverse Gaussian distribution or inverse Gaussian regression.
In the case of the former, it is advisable to use the unrestricted parameter estimates to generate
bootstrap IG samples, whereas in the case of the latter, the bootstrap critical values are seen to
be quite robust against the choice of parameter estimates and hence, considering its simplicity,
the restricted estimates are recommended for use in generating bootstrap samples.

The score test is known to be a member of the usual ‘Holy Trinity’ of asymptotic likelihood-
based tests. A reviewer has drawn our attention to a very interesting addition to this ‘Holy
Trinity’, the gradient test (Terrell, 2002; Lemonte, 2012), which uses only the point estimate
and the concentrated score of the parameter to be tested, based on a remarkably simple idea.
While this test clearly deserves further attention as pointed out by Rao (2005), a detailed study
is beyond the scope of the paper, and is left for future research. Instead, we have conducted
some Monte Carlo experiments to study the size properties of all these four tests. To ensure
comparability with the score and Wald tests, we have used the signed square-root version of
the gradient test and the signed square-root likelihood ratio test. All of them are referred to
the upper critical values of the standard normal distribution. The results (not reported for
brevity) show that all these four tests may have poor finite sample properties, in particular the
gradient test with censored data. The likelihood ratio test seems to have the best finite sample
size property, but its size distortion can still be significant. This shows the need for asymptotic
refinements for all these four tests. However, the calculation of the gradient test, as of the
likelihood ratio and Wald tests, requires the estimation of the full model in every bootstrap
sample, making the bootstrap approximation to the finite sample critical values extremely
intensive computationally.

Another type of test which can be used in our situation is the Kolmogorov-Smirnov (KS)
test (Edgeman,1990; Pavur et al., 1992). The KS test is an omnibus test often lacking power
for specific directions. Our test is designed for specific alternatives important in the use of
IG in applications in reliability and survival analysis, where unobserved heterogeneity in the
drift parameter is important. The situation is analogous to frailty effects in more conventional
survival models. Furthermore, the proposed bootstrap method requires consistent estimators
(whether or not H0 is true) to be used as bootstrap parameters. A clearly specified alternative
leads to general consistent estimators.
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Appendix: Some Detailed Expressions

Some expressions in Sections 3-5 are quite straightforward to derive, but can be lengthy. We
give them in this appendix to facilitate the practical applications of the proposed tests.

Expressions for Section 3. Write G(t|θ) = Φ(a(t, θ)) + c(θ)Φ(−b(t, θ)), where a(t, θ) =
(mt−ω)(υt2 + t)−1/2, b(t, θ) = (mt+ ω + 2ωυt)(υt2 + t)−1/2, and c(θ) = exp(2ωm+ 2ω2υ). We
have, Ḡ(t|θ) = Φ(−a(t, θ))− c(θ)Φ(−b(t, θ)), and hence

Ḡω(t|θ) = −φ(−a(t, θ))aω(t, θ) − cω(θ)Φ(−b(t, θ)) + c(θ)φ(−b(t, θ))bω(t, θ),

Ḡm(t|θ) = −φ(−a(t, θ))am(t, θ) − cm(θ)Φ(−b(t, θ)) + c(θ)φ(−b(t, θ))bm(t, θ),

Ḡυ(t|θ) = −φ(−a(t, θ))aυ(t, θ) − cυ(θ)Φ(−b(t, θ)) + c(θ)φ(−b(t, θ))bυ(t, θ),

where
aω(t, θ) = −(υt2 + t)−1/2,
am(t, θ) = t(υt2 + t)−1/2,
aυ(t, θ) = −1

2 (mt − ω)t2(υt2 + t)−3/2,
bω(t, θ) = (1 + 2υt)(υt2 + t)−1/2,
bm(t, θ) = am(t, θ), bυ(t, θ) = −1

2 (mt + ω + 2ωυt)t2(υt2 + t)−3/2 + 2ωt(υt2 + t)−1/2.

Expressions for Section 4. Recall Ḡi(ti|θ) = Φ[−ai(ti, θ)] − ci(θ)Φ[−bi(ti, θ)], where
ai(ti, θ) = mi(β)ti−ωi(γ)

(υt2i +ti)1/2 , bi(ti, θ) = ωi(γ)+2ωi(γ)υti+mi(β)ti
(υt2i +ti)1/2 , and ci(θ) = exp[2ωi(γ)mi(β)+2ω2

i (γ)υ].

We obtain the partial derivatives of Ḡi(ti|θ) as,

Ḡi,γ(ti|θ) = −φ(−ai(ti, θ))aiγ(ti, θ)− ciγ(θ)Φ(−bi(ti, θ)) + ci(θ)φ(−bi(ti, θ))biγ(t, θ),

Ḡi,β(ti|θ) = −φ(−ai(ti, θ))aiβ(ti, θ) − ciβ(θ)Φ(−bi(ti, θ)) + ci(θ)φ(−bi(ti, θ))biβ(ti, θ),

Ḡi,υ(ti|θ) = −φ(−ai(ti, θ))aiυ(ti, θ) − ciυ(θ)Φ(−bi(ti, θ)) + ci(θ)φ(−bi(ti, θ))biυ(ti, θ),

where
aiγ(ti, θ) = − ωi(γ)

(υt2i +ti)1/2 xi,

aiβ(ti, θ) = mi(β)ti
(υt2i +t)1/2 xi,

aiυ(ti, θ) = − [mi(β)ti−ωi(γ)]t2i
2(υt2i+ti)3/2 ,

biγ(ti, θ) = ωi(γ)(1+2υti)

(υt2i +ti)1/2 xi,
biβ(ti, θ) = aiβ(ti, θ),
biυ(ti, θ) = 2ωi(γ)ti

(υt2i +ti)1/2 − [mi(β)ti+ωi(γ)+2ωi(γ)υti]t2i
2(υt2i +ti)3/2 ,

ciγ(θ) = ci(θ)[2ωi(γ)mi(β) + 4ω2
i (γ)υ]xi,

ciβ(θ) = 2ci(θ)ωi(γ)mi(β)xi, and
ciυ(θ) = 2ci(θ)ω2

i (γ).
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Table 1a. Bootstrap Critical Values of Score Test for IG Distribution: m = ω = 2
Uncensored Data

n = 20 n = 50 n = 100 n = 200 n = 500
υ rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE

10% Score Test: ACR = 1.2816

.0 0.883 0.910 1.057 1.069 1.147 1.152 1.209 1.211 1.255 1.256

.1 0.864 0.902 1.043 1.062 1.137 1.149 1.203 1.209 1.250 1.254

.2 0.842 0.890 1.025 1.057 1.128 1.148 1.196 1.208 1.247 1.254

.3 0.817 0.885 1.003 1.053 1.113 1.147 1.183 1.206 1.241 1.251

.4 0.786 0.878 0.975 1.050 1.090 1.145 1.167 1.206 1.235 1.254

.5 0.755 0.874 0.944 1.049 1.060 1.143 1.150 1.207 1.219 1.253

.6 0.722 0.867 0.916 1.044 1.033 1.139 1.126 1.205 1.208 1.252
FCR 0.8674 1.0675 1.1386 1.1957 1.2459

5% Score Test: ACR = 1.6449

.0 1.313 1.334 1.533 1.541 1.627 1.629 1.675 1.675 1.695 1.695

.1 1.292 1.324 1.521 1.534 1.621 1.626 1.674 1.675 1.696 1.694

.2 1.271 1.313 1.507 1.530 1.615 1.626 1.671 1.674 1.697 1.694

.3 1.243 1.306 1.488 1.529 1.607 1.627 1.663 1.670 1.697 1.694

.4 1.208 1.299 1.460 1.524 1.586 1.624 1.654 1.673 1.699 1.697

.5 1.171 1.294 1.428 1.525 1.559 1.623 1.645 1.675 1.691 1.695

.6 1.132 1.287 1.397 1.518 1.533 1.621 1.627 1.674 1.687 1.697
FCR 1.2949 1.5596 1.6069 1.6731 1.6915

1% Score Test: ACR = 2.3263

.0 2.325 2.321 2.673 2.664 2.741 2.732 2.717 2.708 2.626 2.622

.1 2.311 2.318 2.671 2.660 2.753 2.737 2.734 2.715 2.643 2.627

.2 2.293 2.309 2.679 2.666 2.771 2.746 2.749 2.714 2.658 2.625

.3 2.261 2.297 2.669 2.664 2.785 2.746 2.763 2.709 2.682 2.623

.4 2.221 2.293 2.652 2.662 2.785 2.739 2.786 2.715 2.715 2.633

.5 2.170 2.286 2.625 2.665 2.778 2.742 2.809 2.724 2.743 2.630

.6 2.117 2.276 2.591 2.651 2.764 2.745 2.821 2.730 2.771 2.632
FCR 2.3155 2.6806 2.7381 2.6782 2.6316
Note: ACR = asymptotic critical value;

FCR = Finite sample critical value based on 50,000 Monte Carlo Samples.
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Table 1b. Rejection Rates of Score Test for IG Distribution: m = ω = 2
Uncensored Data

Based on ACR Based on BCRr Based on BCRu

n υ 10% 5% 1% 10% 5% 1% 10% 5% 1%
20 .0 .0470 .0238 .0106 .0928 .0462 .0098 .0772 .0388 .0100

.1 .0872 .0556 .0198 .1486 .0858 .0228 .1294 .0764 .0224

.2 .1130 .0766 .0390 .1958 .1152 .0418 .1704 .0990 .0392

.3 .1634 .1114 .0622 .2536 .1684 .0698 .2246 .1480 .0638

.4 .2012 .1482 .0840 .3154 .2240 .1054 .2754 .1918 .0850

.5 .2486 .1816 .1060 .3802 .2786 .1402 .3308 .2344 .1070

.6 .2614 .1968 .1086 .4052 .3054 .1558 .3476 .2500 .1126

50 .0 .0770 .0474 .0158 .1020 .0552 .0108 .0964 .0536 .0112
.1 .1474 .1020 .0508 .1928 .1170 .0362 .1824 .1120 .0390
.2 .2662 .1964 .1254 .3252 .2218 .1020 .3146 .2120 .1040
.3 .3798 .3122 .2080 .4458 .3434 .1794 .4304 .3332 .1798
.4 .4824 .4096 .3056 .5526 .4430 .2678 .5372 .4318 .2676
.5 .5828 .5128 .4044 .6524 .5476 .3606 .6362 .5356 .3586
.6 .6320 .5638 .4470 .7086 .6054 .4084 .6876 .5868 .4048

100 .0 .0824 .0448 .0172 .1040 .0476 .0086 .0998 .0476 .0096
.1 .2262 .1586 .0866 .2534 .1616 .0590 .2488 .1594 .0632
.2 .4104 .3272 .2146 .4510 .3384 .1684 .4462 .3320 .1718
.3 .5734 .4930 .3734 .6124 .5006 .3104 .6054 .4992 .3160
.4 .7126 .6418 .5292 .7464 .6506 .4700 .7422 .6470 .4748
.5 .8114 .7562 .6558 .8418 .7672 .6002 .8370 .7620 .6018
.6 .8698 .8266 .7476 .8944 .8356 .6904 .8892 .8302 .6934

200 .0 .0882 .0484 .0152 .1004 .0470 .0080 .0992 .0470 .0088
.1 .3172 .2358 .1280 .3384 .2330 .0926 .3362 .2338 .0944
.2 .5978 .5048 .3596 .6200 .4980 .2948 .6162 .4984 .2998
.3 .8144 .7548 .6342 .8304 .7514 .5624 .8274 .7516 .5710
.4 .9152 .8814 .8066 .9236 .8802 .7540 .9218 .8798 .7600
.5 .9676 .9500 .8990 .9724 .9490 .8628 .9710 .9492 .8674
.6 .9866 .9776 .9558 .9890 .9774 .9312 .9880 .9764 .9330

500 .0 .1018 .0576 .0178 .1060 .0534 .0114 .1050 .0536 .0112
.1 .5156 .4082 .2428 .5254 .3950 .1908 .5252 .3944 .1958
.2 .8774 .8154 .6878 .8830 .8050 .6246 .8822 .8054 .6326
.3 .9818 .9670 .9302 .9818 .9654 .8990 .9820 .9650 .9028
.4 .9986 .9976 .9918 .9990 .9970 .9824 .9990 .9970 .9828
.5 .9998 .9992 .9980 .9998 .9992 .9968 .9998 .9992 .9966
.6 .9994 .9994 .9992 1.0000 .9998 .9992 .9996 .9994 .9990

Note: ACR = Asymptotic critical value;
BCRr = Bootstrap critical value based on restricted estimates;
BCRu = Bootstrap critical value based on unrestricted estimates.

23

Accepted by Journal of Statistical Computation and Simulation on 24/02/2016



Table 2a. Bootstrap Critical Values for Ducharme’s GOF Test: m = ω = 2
Uncensored Data

n = 20 n = 50 n = 100 n = 200 n = 500
υ rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE

10% Score Test: ACR = 4.6052

.0 2.719 2.699 3.194 3.207 3.485 3.495 3.733 3.739 4.004 4.009

.1 2.716 2.695 3.179 3.199 3.465 3.489 3.711 3.730 3.986 4.001

.2 2.707 2.690 3.163 3.194 3.452 3.488 3.699 3.734 3.971 4.004

.3 2.700 2.688 3.148 3.193 3.428 3.483 3.672 3.727 3.956 4.006

.4 2.686 2.681 3.127 3.191 3.402 3.481 3.655 3.732 3.931 4.000

.5 2.681 2.681 3.108 3.186 3.381 3.479 3.632 3.729 3.911 4.001

.6 2.672 2.681 3.094 3.181 3.363 3.475 3.613 3.725 3.888 3.994
FCR 2.7253 3.1791 3.4344 3.7609 3.9763

5% Score Test: ACR = 5.9915

.0 3.903 3.900 4.649 4.669 5.104 5.118 5.453 5.463 5.776 5.779

.1 3.897 3.896 4.623 4.656 5.071 5.098 5.426 5.449 5.768 5.778

.2 3.881 3.885 4.604 4.652 5.061 5.107 5.421 5.459 5.762 5.776

.3 3.873 3.884 4.582 4.650 5.029 5.094 5.390 5.448 5.757 5.787

.4 3.852 3.875 4.562 4.655 5.000 5.094 5.376 5.462 5.732 5.777

.5 3.842 3.874 4.536 4.648 4.970 5.091 5.350 5.451 5.717 5.778

.6 3.827 3.875 4.511 4.634 4.952 5.095 5.328 5.446 5.703 5.766
FCR 3.9236 4.6509 5.0010 5.5309 5.7420

1% Score Test: ACR = 9.2103

.0 7.652 7.856 10.530 10.602 12.445 12.440 13.479 13.447 13.552 13.520

.1 7.623 7.866 10.428 10.531 12.394 12.374 13.565 13.489 13.639 13.505

.2 7.575 7.829 10.383 10.514 12.494 12.483 13.710 13.565 13.812 13.561

.3 7.553 7.841 10.332 10.503 12.458 12.440 13.743 13.528 13.943 13.544

.4 7.533 7.834 10.377 10.579 12.427 12.410 13.885 13.593 14.102 13.556

.5 7.513 7.824 10.344 10.547 12.499 12.482 13.849 13.521 14.251 13.585

.6 7.527 7.821 10.301 10.515 12.547 12.482 13.985 13.605 14.350 13.588
FCR 7.6164 10.1464 11.2649 14.0669 13.0196
Note: ACR = asymptotic critical value;

FCR = Finite sample critical value based on 50,000 Monte Carlo Samples.
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Table 2b. Empirical Rejection Rates for Ducharme’s GOF Test: m = ω = 2
Uncensored Data

Based on ACR Based on BCRr Based on BCRu

n υ 10% 5% 1% 10% 5% 1% 10% 5% 1%
20 .0 .0322 .0144 .0038 .0972 .0470 .0080 .1024 .0480 .0064

.1 .0342 .0176 .0052 .1152 .0568 .0104 .1200 .0588 .0078

.2 .0452 .0208 .0036 .1284 .0660 .0094 .1306 .0670 .0054

.3 .0670 .0346 .0090 .1606 .0946 .0188 .1642 .0950 .0106

.4 .0862 .0442 .0080 .2050 .1202 .0214 .2060 .1160 .0114

.5 .1222 .0642 .0070 .2522 .1648 .0276 .2520 .1604 .0144

.6 .1352 .0692 .0070 .2910 .1908 .0272 .2872 .1838 .0120

50 .0 .0500 .0272 .0114 .1012 .0484 .0110 .1004 .0478 .0106
.1 .0584 .0318 .0106 .1196 .0568 .0094 .1174 .0538 .0084
.2 .1070 .0644 .0224 .1876 .1104 .0160 .1830 .1054 .0146
.3 .1906 .1236 .0570 .2832 .1912 .0466 .2776 .1844 .0392
.4 .2738 .1978 .1012 .3828 .2764 .0856 .3732 .2688 .0774
.5 .3720 .2892 .1572 .4942 .3774 .1360 .4894 .3668 .1252
.6 .4372 .3450 .1978 .5554 .4436 .1672 .5486 .4320 .1564

100 .0 .0604 .0360 .0154 .1034 .0494 .0112 .1026 .0492 .0110
.1 .0866 .0512 .0160 .1404 .0722 .0098 .1366 .0718 .0104
.2 .1846 .1258 .0498 .2642 .1642 .0236 .2596 .1602 .0248
.3 .3202 .2394 .1316 .4076 .2974 .0842 .4010 .2910 .0844
.4 .4908 .4016 .2584 .5844 .4634 .1792 .5794 .4596 .1788
.5 .6280 .5464 .3968 .7114 .6042 .2924 .7092 .6002 .2912
.6 .7312 .6640 .5032 .8020 .7118 .3870 .7992 .7070 .3872

200 .0 .0676 .0390 .0150 .0994 .0486 .0076 .1002 .0484 .0078
.1 .1172 .0756 .0274 .1670 .0890 .0118 .1636 .0872 .0122
.2 .3066 .2244 .1120 .3846 .2562 .0496 .3798 .2530 .0530
.3 .5776 .4842 .3080 .6522 .5234 .1876 .6478 .5180 .1964
.4 .7780 .7070 .5486 .8264 .7402 .3914 .8254 .7386 .3996
.5 .9028 .8550 .7386 .9314 .8770 .5812 .9316 .8752 .5916
.6 .9566 .9330 .8562 .9706 .9444 .7306 .9694 .9428 .7388

500 .0 .0808 .0522 .0238 .1058 .0568 .0112 .1058 .0570 .0114
.1 .2060 .1380 .0540 .2572 .1456 .0180 .2546 .1462 .0198
.2 .6310 .5318 .3370 .6794 .5414 .1742 .6760 .5426 .1826
.3 .9072 .8630 .7434 .9302 .8728 .5528 .9278 .8728 .5686
.4 .9894 .9808 .9416 .9936 .9822 .8542 .9932 .9816 .8616
.5 .9982 .9970 .9886 .9986 .9972 .9640 .9986 .9970 .9670
.6 .9998 .9998 .9982 .9998 .9998 .9916 .9998 .9998 .9918

Note: ACR = Asymptotic critical value;
BCRr = Bootstrap critical value based on restricted estimates;
BCRu = Bootstrap critical value based on unrestricted estimates.
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Table 3a. Bootstrap Critical Values of Score Test for IG Distribution: m = ω = 2
Censoring Time = 90th Percentile of the True Distribution.

n = 20 n = 50 n = 100 n = 200 n = 500
υ rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE

10% Score Test: ACR = 1.2816

.0 1.747 1.713 1.553 1.567 1.464 1.476 1.401 1.407 1.347 1.349

.1 1.746 1.725 1.543 1.562 1.457 1.473 1.396 1.406 1.347 1.352

.2 1.727 1.717 1.534 1.561 1.452 1.473 1.391 1.404 1.344 1.351

.3 1.714 1.719 1.519 1.553 1.442 1.469 1.387 1.400 1.344 1.350

.4 1.709 1.720 1.524 1.566 1.436 1.467 1.387 1.405 1.342 1.352

.5 1.701 1.725 1.514 1.568 1.432 1.467 1.383 1.404 1.340 1.350

.6 1.696 1.737 1.503 1.556 1.429 1.469 1.380 1.402 1.337 1.349
FCR 1.7521 1.5652 1.4438 1.4090 1.3496

5% Score Test: ACR = 1.6449

.0 2.214 2.202 1.998 2.021 1.888 1.902 1.806 1.814 1.734 1.737

.1 2.210 2.211 1.986 2.013 1.880 1.900 1.802 1.815 1.734 1.740

.2 2.194 2.202 1.977 2.013 1.873 1.901 1.795 1.809 1.731 1.740

.3 2.184 2.206 1.960 2.005 1.859 1.891 1.788 1.806 1.729 1.738

.4 2.180 2.206 1.961 2.019 1.854 1.894 1.788 1.812 1.728 1.739

.5 2.171 2.208 1.951 2.017 1.849 1.893 1.781 1.809 1.724 1.737

.6 2.170 2.221 1.941 2.006 1.842 1.894 1.777 1.808 1.718 1.734
FCR 2.2267 2.0176 1.8620 1.8299 1.7312

1% Score Test: ACR = 2.3263

.0 3.030 3.030 2.843 2.879 2.707 2.727 2.578 2.593 2.478 2.482

.1 3.034 3.041 2.831 2.874 2.693 2.719 2.585 2.604 2.480 2.485

.2 3.019 3.030 2.822 2.865 2.682 2.718 2.569 2.592 2.468 2.481

.3 3.020 3.031 2.798 2.854 2.672 2.724 2.562 2.591 2.463 2.474

.4 3.025 3.031 2.805 2.880 2.658 2.715 2.557 2.590 2.464 2.485

.5 3.028 3.033 2.794 2.873 2.654 2.723 2.552 2.592 2.458 2.485

.6 3.038 3.047 2.776 2.860 2.639 2.714 2.544 2.589 2.450 2.472
FCR 3.0625 2.8928 2.6839 2.6186 2.4657
Note: ACR = asymptotic critical value;

FCR = Finite sample critical value based on 50,000 Monte Carlo Samples.

26

Accepted by Journal of Statistical Computation and Simulation on 24/02/2016



Table 3b. Rejection Rates of Score Test for IG Distribution: m = ω = 2
Censoring Time = 90th Percentile of the True Distribution.

Based on ACR Based on BCRr Based on BCRu

n υ 10% 5% 1% 10% 5% 1% 10% 5% 1%
20 .0 .1725 .1085 .0455 .0850 .0425 .0030 .1200 .0565 .0050

.1 .2215 .1540 .0535 .1175 .0475 .0055 .1415 .0610 .0065

.2 .2435 .1590 .0615 .1315 .0645 .0120 .1450 .0755 .0145

.3 .2620 .1705 .0720 .1400 .0750 .0135 .1550 .0790 .0165

.4 .3100 .2055 .0865 .1780 .0905 .0155 .1755 .0920 .0165

.5 .3290 .2375 .1055 .2140 .1160 .0215 .2055 .1145 .0225

.6 .3690 .2575 .1150 .2310 .1285 .0205 .2190 .1150 .0220

50 .0 .1490 .0915 .0270 .0970 .0455 .0070 .0855 .0440 .0055
.1 .1795 .1130 .0370 .1255 .0620 .0125 .1130 .0550 .0095
.2 .2365 .1490 .0550 .1685 .0890 .0175 .1490 .0710 .0140
.3 .3085 .2100 .0880 .2305 .1365 .0360 .2110 .1210 .0280
.4 .3960 .2720 .1070 .3035 .1715 .0455 .2815 .1415 .0335
.5 .4435 .3235 .1380 .3550 .2200 .0590 .3305 .1875 .0405
.6 .4615 .3280 .1460 .3725 .2285 .0690 .3480 .1950 .0485

100 .0 .1300 .0800 .0225 .1050 .0495 .0120 .0985 .0405 .0090
.1 .2135 .1320 .0470 .1685 .0890 .0250 .1560 .0775 .0165
.2 .2810 .1855 .0725 .2320 .1300 .0350 .2205 .1175 .0295
.3 .3900 .2890 .1245 .3455 .2235 .0745 .3350 .2075 .0550
.4 .4715 .3500 .1600 .4145 .2815 .1005 .4035 .2620 .0770
.5 .5805 .4500 .2290 .5320 .3695 .1495 .5220 .3510 .1305
.6 .6505 .5200 .2855 .5995 .4490 .1995 .5890 .4360 .1665

200 .0 .1100 .0645 .0215 .0930 .0500 .0130 .0885 .0495 .0100
.1 .2520 .1560 .0495 .2130 .1210 .0330 .2110 .1140 .0280
.2 .3600 .2460 .0995 .3220 .2065 .0650 .3150 .2020 .0580
.3 .5075 .3875 .1735 .4670 .3395 .1200 .4640 .3300 .1130
.4 .6510 .5170 .2915 .6175 .4700 .2165 .6155 .4640 .2005
.5 .7695 .6480 .4135 .7410 .6040 .3320 .7320 .5950 .3190
.6 .8495 .7575 .5225 .8315 .7255 .4460 .8250 .7155 .4245

500 .0 .1170 .0615 .0160 .1050 .0505 .0110 .1015 .0495 .0100
.1 .3115 .1920 .0585 .2905 .1625 .0435 .2880 .1590 .0415
.2 .5390 .4020 .1925 .5170 .3730 .1600 .5130 .3690 .1515
.3 .7660 .6465 .3950 .7510 .6160 .3450 .7505 .6130 .3435
.4 .9090 .8360 .6195 .8995 .8160 .5675 .8995 .8160 .5650
.5 .9745 .9330 .7865 .9710 .9205 .7500 .9710 .9195 .7465
.6 .9890 .9795 .9040 .9885 .9755 .8835 .9885 .9755 .8815

Note: ACR = Asymptotic critical value;
BCRr = Bootstrap critical value based on restricted estimates;
BCRu = Bootstrap critical value based on unrestricted estimates.
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Table 4a. Bootstrap Critical Values of Score Test for IG Distribution: m = ω = 2
Censoring Time = 80th Percentile of the True Distribution.

n = 20 n = 50 n = 100 n = 200 n = 500
υ rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE

10% Score Test: ACR = 1.2816

.0 1.995 1.960 1.709 1.728 1.569 1.581 1.471 1.479 1.391 1.395

.1 1.977 1.955 1.704 1.729 1.561 1.584 1.468 1.480 1.385 1.394

.2 1.964 2.005 1.690 1.736 1.555 1.579 1.458 1.475 1.384 1.393

.3 1.964 2.011 1.684 1.732 1.552 1.577 1.457 1.477 1.383 1.394

.4 1.955 2.011 1.682 1.731 1.541 1.577 1.455 1.476 1.383 1.395

.5 1.940 1.998 1.672 1.735 1.540 1.577 1.448 1.476 1.379 1.394

.6 1.949 2.020 1.665 1.732 1.538 1.580 1.447 1.475 1.379 1.393
FCR 1.9854 1.7080 1.5449 1.4758 1.3920

5% Score Test: ACR = 1.6449

.0 2.489 2.479 2.191 2.221 2.020 2.040 1.900 1.908 1.792 1.796

.1 2.473 2.469 2.183 2.221 2.013 2.041 1.890 1.911 1.785 1.795

.2 2.460 2.504 2.171 2.224 2.003 2.035 1.882 1.904 1.786 1.796

.3 2.460 2.509 2.161 2.218 1.998 2.035 1.879 1.903 1.780 1.793

.4 2.456 2.508 2.155 2.218 1.989 2.030 1.876 1.902 1.780 1.795

.5 2.440 2.494 2.144 2.219 1.986 2.032 1.868 1.904 1.775 1.791

.6 2.452 2.520 2.139 2.221 1.982 2.038 1.867 1.903 1.775 1.795
FCR 2.4886 2.1763 2.0015 1.8997 1.7865

1% Score Test: ACR = 2.3263

.0 3.319 3.317 3.115 3.161 2.902 2.935 2.728 2.743 2.568 2.567

.1 3.314 3.312 3.098 3.153 2.890 2.938 2.717 2.746 2.560 2.566

.2 3.307 3.321 3.083 3.152 2.881 2.920 2.706 2.733 2.551 2.568

.3 3.315 3.333 3.073 3.144 2.869 2.927 2.701 2.735 2.551 2.575

.4 3.322 3.335 3.062 3.139 2.853 2.923 2.695 2.733 2.544 2.572

.5 3.317 3.322 3.047 3.147 2.856 2.926 2.687 2.733 2.540 2.565

.6 3.343 3.360 3.049 3.141 2.843 2.931 2.683 2.735 2.538 2.569
FCR 3.3287 3.1078 2.9082 2.7457 2.5591
Note: ACR = asymptotic critical value;

FCR = Finite sample critical value based on 50,000 Monte Carlo Samples.
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Table 4b. Rejection Rates of Score Test for IG Distribution: m = ω = 2
Censoring Time = 80th Percentile of the True Distribution.

Based on ACR Based on BCRr Based on BCRu

n υ 10% 5% 1% 10% 5% 1% 10% 5% 1%
20 .0 .2145 .1450 .0540 .0760 .0375 .0040 .1105 .0450 .0070

.1 .2320 .1655 .0625 .0950 .0365 .0040 .1210 .0520 .0055

.2 .2635 .1795 .0780 .1125 .0570 .0120 .1005 .0520 .0115

.3 .3020 .2095 .0980 .1400 .0675 .0120 .1255 .0590 .0130

.4 .3080 .2205 .0960 .1450 .0675 .0130 .1295 .0615 .0130

.5 .3005 .2150 .1045 .1485 .0765 .0120 .1380 .0700 .0100

.6 .3695 .2595 .1230 .1860 .0950 .0225 .1590 .0805 .0205

50 .0 .1640 .1050 .0445 .0915 .0495 .0075 .0825 .0515 .0065
.1 .1975 .1265 .0520 .1130 .0595 .0150 .1005 .0525 .0085
.2 .2380 .1520 .0630 .1340 .0780 .0175 .1155 .0595 .0130
.3 .2700 .1885 .0725 .1785 .0910 .0210 .1530 .0715 .0130
.4 .3070 .2075 .0835 .1985 .1060 .0265 .1755 .0830 .0160
.5 .3545 .2440 .1140 .2335 .1370 .0425 .2075 .1145 .0280
.6 .3965 .2775 .1360 .2675 .1620 .0475 .2385 .1355 .0335

100 .0 .1530 .0930 .0275 .1020 .0555 .0080 .0955 .0395 .0055
.1 .1920 .1190 .0360 .1285 .0625 .0120 .1195 .0510 .0070
.2 .2230 .1495 .0585 .1665 .0980 .0280 .1520 .0770 .0195
.3 .3025 .2030 .0810 .2270 .1235 .0320 .2135 .1115 .0235
.4 .3725 .2705 .1180 .2960 .1805 .0485 .2860 .1570 .0365
.5 .4330 .3130 .1355 .3495 .2110 .0650 .3315 .1845 .0490
.6 .5200 .3890 .1950 .4285 .2875 .1050 .4080 .2680 .0720

200 .0 .1280 .0795 .0265 .0985 .0555 .0095 .0955 .0520 .0085
.1 .1970 .1215 .0440 .1500 .0815 .0220 .1475 .0775 .0145
.2 .2810 .1845 .0740 .2300 .1360 .0410 .2235 .1200 .0315
.3 .3965 .2750 .1280 .3350 .2170 .0765 .3320 .2090 .0630
.4 .4760 .3450 .1590 .4150 .2700 .1040 .4040 .2640 .0900
.5 .5720 .4380 .2330 .5145 .3635 .1445 .5060 .3510 .1315
.6 .6600 .5385 .3055 .6045 .4510 .2100 .6045 .4405 .1925

500 .0 .1135 .0540 .0165 .0950 .0425 .0105 .0935 .0405 .0125
.1 .2170 .1350 .0415 .1890 .1070 .0230 .1845 .1070 .0240
.2 .4000 .2825 .1315 .3660 .2400 .0990 .3605 .2385 .0900
.3 .5460 .4240 .2145 .5135 .3815 .1555 .5150 .3790 .1460
.4 .7015 .5610 .3125 .6660 .5055 .2460 .6640 .5070 .2335
.5 .8110 .7055 .4560 .7835 .6710 .3765 .7755 .6620 .3675
.6 .8795 .8070 .5955 .8625 .7705 .5265 .8635 .7700 .5120

Note: ACR = Asymptotic critical value;
BCRr = Bootstrap critical value based on restricted estimates;
BCRu = Bootstrap critical value based on unrestricted estimates.
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Table 5a. Bootstrap Critical Values of Score Test for IG Distribution: m = ω = 2
C ∼ Uniform(.8q.8, 1.2q.8), q.8 = .8-quantile of IGM.

n = 20 n = 50 n = 100 n = 200 n = 500
υ rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE

10% Score Test: ACR = 1.2816

.0 1.913 1.880 1.646 1.656 1.522 1.525 1.435 1.444 1.374 1.376

.1 1.928 1.906 1.629 1.638 1.518 1.530 1.436 1.442 1.369 1.374

.2 1.862 1.856 1.624 1.637 1.509 1.520 1.432 1.441 1.367 1.372

.3 1.843 1.843 1.647 1.665 1.511 1.526 1.432 1.445 1.367 1.371

.4 1.903 1.908 1.622 1.642 1.504 1.528 1.432 1.441 1.369 1.372

.5 1.879 1.887 1.612 1.637 1.498 1.518 1.429 1.440 1.367 1.372

.6 1.851 1.869 1.616 1.639 1.501 1.520 1.428 1.441 1.364 1.372
FCR 1.8642 1.6440 1.5070 1.4324 1.3626

5% Score Test: ACR = 1.6449

.0 2.374 2.340 2.102 2.114 1.952 1.960 1.848 1.857 1.769 1.768

.1 2.394 2.367 2.077 2.085 1.951 1.965 1.848 1.855 1.759 1.767

.2 2.322 2.311 2.078 2.086 1.940 1.953 1.840 1.854 1.759 1.765

.3 2.303 2.295 2.104 2.118 1.943 1.959 1.844 1.859 1.758 1.766

.4 2.374 2.362 2.074 2.095 1.933 1.959 1.841 1.852 1.758 1.765

.5 2.349 2.346 2.063 2.090 1.927 1.950 1.839 1.855 1.759 1.766

.6 2.320 2.321 2.064 2.090 1.932 1.953 1.836 1.852 1.755 1.765
FCR 2.3253 2.0896 1.9393 1.8426 1.7496

1% Score Test: ACR = 2.3263

.0 3.132 3.086 2.956 2.963 2.774 2.787 2.647 2.655 2.518 2.526

.1 3.152 3.108 2.921 2.928 2.786 2.795 2.643 2.652 2.511 2.521

.2 3.090 3.052 2.922 2.922 2.762 2.784 2.629 2.646 2.508 2.518

.3 3.081 3.034 2.962 2.971 2.773 2.782 2.636 2.657 2.507 2.518

.4 3.171 3.111 2.924 2.935 2.750 2.785 2.629 2.641 2.516 2.518

.5 3.134 3.091 2.909 2.926 2.749 2.773 2.628 2.653 2.506 2.520

.6 3.122 3.077 2.912 2.936 2.751 2.781 2.626 2.649 2.496 2.523
FCR 3.1107 2.9114 2.7927 2.6124 2.5295
Note: ACR = asymptotic critical value;

FCR = Finite sample critical value based on 50,000 Monte Carlo Samples.
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Table 5b. Rejection Rates of Score Test for IG Distribution: m = ω = 2
C ∼ U(.8q.8, 1.2q.8), q.8 = .8-quantile of IGM; Treated as Known

Based on ACR Based on BCRr Based on BCRu

n υ 10% 5% 1% 10% 5% 1% 10% 5% 1%
20 .0 .2050 .1340 .0575 .0980 .0465 .0090 .1115 .0565 .0150

.1 .2195 .1505 .0590 .1010 .0475 .0045 .1080 .0550 .0105

.2 .2550 .1745 .0710 .1305 .0640 .0110 .1355 .0680 .0170

.3 .2660 .1835 .0730 .1375 .0635 .0145 .1405 .0715 .0180

.4 .2965 .2070 .0985 .1510 .0780 .0170 .1555 .0830 .0210

.5 .3060 .2205 .0950 .1600 .0830 .0190 .1660 .0910 .0240

.6 .3280 .2315 .1030 .1785 .0925 .0165 .1770 .0925 .0230

50 .0 .1655 .1070 .0360 .1055 .0470 .0070 .1000 .0430 .0085
.1 .1895 .1235 .0455 .1215 .0645 .0125 .1160 .0615 .0130
.2 .2430 .1625 .0620 .1650 .0820 .0200 .1555 .0845 .0205
.3 .2830 .1885 .0785 .1840 .1090 .0250 .1780 .1000 .0185
.4 .3065 .2090 .0780 .2150 .1130 .0235 .2040 .1060 .0245
.5 .3330 .2375 .0965 .2410 .1370 .0315 .2375 .1210 .0275
.6 .3840 .2835 .1325 .2915 .1765 .0475 .2775 .1670 .0415

100 .0 .1340 .0785 .0230 .0935 .0450 .0090 .0890 .0425 .0080
.1 .1960 .1190 .0290 .1400 .0670 .0115 .1365 .0595 .0100
.2 .2490 .1535 .0540 .1880 .0990 .0230 .1785 .0940 .0200
.3 .3190 .2090 .0770 .2520 .1385 .0340 .2420 .1305 .0345
.4 .3895 .2680 .1260 .3095 .1945 .0620 .2995 .1865 .0590
.5 .4425 .3095 .1370 .3585 .2290 .0725 .3510 .2130 .0610
.6 .4785 .3550 .1730 .3975 .2650 .0945 .3945 .2610 .0870

200 .0 .1195 .0635 .0175 .0930 .0450 .0090 .0870 .0450 .0090
.1 .1955 .1215 .0405 .1645 .0865 .0245 .1610 .0870 .0215
.2 .2875 .1890 .0730 .2405 .1440 .0425 .2345 .1375 .0400
.3 .3775 .2620 .1040 .3285 .2085 .0645 .3265 .1950 .0590
.4 .4930 .3540 .1565 .4285 .2895 .1020 .4275 .2775 .0985
.5 .5830 .4450 .2330 .5230 .3775 .1530 .5205 .3730 .1425
.6 .6695 .5455 .3075 .6210 .4715 .2240 .6140 .4645 .2170

500 .0 .1100 .0580 .0160 .0945 .0470 .0070 .0915 .0485 .0095
.1 .2425 .1415 .0420 .2140 .1130 .0305 .2140 .1140 .0300
.2 .3940 .2645 .0955 .3625 .2250 .0685 .3555 .2260 .0715
.3 .5670 .4325 .2235 .5350 .3980 .1775 .5355 .3890 .1735
.4 .7245 .5875 .3205 .6880 .5365 .2690 .6940 .5380 .2660
.5 .8450 .7420 .5145 .8160 .7065 .4540 .8185 .7050 .4450
.6 .8915 .8145 .6025 .8750 .7895 .5465 .8745 .7825 .5390

Note: ACR = Asymptotic critical value;
BCRr = Bootstrap critical value based on restricted estimates;
BCRu = Bootstrap critical value based on unrestricted estimates.
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Table 5c. Rejection Rates of Score Test for IG Distribution: m = ω = 2
C ∼ U(.8q.8, 1.2q.8), q.8 = .8-quantile of IGM; Treated as Unknown

Based on ACR Based on BCRr Based on BCRu

n υ 10% 5% 1% 10% 5% 1% 10% 5% 1%
20 .0 .2075 .1355 .0470 .0910 .0420 .0075 .1070 .0545 .0115

.1 .2265 .1465 .0615 .0985 .0490 .0085 .1135 .0595 .0130

.2 .2415 .1625 .0680 .1090 .0560 .0125 .1325 .0735 .0175

.3 .2795 .1910 .0850 .1390 .0685 .0165 .1550 .0915 .0245

.4 .3000 .2195 .1005 .1450 .0785 .0135 .1695 .0935 .0205

.5 .3230 .2385 .1125 .1625 .0855 .0105 .1855 .1035 .0225

.6 .3175 .2335 .1040 .1540 .0810 .0175 .1785 .1035 .0325

50 .0 .1615 .1020 .0395 .0975 .0505 .0080 .1070 .0560 .0145
.1 .1905 .1285 .0480 .1280 .0690 .0120 .1395 .0805 .0170
.2 .2455 .1580 .0565 .1505 .0750 .0170 .1670 .0890 .0205
.3 .2600 .1795 .0680 .1695 .0900 .0150 .1835 .0990 .0270
.4 .3080 .2115 .0955 .2000 .1225 .0305 .2155 .1365 .0430
.5 .3475 .2470 .1085 .2405 .1370 .0365 .2570 .1495 .0475
.6 .3260 .2330 .0975 .2175 .1165 .0345 .2300 .1300 .0415

100 .0 .1405 .0780 .0220 .0930 .0445 .0060 .0990 .0540 .0085
.1 .2030 .1180 .0425 .1380 .0740 .0130 .1470 .0795 .0180
.2 .2490 .1605 .0650 .1775 .1020 .0250 .1905 .1120 .0345
.3 .3000 .1975 .0755 .2230 .1250 .0320 .2340 .1270 .0350
.4 .3455 .2270 .0980 .2650 .1480 .0495 .2690 .1595 .0520
.5 .3880 .2840 .1300 .3090 .1945 .0590 .3170 .2100 .0635
.6 .4105 .2955 .1340 .3180 .1985 .0570 .3320 .2105 .0675

200 .0 .1285 .0700 .0160 .1035 .0500 .0065 .1060 .0505 .0085
.1 .2000 .1225 .0315 .1640 .0815 .0165 .1685 .0855 .0150
.2 .2760 .1795 .0610 .2320 .1285 .0360 .2355 .1375 .0400
.3 .3465 .2390 .0985 .2945 .1815 .0540 .2980 .1840 .0620
.4 .4405 .3250 .1350 .3845 .2480 .0820 .3915 .2520 .0860
.5 .5245 .3895 .1815 .4535 .3115 .1125 .4550 .3185 .1185
.6 .5535 .4205 .2160 .4885 .3580 .1240 .4980 .3610 .1350

500 .0 .1275 .0735 .0175 .1160 .0570 .0095 .1145 .0570 .0095
.1 .2380 .1445 .0425 .2145 .1175 .0315 .2100 .1240 .0320
.2 .3670 .2430 .0990 .3320 .2145 .0615 .3330 .2170 .0710
.3 .5110 .3650 .1535 .4720 .3130 .1105 .4715 .3105 .1195
.4 .6125 .4770 .2360 .5765 .4285 .1785 .5770 .4325 .1915
.5 .7260 .5925 .3625 .6915 .5420 .2955 .6955 .5480 .3070
.6 .8260 .7120 .4635 .7950 .6760 .3765 .7965 .6810 .3840

Note: ACR = Asymptotic critical value;
BCRr = Bootstrap critical value based on restricted estimates;
BCRu = Bootstrap critical value based on unrestricted estimates.
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Table 6a. Finite Sample Critical Values of Score Test for IG Regression
Complete Data, γ = (.5..25, .25)′, β = (.5..25, .25)′

n 1% 5% 10% 90% 95% 99% Mean StD
20 -3.936 -3.525 -3.203 1.320 1.944 2.924 -1.129 1.697
50 -4.663 -3.725 -3.125 1.232 1.708 2.532 -0.877 1.655

100 -4.511 -3.350 -2.705 1.185 1.587 2.326 -0.654 1.511
200 -4.266 -2.996 -2.352 1.131 1.499 2.139 -0.508 1.377
500 -3.659 -2.543 -1.973 1.150 1.470 2.054 -0.327 1.230

1000 -3.328 -2.308 -1.798 1.143 1.454 2.008 -0.255 1.154
2000 -3.054 -2.108 -1.634 1.150 1.471 2.030 -0.185 1.093
5000 -2.788 -1.925 -1.496 1.178 1.494 2.089 -0.118 1.046

10000 -2.711 -1.862 -1.441 1.188 1.515 2.117 -0.098 1.031

ACR -2.236 -1.645 -1.282 1.282 1.645 2.236 0.000 1.000
Note: Each set of finite sample critical values are based on M = 50, 000.

Table 6b. Bootstrap Critical Values of Score Test for IG Regression
Complete Data, γ = (.5..25, .25)′, β = (.5..25, .25)′

n = 50 n = 100 n = 200 n = 500
υ rMLE uMLE rMLE uMLE rMLE uMLE rMLE uMLE

10% Score Test: ACR = 1.2816

0.00 1.261 1.256 1.180 1.180 1.149 1.151 1.133 1.134
0.05 1.220 1.216 1.179 1.181 1.147 1.153 1.124 1.127
0.10 1.233 1.235 1.169 1.177 1.133 1.140 1.117 1.123
0.15 1.214 1.221 1.167 1.177 1.130 1.140 1.111 1.119
0.20 1.221 1.233 1.126 1.141 1.112 1.125 1.100 1.111
0.25 1.146 1.165 1.128 1.145 1.102 1.117 1.090 1.101
FCR 1.2319 1.1850 1.1310 1.1495

5% Score Test: ACR = 1.6449

0.00 1.727 1.722 1.576 1.577 1.505 1.505 1.459 1.460
0.05 1.682 1.682 1.584 1.586 1.506 1.510 1.447 1.449
0.10 1.702 1.704 1.573 1.578 1.486 1.494 1.443 1.448
0.15 1.682 1.688 1.568 1.578 1.485 1.497 1.434 1.441
0.20 1.691 1.702 1.537 1.549 1.466 1.478 1.418 1.431
0.25 1.642 1.656 1.530 1.544 1.462 1.475 1.407 1.420
FCR 1.7075 1.5868 1.4985 1.4700

1% Score Test: ACR = 2.3263

0.00 2.547 2.543 2.276 2.273 2.129 2.131 2.034 2.034
0.05 2.485 2.488 2.293 2.296 2.135 2.139 2.019 2.022
0.10 2.516 2.521 2.275 2.280 2.112 2.119 2.017 2.024
0.15 2.493 2.499 2.274 2.281 2.110 2.119 2.002 2.012
0.20 2.510 2.515 2.257 2.264 2.087 2.095 1.980 1.990
0.25 2.501 2.504 2.235 2.242 2.092 2.101 1.961 1.973
FCR 2.5322 2.3257 2.1389 2.0541
Note: ACR = asymptotic critical value;

FCR = Finite sample critical value based on M = 50, 000.
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Table 6c. Empirical Rejection Rates of Score Test for IG Regression
Complete Data, γ = (.5..25, .25)′, β = (.5..25, .25)′

Based on ACR Based on BCRr Based on BCRu

n υ 10% 5% 1% 10% 5% 1% 10% 5% 1%
50 .00 .1025 .0570 .0180 .1055 .0510 .0090 .0985 .0455 .0085

.05 .1140 .0685 .0225 .1260 .0665 .0155 .1230 .0655 .0150

.10 .1820 .1245 .0410 .1895 .1160 .0340 .1855 .1115 .0295

.15 .2570 .1760 .0820 .2670 .1665 .0670 .2605 .1630 .0620

.20 .3200 .2460 .1350 .3345 .2360 .1145 .3280 .2290 .1090

.25 .3900 .3155 .1775 .4215 .3165 .1545 .4140 .3100 .1500

100 .00 .0795 .0435 .0105 .0950 .0470 .0130 .0905 .0465 .0115
.05 .1460 .0835 .0245 .1675 .0925 .0275 .1630 .0895 .0240
.10 .2790 .1905 .0630 .3030 .2035 .0730 .3020 .1980 .0695
.15 .3505 .2615 .1175 .3825 .2825 .1300 .3800 .2785 .1265
.20 .4740 .3855 .2085 .5170 .4070 .2305 .5125 .4010 .2305
.25 .5890 .4930 .2945 .6340 .5250 .3210 .6310 .5215 .3135

200 .00 .0810 .0395 .0035 .1035 .0555 .0095 .1010 .0555 .0100
.05 .1960 .1185 .0330 .2295 .1480 .0475 .2250 .1445 .0480
.10 .3585 .2435 .0965 .4105 .2965 .1320 .4075 .2950 .1330
.15 .5400 .4145 .1755 .5820 .4700 .2500 .5805 .4630 .2470
.20 .7025 .5730 .3355 .7485 .6355 .4200 .7490 .6320 .4215
.25 .8020 .7100 .4770 .8340 .7595 .5670 .8325 .7590 .5585

500 .00 .0665 .0310 .0040 .0900 .0480 .0145 .0920 .0485 .0150
.05 .2920 .1745 .0360 .3485 .2330 .0865 .3480 .2310 .0835
.10 .5855 .4475 .1800 .6365 .5160 .3020 .6365 .5140 .3010
.15 .8195 .7060 .4060 .8540 .7710 .5585 .8540 .7690 .5505
.20 .9430 .9015 .6670 .9585 .9290 .7965 .9575 .9265 .7915
.25 .9825 .9535 .8370 .9890 .9740 .9080 .9885 .9730 .9040

Note: ACR = Asymptotic critical value;
BCRr = Bootstrap critical value based on restricted estimates;
BCRu = Bootstrap critical value based on unrestricted estimates.

Table 7a. Finite Sample Critical Values of Score Test for IG Regression
Type II Censored Data, γ = (.5..25, .25)′, β = (.5..25, .25)′

n 1% 5% 10% 90% 95% 99% Mean StD
50 -2.197 -1.493 -1.101 1.955 2.421 3.341 0.403 1.196

100 -2.141 -1.490 -1.138 1.669 2.099 2.911 0.249 1.093
200 -2.182 -1.524 -1.170 1.544 1.956 2.745 0.179 1.057
500 -2.225 -1.549 -1.190 1.432 1.811 2.559 0.112 1.025

1000 -2.230 -1.562 -1.210 1.379 1.755 2.474 0.079 1.011
2000 -2.242 -1.578 -1.223 1.350 1.725 2.419 0.053 1.002
5000 -2.285 -1.618 -1.261 1.317 1.697 2.400 0.034 1.006

10000 -2.285 -1.637 -1.270 1.312 1.677 2.365 0.021 1.004

ACR -2.236 -1.645 -1.282 1.282 1.645 2.236 0.000 1.000
Note: Each set of finite sample critical values are based on M = 50, 000.
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Table 7b. Bootstrap Critical Values of Score Test for IG Regression, based on rMLE
Type II Censored Data, γ = (.5..25, .25)′, β = (.5..25, .25)′

n = 50 n = 100 n = 200 n = 500
υ 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

.00 2.116 2.632 3.675 1.698 2.122 2.924 1.538 1.939 2.702 1.432 1.820 2.551

.05 2.094 2.610 3.691 1.685 2.109 2.908 1.539 1.943 2.706 1.431 1.818 2.545

.10 2.121 2.619 3.664 1.686 2.107 2.902 1.531 1.932 2.689 1.431 1.816 2.551

.15 2.032 2.517 3.497 1.668 2.092 2.883 1.526 1.924 2.683 1.430 1.814 2.544

.20 2.018 2.501 3.473 1.671 2.092 2.882 1.533 1.934 2.693 1.423 1.808 2.534

.25 2.075 2.570 3.589 1.654 2.070 2.858 1.527 1.927 2.689 1.426 1.812 2.536

FCR 1.955 2.421 3.341 1.669 2.099 2.911 1.544 1.956 2.745 1.432 1.811 2.559
Note: ACR = (1.282, 1.645, 2.326); FCR is based on M = 50, 000.

Table 7c. Empirical Rejection Rates of Score Test for IG Regression
Type II Censored Data, γ = (.5..25, .25)′, β = (.5..25, .25)′

Based on ACR Based on BCRr Based on ACR Based on BCRr
υ 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

n = 50 n = 200
.00 .2230 .1430 .0475 .0760 .0310 .0025 .1455 .0875 .0215 .1015 .0525 .0080
.05 .2630 .1770 .0730 .1025 .0460 .0090 .1945 .1190 .0355 .1375 .0755 .0200
.10 .2845 .1980 .0815 .1065 .0500 .0080 .2710 .1750 .0635 .2030 .1270 .0320
.15 .3215 .2245 .1000 .1450 .0760 .0130 .3615 .2480 .1115 .2875 .1860 .0580
.20 .3565 .2550 .1060 .1600 .0895 .0195 .4270 .3030 .1350 .3440 .2265 .0890
.25 .3780 .2705 .1260 .1730 .0945 .0255 .5340 .4135 .2115 .4515 .3230 .1295

n = 100 n = 500
.00 .1630 .1020 .0345 .0915 .0460 .0090 .1205 .0670 .0150 .0975 .0485 .0100
.05 .2060 .1320 .0445 .1295 .0680 .0125 .2275 .1455 .0435 .1870 .1120 .0290
.10 .2570 .1680 .0635 .1580 .0915 .0290 .3555 .2440 .0975 .3065 .1935 .0690
.15 .3395 .2360 .0965 .2340 .1430 .0375 .4795 .3590 .1610 .4225 .2970 .1230
.20 .3630 .2555 .1185 .2460 .1550 .0525 .6010 .4740 .2450 .5535 .4040 .1970
.25 .3935 .3065 .1485 .3070 .1965 .0670 .7265 .6175 .3615 .6835 .5505 .3025

Table 8a. Finite Sample Critical Values of Score Test for IG Regression
Random Censored Data, γ = (.5..25, .25)′, β = (.5..25, .25)′

n 1% 5% 10% 90% 95% 99% Mean StD
50 -2.989 -2.012 -1.527 1.727 2.210 3.075 0.090 1.284

100 -2.583 -1.782 -1.393 1.500 1.918 2.698 0.049 1.127
200 -2.390 -1.689 -1.311 1.423 1.828 2.602 0.053 1.070
500 -2.323 -1.642 -1.271 1.363 1.735 2.466 0.036 1.027

1000 -2.327 -1.640 -1.271 1.348 1.715 2.442 0.033 1.023
2000 -2.295 -1.627 -1.263 1.322 1.683 2.383 0.018 1.007
5000 -2.319 -1.641 -1.268 1.317 1.679 2.371 0.019 1.006

10000 -2.331 -1.644 -1.270 1.294 1.677 2.362 0.010 1.004
ACR -2.236 -1.645 -1.282 1.282 1.645 2.236 0.000 1.000

Note: Each set of finite sample critical values are based on M = 50, 000.
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Table 8b. Bootstrap Critical Values of Score Test for IG Regression, based on rMLE
Random Censored Data, γ = (.5..25, .25)′, β = (.5..25, .25)′

n = 50 n = 100 n = 200 n = 500
υ 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

.00 1.903 2.435 3.518 1.551 1.973 2.778 1.437 1.835 2.593 1.369 1.753 2.483

.05 1.917 2.444 3.531 1.547 1.972 2.779 1.434 1.836 2.594 1.364 1.745 2.469

.10 1.911 2.431 3.509 1.540 1.965 2.773 1.428 1.827 2.581 1.364 1.746 2.474

.15 1.889 2.401 3.448 1.529 1.953 2.755 1.427 1.824 2.582 1.360 1.742 2.470

.20 1.885 2.394 3.429 1.532 1.956 2.758 1.421 1.819 2.577 1.358 1.743 2.471

.25 1.847 2.345 3.358 1.519 1.940 2.739 1.416 1.813 2.570 1.356 1.737 2.459

FCR 1.727 2.210 3.075 1.500 1.918 2.698 1.423 1.828 2.602 1.363 1.735 2.466
Note: ACR = (1.282, 1.645, 2.326); FCR is based on M = 50, 000.

Table 8c. Empirical Rejection Rates of Score Test for IG Regression
Random Censored Data, γ = (.5..25, .25)′, β = (.5..25, .25)′

Based on ACR Based on BCRr Based on ACR Based on BCRr

υ 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
n = 50 n = 200

.00 .1900 .1195 .0370 .0740 .0300 .0050 .1240 .0710 .0180 .0955 .0475 .0095

.05 .1970 .1310 .0430 .0840 .0310 .0040 .1810 .1040 .0310 .1415 .0705 .0165

.10 .2210 .1425 .0570 .0930 .0440 .0050 .2355 .1460 .0445 .1970 .1100 .0280

.15 .2465 .1695 .0745 .1225 .0590 .0085 .3120 .2090 .0720 .2670 .1630 .0440

.20 .2685 .1770 .0710 .1315 .0590 .0105 .3810 .2490 .1030 .3345 .2005 .0700

.25 .3055 .2160 .0935 .1705 .0855 .0135 .4870 .3580 .1505 .4375 .3000 .1065
n = 100 n = 500

.00 .1445 .0800 .0305 .0920 .0485 .0105 .1190 .0640 .0130 .1000 .0495 .0095

.05 .1810 .1140 .0340 .1250 .0625 .0105 .2030 .1235 .0335 .1840 .1085 .0265

.10 .2105 .1255 .0410 .1490 .0730 .0135 .2955 .1855 .0625 .2670 .1595 .0505

.15 .2735 .1780 .0645 .2010 .1190 .0275 .4685 .3340 .1355 .4375 .2930 .1140

.20 .3080 .2095 .0760 .2360 .1375 .0345 .5875 .4470 .2315 .5545 .4165 .1935

.25 .3540 .2460 .0995 .2805 .1675 .0440 .7090 .5815 .3390 .6870 .5515 .2970

Table 9. Finite Sample Critical Values of Score Test for IG Regression
Type I Censored Data, γ = (.5..25, .25)′, β = (.5..25, .25)′

n 1% 5% 10% 90% 95% 99% Mean StD
50 -2.799 -1.903 -1.436 1.768 2.255 3.209 0.150 1.272

100 -2.418 -1.696 -1.310 1.549 1.974 2.798 0.094 1.117
200 -2.343 -1.651 -1.273 1.462 1.865 2.656 0.081 1.069
500 -2.310 -1.614 -1.260 1.385 1.766 2.502 0.051 1.030

1000 -2.283 -1.619 -1.264 1.339 1.717 2.457 0.037 1.016
2000 -2.251 -1.613 -1.254 1.327 1.706 2.451 0.035 1.009
5000 -2.296 -1.633 -1.281 1.291 1.658 2.356 0.013 1.000

10000 -2.315 -1.630 -1.274 1.299 1.671 2.369 0.016 1.005
ACR -2.236 -1.645 -1.282 1.282 1.645 2.236 0.000 1.000

Note: Each set of finite sample critical values are based on M = 50, 000.
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