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Abstract
It is well known that quasi maximum likelihood (QML) estimation of dynamic panel

data (DPD) models with short panels depends on the assumptions on the initial values,

and a wrong treatment of them will result in inconsistency and serious bias. The same

issues apply to spatial DPD (SDPD) models with short panels. In this paper, a unifiedM -

estimation method is proposed for estimating the fixed-effects SDPD models containing

three major types of spatial effects, namely spatial lag, spatial error and space-time lag.

The method is free from the specification of the distribution of the initial observations

and robust against nonnormality of the errors. Consistency and asymptotic normality

of the proposed M -estimator are established. A martingale difference representation of

the underlying estimating functions is developed, which leads to an initial-condition free

estimate of the variance of the M -estimators. Monte Carlo results show that the proposed

methods have excellent finite sample performance.
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1 Introduction

In the majority of empirical microeconometric research involving panel data, a panel with
a large number of cross-sectional units and a small number of time periods, called a short
panel, remains the prevalent setting (Hsiao et al., 2002; Binder et al., 2005), and evidence from
the standard dynamic panel data models shows that maximum likelihood (ML) estimators
are more efficient than GMM estimators (Hsiao et al., 2002; Binder et al., 2005; Bun and
Caree, 2005; Gouriéroux, et al., 2010; Kruiniger, 2013). Hsiao (2003, Ch. 4) gives an excellent
summary on dynamic panel data (DPD) models with random or fixed effects.
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at Université Paris II Panthéon-Assas (CRED), June 2016, and the seminar at Northeastern University, China,
December 2016, for their helpful comments. The financial support from Singapore Management University
under Grant C244/MSS12E007 is gratefully acknowledged.
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In recent years, there has been a growing interest in the DPD models with cross-sectional
or spatial dependence, arising from economic processes such as housing decisions, technology
adoption, unemployment, welfare participation, price decisions, etc. The resulted models are
referred to as spatial DPD (SDPD) models (Anselin, 2001; Anselin et al., 2008), where the
spatial effects may appear in the model either in the form of spatial lag(s) of the response
variable (Yu et al., 2008; Yu and Lee, 2010; Lee and Yu, 2010a; Korniotis, 2010; Elhorst,
2010), or in the form of spatial errors (Elhorst, 2005; Yang et al., 2006; Mutl, 2006; Su and
Yang, 2015). Lee and Yu (2010b, 2015) provide an excellent survey on the SDPD models.
Most of the studies on the SDPD modes are either based on the GMM-type method or under a
large panel set-up, except Elhorst (2010) and Su and Yang (2015) who consider the quasi-ML
(QML) estimation of the SDPD model with short panels.

As ML estimators are more efficient than the GMM estimators, and the latter can perform
poorly (Gouriéroux, et al., 2010), it is natural to expect that any ML-type estimation be
more efficient than the corresponding GMM estimation. The main difficulty in using ML or
QML method to estimate the DPD or SDPD models with short panels is the modeling of
the initial observations of the response vector, say y0, for the random effects model, or the
initial differences, say Δy1, for the fixed effects model. This is because y0 may be exogenous
in the sense that it varies autonomously, independent of other variables in the model; or
endogenous in the sense that it is generated in the same way as the other values of the
response vector y in the latter time periods. In case that y0 is endogenous, it depends on the
processes starting values and the past values of time-varying regressors, both of which are
not observable, leading to incidental parameters. In the case of fixed effects model, Δy1 is
endogenous whether y0 is exogenous or endogenous and this incidental parameters problem
always exists. The traditional way of handling this problem is to predict these quantities
using the observed values of the regressors (Anderson and Hisao, 1981, 1982; Bhargava and
Sargan, 1983; Hsiao et al. 2002; Elhorst, 2010; Su and Yang, 2015).1 However, the model
for the initial differences involves the unknown process starting time. Also, its predictability
typically requires that the time-varying regressors be trend or first-difference stationary. And,
when there are many time-varying regressors in the model, modelling the initial difference may
introduce ‘too many’ additional parameters, causing a efficiency decline. Most importantly,
this linear projection method may not be applicable to an SDPD model with spatial lags (see
the footnote at the end of Section 2 for some details). It is therefore highly desirable to have
a general method that is free from the specification of the initial conditions.

In this paper, we propose a unified, initial-condition free approach to estimate the SDPD
models with fixed effects, allowing all three major types of spatial dependence to be present
in the model, namely, the spatial lag, space-time lag, and spatial error. The approach starts
from the ‘conditional’ quasi-likelihood, with the initial differences being treated as if they are
exogenous,2 and then makes corrections on the conditional quasi-score functions to give a set

1In case of fixed effects models, the incidental parameters problem also occurs in the model itself (the fixed
effects), but this problem can be resolved by first-differencing or some kind of orthogonal transformations.

2Clearly, this ‘conditional’ quasi likelihood can never be a correct likelihood as Δy1 is always endogenous,
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of unbiased estimating equations. Solving these unbiased estimating equations (EFs) leads to
estimators that are consistent and asymptotically normal. It turns out that the corrections
or the adjustments on the conditional quasi scores are totally free from the specification of
the distribution of the initial differences, resulting initial-condition free estimators for the
SDPS model. The proposed estimator is simply referred to in this paper as the M -estimator
according to Huber (1981) or van der Vaart (1998).3

For initial-condition free inferences, a martingale difference (M.D.) representation of the
EFs (being the adjusted quasi scores) is developed, and the average of the outer products
of the M.D.s (OPMD) is shown to give a consistent and initial-condition free estimate of
the variance covariance (VC) matrix of the EFs. This and the estimated Hessian matrix
together give a consistent estimate of the VC matrix of the M -estimators, referred to as the
OPMD-estimator in this paper. Monte Carlo results show that the proposed M -estimators
of the model parameters and the OPMD-estimator of their VC matrix have excellent finite
sample performance – robust against the way the initial observations being generated and
nonnormality of the error distributions. Under a special submodel where only spatial error
is present, the proposed methods are compared with the traditional method where the initial
observations are modeled and the full quasi likelihood is used (Su and Yang, 2015). The
results show that the two methods are comparable when the initial observations are correctly
specified, but the proposed methods are more robust against misspecifications of the initial
conditions. Our Monte Carlo results show that the proposed unified M -estimation method,
for the FE-SDPD model with all three types of spatial effects, is not only valid when T is
small, but also provides better estimators when T is not small, compared with the conditional
quasi likelihood approach. The proposed OPMD method for the VC matrix estimation is valid
only when T is small, but when T is large, a plug-in method based on the conditional variance
of the adjusted quasi scores, treating the initial differences as exogenous, can be used.

The rest of the paper is organized as follows. Section 2 describes the general SDPD
model, its submodels, and discusses the limitations of the method of modelling the initial
conditions with the SDPD models. Section 3 introduces the unified M -estimation method
for the general SDPD model with fixed effects, presents the asymptotic properties of the
proposed M -estimators, and introduces the OPMD method for VC matrix estimation and
proves its consistency. Section 4 presents Monte Carlo results. Section 5 concludes the paper.
A supplement available at the author’s web site: http://www.mysmu.edu/faculty/zlyang/
collects details on several important submodels, detailed proofs of the theoretical results,
additional Monte Carlo results, and an empirical illustration with matlab codes.

and thus maximizing it may produce inconsistent estimators when the time dimension T is fixed and small.
This is intuitively clear as the conditional likelihood ignores the information contained in Δy1 which is a fixed
proportion of the whole data Δy1,Δy2, . . . ,ΔyT . Beside, Δy1 may contain some additional information about
the model parameters that is accumulated from the past. In this sense, some form of modifications is necessary
before this conditional likelihood approach can be followed for model estimation.

3The term ‘M -estimator’ was coined by Huber (1964) to mean maximum-likelihood type. It can be defined
in either of the two ways: (a) as the solution of a maximization problem and (b) as the root of an estimating
equation. Clearly, our estimation strategy falls into the category (b). van der Vaart (1998) named the M -
estimator defined in (b) as the zero estimator. See also Newey and MacFadden (1994).
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2 Spatial Dynamic Panel Data Models

Consider the spatial dynamic panel data (SDPD) model where the spatial effects appear
in the model in the forms of spatial lag (SL), space-time lag (STL), and spatial error (SE):

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + Zγ + μ+ αt1n + ut, (2.1)

ut = λ3W3ut + vt, t = 1, 2, . . . , T,

where yt = (y1t, y2t, . . . , ynt)′ and vt = (v1t, v2t, . . . , vnt)′ are n × 1 vectors of response values
and idiosyncratic errors at time t, and {vit} are independent and identically distributed (iid)
across i and t with mean zero and variance σ2

v ; the scalar parameter ρ characterizes the
dynamic effect, λ1 the spatial lag effect, λ2 the space-time effect, and λ3 the spatial error
effect; {Xt} are n × p matrices containing values of p time-varying exogenous variables, Z is
an n×q matrix containing the values of q time-invariant exogenous variables that may include
the constant term, dummy variables (e.g., individuals’ gender and race), etc.; β and γ are
the usual regression coefficients; Wr, r = 1, 2, 3, are the given n × n spatial weight matrices;
and μ is an n × 1 vector of unobserved individual-specific effects, {αt} are the time-specific
effects, and 1n is an n× 1 vector of ones.

Model (2.1) is fairly general. It embeds several important submodels popular in the
literature. Thus, it is highly desirable to have a unified method of inference for this general
model so that the method can easily be simplified to suit each special model of interest
to a particular applied problem. On the other hand, Model (2.1) can be further extended
to contain higher-order spatial lags in yt, in yt−1, as well as in ut; and to allow for serial
correlation among {vt} in moving average form. See the end of Section 3.1 and Section 5 for
further discussions. In this paper, we focus on Model (2.1) because it is general enough and
further generalizations can be done at the expense of more tedious algebra. Each submodel
has its own features and merits, and thus deserves some specific attention.

First, setting λ1 and λ2 to zero, Model (2.1) reduces to an SDPD model with only SE,4

in the form of a spatial autoregressive (SAR) error process,

yt = ρyt−1 +X ′
tβ + Zγ + μ+ αt1n + ut, ut = λ3W3ut + vt, t = 1, 2, . . . , T. (2.2)

Su and Yang (2015) provide formal asymptotic results for the quasi maximum likelihood
(QML) estimation of Model (2.2) with short panels (T small), and random or fixed effects.
To give a full quasi likelihood function, the initial observations y0 or the initial differences
Δy0 are modeled under some fundamental assumptions adapted from Hsiao et al. (2002).
These assumptions may not hold and thus the model for the initial observations or differences
is subject to model misspecification. See the end of this section for a detailed discussion.

4This SE dependence structure was introduced by Anselin (1988). Subsequently, alternative or extended
SE structures have been suggested, e.g., to replace the SAR process by a spatial moving average (SMA) process,
to allow μ to be spatially correlated as well, etc. See Kapoor et al. (2007), Anselin et al. (2008), Lee and Yu
(2012) and Baltagi et al. (2013). However, with short panels and fixed effects, μ must be eliminated by a data
transformation to avoid incidental parameters problem, and after that only the SE structure in ut is kept.
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Setting λ2 and λ3 in (2.1) to zero gives an SDPD model with only SL,

yt = ρyt−1 + λ1W1yt +X ′
tβ + Zγ + μ+ αt1n + vt, t = 1, 2, . . . , T. (2.3)

A spatial model (not necessarily dynamic panel) with only SL effect may be more popular
than that with only SE effect, as in the former, both the mean and variance of a spatial unit
are directly affected by some other spatial units, whereas in the latter only the variance is
so, resulting a model with so-called cross-section dependence.5

Setting λ2 to zero, Model (2.1) reduces to an SDPD model with both SL and SE, also
referred to as the SDPD model with SARAR effect in the literature,

yt = ρyt−1 + λ1W1yt +X ′
tβ + Zγ + μ+ αt�n + ut, ut = λ3W3ut + vt, t = 1, 2, . . . , T. (2.4)

This model encompasses Models (2.2) and (2.3), and has not been formally treated under
the QML-type approach.6 Č́ıžk et al. (2014) considered GMM estimation of this model by
extending the three steps approach of Kapoor et al. (2007) with large n and fixed T .

Setting λ3 in (2.1) to zero gives an SDPD model with SL and STL,

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +X ′
tβ + Zγ + μ+ αt�n + vt, t = 1, 2, . . . , T. (2.5)

Under fixed effects, Yu et al. (2008) presented formal asymptotic results for the QML es-
timation of Model (2.5) under large n and large T set-up, and Lee and Yu (2014) studied
this model based on GMM approach where n is large and T can be large but small relative
to n. The case of large n and fixed T for Model (2.5) has not been formally treated in the
literature, in particular under the QML approach.

Setting ρ, λ1 and λ3 to zero in Model (2.1), we have a panel data model with only STL

dependence, referred to as pure space recursive model in Anselin et al. (2008). Finally, when
all the spatial parameters are set to zero, Model (2.1) reduces to the regular dynamic panel
data (DPD) model, which has been extensively treated in the literature.

The current study focuses on the general Model (2.1) with fixed effects, large n and small
T . Under this scenario, Z must be excluded from the model, and αt1n can be merged into
Xtβ. Thus, the model under study takes the form:

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + μ+ ut, ut = λ3W3ut + vt, (2.6)

t = 1, 2, . . . , T . The QML approach requires the initial observations (differences) be specified
(modeled) in order to construct the full likelihood function. The standard approach of mod-
elling the initial observations or initial differences is through a linear projection onto the space

5An alternative way of modelling the cross-section dependence may be the factor model; see, e.g., Andrews
(2005), Pesaran (2006), Bai (2009), and Pesaran and Tosetti (2011).

6Anselin et al. (2008, p. 647) point out that combinations of both spatially lagged dependent variables
and spatially lagged error terms may lead to identification problems unless the covariate effects are non-zero.
For detailed discussions on the identification of the SDPD models, see Elhorst (2012) and Lee and Yu (2016).
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of observed regressors (Hsiao et al., 2002). This approach has been successfully adapted by
Su and Yang (2015) to give consistent estimations of Model (2.2) under both random effects
and fixed-effects. However, this approach requires the following initial conditions:

(i) data collection starts from the 0th period; the processes start from the −mth period, i.e.,
m periods before the start of data collection, where m = 0, 1, . . ., and then evolve according
to the prescribed processes, i.e., one of the models described above; (ii) starting positions of
the process y−m are treated as exogenous; hence the exogenous variables Xt and the errors ut
start to have impact on the response from the period −m+ 1 onwards; (iii) all the exogenous
quantities (y−m, Xt) are considered as random and inferences proceed by conditioning on
them, (iv) {xit, t = . . . ,−1, 0, 1, . . .} are trend stationary or first-difference stationary for all
i = 1, . . . , n, and (v) the variances of y−m are constant.

Evidently, what happened in the ‘past’ is not observed, the process starting time or m is
unknown, the processes movements may not be the same before and after the start of data
collection, and the processes are observed only for a few periods. Hence, the above assump-
tions, in particular the later part of (i) and (iv), may not hold and the linear projection model
for the initial observations may be misspecified.7 Furthermore, even if these assumptions do
hold, the linear projection method for modelling the initial observations/differences may not
have a straightforward extension to SDPD models that contain SL and/or STL structures.8

Alternative methods that are free from the initial conditions, or the methods without the
need of explicitly modelling the initial differences, are therefore highly desirable.

3 Unified M-Estimation of Fixed-Effects SDPD Models

In this section, we present a unified framework for estimating the fixed effects (FE) SDPD
models, where all three types of spatial dependence are allowed to be present in the model and
the time dimension T is allowed to be small and fixed. The basic idea of this unified approach
is to first formulate the Gaussian likelihood function conditional on the initial differences Δy1
as if they are exogenous, and then modify the resulted quasi score function to account for the
ignorance of Δy1 in this ‘conditional’ quasi Gaussian score. We shall start with short panels,
i.e., panels with large n and small T , to demonstrate the exact cause of inconsistency of the
estimators based on this conditional likelihood, and to show how one can adjust the quasi

7Consider Model (2.2) after first-difference. Under the initial conditions, we obtain,

Δy1 = ρmΔy−m+1 +
Pm−1

j=0 ρjΔx−j+1β +
Pm−1

j=0 ρjB
−(j+1)
3 Δv−j+1,

by successive backward substitutions, where B3 = In − λ3W3 and In is an n× n identity matrix. Clearly, the
exogenous part Δη1 of Δy1 enjoys an approximately linear structure, which makes the linear project of Δη1
onto the space of the observed Δxt, t = 1, . . . , T , valid. However, if the specified initial conditions do not hold,
this linear projection is in doubt.

8Consider simply the first-differenced Model (2.3). Under the initial conditions, we obtain,

Δy1 = ρmB−m
1 Δy−m+1 +

Pm−1
j=0 ρjB

−(j+1)
1 Δx−j+1β +

Pm−1
j=0 ρjB

−(j+1)
1 Δv−j+1,

by successive backward substitutions. Now, different from the SDPD model with SE only, the exogenous part
Δη1 of Δy1 also contains spatial effect through B1 = In − λ1W1, and the linear structure is no longer there.
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scores to give consistent estimators. Then we argue that when T grows with n the proposed
estimation strategy remains valid, and in fact it gives better estimators than those based on
the conditional likelihood, which is the usual QML estimators under the large n and large T
set up (see, e.g., Yu et al., 2008). We present here the results for the most general model,
and then in the supplement specialize them to each of several submodels to facilitate the
practical applications and to compare with the existing QML estimation if available. Proofs
of the lemmas and theorems are lengthy, in particular the the latter, and are sketched in
Appendices. Detailed proofs are given in the supplement.

3.1 The M-estimation

To facilitate the introduction of the general theory and method, we differentiate the true
value of a parameter vector from its general value by adding a subscript ‘0’, e.g., β0 is the
true value of β, and emphasize that Model (2.6) holds only under the true parameter values.
Following the standard practice, we eliminate μ by first-differencing (2.6) to give,

Δyt = ρ0Δyt−1 + λ10W1Δyt +λ20W2Δyt−1 + ΔXtβ0 + Δut, Δut = λ30W3Δut + Δvt, (3.1)

for t = 2, 3, · · · , T . The parameters left in Model (3.1) are ψ0 = {β′0, σ2
v0, ρ0, λ

′
0}′ where

λ0 = (λ10, λ20, λ30)′. Note that Δy1 depends on both the initial observations y0 and the first
period observations y1. Thus, even if y0 is exogenous, y1 and thus Δy1 is not. However, we still
formulate a likelihood function as if Δy1 is exogenous, and then make corrections on the rele-
vant elements of the score function. Let ΔY = {Δy′2, . . . ,Δy′T}′, ΔY−1 = {Δy′1, . . . ,Δy′T−1}′,
ΔX = {ΔX ′

2, . . . ,ΔX
′
T}′, and Δv = {Δv′2, . . . ,Δv′T}′. Let Wr = IT−1 ⊗Wr, r = 1, 2, 3,

where ⊗ denotes the Kronecker product and Ik a k × k identity matrix. Define Br(λr) =
In − λrWr, r = 1, 3, and B2(ρ, λ2) = ρIn + λ2W2. Model (3.1) can be written as:

ΔY = ρ0ΔY−1 + λ10W1ΔY + λ20W2ΔY−1 + ΔXβ0 + Δu, Δu = λ30W3Δu+ Δv. (3.2)

It is easy to see that

Var(Δu) = σ2
v0

{
C ⊗ [B′

3(λ30)B3(λ30)]−1
} ≡ σ2

v0Ω(λ30),

where C is a (T − 1) × (T − 1) constant matrix,

C =

⎛⎜⎜⎜⎜⎜⎝
2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎠ .

Under normality of vt, the joint distribution of Δu can be easily obtained, which translates
directly to the conditional joint distribution of ΔY . The quasi Gaussian loglikelihood of ψ
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in terms of Δy2, . . . ,ΔyT , as if Δy1 is exogenous, has the form, ignoring the constant term:

�STLE(ψ) = −n(T−1)
2 log(σ2

v) − 1
2 log |Ω(λ3)| + log |B1(λ1)| − 1

2σ2
v
Δu(θ)′Ω(λ3)−1Δu(θ), (3.3)

where θ = (β′, ρ, λ1, λ2)′, Δu(θ) = B1(λ1)ΔY − B2(ρ, λ2)ΔY−1 − ΔXβ, B1(λ1) = IT−1 ⊗
B1(λ1), and B2(ρ, λ2) = IT−1 ⊗ B2(ρ, λ2).

Let θ1 = (β′, ρ, λ2)′. Given λ1 and λ3, (3.3) is maximized at

θ̃1(λ1, λ3) = (ΔX
′Ω(λ3)−1ΔX)−1ΔX

′Ω(λ3)B1(λ1)ΔY, (3.4)

σ̃2
v(λ1, λ3) = 1

n(T−1)Δũ
′(λ1, λ3)Ω(λ3)−1Δũ(λ1, λ3), (3.5)

where ũ(λ1, λ3) = B1(λ1)ΔY −ΔXθ̃(λ1, λ3) and ΔX = (ΔX,ΔY−1,W2ΔY−1). Substituting
θ̃1(λ1, λ3) and σ̃2

v(λ1, λ3) back into (3.3) gives the concentrated conditional quasi loglikelihood
of (λ1, λ3), ignoring the constant term,

�cSTLE(λ1, λ3) = −n(T−1)
2 log[σ̃2

v(λ1, λ3)] − 1
2 log |Ω(λ3)|+ log |B1(λ1)|. (3.6)

Maximizing �cSTLE(λ1, λ3) gives the conditional QML (CQML) estimators λ̃1 and λ̃3 of λ1 and
λ3, and thus the CQML estimators of θ1 and σ2

v as θ̃1 ≡ θ̃1(λ̃1, λ̃3) and σ̃2
v ≡ σ̃2

v(λ̃1, λ̃3).
Note that �STLE(ψ) is a quasi Gaussian loglikelihood both in the traditional sense that

{vit} are not exactly Gaussian but Gaussian likelihood is used, and the sense that Δy1 is
not exogenous but is treated as exogenous. The latter causes inconsistency of the CQML
estimators when T is small and fixed. We see from the results presented below that even if T
increases with n, the CQML estimators may encounter an asymptotic bias. We now introduce
a method that not only gives a consistent estimator of the model parameters when T is small,
but also eliminates the asymptotic bias when T is large. To simplify the notation, a parametric
quantity (scalar, vector or matrix) evaluated at the general values of the parameters is denoted
by dropping its arguments, e.g., B1 ≡ B1(λ1), B1 ≡ B1(λ1), Ω ≡ Ω(λ3), and similarly for
Br and Br, r = 2, 3; and that evaluated at the true values of the parameters is denoted by
dropping its argument and then adding a subscript 0, e.g., B10 ≡ B1(λ10), Ω0 ≡ Ω(λ30).
Let C = C ⊗ In. Denote Δu ≡ Δu(θ0). The usual expectation, variance and covariance
operators, ‘E’, ‘Var’ and ‘Cov’, correspond to the true parameter values.

Let SSTLE(ψ) = ∂
∂ψ�STLE(ψ) be the conditional quasi score (CQS) function. We have

SSTLE(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2

v
ΔX ′Ω−1Δu(θ),

1
2σ4

v
Δu(θ)′Ω−1Δu(θ) − n(T−1)

2σ2
v
,

1
σ2

v
Δu(θ)′Ω−1ΔY−1,

1
σ2

v
Δu(θ)′Ω−1W1ΔY − tr(B−1

1 W1),
1
σ2

v
Δu(θ)′Ω−1W2ΔY−1,

1
2σ2

v
Δu(θ)′(C−1 ⊗ A3)Δu(θ) − (T − 1)tr(G3),

(3.7)
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where A3 = W ′
3B3 +B′

3W3 and G3 = W3B
−1
3 .

Under mild conditions, maximizing the conditional loglikelihood �STLE(ψ) is equivalent to
solving the estimating equation SSTLE(ψ) = 0. It is well known that the QML type estimation
or an extremum type estimation is a special case of M -estimation and that for a regular
M -estimation problem, a necessary condition for the M -estimators to be consistent is that
the probability limit of the estimating function (in this case, the averaged conditional quasi
score) at the true parameter value is zero, i.e.,

limn→∞ 1
nT SSTLE(ψ0)

p−→ 0,

see, e.g., van der Vaart (1998). However, as shown below this is not the case unless T also
goes to infinity. Thus, the CQML estimators are not consistent unless T → ∞. Further, even
if T goes to infinity with n (proportionally), the CQML estimators encounter a bias of order
O(T−1), giving the so-called the asymptotic bias.9 To overcome this major problem, and
to avoid the stringent initial conditions and the difficulty in modelling the initial differences
under the FE-SDPD models with SL and/or STL effects, we first derive E[SSTLE(ψ0)], and then
adjust the quasi scores SSTLE(ψ) so that the adjusted quasi score (AQS) vector, say S∗

STLE(ψ),
is such that plimn→∞ 1

nT S
∗
STLE(ψ0) = 0.

In contrast with Hsiao et al . (2002), Elhorst (2010), and Su and Yang (2015), we only
need to have very minimum knowledge about the processes in the past.

Assumption A: Under Model (2.1), (i) the processes started m periods before the start
of data collection, the 0th period, and (ii) if m ≥ 1, Δy0 is independent of future errors
{vt, t ≥ 1}; if m = 0, y0 is independent of future errors {vt, t ≥ 1}.

Assumption A implies that the proposed method does not impose the conditions that
{ys, s = −m, . . . ,−1} follow the same processes as {yt, t = 0, 1, . . . , T}, and {xit} are trend-
stationary or first-difference stationary. It has a much weaker requirement on the processes
starting positions ym. We have an important lemma based on the reduced form of (3.1):

Δyt = B0Δyt−1 +B−1
10 ΔXtβ0 +B−1

10 B
−1
30 Δvt, t = 2, . . . , T, (3.8)

where B ≡ B(ρ, λ1, λ2) = B−1
1 (λ1)B2(ρ, λ2).

Lemma 3.1 Suppose Assumption A holds. Assume further that, for i = 1, . . . , n and
t = 0, 1, . . . , T , (i) the idiosyncratic errors {vit} in Model (2.1) are iid across i and t with
mean 0 and variance σ2

v0, (ii) the time-varying regressors Xt are exogenous, and (iii) both
B−1

10 and B−1
30 exist. We have

E(ΔY−1Δv′) = −σ2
v0D−10B−1

30 , (3.9)

E(ΔYΔv′) = −σ2
v0D0B−1

30 , (3.10)

9To be exact, if 1
nT

E[SSTLE(ψ0)] = O( 1
T

), then 1√
nT

E[SSTLE(ψ0)] = O(( n
T

)
1
2 ), implying E[

√
nT (ψ̃ − ψ0)] =

O(( n
T

)
1
2 ). The latter says that

√
nT (ψ̃−ψ0) would converge to a non-centered normal if n

T
→ c > 0. If n

T
→ 0

(large T case), the asymptotic bias vanishes, but this would not be a case of interest to a spatial panel model.
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where D−1 ≡ D−1(ρ, λ1, λ2) and D ≡ D(ρ, λ1, λ2), having the following expressions,

D−1 =

⎛⎜⎜⎜⎜⎝
In, 0, . . . 0, 0
B − 2In, In, . . . 0, 0
...

...
. . .

...
...

BT−4(In − B)2, BT−5(In − B)2, . . . B − 2In, In

⎞⎟⎟⎟⎟⎠B−1
1 ,

D =

⎛⎜⎜⎜⎜⎝
B − 2In, In, . . . 0
(In − B)2, B − 2In, . . . 0
...

...
. . .

...
BT−3(In − B)2, BT−4(In −B)2, . . . B − 2In

⎞⎟⎟⎟⎟⎠B−1
1 .

The results of Lemma 3.1 lead immediately to

E(Δu′Ω−1
0 ΔY−1) = −σ2

v0tr(C
−1D−10), (3.11)

E(Δu′Ω−1
0 W1ΔY ) = −σ2

v0tr(C
−1D0W1), (3.12)

E(Δu′Ω−1
0 W2ΔY−1) = −σ2

v0tr(C
−1D−10W2), (3.13)

showing that the (ρ, λ1, λ2) elements of E[SSTLE(ψ0)] are not zero, typically of order O(n).10

Hence, plimn→∞
1
nT

∂
∂ρ�STLE(ψ0), plimn→∞

1
nT

∂
∂λ1

�STLE(ψ0), and plimn→∞
1
nT

∂
∂λ2

�STLE(ψ0) are
all non-zero, suggesting that the conditional QMLEs of (ρ, λ1, λ2), treating Δy1 as exogenous,
cannot be consistent in general.

Very interestingly, these results are derived under only a very minimum set of conditions
given in Assumption A and in Lemma 3.1, they are free from the initial conditions usually
set for short dynamic panels, and are independent of the way the past observations being
generated, i.e., when the processes started and how the process evolved before the start of
data collection. These provide a simple way to adjust the quasi scores so as to give a set of
unbiased estimating functions. The adjusted quasi score (AQS) functions are:

S∗
STLE(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2

v
ΔX ′Ω−1Δu(θ),

1
2σ4

v
Δu(θ)′Ω−1Δu(θ) − n(T−1)

2σ2
v
,

1
σ2

v
Δu(θ)′Ω−1ΔY−1 + tr(C−1D−1),

1
σ2

v
Δu(θ)′Ω−1W1ΔY + tr(C−1DW1),

1
σ2

v
Δu(θ)′Ω−1W2ΔY−1 + tr(C−1D−1W2),

1
2σ2

v
Δu(θ)′(C−1 ⊗ A3)Δu(θ) − (T − 1)tr(G3),

(3.14)

which lead to, as shown in Theorems 3.1 and 3.2, an estimator of ψ that not only is consistent
but also has a centered asymptotic distribution, whether T is fixed or grows with n. The latter

10When λ1 = λ2 = 0, plim 1
nT

∂
∂ρ
�STLE(ψ0) =

1−ρT
0

T2(1−ρ0)2
− 1

T (1−ρ0)
(see the supplement, ). Thus, ρ̃ has a bias

of order O( 1
T

). As all the matrices involved in (3.11)-(3.13) are uniformly bounded in row and column sums,
this result would hold for the general model, and the bias in ρ̃ would spill over to the other CQMLEs.
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implies that when T grows with n, the estimation based on the AQS functions eliminates the
asymptotic bias incurred in the conditional QML approach. The ‘adjustments’ in the AQS
functions have another interesting feature: they are independent of the SE structure, i.e., free
from B3. This means that the adjustments to the conditional quasi scores of (3.7) remain the
same if the SAR error is replaced by SMA error, or the spatial errors are of higher order.11

Comparing (3.14) with (3.7), we see that after the adjustments, both ρ and λ2 parameters
become non-linear in the sense that their estimation has to be done through a nonlinear root-
finding process. Evidently, the adjustments recovered the ‘neglected’ information contained
in the initial observations (by the conditional likelihood) about these parameters.

Solving S∗
STLE(ψ) = 0 leads to the M -estimator ψ̂M of ψ. This root-finding process can

be simplified by first solving the equations for β and σ2
v , given δ = (ρ, λ′)′, resulting in the

constrained M -estimators of β and σ2
v as

β̂M(δ) = (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1(B1ΔY − B2ΔY−1), (3.15)

σ̂2
v,M(δ) = 1

n(T−1)Δû(δ)
′Ω−1Δû(δ), (3.16)

where Δû(δ) = Δu(β̂(δ), ρ, λ1, λ2). Substituting β̂M(δ) and σ̂2
v,M(δ) back into the last four

components of the AQS function in (3.14) gives the concentrated AQS functions:

S∗c
STLE(δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
σ̂2

v,M(δ)
Δû(δ)′Ω−1ΔY−1 + tr(C−1D−1),

1
σ̂2

v,M(δ)
Δû(δ)′Ω−1W1ΔY + tr(C−1DW1),

1
σ̂2

v,M(δ)
Δû(δ)′Ω−1W2ΔY−1 + tr(C−1D−1W2),

1
2σ̂2

v,M(δ)
Δû(δ)′(C−1 ⊗A3)Δû(δ)− (T − 1)tr(G3).

(3.17)

Solving the resulted concentrated estimating equations, S∗c
STLE(δ) = 0, we obtain the un-

constrained M -estimators δ̂M of δ. The unconstrained M -estimators of β and σ2
v are thus

β̂M ≡ β̂M(δ̂M) and σ̂2
v,M ≡ σ̂2

v,M(δ̂M). Denote ψ̂M = (β̂′M, σ̂2
v,M, ρ̂M, λ̂

′
M)

′.
We end this subsection by noting that Model (3.1) and its M -estimation strategy can

even be further extended to allow for higher-order spatial lags:

Δyt = ρΔyt−1 +
∑k1

j=1 λ1jW1jΔyt +
∑k2

j=1 λ2jW2jΔyt−1 + ΔXtβ + Δut,

Δut =
∑k3

j=1 λ3jW3jΔut + Δvt, for t = 2, 3, · · · , T ;

and to allow for serial correlation among {vt} in moving average form. The former extension
proceeds by simply letting λr = (λrj, j = 1, . . . , kr)′, r = 1, 2, 3; Br(λr) = In −

∑kr
j=1 λrjWrj,

r = 1, 3; and B(ρ, λ1, λ2) = B−1
1 (λ1)(ρIn +

∑k2
j=1 λ2jW2j), but the latter requires reworks on

Lemma 3.1 and the proofs of subsequent theorems. See Section 5 for more discusses. In this
paper, we focus on Model (3.1) as it is general enough for most of the empirical applications
and it leads to a set of inference theories that are fairly simple and yet easily extendable.

11This feature may also hold if the SE structure is replaced by the other forms of cross-section dependence
induced by common factors; see, e.g., Andrews (2005), Pesaran (2006), Bai (2009), Pesaran and Tosetti (2011).
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3.2 Asymptotic properties of the M-estimators

In this section we study the consistency and asymptotic normality of the proposed M -
estimators for the FE-SDPD model with the general spatial dependence structure. To facil-
itate the discussions of the asymptotic properties of the proposed M -estimators, first recall,
ψ0 denotes the true value of the parameter vector ψ; and a parametric function at the true
parameter value is differentiated from that at a general parameter value by adding a subscript
‘0’, e.g., B1 ≡ B1(λ1) and B10 ≡ B1(λ10), Ω ≡ Ω(λ3) and Ω0 ≡ Ω(λ30), etc.; Δu ≡ Δu(θ0);
and the common expectation, variance and covariance operators ‘E’ ‘Var’ and ‘Cov’ corre-
spond to the true parameter vector ψ0. Second, some general notation and convention are as
follows: (i) δ denotes the vector of parameters in the concentrated AQS functions (of the full
model or a submodel), and Δ the space from which δ takes values; (ii) tr(·), | · | and ‖ · ‖ de-
note, respectively, the trace, determinant, and Frobenius norm of a matrix; (iii) γmax(A) and
γmin(A) denote, respectively, the largest and smallest eigenvalues of a real symmetric matrix
A; and (iv) diag(ak) forms a diagonal matrix using the elements {ak} and blkdiag(Ak) forms
a block-diagonal matrix using the matrices {Ak}.

Assumption B: The innovations vit are iid for all i and t with E(vit) = 0, Var(vit) = σ2
v,

and E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption C: The space Δ is compact, and the true parameter δ0 lies in its interior.

Assumption D: The time-varying regressors {Xt, t = 0, 1, . . . , T} are exogenous, their
values are uniformly bounded, and limn→∞ 1

nTΔX ′ΔX exists and is nonsingular.

Assumption E: (i) For r = 1, 2, 3, the elements wr,ij of Wr are at most of order h−1
n ,

uniformly in all i and j, and wr,ii = 0 for all i; (ii) hn/n→ 0 as n→ ∞; (iii) {Wr, r = 1, 2, 3}
and {B−1

r0 , r = 1, 3} are uniformly bounded in both row and column sums; (iv) For r = 1, 3,
{B−1

r } are uniformly bounded in either row or column sums, uniformly in λr in a compact
parameter space Λr, and 0 < cr ≤ infλr∈Λr γmin(B′

rBr) ≤ supλr∈Λr
γmax(B′

rBr) ≤ c̄r <∞.

Assumption F: For an n×n matrix Φ uniformly bounded in either row or column sums,
with elements of uniform order h−1

n , and an n × 1 vector φ with elements of uniform order
h
−1/2
n , (i) hn

n Δy′1ΦΔy1 = Op(1) and hn
n Δy′1ΦΔv2 = Op(1); (ii) hn

n (Δy1 −E(Δy1))′φ = op(1);
(iii) hn

n [Δy′1ΦΔy1 − E(Δy′1ΦΔy1)] = op(1), and (iv) hn
n [Δy′1ΦΔv2 − E(Δy′1ΦΔv2)] = op(1).

Assumptions B-E are standard in the spatial econometrics literature (see, e.g., Lee (2004),
Lee and Yu (2010), Su and Yang (2015)). Assumption F imposes some fairly mild conditions
on the initial differences Δy1. These conditions clearly hold if the process starting position
y−m is exogenous with m = 0 or 1. They can also be proved for a general m if, in addition
to Assumptions A, B, and D, it is further assumed that the processes start at exogenous
positions y−m at time −m, and then evolves according to (2.6).

Now, the consistency of the proposed M -estimators ψ̂M lies with the consistency of δ̂M, as
under Assumptions D and E, the consistency of β̂M and σ̂2

v,M follows almost immediately that
of δ̂M. The concentrated estimating function (CEF) S∗c

STLE(δ) and its population counter part
play a major role for the consistency of δ̂M for δ.
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Define S̄∗
STLE(ψ) = E[S∗

STLE(ψ)], the population counter part of the joint estimating function
(JEF) given in (3.14). Given δ, the population joint estimation equation (JEE) S̄∗

STLE(ψ) = 0
is partially solved, by working with its first two components, at

β̄M(δ) = (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1(B1EΔY − B2EΔY−1), (3.18)

σ̄2
v,M(δ) = 1

n(T−1)
E[Δū(δ)′Ω−1Δū(δ)], (3.19)

where Δū(δ) = Δu(θ)|β=β̄(δ) = B1ΔY − B2ΔY−1 − ΔXβ̄(δ). These lead to the population
counter part of the CEF given in (3.17), upon substituting β̄M(δ) and σ̄2

v,M(δ) back into the
δ-component of S̄∗

STLE(ψ), as

S̄∗c
STLE(δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
σ̄2

v,M(δ)
E[Δū(δ)′Ω−1ΔY−1] + tr(C−1D−1),

1
σ̄2

v,M(δ)
E[Δū(δ)′Ω−1W1ΔY ] + tr(C−1DW1),

1
σ̄2

v,M(δ)
E[Δū(δ)′Ω−1W1ΔY−1] + tr(C−1D−1W1),

1
2σ̄2

v,M(δ)
E[Δū(δ)′(C−1 ⊗ A3)Δū(δ)]− (T − 1)tr(G3).

(3.20)

Note that more detailed expressions for σ̄2
v,M(δ) and thus S̄∗c

STLE(δ) can be obtained through
the following very useful identity:

Δū∗(δ) = M(B∗
1ΔY − B∗

2ΔY−1) + P(B∗
1ΔY

◦ −B∗
2ΔY

◦
−1), (3.21)

where Δū∗(δ) = Ω− 1
2 Δū(δ), B∗

r = Ω− 1
2Br, ΔY ◦ = ΔY −E(ΔY ), ΔY ◦

−1 = ΔY−1 −E(ΔY−1),
Ω

1
2 is the square-root matrix of Ω, M = In(T−1) − Ω− 1

2 ΔX(ΔX ′Ω−1ΔX)−1ΔX ′Ω− 1
2 , and

P = In(T−1)−M. Also note that the quantities E(ΔY ), E(ΔY−1), Var(ΔY ), Cov(ΔY,ΔY−1),
etc., involved in (3.18)-(3.20) are functions of ψ0, but not ψ.

Clearly, the M -estimator δ̂M of δ0 is a zero of S∗c
STLE(δ). It is easy to see that S̄∗c

STLE(δ0) = 0
through β̄(δ0) = β0 and σ̄2

v(δ0) = σ2
v0, i.e., δ0 is a zero of S̄∗c

STLE(δ). Thus, by Theorem 5.9 of
van der Vaart (1998), δ̂M will be consistent for δ0 if supδ∈Δ

1
n(T−1)

∥∥S∗c
STLE(δ)− S̄∗c

STLE(δ)
∥∥ p−→ 0,

and the following identification condition holds.

Assumption G: infδ: d(δ,δ0)≥ε
∥∥S̄∗c

STLE(δ)
∥∥ > 0 for every ε > 0, where d(δ, δ0) is a measure

of distance between δ0 and δ.

For the simpler models discussed in Section 2, the corresponding expressions for S̄∗c
M (δ)

can be easily obtained by dropping the relevant terms. The identification condition becomes
simpler, allowing us to gain insights on the nature of such a condition. See Lee and Yu (2016)
and references therein for a detailed discussion on the identification of the SDPD models.

Theorem 3.1 Suppose Assumptions A-G hold. Assume further that (i) γmax[Var(ΔY )]
and γmax[Var(ΔY−1)] are bounded, and (ii) infδ∈Δ γmin

(
Var(B1ΔY − B2ΔY−1)

) ≥ cy > 0.
We have, as n→ ∞, ψ̂M

p−→ ψ0.

To derive the asymptotic distribution of ψ̂M, we start with a Taylor expansion of the JEE
S∗
STLE(ψ̂M) = 0 at ψ0, and then verify that the AQS function S∗

STLE(ψ0) is asymptotically normal
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and that the adjusted Hessian ∂
∂ψ′S

∗
STLE(ψ̄) has proper asymptotic behavior, for some ψ̄ lying

between ψ̂M and ψ0 elementwise. To most of the static models or dynamic models where
the initial conditions are specified, both problems are fairly standard in that the regular
law of large numbers (LLN) and central limit theorem (CLT) for linear-quadratic forms
(e.g., Kelejian and Prucha, 2001) would be sufficient. In our approach, the ‘unspecified’
Δy1 is involved in S∗

STLE(ψ0), and thus extended LLN and CLT for bilinear-quadratic forms
(Lemmas A.4 and A.5) are required for establishing the asymptotic properties. The following
representations for ΔY and ΔY−1 in terms of Δy1 = 1T−1 ⊗ Δy1 and Δv are crucial.

Lemma 3.2 Under the assumptions of Lemma 3.1, we have,

ΔY = R Δy1 + η + SΔv, (3.22)

ΔY−1 = R−1Δy1 + η−1 + S−1Δv, (3.23)

where R = blkdiag(B0,B2
0, . . . ,BT−1

0 ), R−1 = blkdiag(In,B0, . . . ,BT−2
0 ), η = BB−1

10 ΔXβ0,
η−1 = B−1B−1

10 ΔXβ0, S = BB−1
10 B−1

30 , S−1 = B−1B−1
10 B−1

30 ,

B =

⎛⎜⎜⎜⎝
In 0 . . . 0 0
B0 In . . . 0 0
...

...
. . .

...
...

BT−2
0 BT−3

0 . . . B0 In

⎞⎟⎟⎟⎠ , and B−1 =

⎛⎜⎜⎜⎝
0 0 . . . 0 0
In 0 . . . 0 0
...

...
. . .

...
...

BT−3
0 BT−4

0 . . . In 0

⎞⎟⎟⎟⎠ .

The representations for ΔY and ΔY−1 given in Lemma 3.2 turn out to be very useful.
They lead to a simple way for establishing the asymptotic normality of the AQS vector,
and a simple way for estimating the variance-covariance (VC) matrix of it. Using these
representations and Δu = B−1

30 Δv, the AQS function at ψ0 can be written as

S∗
STLE(ψ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π′
1Δv,

Δv′Φ1Δv − n(T−1)

2σ2
v0

,

Δv′Ψ1Δy1 + Π′
2Δv + Δv′Φ2Δv + tr(C−1D−10),

Δv′Ψ2Δy1 + Π′
3Δv + Δv′Φ3Δv + tr(C−1D0W1),

Δv′Ψ3Δy1 + Π′
4Δv + Δv′Φ4Δv + tr(C−1D−10W2),

Δv′Φ5Δv − (T − 1)tr(G30),

(3.24)

where Π1= 1
σ2

v0
CbΔX , Π2= 1

σ2
v0

Cbη−1, Π3= 1
σ2

v0
CbW1η, Π4= 1

σ2
v0

CbW2η−1, Φ1= 1
2σ4

v0
(C−1⊗In),

Φ2= 1
σ2

v0
CbS−1, Φ3= 1

σ2
v0

CbW1S, Φ4= 1
σ2

v0
CbW2S−1, Φ5= 1

σ2
v0

[C−1⊗(G′
30+G30)], Ψ1= 1

σ2
v0

CbR−1,

Ψ2= 1
σ2

v0
CbW1R, Ψ3= 1

σ2
v0

CbW2R−1, and Cb=C−1 ⊗ B30.

Theorem 3.2 Under the assumptions of Theorem 3.1, we have, as n→ ∞,√
n(T − 1)

(
ψ̂M − ψ0

) D−→ N
[
0, lim
n→∞Σ∗−1

STLE(ψ0)Γ∗
STLE(ψ0)Σ∗−1

STLE(ψ0)
]
,

where Σ∗
STLE(ψ0) = − 1

n(T−1)E[ ∂
∂ψ′S

∗
STLE(ψ0)] and Γ∗

STLE(ψ0) = 1
n(T−1)Var[S∗

STLE(ψ0)], both as-
sumed to exist and Σ∗

STLE(ψ0) to be positive definite, for sufficiently large n.
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3.3 The OPMD estimation of robust VC matrix

The practical applications of the M -estimation of the FE-SDPD models, i.e., model in-
ferences, depend on the availability of a consistent estimate of Σ∗−1

STLE(ψ0)Γ∗
STLE(ψ0)Σ∗−1

STLE(ψ0),
the VC matrix of ψ̂M. As Σ∗

STLE(ψ0) is the expected negative modified Hessian, its observed
counter part immediately offers a consistent estimate of it, i.e.,

Σ∗
STLE(ψ̂M) = − 1

n(T−1)
∂
∂ψ′S

∗
STLE(ψ)

∣∣
ψ=ψ̂M

. (3.25)

The detailed expression of ∂
∂ψ′S

∗
STLE(ψ) for the most general model is given in the proof of

Theorem 3.2 in Appendix C, which can easily be simplified to various submodels by deleting
relevant terms. The consistency of Σ∗

STLE(ψ̂M) is also proved in the proof of Theorem 3.2.
However, the traditional plug-in method of estimation of Γ∗

STLE(ψ0), the VC matrix of the
joint AQS function S∗

STLE(ψ0), runs into a similar problems as the QML estimation of the
model – initial differences Δy1 need to be specified or modeled when T is fixed and small
as seen from (3.24). To make the estimation of Γ∗

STLE(ψ0) also free from the specification of
initial conditions so that the inferences for the general FE-SDPD model is fully free from
the initial conditions. We propose a martingale difference (M.D.) method, i.e., decompose
the AQS function into the sum of a vector M.D. sequence so that the ‘average’ of the outer
products of the elements of the M.D. sequence gives a consistent estimate of Γ∗

STLE(ψ0).
From (3.24) we see that the AQS function S∗

STLE(ψ0) contains three types of elements:

Π′Δv, Δv′ΦΔv, and Δv′ΨΔy1,

where Π,Φ and Ψ are nonstochastic matrices (depending on ψ0) with Π being n(T −1)×p or
n(T −1)×1, and Φ and Ψ being n(T −1)×n(T −1). Clearly, the closed form expressions for
variances of Π′Δv and Δv′ΦΔv, and their covariance can readily be derived, so that a plug-
in method may be used to estimate these variances and covariances. However, closed-form
expression for the variance of Δv′ΨΔy1 and its covariances with Π′Δv and Δv′ΦΔv depend
on the knowledge of the distribution of Δy1, which is unavailable.

To give a unified method of estimating the variance of AQS function so that it is also
free from the specifications of the initial conditions, we first write the AQS function as a
sum of a vector M.D. array, taking the advantage that Δvit are independent across i for
each t and that T is small. We show in the following lemma that Π′Δv can be written as
a sum of n independent terms, and Δv′ΦΔv − E(Δv′ΦΔv) can be written as the sum of a
M.D. array. Under the assumption that Δy0 depends only on the current and past errors
(vs, s ≤ 0) but not the future errors (vt, t ≥ 1), we show that Δv′ΦΔy1 can also be written
as the sum of a M.D. sequence. Note from (3.24) that S∗

STLE(ψ0) is a function of ψ0, Δv and
Δy1, where ψ0 is consistently estimated by ψ̂M, Δv is consistently estimated by Δ̂v, and Δy1
itself is observed. A new method for estimating the variance of the AQS function, namely
the outer-product-of-martingale-difference (OPMD) method, arises.

For a square matrix A, let Au, Al and Ad be, respectively, its upper-triangular, lower-
triangular, and diagonal matrix such that A = Au +Al +Ad. Denote by Πt, Φts and Ψts the
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submatrices of Π, Φ and Ψ partitioned according to t, s = 2, . . . , T . Define Ψt+ =
∑T

s=2 Ψts,
t = 2, . . . , T , Θ = Ψ2+(B30B10)−1, Δy◦1 = B30B10Δy1, and Δy∗1t = Ψt+Δy1. Let {Gn,i}
be the increasing sequence of σ-fields generated by (vj1, . . . , vjT , j = 1, . . . , i), i = 1, . . . , n,
n ≥ 1. Let Fn,0 be the σ-field generated by (v0,Δy0), and define Fn,i = Fn,0 ⊗ Gn,i. Clearly,
Fn,i−1 ⊆ Fn,i, i.e., {Fn,i}ni=1 is an increasing sequence of σ-fields, for each n ≥ 1.

Lemma 3.3 Consider Model (3.1), and suppose the assumptions of Lemma 3.1 hold.
Consider the general Π which is n(T − 1) × p, and let Πit be the ith row of Πt. Define

g1i =
∑T

t=2 Π′
itΔvit, (3.26)

g2i =
∑T

t=2(ΔvitΔξit + ΔvitΔv∗it − σ2
v0dit), (3.27)

g3i = Δv2iΔζi + Θii(Δv2iΔy◦1i + σ2
v0) +

∑T
t=3 ΔvitΔy∗1it, (3.28)

where {Δξit} = Δξt =
∑T

s=2(Φ
u′
st + Φl

ts)Δvs, Δv∗t =
∑T

s=2 Φd
tsΔvs, {dit} = diagonal elements

of CΦ, {Δζi} = Δζ = (Θu + Θl)Δy◦1, and diag{Θii} = Θd. Then,

Π′Δv =
∑n

i=1 g1i,

Δv′ΦΔv − E(Δv′ΦΔv) =
∑n

i=1 g2i,

Δv′ΨΔy1 − E(Δv′ΨΔy1) =
∑n

i=1 g3i,

and {(g′1i, g2i, g3i)′,Fn,i}ni=1 form a vector M.D. sequence.

Now, following Lemma 3.3, for each Πr, r = 1, 2, 3, 4, defined in (3.24), define g1ri ac-
cording to (3.26); for each Φr, r = 1, . . . , 5, define g2ri according to (3.27); and for each
Ψr, r = 1, 2, 3, define g3ri according to (3.28). Define

gi = (g′11i, g21i, g31i + g12i + g22i, g32i + g13i + g23i, g33i + g14i + g24i, g25i)′.

Then, S∗
STLE(ψ0) =

∑n
i=1 gi, and {gi,Fn,i} form a vector M.D. sequence. It follows that

Var[S∗
STLE(ψ0)] =

∑n
i=1 E(gig′i). The ‘average’ of the outer products of the estimated g′is, i.e.,

Γ̂∗
STLE = 1

n(T−1)

∑n
i=1 ĝiĝ

′
i, (3.29)

thus gives a consistent estimator of the variance of Γ∗
STLE(ψ0), where ĝi is obtained by replacing

ψ0 in gi by ψ̂M and Δv in gi by its observed counterpart Δ̂v. Noting that Δy1 is observed,
we have the following theorem.

Theorem 3.3 Under the assumptions of Theorem 3.1, we have, as n→ ∞,

Γ̂∗
STLE − Γ∗

STLE(ψ0) = 1
n(T−1)

∑n
i=1

[
ĝiĝ

′
i − E(gig′i)

] p−→ 0,

and hence, Σ∗−1
STLE(ψ̂M)Γ̂∗

STLEΣ
∗−1
STLE(ψ̂M) − Σ∗−1

STLE(ψ0)Γ∗
STLE(ψ0)Σ∗−1

STLE(ψ0)
p−→ 0.

The estimator Σ∗−1
STLE(ψ̂M)Γ̂∗

STLEΣ
∗−1
STLE(ψ̂M) of the VC matrix of ψ̂M is referred to as the OPMD

estimator in this paper, to reflect the fact that Γ̂∗
STLE is obtained from the outer products of
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the elements of a martingale difference (OPMD) sequence.12

The general theories and methods introduced in this section can easily be simplified to
suit various submodels discussed in Section 2, from which important insights can be gained
on the properties of the CQMLE and the proposed M -estimator (see, e.g., Footnote 10). The
simplified methods are also useful for practical applications, and allow easy comparisons of
our approach with the standard small T or large T approaches if available. To conserve space,
the detailed results for these submodels are collected in the supplement.

4 Monte Carlo Results

Monte Carlo experiments are carried out to investigate (i) the finite sample performance
of the proposed M -estimator of the FE-SDPD model, and (ii) the finite sample performance
of the proposed OPMD-based standard error (the OPMD estimate of the standard deviation
of the M -estimator). We use the following five models in our Monte Carlo experiments:

SE : yt = ρyt−1 + β0ιn +Xtβ1 + Zγ + μ+ ut, ut = λ3W3ut + vt,

SL : yt = ρyt−1 + λ1W1yt + β0ιn +Xtβ1 + Zγ + μ+ vt,

SLE : yt = ρyt−1 + λ1W1yt + β0ιn +Xtβ1 + Zγ + μ+ ut, ut = λ3W3ut + vt,

STL : yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + β0ιn +Xtβ1 + Zγ + μ+ vt,

STLE : yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + β0ιn +Xtβ1 + Zγ + μ+ ut, ut = λ2W3ut + vt.

The elements of Xt are generated in a similar fashion as in Hsiao et al. (2002),13 and the
elements of Z are randomly generated from Bernoulli(0.5). The spatial weight matrices are
generated according to Rook or Queen contiguity, or group interaction schemes.14 We choose
β0 = 5, β1 = 1, γ = 1, σμ = 1, σv = 1 or 2, a set of values for ρ ranging from −0.9 to 0.9, a set
of values for λr, r = 1, 2, 3 in a similar range, T = 3 or 7, and n = 50, 100, and 200. Each set
of Monte Carlo results, corresponding to a combination of the values of (n, T,m, ρ, λ′s, σv),
is based on 2000 samples. The error (vt) distributions (err) can be (i) normal, (ii) normal
mixture (10% N (0, 42) and 90% N (0, 1)), or (iii) chi-square with 3 degrees of freedom.15

The fixed effects μ are generated according to either 1
T

∑T
t=1Xt + e or e, where e ∼ (0, IN),

resulting in the fixed effects that are either correlated or uncorrelated with the regressors.
12Practical implementations of the OPMD estimator of the VC matrix of AQS vector can be greatly fa-

cilitated by the vector and matrix representation of the quantities defined in Lemma 3.3. For example, to
compute g1 = {g1i}, let πk be the kth column of Π. Reshape πk and Δv into n × (T − 1) matrices πk and
Δv. Then g1 equals the vector of row sums of πk � Δv, where � denotes the Hadamard product.

Moreover, the partial derivatives of D and D−1 defined in Lemma 3.1 are needed for the evaluation of the
Hessian matrix, which can be algebraically tedious if T is not so small. In this case, these partial derivatives can
be replaced by the numerical partial derivatives without losing much of the accuracy of the OPMD estimator.

13The detail is: Xt = μx +gt1n + ζt, (1−φ1L)ζt = εt +φ2εt−1, εt ∼ N(0, σ2
1In), μx = e+ 1

T+m+1

PT
t=−m εt,

and e ∼ N(0, σ2
2In). Let θx = (g, φ1, φ2, σ1, σ2). Alternatively, Xt can be randomly generated fromN(0, σ2

1In).
The σ2

1 is the key parameter that controls the variability of the regressors, and thus the signal-to-noise ratio.
14The Rook and Queen schemes are standard. For group interaction, we first generate k = nα groups of

sizes ng ∼ U(.5n̄, 1.5n̄), g = 1, · · · , k, where 0 < α < 1 and n̄ = n/k, and then adjust ng so that
Pk

g=1 ng = n.
The reported results correspond to α = 0.5. See Yang (2015) for details in generating these spatial layouts.

15In both (ii) and (iii), the generated errors are standardized to have mean zero and variance σ2
v .
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Monte Carlo (empirical) means and standard deviations (sds) are reported for the CQML
estimator (CQMLE) and the proposed M -estimator. Empirical averages of the standard
errors (ses): s̃e based on Γ̂∗−1

M , ŝe based on Σ∗−1
M (ψ̂M), and r̂se based on the robust VC matrix

estimate Σ∗−1
M (ψ̂M)Γ̂∗

MΣ
∗−1
M (ψ̂M), are also reported for the proposed M -estimator. Due to the

space constraints, only a small subset of the results, corresponding to the case of correlated
fixed effects, is reported, and the full set of results can be found in the supplement.

Table 1a presents the empirical means and sds of the estimators of SE model and Table
1b presents the corresponding averages of ses for the M -estimator. For this model, the full
QMLE (FQMLE) is available from Su and Yang (2015) and thus is included in the Monte
Carlo experiments for comparison purpose. The results (reported and unreported) show
an excellent performance of the proposed M -estimators of the model parameters, and the
OPMD-based ses. The M -estimator of the dynamic parameter is nearly unbiased, as is the
FQMLE, whereas the CQMLE can be quite biased and as n increases it does not show a sign
of convergence. As expected, the M -estimator is slightly less efficient than the FQMLE, but
when T is increased from 3 to 7, the difference becomes negligible. However, the FQMLE
depends on the m value and a wrong specification of it may result in poor estimate when
ρ is negative and large (see Su and Yang, 2015). The FQMLE also depends on the choice
of ‘predictors’ in the predictive model for the initial differences. In contrast, the proposed
M -estimator (also CQMLE) depends on neither. The OPMD-based ses (r̂se) are on average
very close to the corresponding Monte Carlo sds in general, showing the robustness of r̂se.
The non-robust ses (s̃e and ŝe) of σ̂2

v can be quite different from the corresponding Monte
Carlo sds when the errors are nonnormal, whether n is small or large. When T is increased
from 3 to 7, the CQMLE of ρ improves significantly. Both FQMLE and M -estimator of the
spatial parameter λ3 show some bias (the CQMLE is more biased). This is perhaps due to the
intrinsic nature of the QML-type estimation of the spatial effects.16 The

√
n-consistency of

the FQMLE andM -estimator is clearly demonstrated by the Monte Carlo sds. To summarize,
our approach performs equally well as or better than the full QML approach depending on
whether the initial model is correctly specified or misspecified, and clearly outperforms the
CQML approach whether T is small or large.

Tables 2a and 2b present partial results for the SL model. The results (reported and
unreported) again show an excellent performance of the proposed M -estimation strategy,
which offers dramatic improvements over the conditional QML estimation method when T

is small. The results also show that the proposed OPMD estimate of the standard deviation
of M -estimator also performs excellently. As discussed in Section 2, a spatial model with SL

effects may be more popular due to the fact that it is able to capture the neighborhood or
spatial effects on both the mean and variance levels, and hence it is important to have simple
and reliable estimation and inference methods for the FE-SDPD models with SL effects.

Tables 3a and 3b present partial results for the SLE model with both SL and SE effects.
Similar observations as in the two simpler models can be made, except that the estimators for

16See Yang (2015) for a detailed examination on the bias of estimating a spatial lag model and the general
methodology on finite sample bias corrections for nonlinear estimators.
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the spatial parameters, in particular the spatial error parameter, are more biased, and that
the OPMD-based ses of them are slightly less accurate. However, with W3 replaced by Queen

contiguity (which results in a weaker spatial error dependence) or T increased to 7, the bias
becomes much smaller, and OPMD estimate becomes very accurate (see the supplement).

Tables 4a and 4b present partial results for the STL model that incorporates both SL and
STL effects into the FE-SDPD model. The proposed estimators again perform excellently
in general. The CQMLE of ρ again exhibits a large and persistent bias. Furthermore, the
CQMLE of λ2 may also exhibit a large and persistent bias, depending on the true values of
ρ, T , the signal-to-noise ratio (SNR), which is σ1/σv given at the bottom of Table 4a, etc. It
performs more poorly with a larger ρ, or a smaller T , or a smaller SNR.

Tables 5a and 5b present partial results for the STLE model with all the three spatial
effects. The results show that the proposed M -estimators of the model parameters, and the
proposed OPMD-based standard errors of the M -estimators perform very well. In contrast,
the CQMLEs may perform poorly as in the STL model. Furthermore, the estimation of
models containing the STL effect may require a larger signal-to-noise ratio for numerical
stability. Finally, for all the models, the nonnormality can have a significant effect on the se
of the error variance σ2

v , and hence it is important to use the OPMD-based robust standard
errors in statistical inferences when the normality of the errors is in doubt.

5 Conclusion and Discussion

We introduce a general strategy (M -estimation) for estimating a fixed-effects dynamic
panel data model with three major forms of spatial effects: the spatial lag, space-time lag,
and spatial error, based on short panels. The proposed M -estimation method is simple as
it is based on the adjusted quasi score functions, and is robust in the sense that it is free
from the specification of the initial conditions and allowing errors to be nonnormal. A initial
condition free method for estimating the robust standard errors of the M -estimators is also
given. These together lead to a complete set of inference methods for the fixed-effects SDPD
models that are free from the specification of the initial conditions, and robust against error
distributions. The simplicity and generality of the proposed methods render them to be very
attractive to the practitioners. An empirical illustration is given in the supplement, which,
together with matlab codes, can be downloaded from author’s website.

Kuersteiner and Prucha (2015) considered GMM estimation of a more general FE-SDPD
model, allowing for endogenous spatial weights, sequentially exogenous regressors, interactive
fixed effects, and heteroskedasticity in time and cross-section. GMM estimation requires the
initial estimates of some auxiliary parameters, and needs to select instruments and moment
weights. Its finite sample performance is not assessed. It would be interesting to compare
our M -estimation method with GMM when both applied to our FE-SDPD model. It would
also be interesting to extend our methods to allow for endogenous spatial weights, interactive
fixed effects, heteroskedasticity in time and cross-section, serial correlation, etc. However,
these are clearly beyond the scope of this paper and will be dealt with in future works.
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Appendix A: Some Basic Lemmas

The following lemmas are essential for the proofs of the main results in this paper.
Lemma A.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two se-

quences of n× n matrices that are uniformly bounded in both row and column sums. Let Cn
be a sequence of conformable matrices whose elements are uniformly O(h−1

n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,
(ii) the elements of An are uniformly bounded and tr(An) = O(n), and
(iii) the elements of AnCn and CnAn are uniformly O(h−1

n ).
Lemma A.2 (Lee, 2004, p.1918): For W1 and B1 defined in Model (3.1), if ‖W1‖ and

‖B−1
10 ‖ are uniformly bounded, where ‖ · ‖ is a matrix norm, then ‖B−1

1 ‖ is uniformly bounded
in a neighborhood of λ10.

Lemma A.3 (Lee, 2004, p.1918): Let Xn be an n × p matrix. If the elements Xn are
uniformly bounded and limn→∞ 1

nX
′
nXn exists and is nonsingular, then Pn = Xn(X ′

nXn)−1X ′
n

and Mn = In − Pn are uniformly bounded in both row and column sums.
Lemma A.4 (Lemma B.4, Yang, 2015, extended): Let {An} be a sequence of n × n

matrices that are uniformly bounded in either row or column sums. Suppose that the elements
an,ij of An are O(h−1

n ) uniformly in all i and j. Let vn be a random n-vector of iid elements
with mean zero, variance σ2 and finite 4th moment, and bn a constant n-vector of elements
of uniform order O(h−1/2

n ). Then

(i) E(v′nAnvn) = O( nhn
), (ii) Var(v′nAnvn) = O( n

hn
),

(iii) Var(v′nAnvn + b′nvn) = O( n
hn

), (iv) v′nAnvn = Op( n
hn

),
(v) v′nAnvn − E(v′nAnvn) = Op(( n

hn
)

1
2 ), (vi) v′nAnbn = Op(( nhn

)
1
2 ),

and (vii), the results (iii) and (vi) remain valid if bn is a random n-vector independent of vn
such that {E(b2ni)} are of uniform order O(h−1

n ).

Proof of Lemma A.4: The results in (vii) extend the results (iii) and (vi) of Lemma
B.5 of Yang (2015) by allowing bn to be a random vector. Proofs are done similarly.

Lemma A.5 (Central Limit Theorem for bilinear quadratic forms). Let {Φn} be
a sequence of n× n matrices with row and column sums uniformly bounded, and elements of
uniform order O(h−1

n ). Let vn = (v1, · · · , vn)′ be a random vector of iid elements with mean
zero, variance σ2

v, and finite (4 + 2ε0)th moment for some ε0 > 0. Let bn = {bni} be an n× 1
random vector, independent of vn, such that (i) {E(b2ni)} are of uniform order O(h−1

n ), (ii)
supiE|bni|2+ε0 < ∞, (iii) hn

n

∑n
i=1[φn,ii(bni − Ebni)] = op(1) where {φn,ii} are the diagonal

elements of Φn, and (iv) hn
n

∑n
i=1[bni − E(b2ni)] = op(1). Define the bilinear-quadratic form:

Qn = b′nvn + v′nΦnvn − σ2
vtr(Φn),

and let σ2
Qn

be the variance of Qn. If limn→∞h
1+2/ε0
n /n = 0 and {hn

n σ
2
Qn

} are bounded away

from zero, then Qn/σQn

d−→ N (0, 1).

Proof of Lemma A.5: The proof is lengthy and is given in the supplement to this
paper available at the author’s web site: http://www.mysmu.edu/faculty/zlyang/.
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Appendix B: Proofs of Lemmas 3.1-3.3

To conserve space, only sketches of the proofs are given, for the understanding of M -
estimation and OPMD methodologies. Detailed proofs are given in the supplement.

Proof of Lemma 3.1: Under (3.8) and Assumption A, we have for t ≥ 2, E(Δyt−1Δv′t) =
−σ2

v0B
−1
10 B

−1
30 , E(ΔytΔv′t) = σ2

v0(2In−B0)B−1
10 B

−1
30 , E(Δyt+1Δv′t) = −σ2

v0(In−B0)2B−1
10 B

−1
30 ;

for t ≥ s + 1 and s ≥ 2, E(ΔytΔv′s) = −σ2
v0Bt−(s+1)

0 (In − B0)2B−1
10 B

−1
30 ; and all the terms

E(ΔytΔv′t+2), t ≥ 1, are zero. Summarizing these, we obtain the results of Lemma (3.1).

Proof of Lemma 3.2: By (3.8), continuous substitution gives Δyt = Bt−1
0 Δy1 +{Bt−2

0 ,Bt−3
0 , . . . , In, 0, . . . , 0

}
B−1

10 ΔXβ0 +
{Bt−2

0 ,Bt−3
0 , . . . , In, 0, . . . , 0

}
B−1

10 B−1
30 Δv.

Proof of Lemma 3.3: First, Π′Δv =
∑T

t=2 Π′
tΔvt =

∑n
i=1

∑T
t=2 Π′

itΔvit ≡
∑n

i=1 g1i.

Now, for the terms quadratic in Δv, E(Δv′ΦΔv) = σ2
v0tr[(C ⊗ In)Φ] ≡ σ2

v0

∑n
i=1

∑T
t=2 dit,

where dit =
∑T

s=2(ctsΦii,st), {cts} = C, and {Φii,ts} = diag(Φts); and

Δv′ΦΔv − E(Δv′ΦΔv)
=

∑T
t=2

∑T
s=2 Δv′t(Φu

ts + Φl
ts + Φd

ts)Δvs − σ2
v0

∑n
i=1

∑T
t=2 dit

=
∑T

t=2

∑T
s=2

[
Δv′sΦu′

tsΔvt + Δv′t(Φl
ts + Φd

ts)Δvs
]− σ2

v0

∑n
i=1

∑T
t=2 dit

=
∑n

i=1

∑T
t=2

(
ΔvitΔξit + ΔvitΔv∗it − σ2

v0dit
) ≡∑n

i=1 g2i,

where Δξt =
∑T

s=2(Φ
u′
st + Φl

ts)Δvs, and Δv∗t =
∑T

s=2 Φd
tsΔvs. Finally,

Δv′Ψy1 =
∑T

t=2 Δv′tΨt+Δy1 = Δv′2ΘΔy◦1 +
∑T

t=3 Δv′tΔy∗1t,

where Δy◦1 = B30B10Δy1 and Δy∗1t = Ψt+Δy1. Noting that

Δy◦1 = B30B10Δy1 = B30B20Δy0 + B30Δx1β0 + Δv1, (B.1)

and as Δy0 is independent of vt, t ≥ 1 by Assumption A, E(Δv′2ΘΔy◦1) = −σ2
v0tr(Θ), and

Δv′2ΘΔy◦1 − E(Δv′2ΘΔy◦1) = Δv′2(Θu + Θl + Θd)Δy◦1 + σ2
v0tr(Θ)

=
∑n

i=1 Δv2iΔζi +
∑n

i=1 Θii(Δv2iΔy◦1i + σ2
v0),

where {Δζi} = Δζ = (Θu + Θl)Δy◦1. Thus, Δv′ΨΔy1 − E(Δv′ΨΔy1) =
∑n

i=1 g3i, where

g3i = Δv2iΔζi + Θii(Δv2iΔy◦1i + σ2
v0) +

∑T
t=3 ΔvitΔy∗1it.

As E[(g′1i, g2i, g3i)|Fn,i−1] = 0, {(g′1i, g2i, g3i)′,Fn,i} form a vector M.D. sequence.

Appendix C: Proofs of Theorems 3.1-3.3

In proving the theorems, the following matrix results are used: (i) the eigenvalues of a
projection matrix are either 0 or 1; (ii) the eigenvalues of a positive definite (p.d.) matrix are
strictly positive; (iii) γmin(A)tr(B) ≤ tr(AB) ≤ γmax(A)tr(B) for symmetric matrix A and
positive semidefinite (p.s.d.) matrix B; (iv) γmax(A+B) ≤ γmax(A)+γmax(B) for symmetric
matrices A and B; and (v) γmax(AB) ≤ γmax(A)γmax(B) for p.s.d. matrices A and B. See,
e.g, Bernstein (2009).
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Proof of Theorem 3.1: From (3.17) and (3.20), we have

S∗c
STLE(δ)− S̄∗c

STLE(δ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
σ̂2

v,M(δ)
Δû(δ)′Ω−1ΔY−1 − 1

σ̄2
v,M(δ)

E[Δū(δ)′Ω−1ΔY−1],
1

σ̂2
v,M(δ)

Δû(δ)′Ω−1W1ΔY − 1
σ̄2

v,M(δ)
E[Δū(δ)′Ω−1W1ΔY ],

1
σ̂2

v,M(δ)
Δû(δ)′Ω−1W2ΔY−1 − 1

σ̄2
v,M(δ)

E[Δū(δ)′Ω−1W2ΔY−1],
1

σ̂2
v,M(δ)

Δû(δ)′ΥΔû(δ)− 1
σ̄2

v,M(δ)
E[Δū(δ)′ΥΔū(δ)],

where Υ = 1
2 (C−1 ⊗A3). With Assumption G, consistency of δ̂M follows from:

(a) infδ∈Δσ̄
2
v,M(δ) is bounded away from zero,

(b) supδ∈Δ

∣∣σ̂2
v,M(δ) − σ̄2

v,M(δ)
∣∣ = op(1),

(c) supδ∈Δ
1

n(T−1)

∣∣Δû(δ)′Ω−1ΔY−1 − E[Δū(δ)′Ω−1ΔY−1]
∣∣ = op(1),

(d) supδ∈Δ
1

n(T−1)

∣∣Δû(δ)′Ω−1W1ΔY − E[Δū(δ)′Ω−1W1ΔY ]
∣∣ = op(1),

(e) supδ∈Δ
1

n(T−1)

∣∣Δû(δ)′Ω−1W2ΔY−1 − E[Δū(δ)′Ω−1W2ΔY−1]
∣∣ = op(1),

(f) supδ∈Δ
1

n(T−1)

∣∣Δû(δ)′ΥΔû(δ)− E[Δū(δ)′ΥΔū(δ)]
∣∣ = op(1).

Proof of (a). By Δū∗(δ) = M(B∗
1ΔY − B∗

2ΔY−1) + P(B∗
1ΔY

◦ − B∗
2ΔY

◦
−1) given in

(3.21), and the orthogonality between the two projection matrices M and P, we have,

σ̄2
v,M(δ) = 1

n(T−1)
E[Δū∗′(δ)Δū∗(δ)] = 1

n(T−1)
tr[Var(B∗

1ΔY − B∗
2ΔY−1)]

+ 1
n(T−1)

(B∗
1EΔY −B∗

2EΔY−1)′M(B∗
1EΔY −B∗

2EΔY−1).

As M is p.s.d., the second term is nonnegative uniformly in δ ∈ Δ. The first term is
1

n(T−1)tr[Ω
−1Var(B1ΔY−B2ΔY−1)] ≥ 1

n(T−1)γmin(C−1)γmin(B′
3B3)tr[Var(B1ΔY−B2ΔY−1)]

> c > 0, uniformly in δ ∈ Δ, by the definition of the matrix C, Assumption E(iv) and the
assumption given in the theorem. It follows that infδ∈Δσ̄

2
v,M(δ) > c > 0.

Proof of (b). Noting that Δû∗(δ) = Ω− 1
2 Δû(δ) = M(B∗

1ΔY − B∗
2ΔY−1), we have,

σ̂2
v,M(δ) = 1

n(T−1)Δû
∗′(δ)Δû∗(δ) = 1

n(T−1)(B
∗
1ΔY −B∗

2ΔY−1)′M(B∗
1ΔY −B∗

2ΔY−1).

It follows that, by denoting Q1 = 1
n(T−1)

ΔY ′B∗′
1 MB∗

1ΔY , Q2 = 1
n(T−1)

ΔY ′−1B
∗′
2 MB∗

2ΔY−1,
Q3 = 1

n(T−1)
ΔY ′B∗′

1 MB∗
2ΔY−1, and Q4 = 1

n(T−1)
(B∗

1ΔY
◦−B∗

2ΔY
◦−1)

′P(B∗
1ΔY

◦−B∗
2ΔY

◦−1),

σ̂2
v,M(δ)− σ̄2

v,M(δ) = (Q1 − EQ1) + (Q2 − EQ2)− 2(Q3 − EQ3) − EQ4. (C.1)

The results follows if Qj − EQj
p−→ 0, j = 1, 2, 3, and EQ4−→0, uniformly in δ ∈ Δ.

The uniform convergence of Qj − EQj, j = 1, 2, 3, to zero in probability follows from the
pointwise convergence for each δ ∈ Δ and the stochastic equicontinuity of Qj , according to
Theorem 1 of Andrews (1992). Let M∗ = Ω− 1

2MΩ− 1
2 , we have, by Lemma 3.2,

Q1 = 1
n(T−1)

(
Δy′

1R
′B′

1M
∗B1RΔy1 + η′B′

1M
∗B1η + Δv′S′B′

1M
∗B1SΔv

+2Δy′
1R

′B′
1M

∗B1η + 2Δy′
1R

′B′
1M

∗B1SΔv + 2η′B′
1M

∗B1SΔv
)
,

which givesQ1−EQ1 =
∑5

�=1(Q1,�−EQ1,�), where Q1,�, � = 1, . . . , 5, denote the five stochastic
terms of Q1, and EQ1,5 = 0;
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Q2 = 1
n(T−1)

(
Δy′

1R
′
−1B

′
2M

∗B2R−1Δy1 + η′
−1B

′
2M

∗B2η−1 + Δv′S′
−1B

′
2M

∗B2S−1Δv

+2Δy′
1R

′
−1B

′
2M

∗B2η−1 + 2Δy′
1R

′B′
2M

∗B2S−1Δv + 2η′
−1B

′
2M

∗B2S−1Δv
)
,

leading to Q2−EQ2 =
∑5

�=1(Q2,�−EQ2,�), where Q2,�, � = 1, . . . , 5, denote the five stochastic
terms of Q2, and EQ2,5 = 0; and

Q3 = 1
n(T−1)

(
Δy′

1R
′B′

1M
∗B2R−1Δy1 + η′B′

1M
∗B2η−1 + Δv′S′B′

1M
∗B2S−1Δv

+Δy′
1R′B′

1M
∗B2η−1 + η′B′

1M
∗B2R−1Δy1 + Δy′

1R
′B′

1M
∗B2S−1Δv

+Δv′S′B′
1M

∗B2R−1Δy′
1 + η′B′

1M
∗B2S−1Δv + Δv′S′B′

1M
∗B2η−1

)
,

leading to Q3−EQ3 =
∑8

�=1(Q3,�−EQ3,�), where Q3,�, � = 1, . . . , 8, denote the eight random
terms in Q3 and the last two terms have expectations zero.

Thus, Qk, k = 1, 2, 3, are decomposed into sums of terms of the forms: 1
n(T−1)Δy′

1ΦΔy1,
1

n(T−1)Δv
′ΠΔv, 1

n(T−1)Δy′
1ΨΔv, 1

n(T−1)Δy′
1φ, and 1

n(T−1)Δv
′ξ, where the matrices Φ, Π and

Ψ, and the vectors φ and ξ are defined in terms of R, R−1, S, S−1, η, η−1, B1, B2 and M∗.
Note that R, R−1, S, S−1, η and η−1 depend on true parameter values, whereas B1 depends
on λ1, B2 depends on ρ and λ2, and M∗ depends on λ3.

For the terms quadratic in Δy1, they can be written as 1
nΔy′1Φ++(δ)Δy1 where Φ++(δ) =

1
T−1

∑
t

∑
s Φt,s(δ). It can easily be seen by Lemma A.1 and Lemma A.3 that for each δ ∈ Δ,

Φt,s(δ) are uniformly bounded in either row or column sums. The pointwise convergence
of 1

n [Δy′1Φ++(δ)Δy1 − E(Δy′1Φ++(δ)Δy1)] thus follows from Assumption F(iii). For the
terms quadratic in Δv, they can be written as 1

n(T−1)

∑T
t=1

∑T
s=1 v

′
tΠtsvs. The pointwise

convergence of 1
n [v′tΠtsvs − E(v′tΠtsvs)] follows from Lemma A.4 (v), for each t, s = 1, . . . , T .

The pointwise convergence of 1
n(T−1) [Δy′

1ΨΔv−E(Δy′
1ΨΔv)] follows by writing Δy′

1ΨΔv =∑
s Δy1Ψ+sΔvs and then applying Lemma A.4 (vii) and Assumption F(iv). The pointwise

convergence of 1
n(T−1) [Δy′

1φ − E(Δy′
1φ)] follows from Assumption F(ii), and of 1

n(T−1)Δv
′ξ

from Chebyshev inequality. Thus, Qk,�(δ)− EQk,�(δ)
p−→ 0, for each δ ∈ Δ, and all k and �.

Now, for all the Qk,�(δ) terms, let δ1 and δ2 be in Δ. We have by the mean value theorem:

Qk,�(δ2) −Qk,�(δ1) = ∂
∂δ′Qk,�(δ̄)(δ2 − δ1),

where δ̄ lies between δ1 and δ2 elementwise. Note that Qk,�(δ) is linear or quadratic in ρ, λ1

and λ2, and thus the corresponding partial derivatives takes simple form. It is easy to show
that supδ∈Δ | ∂∂ωQk,�(δ)| = Op(1), for ω = ρ, λ1, λ2. For ∂

∂λ3
Qk,�(δ), note that only the matrix

M∗ involves λ3. Some algebra leads to the following simple expression for its derivative:

d
dλ3

M∗ = M∗ΩΩ̇−1ΩM∗,

where Ω̇−1 = d
dλ3

Ω−1 = C−1⊗A3. Thus, the results supδ∈Δ | ∂
∂λ3

Qk,�(δ)| = Op(1) can be easily
proved for all the Qk,�(δ) quantities. For example, for Q1,1(δ), noting that γmax(M) = 1,

supδ∈Δ | ∂
∂λ3

Q1,1(δ)| = supδ∈Δ | 1
n(T−1)

∂
∂λ3

Δy′
1R

′B′
1M

∗B1RΔy1|
= supδ∈Δ

1
n(T−1) |Δy′

1R
′B′

1M
∗ΩΩ̇−1ΩM∗B1RΔy1|

≤ supδ∈Δ
1

n(T−1) |Δy′
1R

′B′
1Ω̇

−1B1RΔy1|
≤ γmax(Ω̇−1)γmax(B′

1B1) 1
n(T−1) |Δy′

1R
′
RΔy1| = Op(1),
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by Assumption F(i). It follows that Qk,�(δ) are stochastically equicontinuous. Hence, by
Theorem 1 of Andrews (1992), Qk,�(δ) − EQk,�(δ)

p−→ 0, uniformly in δ ∈ Δ for all k and �.
It follows that Qk(δ) − EQk(δ)

p−→ 0, uniformly in δ ∈ Δ, k = 1, 2, 3.
It left to show that EQ4(δ) → 0, uniformly in δ ∈ Δ. We have,

EQ4 = 1
n(T−1)tr[Ω

−1ΔX(ΔX ′Ω−1ΔX)−1ΔX ′Ω−1Var(B1ΔY −B2ΔY−1)]

≤ 1
n(T−1)γmax(Ω−2)γ−1

min(ΔX
′Ω−1ΔX) tr[ΔX ′Var(B1ΔY −B2ΔY−1)ΔX ]

= 1
n(T−1)γmax(Ω−2)γ−1

min

(
ΔX ′Ω−1ΔX
n(T−1)

)
1

n(T−1)tr[ΔX
′Var(B1ΔY −B2ΔY−1)ΔX ].

As Ω−1 = C−1 ⊗ B′
3B3, we have by the matrix C defined at the beginning of Section 3.1

and Assumption E(iv), 0 < cw ≤ infλ3∈Λ3 γmin(Ω−1) ≤ supλ3∈Λ3
γmin(Ω−1) ≤ c̄w < ∞. By

Assumption D, we have, 0 < cx ≤ infλ3∈Λ3 γmin(Ω−1)γmin

(
ΔX ′ΔX
n(T−1)

) ≤ γmin

(
ΔX ′Ω−1ΔX
n(T−1)

) ≤
γmax

(
ΔX ′Ω−1ΔX
n(T−1)

) ≤ supλ3∈Λ3
γmax(Ω−1)γmax

(
ΔX ′ΔX
n(T−1)

) ≤ c̄x <∞. It follows that

EQ4 ≤ 1
n(T−1)

c̄2wcx
1

n(T−1)
tr[ΔX ′Var(B1ΔY − B2ΔY−1)ΔX ]

≤ 1
n(T−1)

c̄2wcxc̄y
1

n(T−1)
tr[ΔX ′ΔX ], by the assumption in Theorem 3.1

= O(n−1), by Assumption D.

Hence, σ̂2
v,M(δ)− σ̄2

v,M(δ)
p−→ 0, uniformly in δ ∈ Δ, completing the proof of (b).

Proofs of (c)-(f). By the expressions of Δû(δ) and Δū(δ) (or Δû∗(δ) and Δū∗(δ)) given
earlier and Lemma 3.2, all the quantities inside | · | in (c)-(f) can all be expressed in the forms
similar to (C.1). Thus, the proofs of (c)-(f) follow the proof of (b).

Proof of Theorem 3.2: We have by the mean value theorem,

0 = 1√
n(T−1)

S∗
STLE(ψ̂STLE) = 1√

n(T−1)
S∗
STLE(ψ0) +

[
1

n(T−1)
∂
∂ψ′S

∗
STLE(ψ̄)

]√
n(T − 1)(ψ̂M − ψ0),

where ψ̄ lies elementwise between ψ̂M and ψ0. The result of the theorem follows if

(a) 1√
n(T−1)

S∗
STLE(ψ0)

D−→ N
[
0, limn→∞ Γ∗

STLE(ψ0)
]
,

(b) 1
n(T−1)

[
∂
∂ψ′S

∗
STLE(ψ̄) − ∂

∂ψ′S
∗
STLE(ψ0)

] p−→ 0, and

(c) 1
n(T−1)

[
∂
∂ψ′S

∗
STLE(ψ0) − E

(
∂
∂ψ′S

∗
STLE(ψ0)

)] p−→ 0.

Proof of (a). From (3.24), we see that S∗
STLE(ψ0) consists of three types of elements:

Π′Δv, Δv′ΦΔv and Δv′ΨΔy1, which can be written as Π′Δv =
∑T

t=1 Π∗′
t vt, ΔvΦΔv =∑T

t=1

∑T
s=1 v

′
tΦ

∗
tsvs, and Δv′ΨΔy1 =

∑T
t=1 v

′
tΨ

∗
tΔy1, where Π∗

t , Φ∗
ts and Ψ∗

t are formed by
the elements of the partitioned Π, Φ and Ψ, respectively. By (2.1), y1 = B−1

10 B20y0 + η1 +
B−1

10 B
−1
30 v1, leading to

∑T
t=1 v

′
tΨ∗

tΔy1 =
∑T

t=1 v
′
tΨ∗∗

t y0 +
∑T

t=1 v
′
tΨ

∗+
t v1 +

∑T
t=1 v

′
tΨ∗

t η1, for
suitably defined non-stochastic quantities η1, Ψ∗∗

t and Ψ∗+
t . These show that, for every non-

zero (p+ 5) × 1 vector of constants c, c′S∗
STLE(ψ0) can be expressed as

c′S∗
STLE(ψ0) =

T∑
t=1

T∑
s=1

v′tAtsvs +
T∑
t=1

v′tBtv1 +
T∑
t=1

v′tg(y0)− c′μ∗,
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for suitably defined non-stochastic matrices Ats and Bt, vector μ∗, and the function g(y0) lin-
ear in y0. As, {y0, v1, . . . , vT} are independent, the asymptotic normality of 1√

n(T−1)
c′S∗

STLE(ψ0)

follows from Lemma A.5. Finally, the Cramér-Wold devise leads to the joint asymptotic nor-
mality.

Proof of (b). The Hessian matrix, H∗
STLE(ψ) = ∂

∂ψ′S
∗
STLE(ψ), has the elements:

H∗
ββ = − 1

σ2
v
ΔX ′Ω−1ΔX, H∗

σ2
vσ

2
v

= − 1
σ6

v
Δu(θ)′Ω−1Δu(θ) + n(T−1)

2σ4
v
,

H∗
βσ2

v
= − 1

σ4
v
ΔX ′Ω−1Δu(θ), H∗

σ2
vλ2

= − 1
σ4

v
ΔY ′

−1W
′
2Ω

−1Δu(θ),

H∗
βρ = − 1

σ2
v
ΔX ′Ω−1ΔY−1, H∗

σ2
vλ3

= 1
2σ4

v
Δu(θ)′Ω̇−1Δu(θ),

H∗
βλ1

= − 1
σ2

v
ΔX ′Ω−1W1ΔY, H∗

ρρ = − 1
σ2

v
ΔY ′

−1Ω
−1ΔY−1 + tr(C−1D−1,ρ),

H∗
βλ2

= − 1
σ2

v
ΔX ′Ω−1W2ΔY−1, H∗

ρλ1
= − 1

σ2
v
ΔY ′

−1Ω
−1W1ΔY + tr(C−1D−1,λ1),

H∗
βλ3

= 1
σ2

v
ΔX ′Ω̇−1Δu(θ), H∗

ρλ2
= − 1

σ2
v
ΔY ′−1Ω

−1W2ΔY−1 + tr(C−1D−1,λ2),

H∗
σ2

vρ
= − 1

σ4
v
ΔY ′

−1Ω
−1Δu(θ), H∗

λ1λ1
= − 1

σ2
v
ΔY ′W′

1Ω
−1W1ΔY + tr(C−1Dλ1W1),

H∗
σ2

vλ1
= − 1

σ4
v
ΔY ′W′

1Ω
−1Δu(θ), H∗

λ1λ2
= − 1

σ2
v
ΔY ′W′

1Ω
−1W2ΔY−1 + tr(C−1Dλ2W1),

H∗
ρλ3

= 1
σ2

v
ΔY ′−1Ω̇

−1Δu(θ), H∗
λ2λ2

= − 1
σ2

v
ΔY ′−1W

′
2Ω

−1W2ΔY−1 + tr(C−1D−1,λ2W2),

H∗
λ1λ3

= 1
σ2

v
ΔY ′W′

1Ω̇
−1Δu(θ), H∗

λ3λ3
= − 1

σ2
v
Δu(θ)′[C−1 ⊗ (W ′

3W3)]Δu(θ)− tr(G2
3).

H∗
λ2λ3

= 1
σ2

v
ΔY ′−1W

′
2Ω̇

−1Δu(θ),

where Ω̇−1 = ∂
∂λ3

Ω−1, D−1,ω = ∂
∂ωD−1 and Dω = ∂

∂ωD, ω = ρ, λ1, λ2, and G3 = W3B−1
3 .

It is easy to show that 1
n(T−1)

H∗
STLE(ψ0) = Op(1) by Lemma A.1 and the model assump-

tions. Thus, 1
n(T−1)H

∗
STLE(ψ̄) = Op(1) because ψ̄−ψ0 = op(1) which is implied by ψ̂M

p−→ ψ0.

As σ̄2 p−→ σ2
v0, σ̄

−r = σ−rv0 + op(1), r = 2, 4, 6. Noting that σr appears in H∗
STLE(ψ) multiplica-

tively, 1
n(T−1)H

∗
STLE(ψ̄) = 1

n(T−1)H
∗
STLE(β̄, σ

2
v0, ρ̄, λ̄) + op(1), i.e., replacing σ̄2 by σ2

v0 results in
an asymptotically negligible error. The proof of (b) is thus equivalent to the proof of

1
n(T−1)

[
H∗

STLE(β̄, σ
2
v0, ρ̄, λ̄) −H∗

STLE(ψ0)
] p−→ 0.

From Δu(θ) = Δu−(λ1−λ10)W1ΔY −(ρ−ρ0)ΔY−1−(λ2−λ20)W2ΔY−1−ΔX(β−β0),
Ω−1(λ3) − Ω−1(λ30) = (λ2

3 − λ2
30)C

−1 ⊗ (W ′
3W3) − (λ3 − λ30)C−1 ⊗ (W ′

3 +W3), and Ω̇−1 =
−C−1 ⊗(W ′

3B3 +B′
3W3), we see that all the random elements of H∗

STLE(ψ) are linear, bilinear,
or quadratic in ΔY , ΔY−1 or Δu, and linear or quadratic in β, ρ, and λ. This means that all
the corresponding elements in 1

n(T−1)

[
H∗

STLE(β̄, σ
2
v0, ρ̄, λ̄) −H∗

STLE(ψ0)
]

are linear, bilinear, or
quadratic in ΔY , ΔY−1 or Δu, and linear, bilinear or quadratic in β̄−β0, ρ̄− ρ0, and λ̄−λ0,
and thus are all op(1) by the consistency of ψ̂M, Lemma 3.2, Lemma A.1 and Assumption F.

It left to show that all the ‘trace’ terms in 1
n(T−1)

[
H∗

STLE(β̄, σ
2
v0, ρ̄, λ̄)−H∗

STLE(ψ0)
]
are op(1),

e.g., 1
n(T−1) [tr(C

−1Dλ1(ρ̄, λ̄1, λ̄2)W1)− tr(C−1Dλ1(ρ0, λ10, λ20)W1)] = op(1), for Hλ1λ1. Let
(ρ∗, λ∗1, λ

∗
2) be between (ρ̄, λ̄1, λ̄2) and (ρ0, λ10, λ20). By the mean value theorem,

1
n(T−1) [tr(C

−1Dλ1(ρ̄, λ̄1, λ̄2)W1) − tr(C−1Dλ1(ρ0, λ10, λ20)W1)]

= ρ̄−ρ0
n(T−1)tr(C

−1Dρ∗
λ1

W1) + λ̄1−λ10
n(T−1)tr(C

−1Dλ∗1
λ1

W1) + λ̄2−λ20
n(T−1)tr(C

−1Dλ∗2
λ1

W1),

where Dρ∗
λ1

, Dλ∗1
λ1

and Dλ∗2
λ1

are the partial derivatives of Dλ1 evaluated at (ρ∗, λ∗1, λ
∗
2). Consider,

W.L.O.G., T = 3. Recall B1 = In − λW1, B2 = ρIn + λ2W2 and B = B−1
2 B2. We have
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D(ρ, λ1, λ2) =

(
B−1

1 B2B
−1
1 , B−1

1

(In − B−1
1 B2)2B−1

1 , B−1
1 B2B

−1
1

)
.

This shows that the elements of Dλ1 are the multiplications of the matrices W1, B−1
1 and

B2. Subsequently, Dρ
λ1

, Dλ1
λ1

and Dλ2
λ1

have elements being the multiplications of the matrices
W1, W2, B−1

1 (λ1), and B2(ρ, λ2), and hence are uniformly bounded in a matrix norm, in the
neighborhood of (ρ0, λ10, λ20) by Lemmas A.1 and A.2. Therefore, 1

n(T−1)tr(C
−1Dρ∗

λ1
W1) =

Op(1), 1
n(T−1)tr(C

−1Dλ∗1
λ1

W1) = Op(1), and 1
n(T−1)tr(C

−1Dλ∗2
λ1

W1) = Op(1), leading to (b).

Proof of (c). First, for the terms involving only Δu (linear or quadratic), the results
follows Lemma A.4(v)-(vi), noticing Δu = B−1

30 Fv where Fv = Δv. For example,

H∗
σ2

vλ3
(ψ0) − E[H∗

σ2
vλ3

(ψ0)] = 1
2σ4

v0
[Δu′Ω̇−1

0 Δu− E(Δu′Ω̇−1
0 Δu)] = 1

2σ4
v0

[v′Av − E(v′Av)],

where A = F′B′−1
30 Ω̇−1

0 B−1
30 F, which is easily seen to be uniformly bounded in both row and

column sums. Thus, Lemma A.4(v) leads to 1
n(T−1){H∗

σ2
vλ3

(ψ0)− E[H∗
σ2

vλ3
(ψ0)]} = op(1).

Second, by Lemma 3.2 all the terms involving ΔY and ΔY−1 can be written as sums of
the terms linear in Δy, quadratic in Δy, bilinear in Δy and Δv, or quadratic in Δv. Thus,
the results follow by repeatedly applying Lemma A.1, Lemma A.4, and Assumption F.

Proof of Theorem 3.3: First, the result Σ∗
STLE(ψ̂M) − Σ∗

STLE(ψ0)
p−→ 0 is implied by the

result (b) in the proof of Theorem 3.2. The result 1
n(T−1)

∑n
i=1[ĝiĝ

′
i − E(gig′i)]

p−→ 0 follows

from 1
n(T−1)

∑n
i=1(ĝiĝ

′
i − gig

′
i)

p−→ 0 and 1
n(T−1)

∑n
i=1[gig

′
i − E(gig′i)]

p−→ 0. The proof of the
former is straightforward by applying the mean value theorem. We focus on the proof of the
latter result. As the elements of S∗

STLE(ψ0) are mixtures of terms of the forms Π′Δv =
∑n

i=1 g1i,
Δv′ΦΔv − E(Δv′ΦΔv) =

∑n
i=1 g2i and Δv′ΨΔy1 − E(Δv′ΨΔy1) =

∑n
i=1 g3i, it suffices to

show that
1

n(T−1)

∑n
i=1[gkig

′
ri − E(gkig′ri)] = op(1), k, r = 1, 2, 3.

To facilitate the proof, the following dot notation is convenient: (a) for an n(T − 1) × 1
vector Δv with elements {Δvit} double indexed by i = 1, . . . , n for each t = 2, . . . , T , Δv·t is
the subvector that contains all the elements with the same t, and Δvi· is the subvector that
picks up the elements with the same i; (b) for an n(T −1)×n(T −1) matrix Φ with elements
{Φit,js, i, j = 1, . . . , n; t, s = 2, . . . , T}, where it is the double index for the rows and js the
double index for the columns, Φ·t,·s is the n×n submatrix corresponding to the (t, s) periods,
Φi·,j· the (T − 1)× (T − 1) submatrix corresponding to the (i, j) units, Φit,j· the (T − 1)× 1
subvector that picks up the element from the itth row corresponding to s = 2, . . . , T .

With the vector dot notation, the gri, r = 1, 2, 3, defined in Lemma 3.3 can be written as
g1i = Π′

i·Δvi·, g2i = Δv′i·Δξi·+Δv′i·Δv
∗
i·−1′T−1di·, and g3i = Δv2iΔζi+Θii(Δv2iΔy◦1i+σ2

v0)+
Δv′i−Δy∗1i− where ‘−’ plays the same role as ‘·’ but corresponds to t = 3, . . . , T . Note that
under Assumptions D and E, one can easily see by Lemma A.1 that the elements of all the
Π’s, Φ’s,, and Ψ’s, defined in (3.24), are uniformly bounded. The proofs proceed by applying
the weak law of large numbers (WLLN) for M.D. arrays, see, e.g., Davidson (1994, p. 299).

First, with g1i = Π′
i·Δvi·,

1
n(T−1)

∑n
i=1[g1ig

′
1i − E(g1ig′1i)] = 1

n(T−1)

∑n
i=1 Π′

i·(Δvi·Δv
′
i· −

σ2
v0C)Πi· ≡ 1

n(T−1)

∑n
i=1 Un,i, where C is defined below (3.2). Without loss of generality,
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assume Uni is a scalar, as if not we can work on each element of it. Clearly, {Un,i} are
independent, thus form a M.D. array. By Assumption B and using the fact that the elements
of Πi· are uniformly bounded, it is easy to show that E|Un,i|1+ε ≤ Ku < ∞, for ε > 0.
Thus, {Un,i} are uniformly integrable. The other two conditions of WLLN for M.D. arrays
of Davidson are satisfied with the constant coefficients 1

n(T−1)
. Thus, 1

n(T−1)

∑n
i=1 Un,i

p−→ 0.
Second, with g2i = Δv′i·Δξi· + Δv′i·Δv

∗
i· − 1′T−1di·, we have,

1
n(T−1)

∑n
i=1[g

2
2i − E(g2

2i)]

= 1
n(T−1)

∑n
i=1[(Δv

′
i·Δξi·)

2 − E((Δv′i·Δξi·)
2)]

+ 1
n(T−1)

∑n
i=1[(Δv

′
i·Δv

∗
i·)

2 − E((Δv′i·Δv
∗
i·)

2)]

+ 2
n(T−1)

∑n
i=1(Δv

′
i·Δξi·)(Δv

′
i·Δv

∗
i·) − 2

n(T−1)

∑n
i=1(1

′
T−1di·)(Δv

′
i·Δξi·)

− 2
n(T−1)

∑n
i=1[(1

′
T−1di·)(Δv

′
i·Δv

∗
i· − E(Δv′i·Δv

∗
i·))] ≡ ∑5

r=1 Hr.

Now, H1 = 1
n(T−1)

∑n
i=1[Δξ

′
i·(Δvi·Δv

′
i·−σ2

voC)Δξi·]+
σ2

v0
n(T−1)

∑n
i=1[Δξ

′
i·CΔξi·−E(Δξ′i·CΔξi·)].

For the first term, let Vn,i = Δξ′i·(Δvi·Δv
′
i· − σ2

v0C)Δξi·. As Δξi· is Gn,i−1-measurable,
E(Vn,i|Gn,i−1) = 0. Thus, {Vn,i, Gn,i} form a M.D. array. It is easy to see that E|V 1+ε

n,i | ≤
Kv < ∞, for some ε > 0. Thus, {Vn,i} is uniformly integrable. The other two conditions of
the WLLN for M.D. arrays of Davidson are satisfied. Thus, 1

n(T−1)

∑n
i=1 Vn,i

p−→ 0.
For the second term of H1, note that Δξ′i·CΔξi· =

∑
t

∑
s Δξ′itCtsΔξis, where {Cts} = C

is a constant matrix defined above (3.3), and recall ξt =
∑T

s=2(Φ
u′
st + Φ�

ts)Δvs. We have,

Δξit =
∑T

s=2

∑i−1
j=1(Φjs,it + Φit,js)Δvjs =

∑i−1
j=1

∑T
s=2(Φjs,it + Φit,js)Δvjs =

∑i−1
j=1 φ

′
ijtΔvj·,

where φijt = (Φj·,it + Φit,j·). Thus, (Δξit)2 −E[(Δξit)2] =
∑i−1

j=1[φ
′
ijt(Δvj·Δv

′
j· − σ2

v0C)φijt] +
2
∑i−1

j=1

∑j−1
k=1 Δv′j·φijtφ

′
iktΔvk·. It follows that

1
n(T−1)

∑n
i=1{(Δξit)2 − E[(Δξit)2]}

= 1
n(T−1)

∑n−1
j=1

{∑n
i=j+1[φ

′
ijt(Δvj·Δv

′
j· − σ2

v0C)φijt]
}

+2 1
n(T−1)

∑n−1
j=1 Δv′j·

{∑n
i=j+1

∑j−1
k=1 φijtφ

′
iktΔvk·

}
.

Clearly, the first term is the ‘average’ of n − 1 independent terms, and the second is the
‘average’ of a M.D. array as the term in the curling brackets is Gn,j−1-measurable. Conditions
of Theorem 19.7 of Davidson (1994) are easily verified, and hence 1

n(T−1)

∑n
i=1{(Δξit)2 −

E[(Δξit)2]} = op(1). Similarly, one shows that 1
n(T−1)

∑n
i=1{ΔξitΔξis−E[(ΔξitΔξis)]} = op(1)

for s = t. Thus, σ2
v0

n(T−1)

∑n
i=1[Δξ

′
i·CΔξi· − E(Δξ′i·CΔξi·)] = op(1), and H1 = op(1).

The proofs for H3 and H4 can be done in a similar manner as the proof for the second
term of H1. The proofs for H2 and H5 are similar to the proof of the first part of H1, as they
each involves a sum of n independent terms.

Third, with g3i = Δv2iΔζi + Θii(Δv2iΔy◦1i + σ2
v0) + Δv′i−Δy∗1i−, we obtain,

1
n(T−1)

∑n
i=1[g

2
3i − E(g2

3i)] ≡
∑10

r=1 Qr, where

Q1 = 1
n(T−1)

∑n
i=1[(Δv

2
2i − 2σ2

v0)Δζ
2
i ],

Q2 = 2σ2
v0

n(T−1)

∑n
i=1[Δζ

2
i − E(Δζ2

i )],
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Q3 = 1
n(T−1)

∑n
i=1 Θ2

ii[(Δv2iΔy
◦
1i)

2 − E((Δv2iΔy◦1i)
2)],

Q4 = 2σ2
v0

n(T−1)

∑n
i=1 Θ2

ii[Δv2iΔy
◦
1i − E(Δv2iΔy◦1i)],

Q5 = 1
n(T−1)

∑n
i=1[(Δv

′
i−Δy∗1i−)2 − E((Δv′i−Δy∗1i−)2)],

Q6 = 2
n(T−1)

∑n
i=1 Θii[Δv2

2iΔζiΔy
◦
1i − E(Δv2

2iΔζiΔy
◦
1i)],

Q7 = 2σ2
v0

n(T−1)

∑n
i=1 ΘiiΔv2iΔζi,

Q8 = 2
n(T−1)

∑n
i=1[Δv2iΔζi(Δv

′
i−Δy∗1i−) − E(Δv2iΔζi(Δv′i−Δy∗1i−))],

Q9 = 2
n(T−1)

∑n
i=1 Θii[(Δv2iΔy◦1i)(Δv

′
i−Δy∗1i−) − E((Δv2iΔy◦1i)(Δv

′
i−Δy∗1i−))],

Q10 = 2σ2
v0

n(T−1)

∑n
i=1 Θii[Δv′i−Δy∗1i− − E(Δv′i−Δy∗1i−)].

As Δζ2
i is Fn,i−1-measurable, Q1 is the average of a M.D. array and its convergence follows

from WLLN for M.D. array, and the convergence of Q7 immediately follows. ForQ2, note that
Δζ = (Θu′ +Θ�)Δy◦1 = (Θu′ +Θ�)B30B10Δy1. It follows that Q2 = 2σ2

v0
n(T−1)

∑n
i=1(Δy

′
1AΔy1 −

E(Δy′1AΔy1)] = op(1) by Assumption F, where A = ((Θu′ + Θ�)B30B10)′(Θu′ + Θ�)B30B10

is easily seen to be uniformly bounded in both row and column sums. Writing Δy◦1 =
B30B10Δy0 + B30Δx1β0 + Δv1 ≡ g(y0, v0) + v1, the convergence of Q3, Q4 and Q6 can be
easily proved though tedious. The results for Q5 and Q10 are proved by the independence
between Δv′i− and Δy∗1i− and Assumption F. Finally, the results for Q8 and Q9 can be proved
by further writing Δy∗1t = Φt+Δy1 = Φt+(B30B10)−1Δy◦1 ≡ q(Δy0, v0) + Φt+(B30B10)−1v1.

Subsequently, the cross-product terms: 1
n(T−1)

∑n
i=1[g1ig2i−E(g1ig2i)], 1

n(T−1)

∑n
i=1[g1ig3i−

E(g1ig3i)], and 1
n(T−1)

∑n
i=1[g2ig3i − E(g2ig3i)], can all be decomposed in a similar manner,

and the convergence of each of the decomposed terms can be proved in a similar way.
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Table 1a. Empirical Mean(sd) of CQMLE, FQMLE and M-Estimator, SE Model, m = 5
err ψ CQMLE FQMLE M-Est CQMLE FQMLE M-Est

n = 50, T = 3 n = 200, T = 3
1 1 1.0152(.096) 1.0017(.100) 1.0015(.100) 1.0109(.050) 1.0021(.052) 1.0020(.053)

1 .9154(.135) .9678(.148) .9719(.154) .9080(.065) .9960(.079) .9962(.080)
.5 .3605(.055) .4995(.065) .5015(.066) .2869(.033) .5009(.043) .5013(.044)
.5 .4702(.107) .4761(.093) .4793(.105) .4775(.073) .4877(.060) .4907(.070)

2 1 1.0142(.098) 1.0007(.102) 1.0002(.102) 1.0099(.050) 1.0015(.053) 1.0014(.053)
1 .9176(.266) .9662(.284) .9785(.307) .9045(.128) .9920(.152) .9935(.155)
.5 .3610(.066) .4975(.069) .5023(.078) .2876(.041) .5002(.047) .5018(.052)
.5 .4701(.106) .4770(.092) .4803(.104) .4741(.075) .4844(.063) .4883(.072)

3 1 1.0133(.099) 1.0001(.103) .9997(.103) 1.0090(.047) 1.0003(.049) 1.0003(.049)
1 .9192(.198) .9678(.212) .9771(.227) .9060(.099) .9938(.119) .9947(.121)
.5 .3585(.059) .4953(.066) .4992(.071) .2881(.036) .5018(.046) .5029(.048)
.5 .4681(.110) .4736(.093) .4786(.106) .4741(.075) .4852(.062) .4884(.073)

1 1 1.0525(.100) 1.0035(.103) 1.0012(.104) 1.0517(.052) 1.0009(.053) .9999(.053)
1 .9204(.138) .9255(.126) .9702(.154) .9313(.069) .9712(.066) .9915(.078)
0 -.1524(.065) -.0036(.074) .0032(.078) -.1825(.035) -.0032(.042) .0005(.043)
.5 .4731(.106) .4848(.085) .4807(.105) .4820(.072) .4897(.059) .4881(.070)

2 1 1.0528(.099) 1.0042(.102) 1.0006(.104) 1.0479(.053) .9979(.055) .9962(.055)
1 .9230(.265) .9032(.241) .9764(.299) .9327(.133) .9596(.129) .9940(.150)
0 -.1529(.071) -.0091(.076) .0022(.086) -.1821(.039) -.0042(.043) .0018(.047)
.5 .4741(.103) .4880(.086) .4805(.102) .4806(.073) .4917(.059) .4873(.072)

3 1 1.0515(.100) 1.0021(.103) .9990(.104) 1.0497(.053) .9998(.054) .9985(.054)
1 .9250(.200) .9194(.185) .9767(.224) .9319(.102) .9661(.100) .9924(.115)
0 -.1543(.068) -.0077(.076) .0014(.083) -.1831(.037) -.0045(.043) .0001(.045)
.5 .4740(.107) .4855(.088) .4811(.105) .4834(.072) .4929(.057) .4906(.070)

n = 50, T = 7 n = 100, T = 7
1 1 1.0248(.044) 1.0015(.044) 1.0013(.044) 1.0231(.033) 1.0018(.033) 1.0017(.033)

1 .9771(.081) .9888(.083) .9893(.083) .9821(.059) .9949(.060) .9956(.061)
.5 .4456(.028) .4987(.029) .4990(.029) .4407(.021) .4990(.022) .4994(.022)
.5 .4928(.057) .4920(.055) .4947(.056) .4931(.047) .4904(.044) .4953(.046)

2 1 1.0247(.045) 1.0012(.045) 1.0010(.045) 1.0232(.033) 1.0020(.033) 1.0019(.033)
1 .9776(.183) .9887(.186) .9899(.187) .9806(.129) .9931(.132) .9942(.133)
.5 .4461(.028) .4988(.029) .4992(.029) .4412(.022) .4991(.022) .4996(.022)
.5 .4919(.058) .4914(.055) .4941(.057) .4906(.048) .4882(.046) .4928(.047)

3 1 1.0250(.044) 1.0015(.044) 1.0013(.044) 1.0214(.033) 1.0003(.033) 1.0002(.033)
1 .9751(.130) .9863(.133) .9872(.134) .9779(.095) .9908(.097) .9915(.097)
.5 .4458(.028) .4986(.029) .4990(.029) .4413(.020) .4996(.021) .5000(.021)
.5 .4903(.057) .4896(.056) .4923(.057) .4919(.048) .4898(.045) .4940(.047)

Note: Par = ψ = (β, σ2
v, ρ, λ3)′; err = 1 (normal), 2 (normal mixture), 3 (chi-square).

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 1, .5) as in Footnote 13.
W3 is generated according to Group Interaction scheme as in Footnote 14.
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Table 1b. Empirical sd and average of standard errors of M-Estimator
SE Model, m = 5, Parameter configurations as in Table 1a.

err ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

n = 50, T = 3 n = 100, T = 3 n = 200, T = 3
1 1 .100 .112 .099 .096 .071 .073 .070 .069 .053 .053 .051 .051

1 .154 .165 .150 .146 .113 .114 .110 .109 .080 .081 .079 .080
.5 .066 .068 .064 .065 .059 .054 .054 .056 .044 .040 .042 .044
.5 .105 .111 .099 .096 .083 .086 .081 .080 .070 .070 .068 .068

2 1 .102 .124 .099 .093 .071 .078 .069 .068 .053 .055 .051 .050
1 .307 .117 .152 .263 .209 .076 .110 .198 .155 .050 .079 .147
.5 .078 .071 .064 .070 .065 .053 .054 .063 .052 .037 .042 .051
.5 .104 .126 .099 .090 .089 .095 .082 .078 .072 .074 .068 .067

3 1 .103 .117 .099 .095 .070 .075 .069 .069 .049 .053 .051 .051
1 .227 .133 .151 .203 .162 .089 .110 .153 .121 .061 .079 .113
.5 .071 .070 .064 .066 .062 .053 .054 .060 .048 .039 .042 .047
.5 .106 .118 .099 .093 .088 .091 .082 .079 .073 .072 .068 .067

1 1 .104 .113 .102 .100 .072 .074 .071 .071 .053 .054 .052 .052
1 .154 .165 .149 .144 .111 .112 .107 .106 .078 .078 .076 .076
.0 .078 .081 .075 .075 .056 .057 .055 .055 .043 .042 .042 .042
.5 .105 .111 .099 .094 .087 .086 .082 .081 .070 .071 .069 .068

2 1 .104 .126 .103 .131 .074 .078 .071 .070 .055 .056 .052 .052
1 .299 .117 .157 .568 .211 .073 .107 .196 .150 .048 .076 .143
.0 .086 .086 .077 .173 .065 .058 .055 .060 .047 .041 .042 .046
.5 .102 .126 .099 .094 .087 .094 .082 .078 .072 .075 .069 .067

3 1 .104 .120 .102 .099 .073 .076 .071 .071 .054 .054 .052 .052
1 .224 .132 .150 .203 .156 .086 .107 .149 .115 .058 .076 .109
.0 .083 .084 .075 .077 .059 .057 .055 .057 .045 .042 .042 .044
.5 .105 .117 .099 .093 .084 .091 .082 .079 .070 .072 .068 .067

n = 50, T = 7 n = 100, T = 7 n = 200, T = 7
1 1 .044 .047 .044 .043 .033 .034 .032 .032 .025 .026 .025 .025

1 .083 .090 .084 .082 .061 .062 .059 .058 .042 .043 .042 .042
.5 .029 .031 .028 .028 .022 .022 .021 .021 .016 .016 .016 .015
.5 .056 .060 .055 .054 .046 .048 .046 .045 .039 .040 .039 .039

2 1 .045 .050 .044 .043 .033 .035 .032 .032 .025 .026 .025 .025
1 .187 .050 .084 .172 .133 .032 .059 .127 .093 .021 .042 .092
.5 .029 .032 .028 .028 .022 .023 .021 .021 .017 .016 .016 .016
.5 .057 .066 .055 .052 .047 .051 .046 .045 .040 .041 .039 .038

3 1 .044 .049 .044 .043 .033 .034 .032 .032 .026 .026 .025 .025
1 .134 .062 .083 .128 .097 .041 .059 .092 .069 .028 .042 .066
.5 .029 .031 .028 .028 .021 .022 .021 .021 .017 .016 .016 .016
.5 .057 .063 .056 .053 .047 .049 .046 .046 .039 .040 .039 .038
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Table 2a. Empirical Mean(sd) of CQMLE and M-Estimator, SL Model, T = 3, m = 5
n = 50 n = 100 n = 200

err ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est
1 1 1.0190(.053) .9992(.055) 1.0024(.035) 1.0004(.036) 1.0112(.025) .9998(.025)

1 .9365(.133) .9695(.143) .9620(.096) .9855(.100) .9657(.068) .9949(.072)
.5 .4279(.042) .5015(.047) .4467(.024) .5007(.026) .4310(.020) .4995(.022)
.2 .2331(.060) .1933(.064) .2114(.049) .1953(.052) .2048(.039) .1980(.040)

2 1 1.0193(.052) .9992(.054) 1.0005(.034) .9984(.034) 1.0116(.026) 1.0003(.026)
1 .9391(.260) .9743(.280) .9558(.184) .9797(.194) .9635(.137) .9929(.145)
.5 .4289(.045) .5031(.048) .4474(.027) .5012(.028) .4318(.022) .5000(.023)
.2 .2335(.061) .1938(.065) .2124(.050) .1967(.053) .2030(.037) .1962(.039)

3 1 1.0180(.055) .9980(.056) 1.0019(.035) .9998(.036) 1.0111(.024) .9997(.025)
1 .9388(.203) .9730(.218) .9581(.147) .9817(.155) .9623(.102) .9913(.108)
.5 .4277(.043) .5018(.047) .4461(.027) .5000(.029) .4319(.021) .4999(.023)
.2 .2354(.060) .1960(.064) .2121(.050) .1962(.052) .2054(.037) .1986(.039)

1 1 1.0261(.057) .9978(.059) 1.0188(.037) .9993(.037) 1.0226(.027) .9992(.027)
1 .9600(.136) .9753(.141) .9761(.099) .9891(.102) .9797(.068) .9917(.070)

-.5 -.5577(.046) -.4976(.050) -.5543(.031) -.4989(.034) -.5513(.022) -.4991(.024)
.2 .1898(.096) .1841(.097) .1855(.059) .1978(.059) .1824(.044) .1975(.044)

2 1 1.0254(.056) .9971(.058) 1.0179(.037) .9985(.037) 1.0228(.028) .9993(.028)
1 .9557(.281) .9719(.290) .9745(.201) .9878(.206) .9857(.140) .9980(.143)

-.5 -.5557(.048) -.4958(.052) -.5542(.033) -.4990(.035) -.5518(.023) -.4995(.024)
.2 .1985(.093) .1920(.094) .1853(.058) .1974(.058) .1815(.043) .1966(.043)

3 1 1.0261(.057) .9978(.059) 1.0184(.037) .9989(.037) 1.0225(.028) .9990(.028)
1 .9487(.198) .9640(.204) .9752(.155) .9884(.159) .9808(.105) .9929(.108)

-.5 -.5562(.048) -.4971(.052) -.5547(.034) -.4992(.037) -.5514(.023) -.4991(.025)
.2 .1938(.097) .1877(.098) .1824(.058) .1943(.058) .1827(.043) .1974(.044)

Note: Par = ψ = (β, σ2
v, ρ, λ1)′; err = 1 (normal), 2 (normal mixture), 3 (chi-square).

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1) as in Footnote 13.
W1 is generated according to Queen Contiguity scheme.

Table 2b. Empirical sd and average of standard errors of M-Estimator
SL Model, T = 3, m = 5, Parameter configurations as in Table 2a.

n = 50 n = 100 n = 200
err ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

1 1 .055 .060 .054 .052 .036 .036 .035 .034 .025 .026 .026 .025
1 .143 .158 .142 .138 .100 .106 .101 .100 .072 .075 .073 .072
.5 .047 .049 .044 .044 .026 .028 .026 .026 .022 .021 .021 .021
.2 .064 .070 .063 .061 .052 .048 .052 .059 .040 .037 .039 .042

2 1 .054 .066 .054 .052 .034 .039 .034 .034 .026 .027 .026 .025
1 .280 .105 .143 .255 .194 .063 .101 .190 .145 .042 .073 .141
.5 .048 .052 .044 .046 .028 .029 .026 .027 .023 .021 .021 .022
.2 .065 .077 .063 .061 .053 .051 .052 .058 .039 .039 .039 .042

3 1 .056 .062 .054 .052 .036 .037 .034 .034 .025 .027 .026 .025
1 .218 .122 .143 .196 .155 .078 .101 .144 .108 .053 .072 .105
.5 .047 .050 .044 .045 .029 .028 .026 .027 .023 .021 .021 .022
.2 .064 .074 .063 .060 .052 .049 .052 .058 .039 .038 .039 .042
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Table 3a. Empirical Mean(sd) of CQMLE and M-Estimator, SLE Model, T = 3, m = 5
n = 50 n = 100 n = 200

err ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

1 1 1.0028(.051) 1.0012(.052) .9894(.035) .9990(.036) 1.0130(.028) 1.0001(.028)
1 .9268(.133) .9542(.141) .9491(.093) .9800(.100) .9629(.070) .9911(.075)
.5 .4332(.041) .4993(.044) .4285(.029) .4999(.032) .4337(.019) .5010(.021)
.2 .2064(.078) .1930(.083) .2190(.069) .1905(.075) .1871(.063) .1938(.066)
.2 .1383(.185) .1489(.183) .1561(.148) .1582(.146) .1781(.122) .1723(.120)

2 1 1.0006(.050) .9989(.051) .9908(.036) 1.0005(.037) 1.0123(.027) .9995(.028)
1 .9219(.263) .9505(.280) .9495(.188) .9813(.200) .9626(.138) .9910(.146)
.5 .4355(.043) .5011(.045) .4291(.032) .5006(.034) .4332(.022) .5001(.023)
.2 .2016(.078) .1881(.083) .2199(.067) .1921(.072) .1881(.064) .1940(.067)
.2 .1411(.175) .1525(.171) .1597(.148) .1634(.145) .1778(.122) .1733(.120)

3 1 1.0001(.052) .9984(.053) .9920(.036) 1.0015(.037) 1.0121(.028) .9993(.028)
1 .9247(.199) .9527(.212) .9461(.143) .9771(.152) .9596(.102) .9875(.108)
.5 .4345(.042) .5006(.046) .4287(.031) .4996(.034) .4324(.021) .4991(.022)
.2 .2038(.080) .1901(.086) .2209(.071) .1925(.076) .1898(.063) .1955(.066)
.2 .1394(.186) .1510(.182) .1598(.148) .1629(.145) .1745(.121) .1695(.118)

Note: Par = ψ = (β, σ2
v, ρ, λ1, λ3)′; err = 1 (normal), 2 (normal mixture), 3 (chi-square).

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1) as in Footnote 13.
W1 and W3 are from Group Interaction scheme, and not equal; see Footnote 14.

Table 3b. Empirical sd and average of standard errors of M-Estimator
SLE Model, T = 3, m = 5, Parameter configurations as in Table 3a.

n = 50 n = 100 n = 200
err ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

1 1 .052 .056 .051 .050 .036 .038 .036 .035 .028 .029 .028 .028
1 .141 .157 .140 .137 .100 .108 .102 .100 .075 .075 .072 .072
.5 .044 .045 .042 .042 .032 .032 .031 .031 .021 .021 .021 .021
.2 .083 .072 .080 .098 .075 .065 .072 .086 .066 .056 .064 .076
.2 .183 .179 .160 .163 .146 .143 .135 .138 .120 .116 .114 .117

2 1 .051 .062 .050 .049 .037 .041 .036 .035 .028 .030 .028 .027
1 .280 .107 .140 .247 .200 .067 .102 .192 .146 .043 .072 .141
.5 .045 .049 .041 .042 .034 .033 .031 .033 .023 .021 .021 .022
.2 .083 .080 .079 .095 .072 .070 .072 .085 .067 .059 .064 .074
.2 .171 .208 .160 .153 .145 .155 .134 .134 .120 .122 .113 .114

3 1 .053 .058 .051 .050 .037 .039 .036 .035 .028 .029 .028 .028
1 .212 .123 .140 .190 .152 .080 .101 .144 .108 .054 .072 .105
.5 .046 .046 .041 .043 .034 .031 .031 .033 .022 .021 .021 .022
.2 .086 .076 .080 .097 .076 .067 .072 .085 .066 .057 .064 .075
.2 .182 .191 .160 .159 .145 .147 .134 .136 .118 .119 .114 .115
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Table 4a. Empirical Mean(sd) of CQMLE and M-Estimator, STL Model, T = 7, m = 5
n = 50 n = 100 n = 200

err ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

1 1 1.0045(.025) 1.0000(.025) 1.0073(.017) .9998(.017) 1.0078(.012) 1.0002(.012)
1 .9809(.079) .9855(.080) .9897(.058) .9940(.058) .9923(.041) .9966(.041)
.5 .4780(.018) .4996(.019) .4807(.012) .5001(.012) .4812(.008) .5001(.009)
.2 .1904(.046) .1950(.046) .1971(.031) .1994(.031) .1974(.023) .1984(.023)
.2 .2280(.041) .2043(.042) .2208(.030) .2006(.030) .2200(.021) .2013(.021)

2 1 1.0040(.026) .9994(.026) 1.0078(.017) 1.0003(.018) 1.0074(.012) .9998(.012)
1 .9920(.182) .9968(.184) .9884(.130) .9927(.131) .9934(.090) .9977(.091)
.5 .4780(.018) .4999(.019) .4805(.013) .4999(.013) .4816(.009) .5005(.009)
.2 .1908(.046) .1954(.046) .1962(.032) .1985(.032) .1986(.023) .1995(.023)
.2 .2276(.042) .2038(.042) .2216(.031) .2014(.031) .2186(.022) .1999(.022)

3 1 1.0050(.025) 1.0006(.025) 1.0076(.018) 1.0001(.018) 1.0075(.012) .9999(.012)
1 .9815(.135) .9861(.137) .9912(.095) .9955(.096) .9903(.067) .9945(.068)
.5 .4783(.018) .4999(.018) .4805(.012) .4999(.012) .4810(.008) .4999(.009)
.2 .1905(.048) .1950(.048) .1954(.031) .1977(.031) .1978(.023) .1988(.023)
.2 .2278(.042) .2041(.042) .2226(.030) .2024(.030) .2198(.022) .2012(.022)

Note: Par = ψ = (β, σ2
v, ρ, λ1, λ2)′; err = 1 (normal), 2 (normal mixture), 3 (chi-square).

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 2, 1) as in Footnote 13.
W1 and W2 are from Queen Contiguity, and equal.

Table 4b. Empirical sd and average of standard errors of M-Estimator
STL Model, T = 7, m = 5, Parameter configurations as in Table 4a.

n = 50 n = 100 n = 200
err ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

1 1 .025 .027 .025 .024 .017 .018 .017 .017 .012 .012 .012 .012
1 .080 .088 .081 .080 .058 .060 .058 .057 .041 .042 .041 .041
.5 .019 .019 .018 .019 .012 .012 .012 .013 .009 .008 .009 .009
.2 .046 .049 .047 .048 .031 .032 .032 .032 .023 .023 .023 .024
.2 .042 .044 .042 .044 .030 .030 .030 .032 .021 .021 .022 .023

2 1 .026 .029 .025 .025 .018 .019 .017 .017 .012 .013 .012 .012
1 .184 .046 .082 .174 .131 .029 .058 .126 .091 .020 .041 .091
.5 .019 .021 .019 .019 .013 .013 .012 .013 .009 .008 .009 .009
.2 .046 .052 .047 .048 .032 .033 .031 .032 .023 .024 .023 .024
.2 .042 .047 .042 .044 .031 .031 .030 .032 .022 .021 .022 .023

3 1 .025 .028 .025 .024 .018 .018 .017 .017 .012 .013 .012 .012
1 .137 .060 .081 .126 .096 .039 .058 .092 .068 .026 .041 .066
.5 .018 .020 .018 .019 .012 .012 .012 .013 .009 .008 .009 .009
.2 .048 .050 .046 .048 .031 .033 .032 .032 .023 .023 .023 .024
.2 .042 .045 .042 .044 .030 .030 .030 .032 .022 .021 .022 .023
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Table 5a. Empirical Mean(sd) of CQMLE and M-Estimator, STLE Model, T = 3, m = 5
n = 50 n = 100 n = 200

err ψ CQMLE M-Est CQMLE M-Est CQMLE M-Est

1 1 1.0076(.031) .9995(.031) 1.0092(.024) .9999(.025) 1.0057(.016) .9999(.016)
1 .9287(.133) .9437(.138) .9622(.099) .9746(.102) .9723(.070) .9841(.071)
.3 .2578(.033) .3000(.035) .2663(.021) .2992(.022) .2685(.014) .2999(.015)
.2 .1966(.073) .1957(.075) .1877(.059) .1967(.060) .2030(.037) .1987(.038)
.2 .2209(.084) .2055(.091) .2240(.047) .2037(.049) .2019(.037) .2005(.039)
.2 .1463(.185) .1459(.191) .1846(.132) .1745(.135) .1785(.092) .1838(.094)

2 1 1.0084(.031) 1.0003(.032) 1.0091(.025) .9998(.025) 1.0055(.016) .9997(.016)
1 .9288(.264) .9448(.273) .9591(.195) .9717(.201) .9713(.140) .9832(.144)
.3 .2564(.035) .2986(.036) .2661(.022) .2988(.022) .2685(.015) .2998(.015)
.2 .1989(.073) .1983(.076) .1895(.060) .1985(.060) .2043(.036) .1999(.037)
.2 .2168(.082) .2008(.089) .2211(.047) .2008(.050) .2015(.036) .2003(.039)
.2 .1367(.184) .1358(.190) .1805(.131) .1702(.134) .1799(.090) .1855(.092)

3 1 1.0066(.031) .9985(.031) 1.0084(.025) .9991(.025) 1.0054(.016) .9995(.016)
1 .9318(.201) .9476(.208) .9644(.148) .9769(.152) .9727(.102) .9846(.105)
.3 .2590(.034) .3014(.036) .2679(.022) .3008(.022) .2689(.015) .3003(.015)
.2 .1983(.071) .1978(.073) .1879(.060) .1969(.060) .2046(.037) .2003(.038)
.2 .2193(.081) .2035(.087) .2207(.047) .2003(.049) .2009(.037) .1998(.040)
.2 .1412(.184) .1403(.190) .1852(.133) .1750(.135) .1794(.093) .1849(.095)

Note: Par = ψ = (β, σ2
v, ρ, λ1, λ2, λ3)′; err = 1 (normal), 2 (normal mixture), 3 (chi-square).

Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5,3, 1) as in Footnote 13.
W1,W2 and W3 are all from Queen Contiguity, and equal.

Table 5b. Empirical sd and average of standard errors of M-Estimator
STLE Model, T = 3, m = 5, Parameter configurations as in Table 5a.

n = 50 n = 100 n = 200
err ψ sd s̃e ŝe r̂se sd s̃e ŝe r̂se sd s̃e ŝe r̂se

1 1 .031 .035 .031 .030 .025 .026 .025 .025 .016 .017 .016 .016
1 .138 .156 .136 .132 .102 .106 .099 .098 .071 .073 .071 .070
.3 .035 .038 .035 .035 .022 .023 .021 .022 .015 .015 .015 .015
.2 .075 .080 .071 .071 .060 .062 .059 .060 .038 .039 .038 .038
.2 .091 .079 .085 .108 .049 .043 .049 .060 .039 .033 .039 .050
.2 .191 .209 .184 .186 .135 .141 .132 .132 .094 .096 .093 .094

2 1 .032 .039 .031 .030 .025 .028 .025 .024 .016 .017 .016 .016
1 .273 .109 .137 .239 .201 .065 .099 .187 .144 .042 .071 .139
.3 .036 .042 .034 .035 .022 .024 .021 .022 .015 .016 .015 .015
.2 .076 .089 .070 .069 .060 .067 .059 .059 .037 .041 .038 .038
.2 .089 .088 .083 .104 .050 .047 .049 .059 .039 .034 .039 .049
.2 .190 .243 .184 .177 .134 .154 .132 .130 .092 .102 .093 .092

3 1 .031 .037 .031 .030 .025 .027 .025 .025 .016 .017 .016 .016
1 .208 .124 .137 .187 .152 .079 .099 .142 .105 .052 .071 .104
.3 .036 .040 .035 .035 .022 .023 .021 .022 .015 .015 .015 .015
.2 .073 .084 .070 .069 .060 .065 .059 .059 .038 .040 .038 .038
.2 .087 .084 .084 .106 .049 .045 .049 .059 .040 .033 .039 .050
.2 .190 .224 .183 .181 .135 .147 .131 .130 .095 .098 .093 .094
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