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Abstract

Motivated by a recent study of Bao and Ullah (2007a) on finite sample properties of
MLE in the pure SAR (spatial autoregressive) model, a general method for third-order
bias and variance corrections on a nonlinear estimator is proposed based on stochastic
expansion and bootstrap. Working with concentrated estimating equation simplifies
greatly the high-order expansions for bias and variance; a simple bootstrap procedure
overcomes a major difficulty in analytically evaluating expectations of various quantities
in the expansions. The method is then studied in detail using a more general SAR model,
with its effectiveness in correcting bias and improving inference fully demonstrated
by extensive Monte Carlo experiments. Compared with the analytical approach, the

proposed approach is much simpler and has a much wider applicability.
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1 Introduction

Many econometric models share the following common features: (i) there is a nonlinear
parameter that is the main source of bias in model estimation and main cause of difficulty
in bias correction, (ii) there are many other parameters in the model but their estimates,
given this nonlinear parameter, are either unbiased or can be easily bias-corrected, and
(iii) the constrained estimates possess analytical expressions, leading to an analytical form
for a concentrated estimating equation. These include spatial autoregressive model, spatial

panel model with fixed effects, dynamic regression model, dynamic panel model with fixed
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effects, Box-Cox regression, Weibull duration model, etc.. The biasness problem arising from
the estimation of the nonlinear parameter has been widely recognized and a satisfactory
treatment of it has been the main focus of many researchers in the last two decades (see,
among others, Kiviet, 1995; Hahn and Kuersteiner, 2002; Hahn and Newey, 2004; Bun and
Carree, 2005; Bao and Ullah, 2007a,b; Bao, 2010). Another important issue, the high-order
correction on the variance of a bias-corrected estimator, has not been formally addressed.
Stochastic expansion (Rileston et al., 1996; Ullah, 2004) is seen to be a very useful
tool for studying the finite sample properties of a nonlinear estimator (Bao and Ullah,
2007a,b; Bao, 2010). However, it has two major limitations in performing high-order bias
and variance corrections: (i) it involves high dimension matrix manipulations and (ii) it
requires analytical expressions of expectations of various quantities in the expansions, which
are either very cumbersome to derive or simply do not even exist. We show in this paper
that (i) can be overcome by focusing on the nonlinear parameter and working with the
concentrated estimating equation, and (ii) can be overcome by a simple bootstrap procedure.

To illustrate the above ideas, consider first the spatial autoregressive (SAR) model:

where Y,, is a vector of observations on n spatial units, X,, is an n X p matrix of values of

k exogenous regressors, W, is a specified n x n spatial weights matrix, u, is a vector of

independent and identically distributed (iid) disturbances of zero mean and finite variance

o2, )\ is a scalar spatial parameter, and 3 is a p x 1 vector of regression coefficients.!
Denote 6 = {\, #/,0%}. The Gaussian log-likelihood function is,

1

n
0,(0) = -5 log(27ra2) +log |An(N)| — 257

[An()‘)Yn - Xnﬁ]/ [An()\)Yn - X”ﬁ] ’ (2)

where A, (\) = I, — A\W,, and I, is an n x n identity matrix. Maximizing ¢(6) gives the
maximum likelihood estimator (MLE) of 6 if the errors are exactly normal, otherwise the
quasi-MLE (QMLE). Given A, the constrained QMLEs of 3 and o2 are

Bu(N) = (X! X)) 71X An (V)Y and 62(N) = n Y AL (AN My A, (A Y, (3)

where M,, = I,, — X,,(X} X,,) "' X/,. These lead to the concentrated log-likelihood of \ as
n

£,(0) = —Zllog(2m) + 1] = Tlog 52(A) + log [ A, (). (4)

Maximizing £< ()\) gives the unconstrained QMLE ), of A. The unconstrained QMLEs of 3
and o2 are thus (3, = (,(\n) and 62 = 62()). Write 0, = (\n, 3, 62)".

'For theory and applications, see Cliff and Ord (1973, 1981), Ord (1975), Anselin (1988, 2001), Case
(1991), Case, et al. (1993), Besley and Case (1995), Brueckner (1998), Anselin and Bera (1998), Kelejian
and Prucha (1998, 1999, 2001), Bell and Bockstael (2000), Bertrand, et al. (2000), Topa (2001), Lee (2002,
2003, 2004a, 2007a,b), Mynbaev and Ullah (2008), Robinson (2010), Su and Jin (2010), Su (2012), etc..



To study the finite sample properties of 0, following the stochastic expansion approach,
one needs to derive analytically the expectations of various quantities involving derivatives
of £,(6) (up to fourth order for third-order bias and variance corrections). While finding
the expectations is not a problem in theory as it involves only quadratic forms of w,,, the
dimensionality of the problem (up to (p + 2)3 x (p + 2)) greatly complicates the results
that in turn hinders their practical tractability (see Bao, 2010, for a second-order bias
formula). We note that if A were known, then ,()\) is unbiased and 2()\) can be made
unbiased by multiplying a factor n/(n — p). This suggests that in estimating the SAR
model the main source of bias and the main difficulty in correcting the bias are associated
with the estimation of A. Lee (2007a) made a similar remark based on his Monte Carlo
results. Further, given A the finite sample variances of 3, (\) and 62()\) both possess explicit
expressions. Thus, for bias and variance corrections for the SAR model it may be only
necessary to focus on the estimation of A. A multidimensional problem is thus reduced
to a scalar one, which greatly simplifies the higher-order stochastic expansions. However,
working with the concentrated log-likelihood ¢5(\) makes the analytical derivation harder
as it now involves ratios of quadratic forms (see Section 3 for details). Thus, for these
expansions to be of a general practical value, they must be supplemented with simple ways
for evaluating various expectations involving ratios of quadratic forms.

The above arguments extend directly to all other models of similar features as the
SAR model. Take, for example, the Box-Cox transformation model (Box and Cox, 1964):
hY,,\) = X,,0 + u,, where all quantities are defined similarly as the SAR model (1),
except that h denotes a known nonlinear monotonic transformation indexed by an unknown
transformation parameter A\, applied to Y,, elementwise. The concentrated log-likelihood of
A takes the form ¢ (\) = —2[log(2m) +1] — Zlog 62(A) + > log hy(Yy 5, A), where 62()) =
n R (Yo, A ) Mph(Yo, X) and hy(Yai, A) = Ohy(Yn,i, A)/0Y, . 1t is clear that the analytical
expectations of various quantities involving the derivatives of £5(\) are not obtainable, and
working with the full likelihood in this case does not solve this problem.

The above discussions show clearly the need for a general method for high-order bias
and variance corrections that avoids the analytical derivations of various expectations, and
thus works for all models even when the analytical expectations are not obtainable. Noting
that the derivatives of £ () for both the SAR model and the Box-Cox model discussed
above can be expressed as functions of the parameter vector § and the error vector u,, with
iid elements, naturally, their expectations can be bootstrapped (see Efron, 1979).

In this paper we present a general method for third-order bias and variance corrections
under a fairly general model specification that encompasses all the models mentioned above.
The proposed approach is hybrid — combining stochastic expansion and bootstrap, with the
former providing tractable approximations to the bias and variance (up to third-order) of a

nonlinear estimator, and the latter making these expansions practically implementable. A



key assumption followed in the literature is relaxed, resulting in different bias and variance
formulas when concentrated estimating equation is used. The important issue: third-order
correction on the standard error of a bias-corrected estimator, is formally studied.

When applied to the SAR model, the proposed approach quickly leads to a complete
set of results for third-order bias and variance corrections, which extends Bao and Ullah
(2007a) by (i) allowing regressors in the model, (ii) allowing nonnormal errors, and (iii)
providing a third-order bias correction on An, and second- and third-order corrections on
the variances of A, and the bias-corrected A,. Compared with Bao (2010), where only a
second-order bias formula for 6, is derived based on the full likelihood, our method can be
viewed as a simpler alternative when only second-order bias correction on 5\n is concerned.
In addition, our method provides a complete set of third-order results, including the third-
order variance of the bias-corrected \,. More importantly, the proposed approach is much
simpler and has a much wider applicability than the analytical approach.

The rest of the paper is organized as follows. Section 2 presents the general method for
third-order bias and variance corrections of a general nonlinear estimator. Section 3 presents
the main theoretical results corresponding to the SAR model. Section 4 presents Monte
Carlo results for the finite sample performance of the proposed method under the SAR
model, along with a comparison with the analytical approach of Bao and Ullah (2007a).
The effectiveness of the proposed method in correcting bias and improving inference is fully

demonstrated. Section 5 concludes the paper and provides discussions on related issues.

2 A General Method for Bias and Variance Corrections

In this section, we first present revised third-order results by relaxing a key assumption,
to suit the concentrated estimating equation, and then we outline the main idea of bootstrap

method for estimating quantities in the bias and variance formulas.

2.1 Third-Order Bias and Variance of a Nonlinear Estimator

Bao and Ullah (2007a), extending Rilstone et al. (1996), considered a general class of

v/n-consistent estimators identified by the moment condition or estimating equation

0, = arg{,(0) = 0}, (5)

where ©,,(0) = ¥, (Z,;0) is a k x 1 vector-valued function of the observable data Z, =
{Z;}7, (iid or non-iid) and a parameter vector 6, of the same dimension as ¢, and normalized

to have order Op(n_l/ 2).2 They obtained a third-order stochastic expansion for én, and a

2This is in fact a generalized version of the well-known M-estimation (maximum likelihood type esti-
mation) of Huber (1964). Obviously, the maximum likelihood or quasi-maximum likelihood, least squares,

method of moments, and generalized method of moments are the special cases of this estimation method.



second-order bias and a third-order MSE for ,, assuming E,(6) = 0.

We note that the condition, E¢,(0) = 0, is neither necessary nor true in general for
deriving high-order results based on a general estimation equation as in (5). It is required
for achieving asymptotic efficiency but not for achieving consistency (see, e.g., Amemiya,
1985; White, 1994). Under the joint estimation, it is usually true if the model is correctly
specified and the ML method is followed, but may fail if the model is misspecified. Under
the constrained estimation, however, it is generally untrue whichever the estimation method
is followed and whether or not the model is correctly specified, except in some special cases,
e.g., the pure (no regressors) SAR model with o2 unknown (Bao and Ullah, 2007a). Thus,
this condition needs to be relaxed, in particular under the constrained estimation framework.

To fix the idea, let = (A, )" where X is the scalar nonlinear parameter of which the
estimation incurs biasness that is difficult to correct, and given A the estimation of the
parameter vector a has an analytical solution, either unbiased or easily bias-correctable.
Let d,(X) be the constrained estimator of « for a given \ value. Let 6y = (Ao, o))’ be the
true value of 6. Partition v, () according to (\, ), i.e., ¥ (0) = {xn(X, @), YL, (A, @) }.
Define 1, (A) = ¥an(A, dn(N)). Then, the estimator A, of A would typically be

An = arg{tn(A) = 0}, (6)

with 1, (\) = 0 being referred to as the concentrated estimating equation (CEE), in contrast
to the joint estimating equation (JEE) embeded in (5).> Note that by nonlinear we mean
the CEE, 1;”()\) = 0, does not have an analytical solution. In this paper, we focus on the
cases where )\ is a scalar. The CEE looks identical to the JEE when 0 is a scalar, and
thus the corresponding expansion is expected to have the same form, though the regularity
conditions need to be strengthened. However, there is a major difference: the expectation
of ¥n(Xg) may not be zero even if Etp,(6y) = 0. If G,()\) is /n-consistent, it is typical
that E[t,(Ao)] = O(n™1), i.e., the expectation goes to zero at an n-rate. If this is true,
then E[th,(Ao)] constitutes an important term in the bias correction. In this case, the bias
formula need to be modified. As a consequence, the higher-order approximations to the
variance needs to be modified as well. The mean squared error (MSE), however, remains
in the same form as it directly follows the stochastic expansions for M.

Let Hyn(\) = d"p(N)/dN\", 7 = 1,2,3. Let ¥, = ¥n(Xo), Hpn = Hpn(No) and HS, =
H., — EH.,,r = 1,2,3. Define Q, = —E(Hy,)"'. Note that here and hereafter the

expectation operator corresponds to the true model or the true parameter values 0y. Let

3Making inference about the parameter of interest in the presence of many parameters not of direct interest
(called the nuisance parameters) is a standard statistical problem, and it is typical in these situations to
replace the nuisance parameters by their estimators (constrained) in the object function or the estimating
function. There is a vast literature on the satisfactory handling of nuisance parameters. Most of this work
focused on the modification of the likelihood function and the concentrated likelihood function. See Laskar

and King (1998) for a survey and a comparison of the various methods.



A be the parameter space of X\. So far we have not yet specified the form of the 1;”()\)

function, thus as general theories we need some generic smoothness conditions on ¢, ().

Assumption A: A is compact with Ay being an interior point. E(y) = O(n™t), and
An, as a solution of (X)) = 0, is a \/n-consistent estimator of .

Assumption B: 1;”()\) is differentiable up to rth order for \ in a neighborhood of \g,
E(H,,) = O(1), and H, = Op(n"2),r = 1,2, 3.

Assumption C: E(Hy,)~! = O(1), and Hy,! = O,(1).

Assumption D: |H,,(A) — Hpn(Xo)| < |A = Xo|Uy, for A in a neighborhood of Ao, =
1,2,3, and E(|Uy,|) < C < 0o for some constant C.

The /n-consistency is a standard requirement for a higher-order stochastic expansion.
In the context of CEE, the \/n-consistency of A, implies E(¢,) = o(n~"/2) but not zero in
general due to the estimation of the nuisance parameters. If the estimators of the nuisance
parameters are also \/n-consistent, it can be argued that E(t,) = O(n~'). Further, the
v/n-consistency of A, implies Uy = Op(n_%). The Assumptions B and C are the tightened
versions of the Assumptions 4 and 5 in Bao and Ullah (2007a). The conditions E(H,,) =
O(1) and H, = Op(n_%) are needed so that H,, in a relevant term can be replaced by
E(H,y) with the error Op(n_%) being absorbed into the overall error term.* We are ready

to state the general theorems. All the proofs are given in Appendix A.

Theorem 2.1: Under Assumptions A-D, we have a third-order stochastic expansion:
An — Ao = a_1jo+a_1+a_g;+0y(n7?), (7)

where a_g o represents terms of order Op(n_s/Q) fors =1,2,3, and they are a_y ;5 = Qn'l;n,
a1 = QuH{,a_ 12 + %QnE(HQn)(a31/2), and a_z/y = QHa-1 + %Qann(aQ_I/Q) +
QnE(Hgn)(a_l/Qa_l) + %QnE(HBn)(a:il/g)

The third-order stochastic expansion for A based on CEE is seen to have an identical

form as those in Rilstone et al. (1996) and Bao and Ullah (2007a,b) when there is only one

parameter in the model. The same holds for the MSE expansion given below.

Corollary 2.1: Under Assumptions A-D, assume further that a quantity bounded in
probability has a finite expectation. We have a third-order expansion for the MSE of An:

MSE(S\R) =m-_1+m_gp+m_g+ O(n_5/2)7 (8)

where m_g/9 = O(n=%?),s = 2,3,4, with m_; = E(a2_1/2), m_zsp = 2E(a_y/2a-1), and
m—g =2E(a_0a_3/5) + E(aZ)).

4Under a specific model with a specific estimation method, these generic conditions may be replaced by
a set of weaker and more primitive conditions. The Assumption A may be relaxed to allow for asymptotic
(first-order) bias, and our methods can in principle be applied to do higher-order bias reduction for dynamic

or nonlinear panel models with fixed effects, see Hahn and Kuersteiner (2002) and Hahn and Newey (2004).



The leading term m_; = Q2E(¢)2) gives the asymptotic variance of A, and m_, +m_g/s
and m_1 +m_3z/5+m_2 give, respectively, the 2nd- and 3rd-order expansions for MSE(XR)
Turning to the expansions for bias and variance of S\n, the relaxed Assumption A leads to

results that are different from those based on JEE. First, we give the result for bias.

Corollary 2.2: Under Assumptions A-D, assume further that a quantity bounded in

probability has a finite expectation. We have a third-order expansion for the bias of 5\n
Bias(Ay) = b_1 +b_3/9 + O(n72), (9)

where b_y /5 = O(n=5/?),s=2,3, with b_1 = E(a_yjp+a-1) and b_g)5 = E(a_3/3).

Thus, b_1 alone gives a second-order expansion for the bias of S\n, and b_1 +b_3/o gives
a third-order expansion. Note that E(a_;/2) = 0, E(¢,,). This term is O(n~!) under CEE,
and can be identically zero when JEE is used. Rilstone et al. (1996) and Bao and Ullah
(2007a,b) considered in their general theory only second-order expansions for the bias. Their
formulas correspond to our b_; term only. Comparing with their second-order expansions
for the bias, we see that b_; contains an extra term, QQnE(ﬁn) When CEE is used, this
term plays a pivotal role in bias and variance corrections. This point is confirmed by the
additional Monte Carlo results for the SAR model, available from the author upon request.

Adding a third-order bias-correction term b_3/, into the formula gives us a choice for
further improvement on the bias-correction procedure if necessary. With the results of

Corollary 2.2, the second- and third-order bias-corrected estimators of A\ are, respectively,
S\ELC2 = j\n —/5_1 and 5\7b1c3 = j\n —/b\_l —/b\_g/g. (10)

Remark 1: The practical implementation of X};w requires the estimation of b_3 5, which
greatly complicates the algebraic work and computer coding if the analytical approach is

followed, but adds only a little if the bootstrap procedure introduced later is followed.

Remark 2: There is an issue on the validity of replacing b_; by b_; for feasible third-
order bias correction. Writing b_1 = b(6), then b_y = b(6,,) = b(6) + bg(@o)(én —0y) +
Op(n™2) provided the derivative by(fy) ~ b(fy) = O(n~'). Taking expectation on both
sides, one sees that E(b_1) = b(6) + O(n~2), showing the validity of the method.

~

While it is important to have higher-order expansions for MSE(\,,) for the purpose of
efficiency comparison, it is more important to have higher-order expansions for the variances
of S\n, X};d and X};w for inference purpose. For S\n, one is tempted to simply combine the
expansions for bias and MSE to give second- and third-order expansions: Var(\,) =m_; +
m_z/5+0(n"?), and Var(A,) = m_; +m_gp+m_g—b: + O(n~°/2). Theoretically these
are correct, but empirically they do not guarantee positiveness of the variance estimator

when n is not large. We thus propose to have variance expansions directly out of (7).



Corollary 2.3: Under Assumptions A-D, assume further that a quantity bounded in

probability has a finite expectation. We have a third-order expansion for the variance of An:
Var(A,) = v_q + U_gjp+v-2+ O(n=°/?), (11)

where v_1 = Var(a_y), v_gj2 = 2Cov(a_ij3, a-1), and v = Var(a_1 + a_3/) +
2Cov(a_y /9, a_gj), with v_g/p = O(n=%/%),5s =2,3,4.

The third-order expansions are presented by clearly separating out the terms of different
order, thus allowing one to choose between the 2nd- or 3rd-order approximations according
to the actual needs. With the results of Corollaries 2.2 and 2.3, one can correct 5\n and its
standard error for an improved inference for A. However, the bias-corrected estimators, X%d
and 5\2"’3, contain additional random elements due to the estimation of the bias. Therefore,
for improving finite sample inference for X it is more relevant to use Var(A22) or Var(Abe3)
to calculate the standard errors of AP¢2 or AP, Letting bg(6y) = {bx(6o), b, (6p)} = 8‘9706_1,

we have the following important corollary.

Corollary 2.4: Under Assumptions A-D, assume further that (i) a quantity bounded in
probability has a finite expectation, and (i) ba(fp) = O(n™1), be(6,,) — ba(6) = Op(n~3/2),
and %3_3/2 = 0,(n™%/2). We have the third-order expansions:

Var(AL®) = (v_1 + v_g/9 + v-2)(1 — 2bx(60)) — 2b/,(80) ACoV(Gn, An) + O(n™/2),  (12)

where ACov denotes asymptotic covariance. Further, Var(AP?) = Var(AP®) + O(n=5/2).

Thus, the variances of X};w and A, agree only up to second order, suggesting that for

improving finite sample inference for A, AP should be used in conjunction with Var(AP3).

2.2 A bootstrap method for estimating the bias and variance corrections

The second- or third-order corrections on the bias and variance of nonlinear estimators
are practically tractable only if one could find a simple way to estimate the quantities like
E(H,y), E(42), E(H1,%2), etc. The analytical approach is to first find these expectations
and then replace @ in the resulted expressions by its consistent estimator O, However, find-
ing these expectations analytically is either very cumbersome or impossible (see discussions
in Sec. 5). Thus, alternative methods are highly desirable. We now introduce a simple

bootstrap method for estimating these quantities. Consider a general model of the form

g(Zm 00) = Unp

where wu, is the disturbance vector of iid (not necessarily normal) components. Assume
that the key quantities &n and H,, can be expressed as &n = &n(un,ﬁo) and H., =
Hyp(up, 0),r = 1,2,3. Let 4, = g(Z,, én) be the vector of estimated residuals based on



the data. Resample the elements of @, (by making n random draws with replacement) to
give Uy p, and compute @n(un,b, én) and Hyp (tn,p, én) Repeat these steps forb=1,2,---, B

times, and the bootstrap estimates of these expected quantities are given as,

B

Zig(un,bv én)Hgn(un,bv én)v t,j=12---, =123,
b=1

E(,HY,) =

S

leading to the bootstrap estimates of biases, MSEs, and variances. by(6p) in Corollary 2.4
can be estimated by numerical derivatives and bootstrap. See Sections 3 and 4 for details.

Note that in the entire bootstrap process, the same estimate én based on the original
data is used when recalculating @n and H,, based on each bootstrap sample . The
reestimation of the model parameter 6 is thus avoided, which makes this bootstrap proce-
dure easy to be implemented. In summary, our proposed approach for bias and variance
corrections takes the advantages of both stochastic expansions and bootstrap, neither of
which alone allows us to handle a problem of this type comfortably. The usefulness and
effectiveness of this approach is fully demonstrated in the following section using the SAR

model, and the validity of this approach is justified therein.

3 Bias and Variance Corrections for SAR Model

We now consider the estimation of spatial lag parameter A in the general SAR model
specified in (1), to give a detailed demonstration of the applications of the general methods
presented in the earlier section. The nature of the SAR model indeed renders it a special
attention in terms of bias and variance corrections. First, the parameter A\ enters into the
model in a nonlinear manner, hence the estimation of it is likely to incur bias. Second, the
degree of spatial dependence among the spatial units depends not only on the magnitude
of the spatial parameter A, but also on the number of neighbors each spatial unit has, or
equivalently the number of non-zero elements that each row of the W,, matrix contains.
A very important special case of this is that the number of neighbors, h, say, grows with
n (see, e.g., Case, 1991), and in this case, Lee (2004a) showed that the QML estimators
of XA and (3 are no longer y/n-consistent, but rather \/W—consistent. Thus, the effective
sample size is n/h,, and the bias and variance formulas given above need to be adjusted
to allow for this possibility. Conceptually, this may be fairly straightforward as one may
simply replace n by h,/n everywhere in the expansion formulas. Theoretically, however,
much needs to be done in terms of regularity conditions and formal proofs of the results.
We do so in this paper by following the theoretical foundations laid out in Lee (2004a).

Bao and Ullah (2007a) made their first attempt to address the biasness issue by working
with the pure SAR model with normal errors, and provided analytical formulas for the

second-order bias and mean squared error (MSE) for the MLE An based on the stochastic



expansion technique first introduced by Rilestone et al. (1996). Their results, though
limited to the pure SAR model with normal errors, shed much light on a general solution to
the biasness problem of the general SAR model (or a class of similar models). Bao (2010)
followed up with this issue through the full likelihood and derived an analytical second-order
bias for the QMLE 6,,, but the MSE formula and the third-order results were not given.
In dealing with the case of 02 unknown in the pure SAR model, Bao and Ullah (2007a,
p.400) advocate the use of concentrated likelihood function of A as (i) it simplifies the max-
imization procedure substantially, and (ii) it also simplifies the derivations for the higher-
order results since it is much easier to work with a scalar case than with a vector. We
concur with their view and stress further that (i) these simplifications are even greater if
the SAR model involves exogenous regressors, and (ii) for the purpose of bias correction, A
is the parameter of primary interest as, given A, the model reduces to a linear regression,
and the constrained QMLEs (3, (\) and 62()) is either unbiased or can be made unbiased.

3.1 The main results

The QMLE A, of the spatial parameter A, which maximizes the concentrated log-
likelihood function () given in (4), can be equivalently defined as A, = arg{¢n(\) = 0},
where 1), ()\) is the derivative of @nﬂ&%(}\) and has the form,

Un(\) = —hpTon(N) + hn Rin(N), (13)
with its rth derivative, H,,(\) = %&n()\), r=1,2,3, given as follows
hi Hin(A) = =Tin(A) = Ran(N) + 2R, (), (14)
hy ' Haa(A) = —2T2(A) = 6R1,(A) Ron(A) + 8RE, (), (15)
hy'Hzn(A) = —6T3,(A) +6R3,(A) — 48R, (A) Ron(A) + 48R, (M), (16)
where T,(A) = n=1tr(GITH(N)),r=0,1,2,3, G,(A\) = W, A L (N),5

Y, AL (N M,W,.Y,
Rl”(A)_YgA;l(A)MnAn(A)Yn and  Ron(})

 YWIMWLY,
Y AL My An( V)Y,

(17)

Clearly the function 1, ()\) defined in (13) leads to a concentrated estimating equation,
and fits into the general framework described in Section 2. The difference is that the quantity
h, may alter the rate of convergence of 5\n in the first-order asymptotics (Lee, 2004a) and
of course the magnitude of the quantities in the higher-order asymptotics. Paralleled with
the general theories given in Section 2. we now present a complete and rigorous treatment

for the SAR model, taking into account of the possibility that h,, is unbounded.

5The author is very grateful to Jihai Yu and a referee for pointing out errors in the expressions for Hay, ()
and Hs,(A). The corrections, though correspond to the higher-order terms, do lead to further improved and

more coherent results in that A2 performs consistently better than b2 Gee Yang (2010a).
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Recall ¢, = p,(No) and Hy, = Hyp(Xo),r = 1,2,3. Similarly, let A, = A,(\o),
Gn = Gn(No), Trn = Trn(Ao),r =0,1,2,3, and Ry, = Rpn(Xo), 7 = 1,2. Let 0, = G, X, 00.
With the specification of the SAR model and the quasi-maximum likelihood estimation
method, the generic regularity conditions listed in Section 2 can be made more specific or
more primitive. First, the set of rather primitive conditions of Lee (2004a) for the \/n/h,,-
consistency of the QMLE A, are essential and are summarized below in Assumptions 1-6.

Assumption 1: The true \g is in the interior of a compact set A.

Assumption 2: The innovations {u,;} are iid with mean zero and variance o?.
Bl 4|47 exists for some v > 0.

Assumption 3: The elements wy, ;; of W, are at most of order ho L uniformly for all i
and j, where the rate sequence {hy,} can be bounded or divergent but satisfying h1*¢/n — 0
for some € > 0 as n — oo. As a normalization, wy;; = 0 for all i. Furthermore, the
matrices {W,} are uniformly bounded in both row and column sums.

Assumption 4: The matriz A, is nonsingular, {A;'} are uniformly bounded in both
row and column sums, and {A;1(\)} are uniformly bounded in either row or column sums,
uniformly in A € A.

Assumption 5: The elements of the n X p matrix X,, are uniformly bounded for all n,
and lim,,_, o %X{an exists and is nonsingular.

Assumption 6: The elements of Myn, are O(h;%) uniformly, andlim, %"n;annn =
¢, where either ¢ > 0, or ¢ = 0 but lim,,_, o %"(ln o3 AT A —In|a2(\) A (VAT (V)] #
0, whenever X\ # Ao, where o2()\) = ﬁtr[A’;lA;l()\)An()\)A_l].

n n n

The Assumptions 1-6 listed above are the Assumptions 1, 2, 3’, 4-7, and 10 of Lee
(2004a). Under these assumptions, the QMLE )\, is a \/1/hy-consistent estimator of .
In the regular case where h,, is bounded, i.e., the degree of spatial dependence does not grow
with the sample size, A becomes v/n-consistent. These assumptions lead to the first-order
asymptotics for én, which are shown to be essential as well for the higher-order stochastic
expansions for S\n, and the higher-order expansions for the bias, MSE, and variance of A
Some further conditions are needed for ensuring proper orders of Ry, and Rs,, which are

crucial for the proper behaviors of the derivatives H,,,r = 1, 2, 3. Denote &7210 =62(\o)-

Assumption 7: (i) E[%"(YéA;anWnYn)@;é — oy ")(62 —ad)] = O((%)%), and (ii)
[t (YW M, W, Yo ) (a0 — 05 )62 — 02)] = O((22)7), for 52, between o2 and 62,

These conditions are weak as under the earlier assumptions %(YAA%MRWRYR) = 0p(1),
%"(YAWAMRW”Y”) = 0p(1), 62,—0f = Op(n_%), and o) —0t = Op(n_%); see Appendix
B for their proofs. Thus, the two quantities inside the expectation sign are both Op(n_l),
suggesting that the conditions are met as long as the expectations of these two quantities
do not ‘explode’ beyond the order O((%ﬂ)%) To ensure the proper stochastic behavior of

H,.,,r=1,2,3, the following conditions are needed.
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Assumption 8: (i) BSE[(Ri, —ER1,)*] = O((12)7), s = 2,3, 4; (ii) h2E[(Ran—ER2,)?]
— O((2)3); and (iii) h5™ E[(Rip — ER1n)*(Ran — ERgp)] = O((22)7),5 = 1,2.

The three conditions in Assumption 8 are in fact rather weak since, following the results
of Lemma 3.1 below, all the random quantities inside the expectation sign are of order
Op(@nﬂ) or lower, which suggests the conditions are met as long as their expectations do not

‘explode’ beyond the order O((%)%) We have the following important lemma.

Lemma 3.1: Under Assumptions 1-7, we have
(1) hnRin = Op(1), E(hpR1,) = O(1), and hyRiy, = E(h,R1y) + Op((@nﬂ)%)

(ii) huRan = Op(1), E(hyRan) = O(1), and hyRop = E(hyRan) + Op((12)3).

With this lemma and under the conditions listed above, we are able to prove the following
theorem and corollaries. These theorem and corollaries parallel the general theorem and
corollaries given in Section 2 with the order of magnitude of each term adjusted to allow

for the possibility that h,, increases with n. All proofs are given in Appendix B.

Theorem 3.1: Under Assumptions 1-8, we have a third-order stochastic expansion:
An—Xo=a_1j9+a_1 +a_gjs+ Op((n/hy)72), (18)

where a_y /5 = Quthn, a1 = Uiy + Q2 Hipth, + %QiE(HQR)ng, and
a_3/2 = Qb + 202 Hiphy + Q3B (Hop )02 + O3 H2 5y + 103 Hp,1)2
+ 3B (Han) i, + 3B (Hon)*03 + GO E(Hsn) Y,
having stochastic orders a_z/; = Op((n/hyn)™%%),5 =1,2,3; and Q,, = —1/E(Hy,).
Note that {a_,/o} have the same expressions as those in Theorem 2.1. The difference is
in their stochastic orders. To simplify the presentations and to facilitate the practical im-

plementations of our results, define c1, = {2, 05,1}, con = {Qn, 2, LQ3E(Hyy,), 04,4},

csn = {Qn, 202, Q3E(Hyy), 3,303, 3QIE(Hay), $Q3E(Han)? + $QIE(Hsy)Y, Con =

n»2°"nr 2°%n ’ 2%%n

Cip + Con, and Cs,, = c1y + Cop + C3. Let
Cn = {'L;nv Hln'&nv 157217 anlzm H2n1;7%7 Hln'&zu %31}/ (19)

Then, a_y /5 = ¢},(n, a1 = ¢5,(ny A_3/9 = C3,Cny and A — Ao = ChCn + Op((n/hn)72).

Corollary 3.1: Under Assumptions 1-8, assume further that a quantity bounded in

probability has a finite expectation. We have a third-order expansion for the bias of An:
Bias(An) = b_1 +b_3/2 + O((n/hn) 2, (20)
where by = Cy, E(Cy) and b_z)9 = c3,E((y); and 2nd- and 3rd-order bias-corrected QMLESs:
Abe? = X, — 5, E(G) and AL = A, — 3, E(C). (21)
where the quantity with an ~ denotes the estimate of the corresponding quantity.
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Comparing with the second-order bias formula of Bao and Ullah (2007a) for the pure
SAR model, we see that our second-order bias formula b_; contains an extra term 20, E(¢,),
which is of order O((n/h,)~!) in general but vanishes under the pure SAR model with
normal errors. If the second-order bias-correction is not enough, our approach provides
an easy way for the third-order correction. In contrast, the analytical approach involves

tremendous amount of extra algebraic work even with a simple model of normal errors.

Corollary 3.2. Under Assumptions 1-8, assume further that a quantity bounded in

probability has a finite expectation. We have a third-order expansion for the MSE of An:
MSE(\,) = m_1 +m_z5 +m_s + O((n/hy)~*/?), (22)

form_y = CllnE(CnC;z)Clnf m_g/2 = QCllnE(CTLC;’L)CQTH m-z = anE(CnC;z)CQR—’—QCIInE(CnC?{L)C3n
It is seen that introducing the notation ¢;;, and (, greatly simplifies the expression for
the MSE expansion. Simplification is even greater for the variance expansions as seen from

the following corollaries, which makes the practical implementations much easier.

Corollary 3.3. Under Assumptions 1-8, assume further that a quantity bounded in

probability has a finite expectation. We have a third-order expansion for the variance of 5\”
Var(j‘n) =v_1+ V_3/2 +v_o+ O((n/hn)_2)7 (23)

where v_1 = ¢}, Var(¢y)ein, v-1 + v_gjp = C3,Var(¢,)Cap, and v_1 +v_gj3 +v_2 =
C4,, Var((,)Csp, .

Note that v_1 = Var(ay/2), v—1 +v_g)9 = Var(a_y/o + a-1), and v_1 + v_3/5 + v_2 =
Var(a_i/2 + a—1 + a_z/3). Certain terms such as Var(a_;) for second-order expansion,
and Cov(a_1,a_3/3) and Var(a_3/p) for the third-order expansion may be dropped. These
lead to asymptotically equivalent but simpler variance expansions Var(\,) = MSE(\,,) +
O((,f—n)_2), and Var(\,) = MSE(S\R)—i—b%l—i—O((%)_E’/Q). However, as pointed out in Section
2, these simplifications may not guarantee the positiveness of the variance estimates, thus
it is recommended that the results in (23) be followed in the practical applications.

One important issue left is the variances of the bias-corrected estimators, i.e., Var(AP¢?)
and Var(AP¢), which are important and more relevant in improving the finite sample infer-
ence for A. Let {bj3(6), bA(60), bs2(00)} = bg(6o) = 8‘9706_1. We have the following result.

Corollary 3.4. Under Assumptions 1-8, assume further that (i) a quantity bounded in
probability has a finite expectation, (ii) bp(6y) = O(%"), (iii) bo(0n) — bg(0p) = Op((%)gﬂ),
and (iv) %3_3/2 = Op((%)gﬂ). We have the third-order expansions:

Var(Ab®) = C4,Var(Ca)Can(1 — 2bx(60)) — 2b3(60) ACov(Bn, An)
—2b,2(00)ACov(62, M) + O((n/hn)~%/?), (24)

and Var(AP<?) = Var(\be3) —1—0((%)_5/2), where ‘ACov’ denotes the asymptotic covariance.
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It turns out that the variance of \, agrees with the variances of X};d and X};w to the
second-order O(n~3/2) but differ on the third-order O(n~2). The analytical expressions for
the asymptotic covariances are available from Lee (2004a). The partial derivatives b’ﬂ(Ho),
bx(0o), and b,2(0y) can be estimated by numerical derivatives (see Section 4 for details).

With the results of Corollaries 3.1-3.4, various t-ratios for inference for A can be formed:

j\bcz‘ Y
tiy = L (25)
00

where 5\2“ denotes the ith-order bias-corrected estimator, and ‘7j() the estimated jth-order
corrected variance, i, 7 = 1,2,3. Clearly, ¢ = 1 and j = 1 correspond to the original QMLE
A, and its asymptotic variance. Monte Carlo results given in Section 4 show that the usual
t-ratio, t11, leads to the worst results, whereas the fully third-order corrected t-ratio, tss,

leads to the best inferences for A.

3.2 The bootstrap method for practical implementation

While working with the concentrated estimating equation greatly simplifies various ex-
pansions, it does not overcome the difficulty in analytically evaluating the expectations of
various quantities in the expansions. From the expressions given in (13) to (24) we see
that, in order to calculate various expectations in the bias, MSE, and variance expansions,
all we need is to find the expectations of R, and R, (the ratios of linear-quadratic and
quadratic forms), their powers, and the cross-products of powers, and then evaluate them

at the estimated parameter values. In other words we need to derive analytically,
E(R}),k=1,---,10; E(RS),k=1,---,4; and E(R},Ry), k=1,---,6,m=1,2,

and then replace 6y by én, for up to third-order expansions. However, this is either too
cumbersome if the errors are normal, or too difficult if the errors are nonnormal, unless
for the special case of a pure SAR model with normal errors.® For the general SAR model
with normal errors, we managed to derive only a second-order bias formula (requiring only
E(RY),k = 1,2,3, E(Ry,) and E(R;,Rs,)) by extending the results of Smith (1993).
However, the results are too tedious to be fit into the current paper. In the case of the

general SAR model with nonnormal errors, we failed to obtain any analytical results.

®In this case, the high-order bias and variance formulas involve E{(u}, A1us)"(u)A2un)? /(upu,) 7} for
symmetric matricies A; and Az, and 4,5 = 0,1,2, ..., which can be found using the results of Smith (1993).
For this simple model, the resulted analytical expressions (Bao and Ullah, 2007a) are complicated but
manageable. FEither dropping normality or adding exogenous regressors or both invalidate these results.
Working with the full likelihood function makes it possible for an analytical solution but at the expense
of more tedious expressions; see Bao (2010) for a second-order bias formula for 0,. As we are primarily

interested in the finite sample properties of A, we thus work with the concentrated likelihood function.
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Thus, for the higher-order results presented above to be practically feasible for a general
SAR model, it is highly desirable to have an alternative way to evaluate these expectations.
Clearly, it is when the errors are non-normal and the model contains regressors that gives
a practical attraction. To solve this puzzle, the bootstrap procedure outlined in Section 2

is made explicit below. Note that the two key ratios can be written as:

u;'LMnGnun + u;-LMnnn
uh, My up,
ul, Gl MGy + 2ul, G Myny, + nl Mpny,

/
un nun

Rln = Rln(uru 00) =

)

R2n = R2n(un7 00) =

where 1, = GpXnB0. These show that ¥, = @n(un,éo) and H,, = {Hin, Hop, Hsp} =
H,(un,0y). Hence, (,, = Cu(un, ). In other words, all the random quantities in the bias,
MSE, and variance formulas can be expressed in terms of u,, and 6y. This leads naturally to
a bootstrap procedure for estimating the expected values of these random quantities (see,

e.g., Efron, 1979; Amemiya, 1985, p. 135). The suggested bootstrap procedure is:

1. Compute the QMLEs 6,, = (3,62, \,)’ based on the original data,

y Umo
Compute QML residuals u,, = flnYn — Xnﬁn, where En =1, — 5\an,

Resample i, in the usual way, and denote the resampled vector by w; ,,

A~ A~

Compute Rin(uj, 4, 0,) and Ron(uy, 4, 0n), and thus Hy,(uy . 0n), and G (uy 4, 0,),

A S

Repeat steps (3)-(4) B times to give sequences of bootstrapped values for H,, and (,.

The bootstrap estimates of various expectations thus follow. For example, the bootstrap
estimates of the mean and variance of 1;721 (the third element of (;,) are, respectively, E('l;%) =
LSoP 92k, 0,), and Var(92) = L0 di(ur . 0,) — [E($2)]2. With the quantities
Cin,t = 1,2,3, and (, introduced below Theorem 3.1, the practical implementations of
our bootstrap-based bias and variance corrections (whether 2nd-order or 3rd-order) can be

made much simpler — all that are needed are the following bootstrap estimates:

_ . o
E(H,) = Y0 Hu(u)y,0n),

E(Cn) = %25:1 Cn(u;;’bven)v and
B(GuCh) = 5 2 pm1 Gn(th 4 0n) ¢ (un b, On).

We now provide some formal arguments for the validity of the proposed bootstrap
procedure. As all the quantities involved in the expansions are smooth functions of either
Ry, only or both Ry, and Rs,. It suffices to argue that the above bootstrap procedure
leads to valid estimates of E(Ry,) and E(Rg,). Let F be the CDF of w,;, and F, be the

empirical distribution function (EDF) of 4,. Consistency of 0,, ensures the consistency of
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using F,, to estimate F. In the real world, if one knew F and 6y, one may approximate

E(R1,) and E(Ry,) to an arbitrary accuracy by

% Z%[zl Rln(“n,mv 00) and ﬁ Zf—\n/lzl R2n(un,m7 00)7

where uy, ,,, is a random n-vector drawn from F and M is a large positive integer. If one
knew F but not 6y, one may estimate E(R1,) and E(Rsy,) by

E(Rln) - (% Zr]\,/{zl Rln(“n,mv 00)) - % Zr]\,/{zl Rln(“n,mv én)v

00 :én

E(R2n) - (% Zr]\,/{zl R2n(un,m7 00)) - % Zr]\,/{zl R2n(un,m7 én)

0o=0n
In reality, however, one knows neither 6y nor . Under the bootstrap world, these unknown
quantities are made ‘known’ to be their estimates, and the bootstrap DGP that mimics the
real world DGP is

= MWL Y 4 X + Uy,

where u , i F, and (Bn, 5\n) are the estimates of (5y, A\g) based on the original data. Based
on the generated bootstrap data {Y*,, X,,, W, } and the bootstrap parameters (Bn, 5\n), one
computes the bootstrap analogue of Ry, and Ry, defined in (17) as

Y;’%A%MRWRY;’I)
Y;”bA;an AnYr,

Y;’anManng
Y;”bA;an AnYn*’ b

*
Rln,b -

and R5,, =

)

A~

which after simplifications become Rln(u;’b, én) and Rgn(u;’b, 0,,), the bootstrap analogue
of Rip(un,00) and Ryy(un,by) given above. These give the bootstrap estimates of E(R1,,)
and E(Rap,) as E*[Rin(uy, 4, 0,)] and E* [Ron(uy, 4, 0,,)], respectively, where E* denotes expec-
tation with respect to the EDF .7:"n In practical applications, feasible bootstrap estimates

can be obtained by taking a large number of bootstrap samples and averaging:

E(Rln) = 3 Zszl Rip(uy, p, 0,) and E(R%) =5 Zszl Ron(uy, p, On).

Thus, the bootstrap estimates E(Ray,) and E(Rs,) have identical structure as the Monte
Carlo estimates E(R1,) and E(Ry,) assuming a known distribution. The difference is be-
tween up g, and uy, , or between F and Fr. As argued above, if 0,, is v/n-consistent for 6y,
it is typical (under regularity conditions) that F is y/n-consistent for F. This suggests
that as estimates of E(R1,), the errors resulted from using E(Ry,) and E(R1,) are of the
same order of magnitude. Finally, the existence of various expectations involving R, and
Ry, is guaranteed by Lemma 3.1 and Assumption 8 (see the proof of Theorem 3.1). From
these, we conclude that our bootstrap method provides valid estimates of various quantities
involved in the expansions for the bias of 5\n and for the variances of 5\n and bias-corrected

An. See, e.g., Efron (1979) and Lahiri (2003) for details on the general bootstrap principles.
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4 Monte Carlo Simulation

Extensive Monte Carlo experiments are carried out to investigate (i) the finite sample
performance of the QMLE A, and the bias-corrected QMLEs X%d and chg of the spatial
lag parameter A, (ii) the finite sample performance of the corrected standard errors (se),
and (iii) the impact of the bias and se corrections on the subsequent inferences for . Also,
a comparison is made with the analytical approach of Bao and Ullah (2007a).

For (i)-(iii), Monte Carlo experiments is carried out based on the following SAR model:
Yo = AW,Y, + ﬁOln + anﬁl + Xn2ﬁ2 + Un,

where 1,, is an n-vector of ones. For all the Monte Carlo experiments, 3 = {5y, 51, f2} is set
at {b,1,1}or {.5,.1,.1}, 0 at 1 or 2, A takes values {.5,.25,0, —.25, —.5}, and n takes values
{50,100, 200,500}.” Several ways of generating W,,, (X,1, Xpn2), and u, are considered.

First, the values {z1;} or {1} of X,1, and the values {z2;} or {2} of X2 are,

MRSAR-A: {zy;} “ N(0,1)/v/2, and {9} < N(0,1)/v/2, or

MRSAR-B: {z1;-} = (22, + 2ir) /7, and {z24} = (vr + vir) VT,
where in MRSAR-B, {z;, 2y, Ur, Vi } N (0,1), across all i and r. Apparently, MRSAR-A gives
iid X values, and MRSAR-B gives non-iid X values, or different group means under group
interaction, see Lee (2004a) and below for details. The two schemes give signal-to-noise
ratios 1 when 31 = 82 = 0 = 1. Partial results with 8 = {5,1,1} and o = 1 are reported.

More extensive results are available at http://www.mysmu.edu/faculty/zlyang/.

Spatial layouts. Three general spatial layouts are considered in the Monte Carlo
experiments. The first is based on Rook contiguity, the second is based on Queen contiguity
and the third is based on the notion of group interactions. The methods used in generating
these three spatial layouts are similar to those used in Yang (2010b).

The detail for generating the W,, matrix under rook contiguity is as follows: (i) index
the n spatial units by {1,2,---,n}, randomly permute these indices and then allocate them
into a lattice of k x m(> n) squares, (ii) let W;; = 1 if the index j is in a square which
is on immediate left, or right, or above, or below the square which contains the index i,
otherwise W;; = 0,7, =1,---,n, to form an n x n matrix, and (iii) divide each element of
this matrix by its row sum to give W,,. Similarly, one generates the W, matrix under Queen

contiguity with additional neighbors sharing a common vertex with the unit of interest.

"As in Lee (2007a), the maximization of 5, () is performed globally without imposing a restricted lower
bound on A. This is important when the true A value is negative and big, because QMLE is downward biased
and a restricted lower bound, —0.9999 say, would result in the searching process to hit the lower bound quite
often, thus failing to reach the true maximum point. This would in turn give a wrong impression that the
QMLE can be upward biased and the bias-correction may not work in certain cases. This is believed to be
the reason for the incoherent Monte Carlo results of Bao and Ullah (2007a). See Anselin (1988, p. 78-79)

for a theoretical discussion on the parameter space of A in relation to the eigenvalues of W,,.
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To generate the W,, matrix according to the group interaction scheme, suppose we have
k groups of sizes my, ma, - - -, my. Define W), = diag{W;/(m; —1),5 =1,---,k}, a matrix
formed by placing the submatrices W; along the diagonal direction, where W; is an m; x m;
matrix with ones on the off-diagonal positions and zeros on the diagonal positions. The
group sizes {m;} can be the same or different, and independent or dependent on n, allowing
for a full range of spatial scenarios considered in Lee (2004a). The details are as follows:
(i) calculate the number of groups according to k& = K(n), and the approximate average
group size m = n/k, (ii) generate the group sizes (my, ma, - - -, my) according to a discrete
distribution centered at m, and (iii) adjust the group sizes so that Zle m; =n.b8

In our Monte Carlo experiments, we use K (n) = Round(n®) with e = 0.35,0.50, and 0.75,
representing respectively the situations where (a) there are few groups of many spatial units
in each, (b) the number of groups and the sizes of the groups are of the same magnitude,
and (c) there are many groups of few elements in each. Clearly, h,, = O(n'~¢). The group

sizes are drawn from a discrete uniform distribution from 0.5m to 1.5m.

Error distributions. To generate u,, = oe,, three distributions are considered: dgp1:
the elements {e;} of e, are iid standard normal, dgp2: {e;} are iid standardized normal

mixture, and dgp3: {e;} are iid standardized log-normal. Specifically, for dgp2,

ei=((1=&)Z+&7Z) )1 —mn+mx02) i=1,---n,
where {¢;} “ Bernoulli(7), and {Z;} “ N (0,1) independent of {&;}. The parameter =
represents the proportion of mixing the two normal populations. In our experiments, we
choose m = 0.1, meaning that 90% of the random variates are from standard normal and the
remaining 10% are from another normal population with standard deviation 7. We choose

7 = 4 to simulate the situation where there are gross errors in the data. For dgp3,
e; = [exp(Z;) — exp(0.5)]/[exp(2) — exp(1)]*?, i =1, - ,n,

which gives an error distribution that is both skewed and leptokurtic. The normal mixture
gives an error distribution that is still symmetric like normal but leptokurtic. Other non-
normal distributions, such as normal-gamma mixture and chi-square, are also considered

and the results (available from the author upon request) exhibit a similar pattern.

Finite sample performance of bias and se corrections. We report the Monte
Carlo means, rmses and sds of Ay, )\ZC2 and )\ZC3 under various combinations of the values

for (n, A, o), the error distributions, and the spatial layouts. We also report the averages

8Clearly, this design covers the scenario considered in Case (1991). Typical forms of K(n) include
K(n) = n/m where m is a prespecified constant independent of n and K(n) = Round(n®). Lee (2007b)
shows that the group size variation plays an important role in the identification and estimation of econometric
models with group interactions, contextual factors and fixed effects. Yang (2010b) shows that it also plays

an important role in the robustness of the LM test of spatial error components.

18



(over Monte Carlo samples) of the 1st-, 2nd- and 3rd-order ses: ‘71(5\71)%, ‘72(5\71)%, ‘73(5\71)%
and 173(5\}?3)%, defined in (25) and calculated based on the proposed bootstrap method.”
Each set of results is based on 10,000 Monte Carlo samples, and 999+ f loor(n0'75) bootstrap
samples for each Monte Carlo sample. Table 1 summarizes partial results with 5 = {5,1,1}

and o0 = 1. From the results (also unreported), some general observations are in order:

i) the bias-corrected QMLESs P2 and APe3 are in general nearly unbiased and clearl
n n y
outperform the original QMLE A,;

~

(ii) Ay is always downward biased and the biasness can be very serious depending on the

spatial layout, the sample size and the error standard deviation;

(iii) APe3 improves over AP2. but using AP? seems to be sufficient under most of the

situations as far as bias-correction is concerned;

(iv) spatial layouts can have a huge impact on the finite sample performance of 5\n — the

stronger the spatial dependence the worse 5\n performs;

(v) the values of o and the slope parameters also have a big impact — the bigger the o is,

or the smaller the || and |f32| are, the bigger are the biases, rmses and sds of P

(vi) the value of A and the way the regressors being generated affect the finite sample
performance of A — as A decreases, the bias of A, decreases under iid regressors but
increases under non-iid regressors, whereas the [rmse](se) of An always increases as A

decreases, with a sharper amount for the case of non-iid regressors;

(vii) the error distribution does not affect much on the general performance of the three

estimators, showing the robustness of the proposed approach.

(viii) The empirical sd of A, can be slightly different from that of AP when sample size is
small, suggesting that the variances of A, and chg may differ on higher-order term
(see panels (a)-(c), Table 1). The results in the last four columns of Table 1 show
that 173(5\363) provides the best approximation to the variance of X};w. The empirical
sds of X};(’/? and chg agree closely, suggesting that the finite sample variances of X%d
jbe3

and are about the same. These are consistent with the result of Corollary 3.4.

In summary, the proposed bias-correction procedure works excellently in general, it is simple

and widely applicable, and thus should be recommended for the practitioners.

The performance of t-ratios. The finite sample behavior of the ¢-ratios t;; for testing
Hp : A =0, defined in (25) are investigated. Partial Monte Carlo results in terms of means,
sds, and tail probabilities are reported in Table 2. From the results, the following conclusions

can be drawn: (i) the asymptotic t-ratio ¢1; can perform quite badly with severe distortions

9The partial derivatives of b_1 = b_1() needed in ‘73(5\2C3)% are estimated by numerical derivatives:
(b_1(0n 4 € ti) —b_1(6,))/e,i =1,k + 2, where ¢; is a k 4+ 2 column vector with 1 on its ith position

and zero elsewhere, and ¢ is taken to be 0.0001 in our experiments.
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on mean and sizes; (ii) use of second-order bias-corrected estimator only (¢21) immediately
improves; (iii) use of the second-order bias-corrected estimator and its second-order variance
gives further improvements; and (iv) use of the third-order bias-corrected estimator and its

third-order variance estimate gives the best results.

A comparison with Bao and Ullah (2007a). The Monte Carlo experiment con-
ducted by Bao and Ullah (2007a) is replicated and extended for two purposes: (i) to compare
our bootstrap-based bias correction with their analytical bias correction, and (ii) to inves-
tigate the cause of incoherent Monte Carlo results of Bao and Ullah (2007a) for the case of
A= —0.9 and J = 10, where J is the number of neighbors each spatial unit has when the
‘circular-world’ design is used.

The empirical means and rmses for the three estimators: the MLE S\n, the second-order
bias-corrected MLE X%d, and the analytically bias-corrected MLE S\EU of Bao and Ullah
(2007a), are summarized in Table 3. The results show that the second-order bias correc-
tion works excellently in general: (i) in case of normal errors, the bootstrap method and
analytical method produce almost identical results, confirming the validity of the proposed
bootstrap method, and (ii) in case of non-normal errors, bootstrap method produces slightly
better results, showing that the proposed method is more robust against the error distri-
bution than the analytical method that is based on the normality assumption. The results
also show a very coherent behavior of the MLE and the bias-corrected MLEs in that the
MLE is almost unbiased when J is small and is downward biased when J is big. In cases
where the MLE is biased, the bias-corrected estimators are always able to correct the bias.

However, the Monte Carlo results of Bao and Ullah (2007a) show a different picture for
the cases where J is large and A is large and negative: the MLE is upward biased and the
bias-correction does not work. We believe the reason for this is that a lower bound ¢(> —1)
was given when searching for An numerically, which ‘raises’ the average value of A, in the

Monte Carlo simulation (see also Footnote 7). However, the underlining theories are sound.

5 Conclusions and Discussions

To address the biasness issue in a model containing nonlinear, location as well as scale
parameters, one can focus on the estimation of the nonlinear parameter and use the concen-
trated estimating equation to obtain higher-order expansions to achieve bias and variance
corrections. This turns a multidimensional problem to a single dimension and greatly
simplifies the higher-order expansions. It is argued that for these abstract formulas to be
practically useful, it is necessary to have a feasible method for estimating the various expec-
tations in the formulas. Thus, a simple bootstrap procedure is introduced. These ideas and
methods are explored in a full detail in the context of a spatial autoregressive model. Monte

Carlo results show that this approach is very effective in that it almost eliminates the bias of
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the QMLE, which can be quite large when spatial dependence is strong. Method for third-
order correction on the variance of a bias-corrected QMLE is provided as well. With both
bias and variance corrections, inferences for the spatial parameter can be greatly improved.
In the special case of a pure SAR model where second-order analytical bias-correction is
available (Bao and Ullah, 2007a), the proposed approach provides almost identical results
when errors are normal, and slightly better results when errors are nonnormal.

We have emphasized through out the paper the tow important aspects of the proposed
method: simplicity and generality. That is, in cases where the analytical approach is
feasible, the proposed approach provides a simpler solution that works equally well; in
cases where the analytical approach is infeasible, the proposed approach again provides a
simple and satisfactory solution. The latter aspect is further demonstrated using the well-
known Box-Cox regression model in the introduction. Another example where the analytical
approach is infeasible but the proposed one is may be the dynamic panel regression with
short time periods and endogenous initial observations (see Hsiao, et. al., 2002, or Hsiao,
2003). The advantage of the proposed approach can be further seen by extending the SAR
model to panel with fixed individual effects: our results can be easily extended over, but
the analytical results of Bao (2010) cannot be easily done due to the lack of independence
in the transformed disturbances. In summary, the approach proposed in this paper offers
a general solution for a class of problems that cannot be solved, or cannot be easily solved
by the analytical approach, and thus should be recommended to the practitioners.

A problem of immediate interest may be the one involving a vector A, i.e., there are
two or more nonlinear parameters that are the main source of bias in model estimation
and the main cause of difficulty in bias-correction. While the dimension is still small and
the use of concentrated estimating equation still simplifies the problem in a great deal, it
does bring a scalar problem back to a multidimensional one. An immediate example of
this is the SAR model where the disturbances also follow a SAR process. Another example
is the spatial panel model with fixed effects of Lee and Yu (2010). Our methods can in
principle be further generalized to allow for asymptotic (first-order) bias. Typical models of
both features are the panel models (dynamic or nonlinear) with fixed effects, and in these
cases, it would be interesting to extend our methods to give higher-order bias correction to
the problems considered in Hahn and Kuersteiner (2002) and to offer an alternative to the
jackknife and analytical bias reduction method of Hahn and Newey (2004) which is based
on an iid data set-up. We plan to pursue both issues in future research.

A referee has raised two intriguing issues which we are unable to address in this paper:
one is to provide theoretical interpretation for the downward biasness of the QMLE of A,
and the other is to compare the high-order analytical bias derived from the CEE with the
one derived from the JEE considered in Bao (2010). As a rigorous study on either issue can

be quite involved, we plan to pursue these two issues in future research.
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Appendix A: Proofs of the Results in Section 2

Proof of Theorem 2.1: Assumption B allows the Taylor expansions of ¥p,(A,) = 0
around Ag to be carried out up to third-order, and Assumptions A and D guarantee that
the errors in the Taylor approximations are of order O,(n~'), O,(n™%/2), and O,(n=?),

respectively, for the 1st-, 2nd- and 3rd-order Taylor expansions. We thus have,

0 = 'l;n + Hln(j\n - )\0) + Op(n_l),
" 2 1 R
0 = ¢n+ Hin(An —Xo) + §H2n()\n — o)+ 01!7(1@—3/2)7

~

y . 1 1 .
0 = Un+ Hin(Ay— o)+ §H2n()\n — o)+ éﬂgn(xn —X0)® +0,(n7?),

which give, as —H;,! = O,(1) from Assumption C,

A —Xo = —HjMb, +0,(n7Y), (A-1)
. ~ 1 . 3

)‘n - )‘0 = _Hl_nlw” o §H1_711H2n()‘n - )‘0)2 + Op(n 3/2)7 (A_Q)
; -1 A 1. . _
M=o = —Hlby, — §H1n1H2n()\n — )% - éHlangn()\n —X0) 4+ 0,(n2)(A-3)

Under Assumptions B and C, Q, = —E(Hy,)" ' = O(1), H;,! = 0,(1), and Hf, =
Hy, — E(Hy,) = Oy(n'/?). These conditions lead to the following result

—Hp,! = (@' = H7,) ' = (1= QuH7,) Q= Qu + QRHT, + QU HT, + Op(n~5/?),

which reduces to —H;,! = Q, + Q2H7 + Op(n~'), or = Q, + O,(n~'/?). Substituting
—H; L =Q, +0,(n"/2) into (A-1) gives a first-order stochastic expansion for A,

An = Ao = Quthy + Op(n™) = a_y o + Op(n71). (A-4)

Substituting (A-4) into (A-2) for A, — Ao, and replacing —H;,! in the first two terms of
(A-2) respectively by Q, + Q2H{, + Op(n™t) and Q,, + Op(n_%), we obtain,

5‘n - )‘0 = a—1/2 +a_1+ Op(n_3/2)7 (A_5)

where a1 = Q,Hy,a_1/5 + %QnE(H2n)(a2_1/2)- Finally, substituting (A-4) and (A-5) into
(A-3) for An—Ao in the 3rd and 2nd terms, respectively, and replacing —H l_nl in the first three
terms of (A-3) respectively by Q,, + Q2 Hs, + Q3 HP2 4+ 0,(n™3/2), Q, + Q2H?, + Op(n~1),

and €, + Op(n_l/ 2), we obtain a third-order stochastic expansion for S\n,
5‘n — o= a_1/2 +a-1+ a_3/2 + Op(n_2)7 (A_6)

where a_z /5 = QnH7 a1 + %Qann(a2—1/2) + QnE(Hgn)(a_1/2a_1) + %QRE(Hgn)(ag_l/Q).
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Proof of Corollary 2.1: We have MSE()\,) = El(a_1/2+ a-1 +a_zjs + Op(n=2))%,
which simplifies to MSE(XR) =m_1+m_3;+m_o+ O(n=5/2), where m_; = E(a2_1/2),
m_zp = 2E(a_y2a-1), and m_g = E(2a_y/2a_3/3 + a? ), following the assumption in the
corollary: a quantity bounded in probability has a finite expectation.

Proof of Corollary 2.2: We have b_1 = E(a_y/3) + E(a_1), and b_3/5 = E(a_3/2)-

The result follows as expected error term is O(n~2) by the assumption in the corollary.
Proof of Corollary 2.3: Straightforward from the proofs of Corollaries 2.1 and 2.2.

Proof of Corollary 2.4: The additional assumptions stated in the Corollary ensure
that Var(Ab3) = Var(X, — b_y —3_3/2) — Var(A,)— 2Cov(An, b_1) + O,(n~%/2). The mean
value theorem gives b_y = b(6,) = b(6o) + bg(60) (6n — 0o) + [be(F) — be(60)] (B, — bp), where
0,, lies between én and 0y. The rest is straightforward.

Appendix B: Proofs of the Results in Section 3

To prove the results of Section 3, we need the following lemmas.

Lemma B.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {A,} and {B,} be two
sequences of n X n matrices that are uniformly bounded in both row and column sums. Let

Cy, be a sequence of conformable matrices whose elements are uniformly O(h,'1). Then

(i) the sequence {A, By} are uniformly bounded in both row and column sums,
(ii) the elements of Ay, are uniformly bounded and tr(A,) = O(n), and
(iii) the elements of A,Cy and C,A, are uniformly O(h,').

Lemma B.2 (Lee, 2004a, p.1918): Let X,, be an n X p matriz such that (i) its elements

are uniformly bounded; and (ii) limy, oo %X{an exists and is nonsingular. Then the pro-
jectors P, = Xp(X! X))t X! and M, = I, — X,(X.X,,)"1X] are uniformly bounded in
both row and column sums.

Lemma B.3 (Lemma A.9, Lee, 2004b): Let {A,} be a sequence of n x n matrices that
are uniformly bounded in both row and column sums. For M, defined in Lemma B.2,

(i) tr(MnAn) = tr(An) + 0(1)7 (M) tr(A;’LMTLATL) - tr(A;’LATL) + 0(1);

(iii) tr[(MpAy)?] = tr(A2) + O(1), and (iv) tr[(A, M, A,)?) = tr[(A),A,)?] + O(1).

Furthermore, if the elements ay;; of A, are O(hY) uniformly in all i and j, then,

(v) 1 (MpAn) = 012(An) + O(3%),  and (vi) 35, (MnAn)i)? = 3714 af; + O(hyt),

where (M, Ay,)ii is the ith diagonal element of M, A,,.

Lemma B.4 (Lemma A.12, Lee, 2004b, extended): Let {A,} be a sequence of n x

n matrices that are uniformly bounded in either row or column sums. Suppose that the
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elements ani; of Ay are O(hyt) uniformly in all i and j. Let u, be a random n-vector of
iid elements with finite 4th moment, and b, be a constant n-vector of which the elements are
of uniform order O(h_1/2). Then (i) E(up Apun) = O(3%), (i) Var(u, Apun) = O(7), (m)
N1
2

U Anty = Op(3-), () up Anuy — E(uy Anuy) = Op((55)2), and (v) uz Apby, = O (( ) ).

Note that the results (iv) and (v) in Lemma B.4 extend Lemma A.12 of Lee (2004b),
where (iv) follows directly from the generalized Chebyshev inequality and the result (ii):
P(\/ 22 |ul, Ay — E(ul, Apuy)| > M) < e b Var(ul, Apun) = 20(1); and (v) follows from

the generalized Chebyshev inequality: (\/%"\unAnbn)\ > M) < ﬁhﬁVar(u;lAnbn) =
Lty Al Apby, = 7520(1).

M2 n “n‘in
Lemma B.5 (Kelejian and Prucha, 2001, p.227, extended): Let {A,} be an n x n
matric of elements {an i}, bn be an nx1 vector of elements {by;}, and u, an nx1 random

vector of id elements, having mean zero, variance Jg, skewness v, and excess kurtosis k.
Let Qp = uly Apuy, + b un. Then, (i) B(Q,) = oftr(Ay,),

(it) Var(Qn) = ogtr(An Ay, + A7) + 04k 21y a2 i + 05 Yoy b+ 2007 2.1y bujitin,ji-

1
Furthermore, if {ani;} are of uniform order Op(hy,t), {bn:} are of uniform order Op(hy?),

and {A,} are uniformly bounded in either row or column sums, then

(i) E(@u) = OG2), and (iv) Var(@) = O(f2).
Note that (iii) and (iv) extend Kelejian and Prucha (2001) to account for h,, — oo.

Proof of Lemma 3.1. Denote 62, = 62()\g). By the mean value theorem,

Gy =057 — 0y (600 — 05) — (9 — 05 ) (670 — 00), (B-1)

. R R _1 _
where 2 lies between 62, and o2. We need to show 62, — 02 = O,(n"2) and G,5 — 05 * =

Op(n_%), so that &;02 — 00_2 = Op(n_%). As 62, = %YAA%MnAnYn = %u;anun, by
Assumptions 2 and 5, and Lemmas B.2, B.1(ii) and B.5(ii), Var(A2 ) = O(n~!). By the
generalized Chebyshev inequality: P(y/n|62, — og| > M) < gznVar(62)) = 77z0(1). It
follows that 62, — o8 = Op(n_%), and hence 6% — o8 = O,(n"2), 51 = (08 +Op(n_%))2 =
od+0,(n2), and finally 6.0 = (02 4+0,(n"2))~! = 654 (14+0,(n"2))~! = 654 +0,(n"2).

For Lemma 3.1(i), hpRin = 226,50V AL M W,Y, = 26 2(ul MGy, + ul,Myny,).
Lemma B.4(iii) implies %ﬂu%MnGnun = Op(1) and Lemma B.4(v) implies —nﬂunMnnn =
Op((%)%) Aso =052+ Op(n_%), it follows that

P 1
hn B = ) My Gt + Opl((hn ) 2) = Op(1). (B-2)
0
Now, by (B-1), E(h,R1,) = ao E[(ﬁna Y AL MW, Y] — og ‘E[(AY,) AL M, W,LY,) (62
od)|—E[(L2 Y, Al MW, Y) (G0 —00 1) (620 —02))], where the 1st term equals 2tr(M,G,,) =
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O(1) and the 3rd term is O((%")%) by Assumption 7. For the 2nd term, Cauchy-Schwarz

inequality and Lemma B.5 lead to,

‘E[(YéA%ManYn)(&go - Jg)”

[E[(Ya AL MWy, — ogtr(M,Ghn)) (67, —Uo)]HUo\E[U‘(M Gn)(G7 — 09)]]
—{Var(u M, Gpuy + ul, Myny, ) Var(u), M, un—nao)}2 +O0(h,Y)
L{O(#£)0(n)}2 + O(hy") = O(hn ),

where we note E(62,) = o2 + O(n™!) and E[tr(M,,G,,) = O(3%)- These lead to,

I/\ IN

mmmm:%ﬁmmﬁm+om%%w+mmmm%:ouy (B-3)

Taking difference between (B-2) and (B-3) and using Lemma B.4(iv), we obtain h, Ry, —
1/2
Bl Rin) = Sy, MaGrtin — Stx(MaG) + Op((52)2) = O() = Op((52) %),
0

n
For Lemma 3.1(ii), note that hy, Ro, = 267 2V W, M, W,)Y;, = L2672 (u! Gl M, G, +
2u,, G My, + 1), Mpny,). Similar arguments as for Lemma 3.1(i) lead to

hn

haRen =~ (u, Gl My Gt + 1, M) + Opl(hn/m)2) = Op(1),  (B-4)
0
E(hnR2n) = h_ntr(G;—LMnGn) + h—ngnqlennn + O(h‘}zﬂ/n) = 0(1) (B‘5)
n nog
The results follow by differencing (B-4) and (B-5) and applying Lemma B.4(iv). Q.E.D.

Proof of Theorem 3.1. Clearly, the ¥()\) function given in (13) is differentiable for
A in a neighborhood of Ay with its first three derivatives H,,()),r = 1,2, and 3, given in

(14)-(16). These allow us to implement the following third-order Taylor expansion:

< ~ . 1 < 1 :
= Pn(An) = ¥n+ Hin(An = 20) + 5 Hon(An = Xo)” + £ Han(An = Ao)?

L0730 = Hl B )"

where \ lies between 5\” and A\g. Under Assumptions 1-6, 5\n is y/n/hp-consistent. Incor-
porating h,, and following the arguments leading to the result of Theorem 2.1, the result of

Theorem 3.1 follows if the following results hold:

(2) Y = Op((52)2) and E(dn) = O(22);
(0) B(fpn) = O(1) and 17, = Oy(5)2). 7 =1,2,3;
(c Op(1) and E(Hy,) ' = 0O(1); and

) H
1
(d )H3n( ) Hzp, = Op((%2)2).
First, Lemma B.1 and Assumptions 3 and 4 give h,T,, = O(1),r = 1,2, 3.
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hn)3). As
Ul My Gyt —2tr(My,G) = O ((22)7) by Lemma B.4(iv) and tr(M,Gy,) = tr(Gy)+0(1) =
nTon+0(1) by Lemma B.3(i), ¢, = Op((%2)7). By (B-3), E(¢n) = —hyTon+2tr(M,G,) +
O(2). By Lemma B.3(i), tr(M,G,) = t(Gy) + O(1). It follows that E(d,) = O(Lx).

For (a), by (B-2), ¥n = —hnTon + hnRin = —hyTon + L2-u), My, Gty + Op((%
0

For (b), Lemma 3.1 implies (hyRin)® = (E(hnRin))® + Op((22)3), for s = 2,3,4;

)

(hnRan)? = (B(haR2n))? + Op((22)2); and (hnRin)*(hnRon) = (E(hnRin))* (B(hnR2n)) +
Op((%")%) for s = 1,2. These and Assumption 8 give E((h R1,)%) = (E(hpRin))® +
O((2)2), 5 = 2,3,4; B((hnRan)?) = (E(hnR20))? + O((22)2); and E((hnR1n)*(hnR2n)) =

(E(hRin)) E(hy Rop) + O((22)7), s = 1,2. Finally, as hy Ty, = O(1),7 = 1,2, 3, the above

results lead immediately to

E(H.,) = O(1),r=1,2,3, and Hg, = Op((2)2),r =1,2,3.

E(Hin) = —hnTin — E(hnRon) + = E((hnRin)?) /
1/2
= —hnTin — B242(G) M, Gy) — 25 My, — O(125)
0

2 (B tr(M, Gy + O )2
= T — (Gl My G) — L) Moy + 2 (Bate (M, G))? + O(20)
= Bagp(G2) — Bate(GlGn) — Bt Mo+ 2 (B242(Gr))? + O(B2)
= —Dn[tr(Gp, — Tonln)? + tr(G,, - Tonln) (G — Tonlyn) + anMnnn] + O(22).

This shows that E(H;,) < 0 for n sufﬁciently large and thus E(Hy,)™' = O(1). As Hy, =
E(Hi,) + Op((12)3), we have Hy,! = 0,(1).

For (d), as 62(\) = 2V Al (A\) M, Ap(\)Y;, we have
62(\) = 1Y’A’M AnY, — 20 = Xo) 2V AL M WLY,, + (X — Xo)22Y, W) M, WY,
= 62— 2(A = 20)0p(hy ") + (A= 20)20, (") = 520 + Op((hm) %),

leading 10,57, (%) = (@+0p((ham) ")) ™! = &3 (14+O0p((a)™4) ™" = 675+ 0p((hum) 2).
Now, as i Rin(X) = ()\)]Z—"Y?;A/ (A M, W,,Yy,, we have,

hRin(N) = 672Ny AL M, W Yy, = 620X = o) 2 Y W M, W, Y,
= (hnRin + Op((hnn)?)) — Op((22)2) = hy Ry + Op((12)3).

Similarly, one shows that A, Ron(A\) = h,Ro, + Op((%")%). By the mean value theorem,
haTsn(X) = Bt (GR(N)) = Bate(GR) +48260(GR (V) (A~

By Assumption 4 and Lemma B.1, Mtr(Gg (A) = O(1). It follows that h, T3, (\) — hn T3y =
Op((12)2). These lead to Han(X) — Ha, = Op((12)3). Q.E.D.

X\o), where X lies between A and Ao.
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Proof of Corollary 3.1. Straightforward.
Proof of Corollary 3.2. Straightforward.
Proof of Corollary 3.3. Straightforward.

Proof of Corollary 3.4. Follow the proof of Corollary 2.4 and replace n by n/h,.
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Table 1. Empirical Mean[rmse](sd) of Estimators of A\, and Averaged Bootstrap SEs

A n An \ be2 \ Abe3 IEEEEE
(a) Queen Contiguity, Normal Errors, MRSAR-A
50 50 | 411 [195)(.174) | .492 [.175](.175) | .497 [.175](.175) | .159 .171 .179 .179
100 | .459 [.123)(.116) | .498 [.117](. 117) 500 [117])(.117) | .113 116 .120 .120
200 | .480 [.078](.076) | .499 [.075)(.075) | .499 [.075](.075) | .073 .074 .076 .075
500 | .493 [.049](.048) | .501 [.048](.048) | .501 [.048](.048) | .048 .048 .049 .049
25 50 | .163[.222](.204) | .242 [.209)(.209) | .246 [.210](.210) | .190 .203 202 .207
100 | .212 [.146)(.140) | .248 [.142](.142) | .250 [143](.143) | .136 .139 .139 .141
200 | 231 [.094](.092) | .250 [.093)(.093) | .250 [.093](.093) | .090 .092 .092 .092
500 | .242 [.060](.060) | .250 [.060](.060) | .250 [.060](.060) | .060 .060 .060 .060
00 50 | -.078 [.229](.216) | -.006 [.224](.224) | -.003 [.226](.226) | .210 .222 215 .223
100 | -.034 [.157)(.153) | -.002 [.156](.156) | -.001 [.157)(.157) | .151 .154 .151 .155
200 | -.018 [.106](.104) | -.000 [.105](.105) | .000 [.105](.105) | .103 .104 .104 .104
500 | -.008 [.068](.067) | -.000 [.068](.068) | -.000 [.068](.068) | .068 .068 .068 .068
-25 50 | -.317 [.233](.223) | -.255 [.236](.236) | -.254 [.237](.237) | .221 232 220 .231
100 | -.279 [.164)(.161) | -.253 [.166](.166) | -.253 [166](.166) | .158 .161 .156 .161
200 | -.266 [.112](.111) | -.252 [.112](.112) | -.251 [.112](.112) | .110 .112 .110 .112
500 | -.256 [.073](.072) | -.250 [.073)(.073) | -.250 [.073](.073) | .072 .073 .072 .072
S50 50 | -.552 [.228](.222) | -.504 [.236](.236) | -.504 [.237](.237) | .223 232 217 .230
100 | -.519 [.162)(.161) | -.501 [.166](.166) | -.501 [.166](.166) | .159 .161 .155 .160
200 | -.514 [.113](.113) | -.502 [.114](.114) | -.502 [.114](.114) | .113 114 .112 .114
500 | -.505 [.073](.073) | -.500 [.073](.073) | -.500 [.073](.073) | .074 .074 .073 .074
(b) Queen Contiguity, Normal Mixture Errors, MRSAR-A
50 50 | 420 [.182](.164) | .494 [.165](.165) | .498 [.165](.165) | .149 .160 .167 .167
100 | .462 [.120)(.114) | .499 [.114](.114) | .500 [.114](.114) | .108 .111 .115 .115
200 | 482 [.076](.074) | .500 [.074)(.074) | .500 [.074](.074) | .071 .072 .074 .074
500 | .492 [.049](.048) | .500 [.048](.048) | .500 [.048](.048) | .048 .048 .048 .048
25 50 | .169 [.207](.190) | .241 [195](.195) | .244 [.195](.195) | .179 .190 .191 .195
100 | .213 [.140)(.135) | .248 [.136](.136) | .249 [137)(.137) | .130 .133 .134 .136
200 | .230 [.092](.090) | .249 [.090](.090) | .249 [.090](.090) | .088 .089 .090 .090
500 | .242 [.060](.060) | .250 [.060](.060) | .250 [.060](.060) | .059 .059 .060 .060
00 50 | -.070 [.217](.206) | -.004 [.213](.213) | -.002 [.214](.214) | .197 .207 .204 .211
100 | -.032 [.150](.147) | -.002 [.150](.150) | -.001 [.150](.150) | .145 .148 .146 .149
200 | -.018 [.104](.103) | -.001 [.103](.103) | -.001 [.103](.103) | .100 .101 .101 .102
500 | -.008 [.068](.067) | -.001 [.067)(.067) | -.001 [.067](.067) | .067 .067 .067 .067
-25 50 | -.314 [.223](.213) | -.258 [.224](.224) | -.257 [.225](.225) | .208 .216 .209 .219
100 | -.275 [.155](.153) | -.251 [.157](.157) | -.250 [.157)(.157) | .152 .154 .151 .155
200 | -.263 [.111](.110) | -.249 [.112](.112) | -.249 [.112](.112) | .108 .109 .108 .109
500 | -.257 [.072](.072) | -.251 [.072)(.072) | -.251 [.072](.072) | .071 .072 .07l .072
-50 50 | -.550 [.218](.212) | -.506 [.224](.224) | -.505 [.225](.225) | .210 216 .207 .218
100 | -.520 [.155](.153) | -.503 [.158](.158) | -.503 [.158](.158) | .152 .154 .150 .155
200 | -.513 [.112](.111) | -.502 [.113](.113) | -.502 [.113](.113) | .111 .111 .110 .112
500 | -.505 [.074](.073) | -.500 [.074](.074) | -.500 [.074](.074) | .073 .073 .073 .073
Note: 561 = mean (V4 (A )%) €2 = mean(‘A/g()A\n)%) Se3 = mean(Vg()A\n)%) and 55 = mean(V3(\2%)2)
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Table 1 (cont’d). Empirical Mean[rmse|(sd) of Estimators of A, and Averaged Bootstrap SEs
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Table 1 (cont’d). Empirical Mean|rmse|(sd) of Estimators of A, and Averaged Bootstrap SEs
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Table 2a. Null Behavior of t-Ratios for Testing Hy : A = 0: Group Interaction with k& = n0-3°

Empirical Tail Probabilities: L=left, R=right

n Test dgp | Mean SD L-1% L-25% L-5% R-5% R-25% R-1%
Nominal Values 0.0000 1.0000 0.0100  0.0250 0.0500 0.0500 0.0250 0.0100
50 t11 1]-0.5904 1.0572 0.0470  0.0965 0.1553 0.0210 0.0113 0.0051
2 | -0.6080 1.0801 0.0554 0.0974 0.1585 0.0209 0.0109 0.0042
3 | -0.5607 1.1100 0.0622 0.1072 0.1590 0.0159  0.0069 0.0030
to1 1] 0.0088 1.1571 0.0193  0.0404 0.0729 0.0796  0.0472 0.0265
2 | -0.0526 1.1665 0.0246  0.0505 0.0794 0.0712 0.0436 0.0244
3 | -0.0655 1.1712 0.0339 0.0601 0.0926 0.0610 0.0340 0.0151
tao 1] -0.0085 1.0573 0.0143 0.0315 0.0591 0.0574 0.0323 0.0156
2 | -0.0644 1.0830 0.0201  0.0417 0.0705 0.0563 0.0323 0.0152
3 | -0.0739 1.0780 0.0280 0.0487 0.0809 0.0425 0.0208 0.0077
t33 1| 0.0106 1.0583 0.0141  0.0309 0.0564 0.0588 0.0343 0.0157
2 | -0.0254 1.0350 0.0153 0.0322 0.0580 0.0512 0.0295 0.0141
3 | -0.0258 0.9535 0.0185 0.0332 0.0533 0.0327 0.0145 0.0055
100 t11 1]-0.5341 1.0220 0.0383 0.0771 0.1376 0.0185  0.0084 0.0038
2 | -0.5089 1.0464 0.0387 0.0828 0.1385 0.0202 0.0101 0.0035
3| -0.5296 1.0904 0.0518  0.0959 0.1508 0.0241 0.0111 0.0047
to1 1| 0.0300 1.0906 0.0138  0.0315 0.0590 0.0687 0.0403 0.0203
2| 0.0339 1.1103 0.0169 0.0351 0.0657 0.0745 0.0423 0.0200
3 | -0.0398 1.1400 0.0205 0.0468 0.0812 0.0722 0.0407 0.0199
tao 1] 0.0189 1.0320 0.0111  0.0274 0.0529 0.0574 0.0304 0.0137
2 | 0.0216 1.0671 0.0153 0.0326 0.0612 0.0647 0.0339 0.0151
3 1-0.0479 1.1219 0.0209  0.0470 0.0791 0.0664 0.0365 0.0161
t33 1] 0.0293 1.0090 0.0095 0.0245 0.0485 0.0534 0.0272 0.0119
2 | 0.0401 1.0104 0.0105 0.0250 0.0466 0.0552  0.0270 0.0122
3 | -0.0091 0.9954 0.0099 0.0252 0.0505 0.0502 0.0257 0.0109
200 t11 1] -0.3593 1.0045 0.0254 0.0539 0.0978 0.0236  0.0125 0.0059
2 | -0.3578 1.0367 0.0283  0.0581 0.1062 0.0295 0.0148 0.0063
3| -0.3633 1.0686 0.0326  0.0628 0.1104 0.0328 0.0163 0.0053
to1 1] 0.0483 1.0508 0.0114 0.0277 0.0523 0.0628 0.0346 0.0173
2 | 0.0393 1.0823 0.0137  0.0302 0.0555 0.0690 0.0414 0.0199
3| 0.0054 1.1089 0.0159 0.0363 0.0626 0.0701  0.0433 0.0206
tao 1| 0.0445 1.0266 0.0105 0.0255 0.0498 0.0578 0.0313 0.0146
2 | 0.0346 1.0680 0.0130 0.0295 0.0550 0.0648 0.0378 0.0176
3| 0.0003 1.1114 0.0176  0.0372 0.0648 0.0703  0.0419 0.0199
t33 1| 0.0408 0.9954 0.0095 0.0236 0.0462 0.0500 0.0262 0.0120
2 | 0.0352 1.0140 0.0105 0.0250 0.0477 0.0575 0.0308 0.0121
3 | 0.0161 1.0048 0.0104 0.0232 0.0460 0.0548 0.0292 0.0111
Note: (1) X; and X> are generated from MRSAR-A schme, o = 1, and 8 = (5,1,1)";

(2) dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal;

(3) tij: t-ratio with sth-order corrected estimator and jth-order corrected variance of it.
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Table 2b. Null Behavior of t-Ratios for Testing Hy : A = 0: Group Interaction with k = n?-°

Empirical Tail Probabilities: L=left, R=right

n stat dgp | Mean SD L-1% L-25% L-5% R-5% R-25% R-1%
Nominal Values 0.0000 1.0000 0.0100  0.0250 0.0500 0.0500 0.0250 0.0100
50  t11 1|-0.5396 1.0523 0.0430 0.0833 0.1395 0.0220 0.0118 0.0055
2 | -0.5609 1.0624 0.0468 0.0875 0.1460 0.0199 0.0096 0.0054
3| -0.5135 1.0627 0.0427  0.0841 0.1398 0.0227 0.0111 0.0049
to1 1| 0.0607 1.1225 0.0167  0.0342 0.0627 0.0767  0.0467 0.0245
2| 0.0036 1.1299 0.0218 0.0410 0.0675 0.0706  0.0413 0.0209
3 1-0.0106 1.1193 0.0201  0.0393 0.0696 0.0660 0.0386 0.0186
too 1| 0.0412 1.0279 0.0120  0.0269 0.0517 0.0569  0.0317 0.0139
2 | -0.0115 1.0438 0.0171  0.0327 0.0572 0.0530 0.0277 0.0117
3| -0.0205 1.0448 0.0162  0.0333 0.0589 0.0530 0.0281 0.0121
t3s3 1| 0.0700 1.0439 0.0126  0.0261 0.0497 0.0639 0.0363 0.0172
2 | 0.0227 1.0307 0.0137  0.0284 0.0504 0.0547 0.0293 0.0135
3| 0.0183 0.9889 0.0121  0.0267 0.0456 0.0498 0.0256 0.0126
100 t11 1(-0.3930 1.0200 0.0292 0.0619 0.1088 0.0219 0.0126 0.0049
2 | -0.3850 1.0367 0.0288 0.0632 0.1112 0.0266 0.0131 0.0059
31 -0.3872 1.0523 0.0332  0.0677 0.1129 0.0271  0.0134 0.0055
to1 1| 0.0542 1.0577 0.0121  0.0289 0.0543 0.0625 0.0351 0.0171
2| 0.0470 1.0737 0.0128 0.0292 0.0576 0.0710 0.0405 0.0185
3| 0.0103 1.0824 0.0167 0.0355 0.0643 0.0638 0.0364 0.0162
too 1| 0.0472 1.0117 0.0100  0.0245 0.0496 0.0533 0.0274 0.0129
2| 0.0391 1.0373 0.0108 0.0268 0.0524 0.0629 0.0335 0.0148
3| 0.0053 1.0654 0.0161  0.0347 0.0620 0.0597 0.0332 0.0146
t3s3 1| 0.0570 1.0058 0.0097  0.0235 0.0483 0.0530 0.0273 0.0126
2 | 0.0520 1.0107 0.0090  0.0231 0.0456 0.0601  0.0312 0.0130
3| 0.0240 0.9940 0.0105 0.0243 0.0474 0.0520 0.0260 0.0108
200 t11 1 |-0.3265 1.0085 0.0213  0.0499 0.0939 0.0265 0.0124 0.0050
2| -0.3182 1.0250 0.0239 0.0524 0.0979 0.0288 0.0133 0.0055
31 -0.3165 1.0360 0.0237  0.0552 0.0972 0.0322 0.0173 0.0072
to1 1| 0.0418 1.0376 0.0094 0.0251 0.0492 0.0640 0.0343 0.0141
2| 0.0433 1.0531 0.0121  0.0280 0.0521 0.0663 0.0353 0.0149
3| 0.0217 1.0610 0.0125 0.0287 0.0575 0.0649 0.0377 0.0182
too 1| 0.0377 1.0101 0.0087  0.0220 0.0463 0.0575 0.0296 0.0119
2| 0.0386 1.0330 0.0116  0.0268 0.0503 0.0602  0.0316 0.0134
31 0.0179 1.0592 0.0129  0.0290 0.0575 0.0634 0.0358 0.0175
ts3s3 1| 0.0396 0.9997 0.0085 0.0215 0.0446 0.0557 0.0278 0.0114
2| 0.0435 1.0076 0.0102  0.0232 0.0467 0.0557 0.0287 0.0113
3| 0.0310 0.9997 0.0081 0.0193 0.0466 0.0551 0.0301 0.0132
Note: (1) X; and X> are generated from MRSAR-A schme, o = 1, and 8 = (5,1,1)";

(2) dgp: 1=normal, 2=normal mixture(r = 4,p = .1), 3=lognormal;

(3) tij: t-ratio with ith-order corrected estimator and jth-order corrected variance of it.
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Table 3. Empirical Means [sds] of the MLE and Second-Order Bias-Corrected MLEs of A:
Comparison with Analytical Approach of Bao and Ullah (2007a), Pure SAR Model

J A )\n )\bc2 )\BU )\n 5\2C2 XEU
n =30, u, ~ N(0,1,) n =100, u, ~ N(0, I,)
2 0.9 0.881[.057] 0.899 [.054] 0.899 [.054] 0.894 [.027] 0.900 [.026] 0.900 [.026]
0.4 | 0.380 [.158] 0.397 [.164] 0.398 [.164] 0.395 [.086] 0.401 [.087] 0.401 [.087]
0.2 | 0.189[.176] 0.198 [.185] 0.198 [.184] 0.199 [.096] 0.202 [.098] 0.202 [.098]
0.0 | 0.001 [.181] 0.000 [.190] 0.001 [.190] | -0.001 [.099] -0.001 [.100] -0.001 [.100]
-0.2 | -0.194 [.174] -0.204 [.182] -0.204 [.182] | -0.196 [.095] -0.199 [.097] -0.199 [.097]
-0.4 | -0.384 [.160] -0.402 [.166] -0.401 [.166] | -0.394 [.086] -0.400 [.087] -0.400 [.087]
-0.9 | -0.882 [.057] -0.900 [.054] -0.900 [.054] | -0.895 [.027] -0.900 [.026] -0.900 [.026]
6 0.9 | 0.853[.109] 0.898 [.097] 0.897 [.097] 0.887 [.041] 0.899 [.038] 0.899 [.038]
0.4 | 0.322[.267] 0.397 [.271] 0.397 [.270] 0.376 [.135] 0.400 [.135] 0.400 [.135]
0.2 | 0.126 [.300] 0.198 [.312] 0.198 [.312] 0.178 [.159] 0.201 [.161] 0.201 [.160]
0.0 | -0.072 [.324] -0.008 [.344] -0.007 [.343] | -0.025 [.174] -0.004 [.177] -0.004 [.177]
-0.2 | -0.259 [.341] -0.207 [.366] -0.206 [.366] | -0.216 [.188] -0.198 [.192] -0.198 [.192]
-0.4 | -0.442 [.349] -0.403 [.378] -0.402 [.378] | -0.414 [.197] -0.401 [.202] -0.401 [.202]
-0.9 | -0.898 [.346] -0.900 [.377] -0.899 [.377] | -0.900 [.193] -0.900 [.198] -0.900 [.198]
10 0.9 | 0.826 [.165] 0.899 [.139] 0.897 [.139] 0.880 [.055] 0.899 [.051] 0.899 [.051]
0.4 | 0.255[.369] 0.388 [.374] 0.387 [.373] 0.353 [.178] 0.395 [.176] 0.395 [.176]
0.2 | 0.054 [.411] 0.186 [.431] 0.185 [.430] 0.154 [.208] 0.197 [.208] 0.197 [.208]
0.0 | -0.143 [.441] -0.018 [.474] -0.018 [.473] | -0.046 [.235] -0.004 [.238] -0.004 [.238]
-0.2 | -0.327 [.457] -0.215 [.501] -0.214 [.500] | -0.239 [.249] -0.199 [.255] -0.200 [.255]
-0.4 | -0.497 [.475] -0.401 [.530] -0.401 [.529] | -0.437 [.266] -0.402 [.274] -0.402 [.274]
-0.9 | -0.942 [.484] -0.901 [.556] -0.900 [.555] | -0.917 [.283] -0.901 [.296] -0.901 [.296]
n =100, u, ~ LN (0, I,) n = 200, u, ~ LN(0,1,)

6 04| 0.386[.121] 0.402 [.122] 0.409 [.120] 0.393 [.085] 0.401 [.085] 0.405 [.084]
0.2 | 0.187[.143] 0.202 [.145] 0.211 [.144] 0.192 [.100] 0.201 [.101] 0.204 [.101]
0.0 | -0.008 [.159] 0.004 [.162] 0.013 [.161] | -0.006 [.113] 0.001 [.115] 0.005 [.114]
-0.2 | -0.207 [.173] -0.199 [.177] -0.189 [.176] | -0.206 [.122] -0.201 [.123] -0.197 [.123]
-0.4 | -0.405 [.182] -0.401 [.187] -0.391 [.187] | -0.403 [.130] -0.400 [.132] -0.396 [.132]
10 0.4 | 0.370 [.159] 0.404 [.159] 0.412 [.156] 0.386 [.106] 0.403 [.106] 0.407 [.105]
0.2 | 0.172[.189] 0.206 [.190] 0.216 [.188] 0.183 [.132] 0.201 [.132] 0.206 [.131]
0.0 | -0.026 [.216] 0.005 [.220] 0.017 [.218] | -0.016 [.147] 0.001 [.149] 0.006 [.148]
-0.2 | -0.224 [.233] -0.197 [.241] -0.184 [.238] | -0.214 [.163] -0.200 [.165] -0.194 [.165]
-0.4 | -0.420 [.249] -0.400 [.259] -0.385 [.257] | -0.411 [.174] -0.399 [.177] -0.393 [.177]
14 0.4 | 0.357 [.193] 0.412 [.192] 0.417 [.187] 0.376 [.131] 0.402 [.130] 0.406 [.129]
0.2 | 0.155[.235] 0.210 [.237] 0.219 [.233] 0.177 [.158] 0.203 [.158] 0.209 [.157]
0.0 | -0.039 [.258] 0.013 [.264] 0.025 [.260] | -0.023 [.179] 0.003 [.180] 0.010 [.179]
-0.2 | -0.234 [.284] -0.187 [.294] -0.172[.290] | -0.223 [.199] -0.199 [.202] -0.192 [.201]
-0.4 | -0.433 [.305] -0.393 [.318] -0.377[.315] | -0.422 [.213] -0.400 [.217] -0.392 [.217]

Note: )A\EU: 2nd-Order Analytically Bias-Corrected MLE of Bao and Ullah (2007a).
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