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Abstract

We consider spatial panel data models with genuine unbalancedness arising from the

non-presence of some spatial units in certain time periods. General M-estimation methods

are proposed for model estimation, which take into account the estimation of the incidental

fixed effects parameters, and allow for spatiotemporal heteroskedasticity and high-order

time-varying spatial effects. Corrected plug-in methods are proposed for standard error

estimation. The proposed estimation and inference methods are rigorously studied for their

asymptotic properties and finite sample performance, and are empirically illustrated using

China FDI inflow data.

Keywords: Adjusted quasi score; Fixed effects; Genuine unbalancedness; High-order spatial

effects; Time-varying spatial weights; Spatiotemporal heteroskedasticity.

1. Introduction

The literature on spatial panel data (SPD) models has been fast-growing since Anselin

(1988), due to the fact that the SPD models are able to take into account the spatial interaction

effects and control for the unobservable heterogeneity. Most of the works on SPD models are

based on balanced panels, i.e., a set of observations collected on n spatial units over the entire

T periods in time (e.g., Baltagi et al., 2003; Lee and Yu, 2010; Baltagi and Yang, 2013a,b; Yang

et al., 2016; Liu and Yang, 2020; Lu, 2023).

The literature on “unbalanced” SPD models is limited to only a few empirical works (Egger

et al., 2005; Baltagi et al., 2007; and Baltagi et al., 2015), and a few theoretical works (Wang

∗Zhenlin Yang gratefully acknowledges the research support from Singapore Management University.
†Correspondence: Zhenlin Yang, School of Economics, Singapore Management University, 90 Stamford

Road, Singapore 178903. Email: zlyang@smu.edu.sg

1



and Lee, 2013b; Meng and Yang, 2021; Zhou et al., 2022; and Yang et al., 2023). This is in

stark contrast to the sizable literature on usual unbalanced panels (e.g., Wansbeek and Kapteyn,

1989; Baltagi and Chang, 1994; Davis, 2002; Baltagi et al., 2001; Antweiler, 2001; Baltagi and

Song, 2006; Wooldridge, 2019), textbook treatments (Baltagi, 2021; Hsiao, 2022; Greene, 2018),

and software implementations (STATA, SAS, and R).

Unbalanced panels are more likely to be the norm in typical economic empirical settings

(Baltagi and Song, 2006), so are the unbalanced spatial panels. Unbalancedness in regular

panels is broadly viewed as due to either randomly or nonrandomly missing units/observations

(Baltagi, 2021, Chap. 9), from a sampling perspective. In the case of the former, analyses are

often done simply based on the available data as they still ‘represent’ the underlying population.

However, this is not the case for unbalanced spatial panels.

A spatial autoregressive (SAR) model is a general equilibrium model and the number of units

can be regarded as a ‘population’ (Lee, 2004; Wang and Lee, 2013a). In spatial panel context,

the number of spatial units may change from one period to another due to the non-presence of

some spatial units from time to time, giving rise to what we call in this paper the genuinely

unbalanced (GU) SPD, to stress the fact that spatial units present at each period form a well

defined SAR process with a complete connectivity structure. In other words, all spatial units

have full observations of themselves and their neighbors in all periods, according to Kelejian

and Prucha (2010). Examples of this include early dropouts and new entrants, mergers and

acquisitions, splits, etc. Unbalanced spatial panels may be not genuinely unbalanced as they

contain units with observations on their neighbors missing or units with their own observations

missing (Kelejian and Prucha, 2010). Deleting these units ignores the impacts from or to the

neighbors, rendering the subsequent analysis invalid.

Many important issues related to unbalanced spatial panels that are of wide practical in-

terest have not been resolved. This paper focuses on (high-order) GU-SPD models. With

unbalanced panels, the usual fixed effects estimation methods are no longer applicable. We

introduce a general M-estimation method that allows for (i) unobserved spatiotemporal het-

erogeneity (the fixed effects), (ii) unknown spatiotemporal heteroskedasticity, (iii) high-order

and time-varying spatial effects in responses, regressors and errors, and (iv) alternative forms

of spatial specifications (see Section 2 for details). We propose a corrected plug-in method for

standard error estimation. The proposed methods possess excellent finite sample property as

seen through extensive Monte Carlo simulation. Their usefulness and empirical relevance are

clearly demonstrated using China FDI inflow data.

Section 2 discusses model specifications. Section 3 presents results for first-order models
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under homoskedasticity. Section 4 extends the study to allow for spatiotemporal heteroskedas-

ticity. Section 5 presents results for higher-order models. Section 6 presents partial Monte Carlo

results. Section 7 presents an empirical application. Section 8 concludes. To save space, proofs

and full MC results are relegated to the Supplementary Material.

2. Model Specification

Consider a study that lasts T periods and involves a total of n spatial units. At time t, only

nt of these n spatial units are present, which have full observations on themselves (responses

and covariates) and on their neighbors, resulting in a set of GU-SPD, which is modeled with a

SAR process on responses and a SAR process on errors, or SARAR:

Yt = λ0WtYt +Xtβ0 +DtZγ0 +Dtµ0 + αt0lnt + Ut,

Ut = ρ0MtUt + Vt, t = 1, . . . , T, i = 1, . . . , nt,
(2.1)

where Yt is a vector of observations on nt spatial units at time t, Xt is an nt×k matrix containing

values of k time-varying exogenous regressors, Z is an n × p matrix containing values of time-

invariant regressors, and Ut = (u1t, u2t, . . . , untt)
′ and Vt = (v1t, v2t, . . . , vntt)

′ are nt × 1 vectors

of disturbance and idiosyncratic errors, respectively. Wt and Mt are given nt×nt spatial weight

matrices, which together with the spatial coefficients λ0 and ρ0, characterize the spatial lag (SL)

effects and spatial error (SE) effects, respectively. 1 β0 and γ0 are k × 1 and p × 1 vectors of

regression coefficients, µ0 = {µi0}ni=1 an n× 1 vector of unit-specific effects, and α0 = {αt0}Tt=1

a T × 1 vector of time-specific effects. Dt is an nt × n “selection” matrix obtained from the

n× n identity matrix In by deleting its rows corresponding to the non-present units at time t,

and lnt is an nt × 1 vector of ones.

When both µ0 and α0 are correlated with the time-varying regressors in an arbitrary manner,

we have a fixed effects (FE) model; when they are uncorrelated with the regressors, we have a

random effects (RE) model; and when they are correlated linearly with the regressors, we have a

correlated random effects (CRE) model. The idiosyncratic errors {vit} can be iid (independent

and identically distributed) across i and over t (homoskedasticity), or inid (independent but

not identically distributed) along both i and t (heteroskedasticity).

The modeling strategy (2.1) allows full control of unobserved heterogeneity in all n units

over entire T periods. Yang et al. (2023), following an early version of our paper (Meng and

Yang, 2021), studied MESS version of Model (2.1), where MESS stands for matrix exponential

1Spatial Durbin (SD) terms or contextual effects, WtX
∗
t , can be added as additional regressors, where X∗

t is a
submatrix of Xt, and Wt is Wt or Mt or neither; see Anselin et al. (2008) and Lee and Yu (2016) for potential
identification issues. All spatial weight matrices are time-varying due to the changes in the number of available
units or the fundamental changes in connectivity, and are not necessarily row-normalized.
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spatial specification (see below for details)2.

Recently, theory and applications have advanced to SPD models with higher-order spatial

effects for capturing various types of spatial interaction effects (see Kuersteiner and Prucha,

2020; Drukker et al., 2022). An SPD-GU model with a p-order SAR process on the responses

and a q-order SAR process on the disturbances, or SARAR(p, q), takes the form:

Yt =
∑p

k=1 λk0WktYt +Xtβ0 +DtZγ0 +Dtµ0 + αt0lnt + Ut,

Ut =
∑q

ℓ=1 ρℓ0MℓtUt + Vt, t = 1, . . . , T, i = 1, . . . , nt.
(2.2)

Our model can accommodate alternative spatial specifications. By replacing Int −
∑p

k=1 λkWkt

with exp(
∑p

k=1 λkWkt) and Int −
∑q

ℓ=1 ρℓMℓt with exp(
∑q

ℓ=1 ρℓMℓt), we have a MESS(p, q) form

of the model, where exp(A) =
∑∞

i=0A
i/i! for a square matrix A and A0 = Idim(A).

MESS(p, q) seems computationally simpler as | exp(Wt)| = exp(tr(Wt)) = 1, for Wt =∑p
k=1 λkWkt, or

∑q
ℓ=1 ρℓMℓt. However, this is true only for first-order models, as the par-

tial derivatives of exp(Wt), required in the estimation and inference, do not have closed-form

expressions unless p = q = 1. This issue does not apply to Int −Wt. Furthermore, the SAR-type

specification is more widely adopted for modeling social interactions and network effects (Lee,

2007; Han et al., 2021), where the spatial lag and spatial Durbin effects correspond directly to

what Manski (1993) called the endogenous social effects and contextual effects. Our paper pro-

vides a general framework for the estimation and inference applicable to the general SARAR(p, q)

specification. Section 8 discusses a possible way to tackle the partial derivative issue so as to

accommodate the MESS(p, q) specification.

Notations and conventions. First, | · |, tr(·), ′, and ∥·∥ are the common notations for

determinant, trace, transpose, and matrix norm. For a real n×m matrix A, ∥A∥1 denotes the

maximum column sum norm, ∥A∥∞ maximum row sum norm, and A◦ = A + A′. For a real

n × m matrix A with a full column rank, PA = A(A′A)−1A′ and QA = In − PA are the two

orthogonal projection matrices. diag(·) forms a diagonal matrix by the diagonal elements of a

square matrix or the elements of a given vector, diagv(·) forms a column vector by the diagonal

elements of a square matrix, and blkdiag(· · · ) forms a block-diagonal matrix. E(·) and Var(·)

correspond to true parameter values.

3. M-Estimation under Homoskedasticity

To fix ideas, we first give a full treatment of the first-order model (2.1) under FE and GU

specification, assuming that the errors {vit} are iid(0, σ2
v0) across i and t. As our proposed

2A closely related model but with missing on responses only has been studied by Wang and Lee (2013b).

4



method starts with the joint quasi scores of both common and FE parameters, the joint quasi

maximum likelihood (QML) estimation is discussed first.

3.1. Direct QML estimation with fixed effects

Let Y = (Y ′
1 , . . . , Y

′
T )

′, X = (X ′
1, . . . , X

′
T )

′, U = (U ′
1, . . . , U

′
T )

′, and V = (V ′
1 , . . . , V

′
T )

′.

Define W = blkdiag(W1, . . . ,WT ), M = blkdiag(M1, . . . ,MT ), Dµ = (D′
1, . . . , D

′
T )

′, and

Dα = blkdiag(ln1 , . . . , lnT ). Without the time-invariant regressors, model (2.1) is written in

matrix form: Y = λ0WY+Xβ0+Dµµ0+Dαα0+U and U = ρ0MU+V. Note that there are

n+T fixed effects parameters but only n+T −1 of them are identifiable. Therefore, a zero-sum

constraint is put on the α′
ts, and the QML estimation of the common and FE parameters is

based on the following model form:

Y = λ0WY +Xβ0 +Dµµ0 +D⋆
αα

⋆
0 +U, U = ρ0MU+V. (3.1)

where α⋆
0 = (α⋆

20, . . . , α
⋆
T0)

′, and D⋆
α = [−ln1 l

′
T−1; blkdiag(ln2 , . . . , lnT )].

Denote the set of common parameters by θ = (β′, σ2
v , δ)

′, where δ = (λ, ρ)′, and the set of

FE or incidental parameters by ϕ = (µ′, α⋆′)′. Denote AN (λ) = IN − λW, BN (ρ) = IN − ρM,

and D = [Dµ, D⋆
α], where N =

∑T
t=1 nt and IN is the N × N identity matrix. We have the

quasi Gaussian loglikelihood function:

ℓN (θ, ϕ) = −N
2 ln 2π − N

2 lnσ2
v + ln |AN (λ)|+ ln |BN (ρ)| − 1

2σ2
v
V′(β, δ, ϕ)V(β, δ, ϕ), (3.2)

where V(β, δ, ϕ) = BN (ρ)[AN (λ)Y −Xβ −Dϕ]. ℓN (θ, ϕ) is partially maximized at

ϕ̂N (β, δ) = [D′(ρ)D(ρ)]−1D′(ρ)BN (ρ)[AN (λ)Y −Xβ], (3.3)

where D(ρ) = BN (ρ)D. This leads to the concentrated quasi loglikelihood function of θ:

ℓcN (θ) = −N
2 ln 2π − N

2 lnσ2
v + ln |AN (λ)|+ ln |BN (ρ)| − 1

2σ2
v
Ṽ′(β, δ)Ṽ(β, δ), (3.4)

where Ṽ(β, δ) = QD(ρ)BN (ρ)[AN (λ)Y − Xβ] and QD(ρ) is the projection matrix based on

D(ρ). The direct QML estimator (QMLE) θ̂QML of θ maximizes ℓcN (θ). However, such a direct

estimation of the common parameters θ ignores the impact of estimating the fixed effects pa-

rameters ϕ. As a result, θ̂QML may be inconsistent or asymptotically biased, giving rise to the

well-known incidental parameters problem of Neyman and Scott (1948). The transformation

method of Lee and Yu (2010) works only for a balanced FE-SPD model with time-invariant

and row-normalized spatial weight matrices. An alternative approach is to carry out a bias

correction directly on θ̂QML, which can be quite complicated and the resulting inference method

can be valid only when T is also large.
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3.2. M-estimation with fixed effects

We approach this problem by adjusting the concentrated quasi scores to remove the impact

of estimating the incidental parameters, following Yang (2018b). The concentrated quasi score

(CQS) vector, Sc
N (θ) = ∂ℓcN (θ)/∂θ, has the expression:

Sc
N (θ) =



1
σ2
v
X′B′

N (ρ)Ṽ(β, δ),

1
2σ4

v
[Ṽ′(β, δ)Ṽ(β, δ)−Nσ2

v ],

1
σ2
v
Y′W′B′

N (ρ)Ṽ(β, δ)− tr[FN (λ)],

1
σ2
v
Ṽ′(β, δ)GN (ρ)Ṽ(β, δ)− tr[GN (ρ)],

(3.5)

where FN (λ) = WA−1
N (λ) and GN (ρ) = MB−1

N (ρ). See Appendix A for its derivation. For

regular optimization problems, maximizing ℓcN (θ) is equivalent to solving Sc
N (θ) = 0. Then,

for the resulting root θ̂QML to be consistent it is necessary that plim N→∞N−1∂ℓcN (θ0)/∂θ = 0,

where θ0 denotes the true parameter vector. However,

E[Sc
N (θ0)] =



0k,

−(n+ T − 1)/(2σ2
v0),

tr[QD(ρ0)BN (ρ0)FN (λ0)B
−1
N (ρ0)]− tr[FN (λ0)],

tr[QD(ρ0)GN (ρ0)]− tr[GN (ρ0)],

(3.6)

from which one sees that that limN→∞ E[Sc
N (θ0)]/N ̸= 0 when T is fixed. This suggests that

plimN→∞Sc
N (θ0)/N ̸= 0, and therefore θ̂QML cannot be consistent. When T goes large with

n, consistency can be achieved but the limiting distribution of
√
N(θ̂QML − θ0) is not centered,

suggesting that θ̂N is asymptotically biased.

Note that E[Sc
N (θ0)] depends only on the common parameters θ0 and the observables. It

therefore offers a feasible way to analytically correct the CQS functions to give a set of unbi-

ased estimating functions, or the adjusted quasi score (AQS) functions, as S∗
N (θ0) = Sc

N (θ0) −

E[Sc
N (θ0)], which takes the form at the general θ:

S∗
N (θ) =



1
σ2
v
X′B′

N (ρ)Ṽ(β, δ),

1
2σ4

v

[
Ṽ′(β, δ)Ṽ(β, δ)− (N − n− T + 1)σ2

v

]
,

1
σ2
v
Y′W′B′

N (ρ)Ṽ(β, δ)− tr[QD(ρ)BN (ρ)FN (λ)B−1
N (ρ)],

1
σ2
v
Ṽ′(β, δ)GN (ρ)Ṽ(β, δ)− tr[QD(ρ)GN (ρ)].

(3.7)

Solving the AQS equations: S∗
N (θ) = 0, gives the M-estimator of θ, i.e.,

θ̂∗N = arg{S∗
N (θ) = 0}.
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It is easy to verify that E[S∗
N (θ0)] = 0 and plim S∗

N (θ0)/N = 0, making it possible for θ̂∗N to

be
√
N1-consistent with proper limiting distribution, where N1 = N − n − T + 1, the effective

sample size after taking into account the estimation of fixed effects.

The proposed approach applies to general T and general spatial weight matrices. It offers

a feasible way to fully control the unobserved heterogeneity in all units and periods involved

in the study even if the SPD is unbalanced. It can be applied to all the models discussed in

Section 2 except MESS(p, q) which has a computation issue. For a balanced spatial panel, it

offers a more general method than Lee and Yu (2010). 3

To simplify the root-finding process, given δ we solve S∗
N (θ) = 0 at:

β̂∗
N (δ) = [X′(ρ)X(ρ)]−1X′(ρ)BN (ρ)AN (λ)Y and σ̂∗2

v,N (δ) = 1
N1

V̂′(δ)V̂(δ), (3.8)

where X(ρ) = QD(ρ)BN (ρ)X and V̂(δ) = Ṽ(β̂∗
N (δ), δ). Substituting β̂∗

N (δ) and σ̂∗2
v,N (δ) back

into the third and fourth components of (3.7) gives the concentrated AQS functions of δ:

S∗c
N (δ) =


1

σ̂∗2
v,N (δ)

Y′W′B′
N (ρ)V̂(δ)− tr[QD(ρ)BN (ρ)FN (λ)B−1

N (ρ)],

1
σ̂∗2
v,N (δ)

V̂′(δ)GN (ρ)V̂(δ)− tr[QD(ρ)GN (ρ)].
(3.9)

Solving the concentrated estimating (or AQS) equations, S∗c
N (δ) = 0, we obtain the uncon-

strained M-estimator δ̂∗N of δ. Thus the unconstrained M-estimators of β and σ2
v are β̂∗

N ≡

β̂∗
N (δ̂∗N ) and σ̂∗2

v,N ≡ σ̂∗2
v,N (δ̂∗N ). The M-estimator of θ is thus θ̂∗N = (β̂∗′

N , σ̂∗2
v,N , δ̂∗′N )′.

3.3. Asymptotic properties of the M-estimator

We now study the asymptotic properties of the proposed M-estimator to provide a theoretical

base for empirical applications. First, for θ̂∗N to be consistent, it is necessary that some basic

conditions hold for the errors, regressors, and spatial weight matrices. Let ∆ be the parameter

space for δ, and ∆λ and ∆ρ be the sub-spaces for λ and ρ.

Assumption A. The innovations vit are iid for all i and t with mean zero, variance σ2
v0,

and E|vit|4+ϵ0 < ∞ for some ϵ0 > 0.

Assumption B. The space ∆ is compact, and the true parameters δ0 lie in its interior.

Assumption C. (i) The elements of X are non-stochastic and bounded, uniformly in i and

t, and (ii) limN→∞X′(ρ)X(ρ)/N exists and is non-singular, uniformly in ρ ∈ ∆ρ.

Assumption D. {Wt} and {Mt} are known time-varying matrices, and W and M are such

that (i) elements are at most of uniform order h−1
n such that hn/n → 0, as n → ∞; (ii) diagonal

3The AQS method of ? is seen to be rather versatile in dealing with the incidental parameters problem, a
problem raised by Neyman and Scott (1948) and solutions sought thereafter. See also Baltagi and Yang (2013a,b),
Liu and Yang (2020), Li and Yang (2020, 2021), and Xu and Yang (2020).
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elements are zero; and (iii) column and row sum norms are bounded.

Further, the two key matrices AN (λ) and BN (ρ), denoted by A(ϖ) with ϖ = λ or ρ, need

to be invertible with their inverses satisfy certain boundedness conditions.

Assumption E. (i) both ∥A−1(ϖ0)∥∞ and ∥A−1(ϖ0)∥1 are bounded;

(ii) either ∥A−1(ϖ)∥∞ or ∥A−1(ϖ)∥1 is bounded, uniformly in ϖ ∈ ∆ϖ;

(iii) 0 < cϖ ≤ infϖ∈∆ϖ γmin[A′(ϖ)A(ϖ)] ≤ supϖ∈∆ϖ
γmax[A′(ϖ)A(ϖ)] ≤ c̄ϖ < ∞.

As we are dealing with unbalanced spatial panels, the asymptotics depends on the growth

of N(=
∑T

t=1 nt =
∑n

i=1 Ti) where unit i appears Ti times in T periods. While no restrictions

are imposed on the relative magnitude of n and T , we require that nt/n does not shrink when

n increases and Ti/T does not shrink when T increases.

Assumption F. (i) As n → ∞, nt/n → ct, where ct ∈ (0, 1],∀t; (ii) as T → ∞, Ti/T → di,

where di ∈ (0, 1], ∀i, and Ti is the number of times the ith unit shows up in the entire T periods;

and (iii) mini(Ti) ≥ 2 and mint(nt) ≥ 2.

Assumption F(iii) ensures the spatial structure is complete after µ and α are concen-

trated out and all parameters are identified. Clearly, the scenario under Assumption F(i)

with mini(Ti) ≥ 2 is of greater interest in spatial econometrics as it is when n is large that one

needs to impose structures on the spatial connectivity matrices.

Like in GMM estimation, identification uniqueness is an important but difficult issue, and

often a high-level assumption is given. For our M-estimation, let S̄∗c
N (δ) be the population

counterpart of S∗c
N (δ) obtained by concentrating S̄∗

N (θ) = E[S∗
N (θ)]:

S̄∗c
N (δ) =


1

σ̄∗2
v,N (δ)

E[Y′W′B′
N (ρ)V̄(δ)]− tr[QD(ρ)BN (ρ)FN (λ)B−1

N (ρ)],

1
σ̄∗2
v,N (δ)

E[V̄′(δ)GN (ρ)V̄(δ)]− tr[QD(ρ)GN (ρ)].

(3.10)

where σ̄∗2
v,N (δ) = E[V̄′(δ)V̄(δ)]/N1, V̄(δ) = Ṽ(β̄∗

N (δ), δ) = QD(ρ)BN (ρ)[AN (λ)Y − Xβ̄∗
N (δ)],

and β̄∗
N (δ) = [X′(ρ)X(ρ)]−1X′(ρ)BN (ρ)AN (λ)E(Y). Clearly, S̄∗c

N (δ0) = 0 and σ̄∗2
v,N (δ0) =

σ2
v0, and S∗c

N (δ̂∗N ) = 0. Thus, by Theorem 5.9 of Van der Vaart (1998), δ̂∗N is consistent if

supδ∈∆
∥∥S∗c

N (δ)− S̄∗c
N (δ)

∥∥ /N1
p−→ 0, and the following identification condition holds.

Assumption G: infδ:d(δ,δ0)≥ϵ

∥∥S̄∗c
N (δ)

∥∥ > 0 for every ϵ > 0, where d(δ, δ0) is a measure of

distance between δ and δ0.

Assumption G is a high-level assumption being put up for simplicity of presentation. It can

be shown to be true under low-level conditions (see Appendix C in Supplementary Material).

Finally, a minor technical assumption is needed to ensure the uniform boundedness of ∥QD(ρ)∥1

and ∥QD(ρ)∥∞. Let Bt(ρ) be the tth diagonal block of BN (ρ).
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Assumption H. Bs(ρ)Ds[
∑T

t=1D
′
tB

′
t(ρ)Jt(ρ)Bt(ρ)Dt/T ]

−1D′
tB

′
t(ρ) is bounded in both row

and column sum norms, uniformly in ρ ∈ ∆ρ for all s and t, where Jt(ρ) = In1 for t = 1, and

Int −Bt(ρ)lnt [l
′
nt
B′

t(ρ)Bt(ρ)lnt ]
−1l′nt

B′
t(ρ) for t = 2, . . . , T .

See for detail Lemma B.3 in Supplementary Material. Once consistency of δ̂∗N is estab-

lished, consistency of β̂∗
N and σ̂∗2

v,N follows from (3.8) and Assumptions C-E, H.

Theorem 1. Suppose Assumptions A-H hold. We have, as N → ∞, θ̂∗N
p−→ θ0.

To derive the asymptotic distribution of θ̂∗N , we have by the mean value theorem,

0 = S∗
N (θ̂∗N ) = S∗

N (θ0) +
∂
∂θ′S

∗
N (θ̄)(θ̂∗N − θ0),

with a different θ̄ (between θ̂∗N and θ0) for each row of ∂S∗
N (θ̄)/∂θ′. The asymptotic normality

of
√
N1

(
θ̂∗N − θ0

)
depends on that of S∗

N (θ0)/
√
N1 and a proper behavior of ∂S∗

N (θ̄)/∂θ′. Note

S∗
N (θ0) =



1
σ2
v0
X′V,

1
2σ4

v0
(V′QDV −N1σ

2
v0),

1
σ2
v0
V′QDBNFNη + 1

σ2
v0
V′QDF̄NV − tr(QDF̄N ),

1
σ2
v0
V′QDGNQDV − tr(QDGN ),

(3.11)

by using Ṽ(β0, δ0) = QDV and Y = A−1
N (η +B−1

N V) with η = Xβ0 +Dϕ0, and the shorthand

notations AN ≡ AN (λ0), BN ≡ BN (ρ0), QD ≡ QD(ρ0), etc., and F̄N = BNFNB−1
N . As S∗

N (θ0)

is linear-quadratic (LQ) in V, the central limit theorem (CLT) for LQ forms of Kelejian and

Prucha (2001) can be applied to show that S∗
N (θ0)/

√
N1 is asymptotically normal with zero

mean. This leads to the following theorem, showing the importance of adjusting Sc
N (θ0).

Theorem 2. Under Assumptions A-H, we have, as N → ∞,√
N1

(
θ̂∗N − θ0

) D−→ N
(
0, lim

N→∞
Σ∗−1
N (θ0)Γ

∗
N (θ0)Σ

∗−1′
N (θ0)

)
,

where Σ∗
N (θ0) = −E[∂S∗

N (θ0)/∂θ
′]/N1 and Γ∗

N (θ0) = Var[S∗
N (θ0)]/N1, both assumed to exist and

Σ∗
N (θ0) assumed to be positive definite for sufficiently large N .

3.4. Inference based on M-estimation

The “Hessian” matrix, ∂S∗
N (θ)/∂θ′, is given in Appendix A from which Σ∗

N (θ0) can easily

be found. The analytical expression of Γ∗
N (θ0) is also given there for ease of presentation. To

conduct inferences for θ, consistent estimates of Σ∗
N (θ0) and Γ∗

N (θ0) are required. As Σ
∗
N (θ) and

∂S∗
N (θ)/∂θ′ depend only on the common parameters θ, either the plug-in estimator Σ∗

N (θ̂∗N ) or

the sample analogue, Σ̂∗
N = −N−1

1 ∂S∗
N (θ)/∂θ′|θ=θ̂∗N

, can be used to estimate Σ∗
N (θ0). Consis-

tency of Σ∗
N (θ̂∗N ) and Σ̂∗

N is proved in the proof of Theorem 2.
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However, the estimation of Γ∗
N (θ0) is more complicated as it involves not only the common

parameters θ, but also the fixed effects ϕ embedded in η, and the skewness κ3 and excess

kurtosis κ4 of the idiosyncratic errors. Thus, the common plug-in approach may not provide a

valid estimate as the estimator of ϕ may not be consistent.

Let Γ∗
N (θ̂∗N ) = Γ∗

N (θ)|(θ=θ̂∗N ,ϕ=ϕ̂∗
N ,κ3=κ̂3,N ,κ4=κ̂4,N ) be the plug-in estimator, where ϕ̂∗

N is the

M-estimator of ϕ obtained through (3.3), i.e., ϕ̂∗
N = ϕ̂N (β̂∗

N , δ̂∗N ), and κ̂3,N and κ̂4,N are the

consistent estimators of κ3 and κ4 to be given later. When both n and T are large, Γ∗
N (θ̂∗N ) would

be consistent as ϕ̂∗
N is. However, when either n or T is fixed, then α̂⋆∗

N or µ̂∗
N is not consistent.

Plugging ϕ̂∗
N into Γ∗

N (θ) will induce a bias (inconsistency), and a bias correction is necessary.

However, only the λ-components of Γ∗
N (θ0) involve ϕ (linearly or quadratic). We show that

the terms linear in ϕ can be consistently estimated by the plug-in method. Therefore, the only

term that may not be consistently estimated by the plug-in method is η′F′
NB′

NQDBNFNη/σ2
v0

associated with the λ-λ component of Γ∗
N (θ0). A consistent estimator of Γ∗

N (θ0) is thus derived:

Γ̂∗
N = Γ∗

N (θ̂∗N )− Bias∗(δ̂∗N ), (3.12)

referred to in this paper as the corrected plug-in estimator, where the matrix Bias∗(δ0) has sole

non-zero element tr(F̄′
NQDF̄NPD)/N1 at the λ-λ entry.

It is left to provide consistent estimators for κ3 and κ4. As V = BN (ANY− η) is infeasible

due to the incidental parameters problem, we start from Ṽ = QDV, which can be “consistently”

estimated by V̂ = QD(ρ̂
∗
N )BN (ρ̂∗N )[AN (λ̂∗

N )Y −Xβ̂∗
N ]. Let qjk be the (j, k)th element of QD.

Denote the elements of V by vj , and the elements of Ṽ by ṽj , j = 1, . . . , N , where j is the

combined index for i = 1, . . . , nt and t = 1, . . . , T . Then, ṽj = qj1v1 + qj2v2 + · · ·+ qjNvN , and,

E(ṽ3j ) =
∑N

k=1 q
3
jkE(v

3
k) = σ3

v0κ3
∑N

k=1 q
3
jk, j = 1, . . . , N.

Summing E(ṽ3j ) over j gives κ3 =
(∑N

j=1 E(ṽ
3
j )
)(
σ3
v0

∑N
j=1

∑N
k=1 q

3
jk

)−1
. Its sample analogue

using v̂j , the jth element of V̂(β̂∗
N , λ̂∗

N ), gives a consistent estimator of κ3:

κ̂3,N =

∑N
j=1 v̂

3
j

σ̂∗3
v,N

∑N
j=1

∑N
k=1 q̂

3
jk

, (3.13)

where q̂jk is the (j, k)th element of QD(ρ̂
∗
N ). Similarly, to estimate κ4, we have,

E(ṽ4j ) =
∑N

k=1 q
4
jkE(v

4
k) + 3σ4

v0

∑N
k=1

∑N
l=1 q

2
jkq

2
jl − 3σ4

v0

∑N
k=1 q

4
jk

=
∑N

k=1 q
4
jkκ4σ

4
v0 + 3σ4

v0

∑N
k=1

∑N
l=1 q

2
jkq

2
jl, j = 1, . . . , N

which gives κ4 =
(∑N

j=1 E(ṽ
4
j )− 3σ4

v0

∑N
j=1

∑N
k=1

∑N
l=1 q

2
jkq

2
jl

)(
σ4
v0

∑N
j=1

∑N
k=1 q

4
jk

)−1
by sum-
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ming E(ṽ4j ) over j. Hence, a consistent estimator for κ4 is

κ̂4,N =

∑N
j=1 v̂

4
j − 3σ̂∗4

v,N

∑N
j=1

∑N
k=1

∑N
l=1 q̂

2
jkq̂

2
jl

σ̂∗4
v,N

∑N
j=1

∑N
k=1 q̂

4
jk

. (3.14)

For consistency of the proposed estimators Σ̂∗
N , Γ̂∗

N , κ̂3,N and κ̂4,N , see Corollaries C.1 and C.2

and their proofs given in Supplementary Material.

4. M-Estimation under Unknown Heteroskedasticity

Cross-sectional heteroskedasticity is rather common in spatial regression models due to

misspecification, peer interaction, aggregation, clustering, etc. (Anselin, 1988). The same is

true for (unbalanced) SPD models. Robust methods have been introduced for SPD models,

but are limited to balanced panels with cross-sectional heteroskedasticity only (Moscone and

Tosetti, 2011; Baltagi and Yang, 2013b; Badinger and Egger, 2015; Liu and Yang, 2020). Time-

series heteroskedasticity is also important, in particular in short panels (Bai, 2013). Therefore,

Assumption A is relaxed as follows.

Assumption A′: The innovations vj (j combines i and t) are independently but not iden-

tically distributed (inid), i.e., {vj} ∼ inid(0, σ2
j ), and E|vj |4+ϵ0 < ∞ for some ϵ0 > 0.

4.1. Heteroskedasticity Robust M-Estimation

Denote H = diag(σ2
1, σ

2
2, · · · , σ2

N ), and hence Var(V) = H. Under this relaxed condition,

the CQS function Sc
N (θ) given in (3.5) needs to be readjusted to be robust against unknown

spatiotemporal heteroskedasticity H. As in Liu and Yang (2020), we adjust the relevant com-

ponents of Sc
N (θ), so that their expectations at θ0 are zero under H.

First, consider the stochastic element of the λ-component of Sc
N (θ) given in (3.5). Recall

F̄N (δ) = BN (ρ)FN (λ)B−1
N (ρ). Denote as usual F̄N = F̄N (δ0). As Ṽ(β0, δ0) = QDV, BNWY =

F̄NBNANY, BNANY = BNη +V, and η = Xβ0 +Dϕ0, we have,

E[Y′W′B′
NṼ(β0, δ0)] = E(Y′A′

NB′
N F̄′

NQDV) = tr(HF̄′
NQD) = tr[H diag(F̄′

NQD)]

= tr[H diag(F̄′
NQD) diag(QD)

−1QD] = E(Y′A′
NB′

N F̄′
NQDV),

where F̄′
N = F̄′

N (δ0) and F̄′
N (δ) = diag[F̄′

N (δ)QD(ρ)]diag[QD(ρ)]
−1. Taking the difference

between the quantities inside the second expectation and the last expectation, we obtain an

AQS function for λ, which is robust against unknown heteroskedasticity:

Y′A′
N (λ)B′

N (ρ)[F̄′
N (δ)− F̄′

N (δ)]Ṽ(β, δ). (4.1)
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Now, consider the stochastic element of the ρ-component of Sc
N (θ). We have,

E(Ṽ′GNṼ) = E(V′QDGNQDV) = tr(HḠNQD) = tr[H diag(ḠNQD)]

= tr[H diag(ḠNQD) diag(QD)
−1QD] = E(V′ḠNQDV),

where ḠN (ρ) = QD(ρ)GN (ρ) and ḠN (ρ) = diag[ḠN (ρ)QD(ρ)]diag[QD(ρ)]
−1. Replacing the

V′ by [AN (λ0)Y − Xβ0]
′B′

N (ρ0), and taking the difference between the two quantities inside

the second and last expectations, we obtain a robust AQS function for ρ:

[AN (λ)Y −Xβ]′B′
N (ρ)[ḠN (ρ)− ḠN (ρ)]Ṽ(β, δ). (4.2)

The β-component of Sc
N (θ) is automatically robust against the unknown heteroskedasticity.

Thus, the desired AQS functions of (β, δ) robust against the unknown H are,

S⋄
N (β, δ) =


X′(ρ)Ṽ(β, δ),

Y′A′
N (λ)B′

N (ρ)[F̄′
N (δ)− F̄′

N (δ)]Ṽ(β, δ),

[AN (λ)Y −Xβ]′B′
N (ρ)[ḠN (ρ)− ḠN (ρ)]Ṽ(β, δ).

(4.3)

Solving S⋄
N (β, δ) = 0 gives the robust M-estimators (RM-estimators), β̂⋄

N and δ̂⋄N , of β and

δ, which is simplified by numerically solving for δ using the concentrated robust-AQS functions:

S⋄c
N (δ) =

Y′A′
N (λ)B′

N (ρ)[F̄′
N (δ)− F̄′

N (δ)]V̂(δ),

[AN (λ)Y −Xβ̂⋄
N (δ)]′B′

N (ρ)[ḠN (ρ)− ḠN (ρ)]V̂(δ),
(4.4)

where β̂⋄
N (δ) = β̂∗

N (δ) given in (3.8), and V̂(δ) = Ṽ(β̂⋄
N (δ), δ). Then, solving S⋄c

N (δ) = 0, we

obtain the RM-estimator δ̂⋄N of δ, and thus the RM-estimator β̂⋄
N ≡ β̂⋄

N (δ̂⋄N ) of β.

4.2. Asymptotic properties of the RM-estimator

Let S̄⋄c
N (δ) be the concentrated E[S⋄

N (θ)]. Similar to Sec. 3, the key to the consistency of

δ̂⋄N is the uniform convergence supδ∈∆
∥∥S⋄c

N (δ)− S̄⋄c
N (δ)

∥∥ /N1
p−→ 0, and

Assumption G′: infδ:d(δ,δ0)≥ϵ

∥∥S̄⋄c
N (δ)

∥∥ > 0 for every ϵ > 0, where d(δ, δ0) is a measure of

distance between δ and δ0.

Again, this is a high-level assumption put for simplicity, which holds under some low-level

conditions. 4 Let ξ = (β′, δ′)′ and ξ̂⋄N = (β̂⋄′
N , δ̂⋄′N )′. We have the following theorem.

Theorem 3. Under Assumptions A′, B-F and G′, we have, as N → ∞, ξ̂⋄N
p−→ ξ0.

Similarly, the asymptotic normality of ξ̂⋄N can be established, by applying the mean value

theorem to each element of S⋄
N (ξ̂⋄N ) = 0 at ξ0. The robust AQS function at ξ0 is S⋄

N (ξ0) =

4See Appendix D in Supplementary Material for details on S̄⋄c
N (δ) and Assumption G′.
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[X′V; η′B′
N (F̄′

N − F̄′
N )QDV+V′(F̄′

N − F̄′
N )QDV; ϕ′

0D′(ḠN − ḠN )QDV+V′(ḠN − ḠN )QDV],

which is shown to be asymptotically normal by using the CLT for LQ forms of Kelejian and

Prucha (2001). The adjusted Hessian ∂S⋄
N (ξ̄)/∂ξ′ given in Appendix A, is shown to have a

proper asymptotic behavior, for some ξ̄ lying between ξ̂⋄N and ξ0 elementwise. Consequently,

the asymptotic normality of ξ̂⋄N is proved.

Theorem 4. Under the assumptions of Theorem 3, we have, as N → ∞,√
N1

(
ξ̂⋄N − ξ0

) D−→ N
(
0, lim

N→∞
Σ⋄−1
N (ξ0)Γ

⋄
N (ξ0)Σ

⋄−1′
N (ξ0)

)
,

where Σ⋄
N (ξ0) = −E

[
∂S⋄

N (ξ0)/∂ξ
′]/N1 and Γ⋄

N (ξ0) = Var
[
S⋄
N (ξ0)

]
/N1, both assumed to exist

and Σ⋄
N (ξ0) assumed to be positive definite for sufficiently large N .

4.3. Heteroskedasticity robust inference

Robust inference for ξ0 depends on the availability of consistent estimators of Σ⋄
N (ξ0) and

Γ⋄
N (ξ0). As in the homoskedasticity case, Σ⋄

N (ξ0) can be estimated by its observed counterpart

Σ̂⋄
N = −N−1

1 ∂S⋄
N (ξ)/∂ξ′|ξ=ξ̂⋄N

, with detailed expression of ∂S⋄
N (ξ)/∂ξ′ being given in Appendix

A. The consistency of Σ̂⋄
N is proved in the proof of Theorem 4.

However, the VC matrix Γ⋄
N (ξ0) involves the common parameters ξ0, the fixed effects ϕ0,

and the unknown H, as seen from its distinct elements:

N1Γ
⋄
βξ = [X′HX, X′HLλBNη, X′HLρDϕ0],

N1Γ
⋄
λλ = η′B′

NL′
λHLλBNη + tr(HLλHL◦

λ),

N1Γ
⋄
λρ = η′B′

NL′
λHLρDϕ0 + tr(HLλHL◦

ρ),

N1Γ
⋄
ρρ = ϕ′

0D′L′
ρHLρDϕ0 + tr(HLρHL◦

ρ),

(4.5)

where Lλ(δ) = QD(ρ)[F̄N (δ) − F̄′
N (δ)] and Lρ(ρ) = QD(ρ)[Ḡ

′
N (ρ) − ḠN (ρ)]. This makes the

estimation of Γ⋄
N (ξ0) more challenging than the case of homoskedastic model as the dimensions

of ϕ and H both grow with N — a more serious incidental parameters problem. A nice feature

of the analytical expression of Γ⋄
N (ξ0) is that it does not involve 3rd and 4th moments of the

errors due to the fact that the key matrices, Lλ(δ) and Lρ(δ), have zero diagonals. This makes

it possible to adopt again the corrected plug-in approach.

Write Γ⋄
N (ξ0) as Γ

⋄
N (ξ0, ϕ,H). Let ϕ̂⋄

N be the estimator of ϕ by plugging the RM-estimator

ξ̂⋄N in (3.3). Let Γ⋄
N (ξ̂⋄N , ϕ̂⋄

N ,H) be the plug-in estimator of Γ⋄
N (ξ0) for a given H. We show that

such a ‘plug-in’ results in a non-negligible bias: Bias⋄ϕ(δ0,H), with β-related entries being zero,

and δ entries being tr(HPDL′
aHLbPD)/N1, a, b = λ, ρ.

To estimate H and thus to give a full estimate of Γ⋄
N (ξ0, ϕ,H), note that Ṽ = QDV, which
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can be “consistently” estimated by V̂ = QD(ρ̂
⋄
N )BN (ρ̂⋄N )[AN (λ̂⋄

N )Y −Xβ̂⋄
N ]. Also,

E(Ṽ ⊙ Ṽ) = [QD ⊙QD](σ
2
1, σ

2
2, . . . , σ

2
N )′,

where ⊙ denotes the Hadamard (elementwise) product. A natural set of estimates of the

heteroskedasticity parameters (σ2
1, σ

2
2, . . . , σ

2
N ) is therefore given as follows:

(σ̂2
1, σ̂

2
2, . . . , σ̂

2
N )′ = [QD(ρ̂

⋄
N )⊙QD(ρ̂

⋄
N )]−(V̂ ⊙ V̂),

where [ · ]− denotes a generalized inverse. An estimate of H is thus Ĥ = diag(σ̂2
1, σ̂

2
2, . . . , σ̂

2
N ).

From (4.5), we see that the elements of Γ⋄
N (ξ0, ϕ,H) take two forms: tr(HCN ) or tr(HANHBN ).

Further, the bias term, Bias⋄ϕ(δ0,H), is also of the second form. It is important to know the

effects of replacing H by Ĥ in these forms. We show that the effect is non-negligible only

for the second form. The resulting bias, denoted by Bias⋄H(δ0,H), has non-zero δ-entries,

2N−1
1 tr((La ⊙ L◦

b − PDL′
a ⊙ LbPD)ΠNΛ(H)ΠN ), a, b = λ, ρ; ΠN (ρ) = [QD(ρ) ⊙ QD(ρ)]

−; and

Λ(H) = {(q′jHqk)
2}Nj,k=1 with q′j being the jth row of QD.

Combining the two results above, a consistent estimator of Γ⋄
N (ξ0) is given as follows:

Γ̂⋄
N = Γ⋄

N (ξ̂⋄N , ϕ̂⋄
N , Ĥ)− Bias⋄ϕ(δ̂

⋄
N , Ĥ)− Bias⋄H(δ̂⋄N , Ĥ). (4.6)

See Supplementary Material for the derivation of Γ⋄
N (ξ0) (Lemma B.5), the derivations of

Bias⋄ϕ(δ0,H) and Bias⋄H(δ0,H) (Corollary D.1 and Lemma D.1), and the proofs of consistency

of Σ̂⋄
N and Γ̂⋄

N (Corollary D.2).

5. M-Estimation of High-Order Models

Consider Model (2.2). Let At(λ) = Int −
∑p

k=1 λkWkt and Bt(ρ) = Int −
∑q

ℓ=1 ρℓMℓt;

and AN (λ) = blkdiag{A1(λ), . . . , AT (λ)} and BN (ρ) = blkdiag{B1(ρ), . . . , BT (ρ)}, where

λ = (λ1, . . . , λp)
′ and ρ = (ρ1, . . . , ρq)

′. Let δ = (λ′,ρ′)′, and θ = (β′, σ2
v , δ

′)′.

Homoskedasticity. With these extended notations, under Assumption A, the concentrated

Gaussian loglikelihood function of θ remains in the same form as (3.4). The AQS vector for

Model (2.2) is derived along the same idea as that for (2.1):

S∗
N (θ) =



1
σ2
v
X′B′

N (ρ)Ṽ(β, δ),

1
2σ4

v

[
Ṽ′(β, δ)Ṽ(β, δ)−N1σ

2
v

]
,

1
σ2
v
Ṽ′(β, δ)BN (ρ)ȦNk(λ)Y − tr[QD(ρ)F̄Nk(δ)], k = 1, . . . , p,

1
σ2
v
Ṽ′(β, δ)GNℓ(ρ)Ṽ(β, δ)− tr[QD(ρ)GNℓ(ρ)], ℓ = 1, . . . , q,

(5.1)
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where ȦNk(λ) = −∂AN (λ)/∂λk and FNk(λ) = ȦNk(λ)A
−1
N (λ); ḂNℓ(ρ) = −∂BN (ρ)/∂ρℓ;

and GNℓ(ρ) = ḂNℓ(ρ)B
−1
N (ρ); and F̄Nk(δ) = BN (ρ)FNk(λ)B

−1
N (ρ).

The M-estimator θ̂∗
N of θ0 solves S∗

N (θ) = 0. Consistency and asymptotic normality of

θ̂∗
N can be established in a similar way as for the first-order model. In particular, under the

extended Assumptions A-H, as N1 → ∞, θ̂∗
N

p−→ θ0, and√
N1(θ̂

∗
N − θ0)

D−→ N
[
0, lim

N→∞
Σ∗−1

N (θ0)Γ
∗
N (θ0)Σ

∗−1′
N (θ0)

]
, (5.2)

where Σ∗
N (θ0) = −N−1

1 ∂S∗
N (θ)/∂θ′ and Γ∗

N (θ0) = Var[S∗
N (θ0)]/N1. For practical applications,

the analytical expressions for ∂S∗
N (θ)/∂θ′ and Var[S∗

N (θ0)] are given in Appendix A, with which

the corrected plug-in estimator of the VC matrix of θ̂∗
N is derived.

Heteroskedasticity. When errors are heteroskedastic as in Assumption A′, we need to

find an alternative set of estimating functions robust against unknown H. Following the same

idea leading to (4.3), we obtain the robust AQS function of ξ = (β′, δ′)′:

S⋄
N (ξ) =


X′(ρ)Ṽ(β, δ),

Y′A′
N (λ)B′

N (ρ)[F̄′
Nk(δ)− F̄′

Nk(δ)]Ṽ(β, δ), k = 1, . . . , p,

[AN (λ)Y −Xβ]′B′
N (ρ)[ḠNℓ(ρ)− ḠNℓ(ρ)]Ṽ(β, δ), ℓ = 1, . . . , q,

(5.3)

where F̄′
Nk(δ) = diag[F̄′

Nk(δ)QD(ρ)]diag[QD(ρ)]
−1, ḠNℓ(ρ) = QD(ρ)GNℓ(ρ), and ḠNℓ(ρ)

= diag[ḠNℓ(ρ)QD(ρ)]diag[QD(ρ)]
−1. Solving S⋄

N (ξ) = 0 gives the RM-estimator ξ̂⋄N of ξ.

Consistency and asymptotic normality of ξ̂⋄N can be proved in a similar manner as for the first-

order model in Section 4. For practical applications, the analytical expressions of ∂S⋄
N (ξ)/∂ξ′

and Var[S⋄
N (ξ0)] are given in Appendix A, with which the corrected plug-in estimator of the

VC matrix of ξ̂⋄N is obtained.

6. Monte Carlo Results

Extensive Monte Carlo experiments are conducted to investigate the finite sample perfor-

mance of the proposed M-estimators and the corresponding standard error estimators. We first

consider a SARAR(1, 1) data-generating process (DGP):

Yt = λWtYt +Xtβ +Dtµ+ αtlnt + Ut, Ut = ρMtUt + Vt, t = 1, . . . , T.

The parameters values are set at (β, λ, ρ, σ2
v) = (1, 0.2, 0.2, 1). The X ′

ts are generated inde-

pendently from N(0, 22In), µ from T−1ΣT
t=1Xt + e, where e ∼ N(0, In), and α from N(0, IT ).

The sample sizes are based on n ∈ (50, 100, 200, 400) and T ∈ (5, 10). For each Monte Carlo

experiment, the number of Monte Carlo runs is set to 1000.
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The spatial weight matrices can be Rook contiguity, Queen contiguity, or Group interactions.

The distribution of the idiosyncratic errors can be (i) normal, (ii) standardized normal mixture

(10% N(0, 42) and 90% N(0, 1)), or (iii) standardized chi-square with 3 degrees of freedom.

The selection matrices Dt are generated as follows: for each t, associate with each row of In

a uniform (0, 1) random number. Delete the rows if the corresponding random numbers are

smaller than pt ∈ (0, 1). This give 100pt% non-presence units in t-th period. To generate spatial

panel data with GU, we first generate the full vectors/matrices (V ∗
t , µ,X

∗
t ,W

∗
t ,M

∗
t ) for each t,

then do deletions according to the generated Dt to give Vt = DtV
∗
t , Xt = DtX

∗
t , Wt = DtW

∗
t D

′
t,

and Mt = DtM
∗
t D

′
t, and then generate Yt according to the DGP. See Supplementary Material

for details.

Monte Carlo (empirical) means and standard deviations (sd, shown in parentheses) are

recorded for the naı̈ve estimator,5 QMLE, M-estimator (M-Est), and RM-estimator (RM-Est).

The empirical averages of the standard error estimates (ŝe, shown in square brackets) are

recorded for the M-Est and RM-Est, based on the methods introduced in Sections 3-5. Partial

Monte Carlo results on QMLE, M-Est and RM-Est are reported in Table 1, with the full set being

given in Supplementary Material.

Under homoskedasticity, both M-Est and RM-Est perform excellently in the finite sample

and uniformly outperform the QMLE, in particular in the estimation of λ and ρ, irrespective of

the values of n and T , spatial layouts, and error distributions. The proposed standard error

estimators for the M-Est and RM-Est also perform excellently, with the estimates of standard

errors ŝd’s being on average very close to the corresponding Monte Carlo sd’s. The
√
N1-

consistency of the M-Est and RM-Est is clearly demonstrated by the reduction of the Monte

Carlo sds and the estimated sds as N increases.

Under heteroskedasticity with a Group scheme of a fixed set of group sizes (3, 5, 7, 9, 11,

15),6 only RM-Est is valid and the Monte Carlo results (reported and unreported) confirm its

excellent finite sample performance in terms of point estimation and standard error estimation.

The
√
N1-consistency of the RM-Est is also well demonstrated by the Monte Carlo results. In

contrast, the QMLE, and M-Est generally provide very poor estimates for spatial parameters,

and their inconsistency is clearly demonstrated.

5The naı̈ve estimator is the M-estimator based on the balanced panel formed by including only the spatial
units that are present in every period. This allows us to see the consequence of ‘balancing by deletion’ in a spatial
context. See Monte Carlo results in Supplementary Material.

6Replicating the set increases n. Under this Group scheme, the variation in group sizes does not shrink to
zero as n increases, giving a scenario where the M-estimators are inconsistent when heteroskedasticity depends
on group sizes (Liu and Yang, 2020). We follow Lin and Lee (2010) to generate such an H.
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Table 1: Empirical mean(sd)[ŝe] of QMLE, M-Est and RM-Est of SARAR(1,1): Unbalancedness
percentage = 10% , and (β, λ, ρ, σ2

v) = (1, 0.2, 0.2, 1).
T=5 T=10

QMLE M-Est RM-Est QMLE M-Est RM-Est

Homoskedasticity, n = 100; error = 1, 2, 3, for the three panels below; W = Rook and M = Queen

β 1.0010(.027) 1.0011(.026)[.027] 1.0011(.026)[.027] 1.0001(.018) .9997(.018)[.018] .9997(.018)[.018]

λ .1922(.043) .1993(.043)[.042] .1994(.043)[.042] .1924(.027) .1993(.027)[.027] .1993(.027)[.027]

ρ .1565(.099) .1906(.096)[.100] .1906(.096)[.099] .1600(.063) .1952(.062)[.063] .1952(.062)[.063]

σ2
v .7617(.060) .9942(.078)[.076] − .8792(.044) .9986(.050)[.050] −

β .9993(.028) .9994(.028)[.027] .9994(.028)[.027] 1.0005(.018) 1.0000(.018)[.018] 1.0000(.018)[.018]

λ .1923(.042) .1994(.042)[.042] .1994(.042)[.042] .1932(.027) .2001(.027)[.027] .2000(.027)[.027]

ρ .1623(.102) .1962(.099)[.099] .1962(.099)[.096] .1634(.062) .1985(.061)[.063] .1985(.061)[.062]

σ2
v .7624(.128) .9951(.167)[.160] − .8773(.102) .9964(.116)[.112] −

β .9983(.027) .9984(.027)[.027] .9984(.027)[.027] 1.0005(.018) 1.0001(.018)[.018] 1.0001(.018)[.018]

λ .1937(.043) .2009(.043)[.042] .2009(.043)[.042] .1923(.027) .1992(.027)[.027] .1992(.027)[.027]

ρ .1621(.100) .1961(.097)[.099] .1961(.097)[.098] .1609(.064) .1961(.063)[.063] .1961(.063)[.063]

σ2
v .7625(.092) .9951(.120)[.118] − .8782(.073) .9975(.083)[.082] −

Homoskedasticity, n = 400; error = 1, 2, 3, for the three panels below; W = Rook and M = Queen

β 1.0003(.014) 1.0003(.014)[.013] 1.0003(.014)[.013] 1.0004(.009) 1.0003(.009)[.009] 1.0003(.009)[.009]

λ .1985(.019) .2001(.019)[.019] .2001(.019)[.019] .1982(.014) .1998(.014)[.014] .1999(.014)[.014]

ρ .1936(.049) .1982(.048)[.047] .1982(.048)[.047] .1918(.033) .1989(.032)[.031] .1989(.032)[.031]

σ2
v .7738(.028) .9966(.036)[.038] − .8854(.022) .9982(.024)[.025] −

β 1.0001(.013) 1.0000(.013)[.013] 1.0000(.013)[.013] .9998(.009) .9997(.009)[.009] .9997(.009)[.009]

λ .1985(.019) .2001(.019)[.020] .2001(.019)[.019] .1983(.013) .1999(.013)[.014] .2000(.013)[.014]

ρ .1937(.048) .1983(.047)[.048] .1983(.047)[.047] .1931(.031) .2001(.030)[.031] .2001(.030)[.031]

σ2
v .7782(.063) 1.0023(.081)[.082] − .8847(.050) .9974(.056)[.057] −

β 1.0001(.013) 1.0001(.013)[.013] 1.0001(.013)[.013] .9995(.009) .9994(.009)[.009] .9994(.009)[.009]

λ .1972(.020) .1988(.020)[.020] .1987(.020)[.019] .1978(.013) .1994(.013)[.014] .1996(.013)[.014]

ρ .1944(.050) .1990(.049)[.047] .1990(.049)[.047] .1931(.031) .2002(.031)[.031] .2002(.031)[.031]

σ2
v .7743(.049) .9973(.063)[.060] − .8873(.038) 1.0004(.043)[.042] −

Heteroskedasticity, n = 100; error = 1, 2, 3, for the three panels below; W = M = Group

β 1.0005(.028) 1.0005(.028)[.028] 1.0002(.028)[.028] .9994(.018) .9995(.018)[.018] .9996(.018)[.018]

λ .1927(.049) .1954(.048)[.064] .1992(.056)[.054] .1901(.034) .1936(.034)[.043] .1980(.040)[.038]

ρ .0883(.131) .1304(.120)[.127] .1573(.167)[.160] .1077(.082) .1470(.077)[.080] .1809(.106)[.101]

σ2
v .7572(.071) .9925(.093)[.105] − .8663(.053) .9860(.060)[.067] −

β 1.0004(.029) 1.0004(.029)[.028] 1.0001(.029)[.028] .9991(.018) .9992(.018)[.018] .9992(.018)[.018]

λ .1921(.049) .1948(.048)[.063] .1985(.055)[.053] .1902(.033) .1937(.032)[.043] .1978(.038)[.038]

ρ .0884(.129) .1305(.118)[.128] .1578(.165)[.157] .1106(.078) .1497(.073)[.080] .1848(.101)[.099]

σ2
v .7554(.155) .9901(.203)[.199] − .8659(.124) .9855(.141)[.139] −

β .9997(.029) .9997(.029)[.028] .9995(.029)[.028] .9999(.018) 1.0000(.018)[.018] 1.0000(.018)[.018]

λ .1914(.049) .1941(.048)[.063] .1979(.055)[.054] .1922(.033) .1957(.032)[.043] .2005(.037)[.038]

ρ .0877(.130) .1299(.119)[.128] .1566(.167)[.159] .1077(.079) .1470(.074)[.080] .1808(.102)[.100]

σ2
v .7614(.115) .9979(.150)[.152] − .8630(.088) .9822(.100)[.102] −

Heteroskedasticity, n = 400; error = 1, 2, 3, for the three panels below; W = M = Group

β .9999(.014) .9999(.014)[.013] .9999(.014)[.014] 1.0003(.009) 1.0009(.009)[.009] 1.0003(.009)[.009]

λ .1966(.026) .1970(.026)[.031] .1998(.030)[.030] .1974(.016) .2490(.018)[.019] .2010(.018)[.018]

ρ .1491(.060) .1550(.058)[.058] .1892(.075)[.074] .1533(.037) .1210(.028)[.037] .1959(.046)[.047]

σ2
v .7849(.034) 1.0110(.044)[.052] − .8923(.027) 1.0063(.030)[.034] −

β .9998(.014) .9998(.014)[.013] .9998(.014)[.014] .9995(.009) 1.0001(.009)[.009] .9995(.009)[.009]

λ .1968(.027) .1972(.027)[.031] .1998(.031)[.030] .1965(.017) .2493(.019)[.019] .1997(.019)[.018]

ρ .1509(.061) .1568(.059)[.058] .1914(.075)[.074] .1562(.038) .1232(.029)[.037] .1996(.048)[.047]

σ2
v .7878(.079) 1.0148(.102)[.103] − .8933(.061) 1.0075(.069)[.072] −

β 1.0000(.013) 1.0000(.013)[.013] 1.0000(.014)[.014] .9998(.009) 1.0004(.009)[.009] .9998(.009)[.009]

λ .1949(.027) .1953(.027)[.031] .1980(.031)[.030] .1968(.017) .2485(.018)[.019] .2003(.019)[.018]

ρ .1500(.059) .1559(.057)[.058] .1904(.073)[.074] .1531(.038) .1208(.029)[.037] .1958(.047)[.047]

σ2
v .7869(.059) 1.0136(.076)[.078] − .8960(.045) 1.0105(.051)[.053] −

Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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Table 2: Empirical mean(sd)[ŝe] of QMLE, M-Est and RM-Est of SARAR(2,2): Unbalancedness
percentage = 10%, and (β, λ1, λ2, ρ1, ρ2, σ

2
v)=(1, 0.2, 0.3, 0.2, 0.3, 1).

T=5 T=10

QMLE M-Est RM-Est QMLE M-Est RM-Est

Homoskedasticity, n = 100; error = 1, 2, for the two panels below; W1 = M1 = Queen, W2 = M2 = Rook

β .9979(.027) .9977(.027)[.028] .9977(.027)[.028] .9995(.018) .9995(.018)[.018] .9995(.018)[.018]

λ1 .1998(.053) .1953(.055)[.052] .1954(.055)[.052] .1981(.036) .1967(.037)[.037] .1966(.037)[.036]

λ2 .2970(.044) .2982(.043)[.042] .2983(.044)[.042] .2996(.029) .3002(.030)[.029] .3003(.030)[.029]

ρ1 .1573(.156) .1988(.131)[.122] .1987(.131)[.121] .1568(.081) .1969(.076)[.076] .1972(.076)[.075]

ρ2 .3417(.119) .2968(.100)[.096] .2972(.100)[.095] .3034(.064) .2997(.059)[.059] .2998(.059)[.058]

σ2
v .7451(.062) .9794(.080)[.077] − .8734(.045) .9907(.051)[.050] −

β .9992(.029) .9990(.029)[.028] .9990(.029)[.028] .9980(.018) .9980(.018)[.018] .9980(.018)[.017]

λ1 .1989(.052) .1946(.054)[.052] .1943(.054)[.051] .2006(.035) .1994(.036)[.036] .1994(.036)[.036]

λ2 .2976(.041) .2990(.040)[.042] .2992(.040)[.041] .2990(.028) .2999(.029)[.029] .2999(.029)[.029]

ρ1 .1438(.157) .1877(.129)[.123] .1881(.130)[.122] .1535(.082) .1937(.076)[.076] .1938(.076)[.075]

ρ2 .3457(.114) .2988(.096)[.095] .2989(.096)[.093] .3011(.065) .2973(.060)[.059] .2976(.060)[.058]

σ2
v .7443(.124) .9787(.163)[.158] − .8723(.102) .9895(.116)[.112] −

Homoskedasticity, n = 200; error = 1, 2, for the two panels below; W1 = M1 = Queen, W2 = M2 = Rook

β .9991(.020) .9991(.020)[.019] .9991(.020)[.019] .9994(.013) .9994(.013)[.012] .9994(.013)[.012]

λ1 .2013(.034) .1993(.035)[.034] .1993(.035)[.033] .1995(.025) .1986(.026)[.026] .1986(.026)[.025]

λ2 .2971(.026) .2992(.026)[.027] .2992(.026)[.027] .2993(.018) .2999(.019)[.019] .2999(.019)[.019]

ρ1 .1980(.103) .1969(.093)[.083] .1970(.094)[.083] .1907(.056) .2014(.052)[.053] .2014(.052)[.053]

ρ2 .3660(.075) .2988(.068)[.065] .2991(.068)[.065] .3163(.045) .2974(.042)[.040] .2975(.042)[.041]

σ2
v .7528(.044) .9902(.057)[.055] − .8763(.033) .9942(.037)[.036] −

β .9998(.019) .9997(.019)[.019] .9997(.019)[.019] .9996(.012) .9996(.012)[.012] .9996(.012)[.012]

λ1 .1999(.033) .1978(.035)[.033] .1977(.035)[.033] .2002(.025) .1993(.025)[.025] .1993(.025)[.025]

λ2 .2984(.026) .3003(.026)[.027] .3003(.026)[.027] .2987(.019) .2992(.019)[.019] .2993(.019)[.019]

ρ1 .2026(.098) .2013(.091)[.082] .2016(.091)[.081] .1867(.056) .1978(.052)[.053] .1980(.052)[.053]

ρ2 .3694(.077) .3025(.070)[.065] .3027(.070)[.064] .3186(.045) .2994(.041)[.041] .2994(.041)[.040]

σ2
v .7504(.091) .9873(.119)[.114] − .8766(.069) .9946(.078)[.080] −

Heteroskedasticity, n = 100; error = 1, 2, for the two panels below; W1 = M1 = Group, W2 = M2 = Rook

β .9980(.029) .9972(.029)[.028] .9983(.030)[.029] .9992(.018) 1.0000(.018)[.018] .9999(.018)[.018]

λ1 .1922(.044) .1856(.046)[.061] .1963(.054)[.052] .1942(.027) .1950(.022)[.032] .2003(.025)[.025]

λ2 .2966(.038) .2952(.041)[.039] .2964(.039)[.040] .2974(.028) .2995(.028)[.028] .2993(.028)[.029]

ρ1 .0382(.191) .1294(.130)[.111] .1754(.193)[.178] .0534(.177) .1284(.071)[.076] .1843(.109)[.104]

ρ2 .3479(.109) .3069(.109)[.091] .3036(.100)[.092] .3080(.066) .2983(.057)[.059] .2977(.057)[.059]

σ2
v .7486(.076) .9790(.100)[.102] − .8728(.055) .9914(.061)[.067] −

β .9986(.028) .9976(.029)[.028] .9987(.030)[.029] .9991(.018) .9996(.018)[.018] .9995(.018)[.018]

λ1 .1893(.042) .1832(.047)[.061] .1945(.054)[.053] .1926(.025) .1940(.022)[.032] .1994(.025)[.025]

λ2 .2964(.038) .2945(.041)[.038] .2955(.040)[.039] .2977(.029) .2997(.029)[.028] .2995(.029)[.029]

ρ1 .0434(.179) .1324(.135)[.114] .1797(.202)[.177] .0577(.148) .1251(.070)[.077] .1801(.107)[.103]

ρ2 .3518(.105) .3131(.110)[.092] .3088(.099)[.090] .3121(.064) .3020(.059)[.059] .3015(.059)[.057]

σ2
v .7517(.161) .9832(.211)[.205] − .8678(.128) .9865(.145)[.142] −

Heteroskedasticity, n = 200; error = 1, 2, for the two panels below; W1 = M1 = Group, W2 = M2 = Rook

β 1.0009(.019) 1.0012(.019)[.020] 1.0011(.019)[.019] 1.0002(.012) 1.0003(.012)[.012] 1.0001(.012)[.012]

λ1 .1982(.029) .1970(.027)[.033] .2013(.030)[.031] .1926(.016) .1937(.016)[.022] .1993(.018)[.019]

λ2 .2965(.028) .3004(.028)[.028] .3001(.028)[.028] .2987(.019) .3001(.019)[.020] .3000(.019)[.019]

ρ1 .1005(.144) .1290(.069)[.074] .1809(.103)[.104] .1014(.072) .1268(.050)[.054] .1885(.076)[.075]

ρ2 .3721(.076) .2970(.064)[.065] .2981(.065)[.064] .3236(.044) .3010(.041)[.041] .2999(.041)[.041]

σ2
v .7581(.048) .9924(.061)[.066] − .8739(.039) .9914(.044)[.048] −

β .9977(.020) .9982(.019)[.020] .9981(.019)[.019] .9997(.013) .9998(.012)[.012] .9996(.012)[.012]

λ1 .1976(.031) .1964(.028)[.033] .2007(.031)[.031] .1931(.017) .1942(.017)[.022] .1997(.019)[.019]

λ2 .2952(.028) .2994(.028)[.028] .2990(.029)[.028] .2994(.018) .3007(.018)[.020] .3007(.018)[.019]

ρ1 .0956(.143) .1252(.069)[.076] .1756(.102)[.103] .1036(.063) .1278(.049)[.055] .1900(.074)[.074]

ρ2 .3733(.073) .2976(.061)[.065] .2993(.062)[.064] .3218(.044) .2994(.041)[.041] .2985(.041)[.040]

σ2
v .7607(.105) .9956(.137)[.137] − .8711(.093) .9882(.105)[.103] −

Note: error = 1(normal), 2(normal mixture).
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We then extend the Monte Carlo experiments by using a SARAR(2, 2) DGP with an additional

set of spatial weight matrices, to demonstrate the finite sample performance of the proposed set

of estimation and inference methods for a higher-order GU-SPD model. Partial Monte Carlo

results on QMLE, M-Est and RM-Est are reported in Table 2, with the full set being given in

Supplementary Material. General conclusions remain.

In summary, Monte Carlo results provide clear and strong support to our theoretical pre-

dictions, suggesting that the proposed methods are very reliable. They further suggest that

in real applications when homoskedasticity holds either M-Estimator or RM-Estimator can be

used but when it is in doubt one should use the RM-Estimator.

7. An Empirical Illustration

The spillover effect as a determinant of inward or outward foreign direct investment (FDI)

has been extensively studied (see, among others, Coughlin and Segev, 2000; Baltagi et al., 2007,

2008; Blonigen et al., 2007). Coughlin and Segev (2000) studied the total FDI inflows (1990-

1997) of 29 administrative divisions of China mainland (excluding Tibet), based on a spatial

cross-sectional model and maximum likelihood estimation. The result exhibits a significant spa-

tial error dependence. However, their study ignores the panel structure of the data. Practically

important issues, such as the heterogeneity across ‘provinces’ and over time, spatiotemporal

heteroskedasticity, and the effects of splits of the two provinces, Guangdong and Sichuan, were

not investigated.

In this section, an extended study is given on the issue of spatial spillovers of FDI inflows

(denoted by Ft) across Chinese administrative divisions, based on our GU-SDP model. First, our

panel data covers a total of T = 16 years (1985 to 2000), including the year 1988 when Hainan

became an individual province split from Guangdong, and the year 1997 when Chongqing

became a municipality separated from Sichuan. With Sichuan and Guangdong provinces before

and after the splits being treated as ‘different’ spatial units, we have a total of n = 33 spatial

units in the study, with 29 in the first 3 years, 30 in the next 9 years, and 31 in last 4 years

(including 22 provinces, 5 autonomous regions, and 4 municipalities), giving rise to a genuinely

unbalanced spatial panel data. See Table 3 for details7.

7Sources: Data from 1985 to 1991 are drawn from the China Foreign Economic Statistics 1979–1991. Data
from 1992 to 1995 are sourced from the China Foreign Economic Statistical Yearbook 1996. Data from 1996 to
2000 are provided by the State Statistical Bureau Yearbook 1997–2001.
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Table 3: China FDI inflows by administrative divisions (US$ Million), 1980 Constant Prices
Year 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Beijing 68 105 77 350 213 176 148 205 380 762 584 816 818 1096 977 806

Tianjin 34 32 97 43 21 23 80 63 299 564 822 1054 1289 1068 872 558

Hebei 3 5 7 13 29 28 34 66 226 291 296 434 565 722 515 325

Shanxi 0.3 0.1 4 5 7 2 2 32 49 18 35 72 137 124 194 108

InnerMongolia 4 1.0 4 4 3 7 1 3 49 22 31 38 38 46 32 51

Liaoning 12 25 66 91 84 162 219 303 729 800 770 913 1132 1107 525 978

Jilin 2 2 5 7 7 11 19 44 157 134 221 237 207 207 149 161

Heilongjiang 2 13 10 48 38 18 13 42 132 193 279 288 377 266 157 144

Shanghai 48 73 155 162 280 110 88 290 1801 1374 1564 2070 2169 1821 1403 1512

Jiangsu 9 14 63 87 84 84 133 859 1621 2091 2806 2736 2790 3352 3006 3075

Zhejiang 13 14 26 30 36 31 56 141 588 639 680 799 772 666 610 772

Anhui 2 6 2 19 6 9 6 32 147 206 261 266 223 140 129 152

Fujian 90 46 40 101 231 202 285 836 1635 2063 2186 2145 2154 2129 1990 1642

Jiangxi 4 3 4 6 6 5 12 59 119 145 156 158 245 235 159 109

Shandong 4 15 47 62 109 117 131 589 1068 1418 1454 1361 1280 1114 1117 1422

Henan 4 5 10 45 31 7 23 31 174 215 259 275 355 312 258 270

Hubei 4 44 19 16 19 20 28 119 308 334 338 357 406 492 453 452

Hunan 13 7 2 9 15 9 15 78 249 184 274 369 471 414 323 325

Guangdong 436 425 578 - - - - - - - - - - - - -

Guangdong∗ - - - 871 879 998 1175 2173 4308 5257 5546 6105 6012 6076 5766 5398

Guangxi 10 28 33 15 35 22 19 107 504 465 364 345 452 448 314 251

Hainan - - - 82 71 65 107 266 403 510 574 414 362 363 240 206

Chongqing - - - - - - - - - - - - 199 218 118 117

Sichuan 5 17 18 28 9 15 49 66 326 512 293 223 - - - -

Sichuan∗ - - - - - - - - - - - - 127 188 169 209

Guizhou 1.1 0.6 1 7 8 7 9 12 24 35 31 16 26 23 20 12

Yunnan 1.2 3 5 6 5 5 2 17 55 36 53 34 85 74 76 61

Tibet 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Shaanxi 6 7 53 78 65 30 19 27 134 133 175 171 322 152 120 138

Gansu 2 0.2 0.2 2 0 1 3 0.2 7 49 35 47 21 20 20 30

Qinghai 0.8 0.02 0 2 0 0 0 0.4 2 1.3 0.9 0.5 1.3 0 2 0

Ningxia 0.2 1.3 0.02 0.2 0.7 0.2 0.1 2 7 4 2.1 2.9 3.4 9 25 8

Xinjiang 1.2 11 13 4 0.6 3 0.1 0 30 27 30 34 13 11 12 9

Total 441 442 1337 2193 2292 2167 2677 6463 15533 18482 20116 21780 23050 22893 19751 19301

Note: Guangdong and Sichuan Provinces and Guangdong∗ and Sichuan∗ Provinces represent the provinces before and after the splits, respectively.

We extend the model considered in Coughlin and Segev (2000) by including all three types of

spillovers, spatial lag, spatial error, and spatial Durbin, controlling for two-way fixed effects, and

allowing for unknown spatiotemporal heteroskedasticity. A similar set of exogenous variables

as in Coughlin and Segev (2000) is used: GPP (Gross Provincial Product in billion yuan),

WAGE (average annual wage of staff and workers in yuan), PROD (overall labor productivity

of industrial enterprises in yuan), AIR (number of staff and workers in state-owned units of

airway transportation per ten thousand population), HIWAY (length of the paved highway (km)

divided by area (1000 km2)), and UGRD (number of undergraduate graduates per ten thousand

population)8. Spatial weight matrices are constructed as in Coughlin and Segev (2000) with

regions sharing a common border being treated as neighbors, which are row-normalized for each

period. The selection matrix Dt and the number of units in each year nt are defined based on

8Sources: All the explanatory variables are from China Statistical Yearbook 1986-2001, National Bureau of
Statistics of China, https://www.stats.gov.cn/english/.
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Table 3. These give us the final econometric model:

Ft = λWtFt + β1GPPt + β2WAGEt + β3PRODt + β4AIRt + β5HIWAYt + β6UGRDt

+ β7Wt × GPPt + β8Wt × WAGEt + β9Wt × PRODt + β10Wt × AIRt + β11Wt × HIWAYt

+ β12Wt × UGRDt +Dtµ+ αtlnt + Ut, Ut = ρWtUt + Vt. (7.1)

Table 4 reports the estimation results for (7.1) based on our M-estimation and RM-estimation

under the GU specification in the columns below M-Est and RM-Est, respectively. As a compari-

son, we also report results under a balanced panel setup (M-Est-Ba and RM-Est-Ba) that ignore

the two splits. We can see the significance levels and values of spatial parameter estimates

under GU and balanced specification are totally different. Both M- and RM-estimators for λ

under balanced setup are statistically insignificant, while RM-estimator under GU specification

is statistically significantly positive, suggesting the existence of spillover effects among China

FDI inflows. The latter is in line with the theoretical prediction in Coughlin and Segev (2000)

that FDI agglomeration may lead to higher FDI levels in neighboring provinces to the extent

that its beneficial effects spill over province borders. Both GU estimators for ρ are not statis-

tically significant, while RM-Est-Ba for ρ in the third column exhibits statistically significant

results. We also see the estimate values are different based on M- and RM-estimation. As ad-

ministrative divisions differ substantially in FDI inflows and economic sizes, heteroskedasticity

likely exists, and therefore the results based on RM-estimation are more reliable. In addition,

all the estimators report statistically significantly positive estimates for GPP and WAGE, and both

GU estimators also find significantly positive effects of HIGHWAY.

The spatial interdependence effects are also captured by the spatially weighted regressors.

Overall, we can see that more spatial Durbin (or contextual) effects are found under GU spec-

ification than under the balanced panel setup. RM-estimator under GU specification reports

negative and statistically significant contextual effects of GPP and WAGE, indicating that the fac-

tors attracting FDI in one place have negative impacts on FDI in neighboring places. Finally,

both GU estimations report statistically significantly positive estimates for the spatial lag of

PROD. Higher productivity in neighboring provinces may make the return on investment in that

province more profitable and therefore attract more FDI.
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Table 4: Empirical results for the China FDI inflows

Variables M-Est-Ba RM-Est-Ba M-Est RM-Est

SL(λ) 0.069 0.044 −0.228 0.375∗∗∗

(0.170) (0.083) (0.582) (0.115)

SE(ρ) 0.268 0.284∗∗∗ 0.449 −0.182

(0.199) (0.096) (0.505) (0.152)

GPP 0.401∗∗∗ 0.401∗∗∗ 0.383∗∗∗ 0.400∗∗∗

(0.024) (0.043) (0.029) (0.046)

WAGE 0.152∗∗∗ 0.151∗∗∗ 0.099∗∗∗ 0.113∗∗∗

(0.030) (0.036) (0.029) (0.025)

PROD 0.009 0.009 0.009 0.005

(0.006) (0.006) (0.007) (0.005)

AIR 9.384 9.277 4.860 6.226

(9.996) (6.943) (8.663) (5.345)

HIGHWAY 5.375 5.440 11.087∗ 15.635∗∗

(6.057) (7.267) (6.359) (7.399)

UGRD −17.107 −17.012 −10.229 −8.735

(18.484) (14.987) (17.784) (15.046)

W × GPP −0.097 −0.087 −0.041 −0.283∗∗∗

(0.080) (0.071) (0.254) (0.083)

W × WAGE −0.085 −0.082 −0.015 −0.064∗∗

(0.057) (0.053) (0.069) (0.030)

W × PROD 0.034∗∗ 0.035∗∗∗ 0.036∗∗∗ 0.030∗∗∗

(0.015) (0.015) (0.012) (0.013)

W × AIR −20.903 −20.687 −6.837 −14.933

(20.088) (19.413) (20.214) (14.530)

W × HIGHWAY 4.700 4.948 −2.694 −7.444

(14.031) (13.691) (11.187) (8.218)

W × UGRD 14.623 14.755 8.421 −12.110

(44.959) (43.242) (39.464) (40.496)

Pseudo R2 86.93% 86.96% 89.56% 89.73%

Observations 464 464 481 481

Note: Standard errors are in parentheses. Significance levels: ∗: 10%, ∗∗: 5%, and ∗∗∗: 1%.

8. Conclusions and Discussions

We propose an M-estimation method for estimating an unbalanced spatial panel data (SPD)

model with fixed effects, where the unbalancedness is of the genuine type due to the non-presence

of spatial units. The method allows for the presence of high-order and time-varying spatial

effects in response, regressors and errors, as well as unknown spatiotemporal heteroskedasticity.

For statistical inference, we propose a simple corrected plug-in method that corrects the effect

of plugging in the estimates of fixed effects parameters, and/or the estimates of the unknown

spatiotemporal heteroskedasticity parameters. The proposed estimation and inference methods

are seen to be simple and reliable and thus can be trustfully implemented by practitioners in
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an easy manner. New research can be generated as well.

The proposed methods are potentially applicable to many other scenarios, such as the SPD-

GU model with (correlated) random effects and heteroskedasticity and SPD-GU model with

multi-level effects and heteroskedasticity. The latter is particularly relevant to the social in-

teraction and network models where time-varying group effects are of interest. Furthermore,

the proposed methods are also applicable to the alternative MESS(p, q) specification suggested

by Yang (2018a). Another issue of immediate interest is when data contain both genuine non-

presence and random missing, and in this case, imputation may be necessary (Loh et al., 2020;

Sun and Wang, 2020).
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Appendix A: AQS, Hessian, and Variance of AQS

For Section 3. Write the key quantity in the concentrated quasi loglikelihood function

(3.4) as Ṽ′(β, δ)Ṽ(β, δ) = [AN (λ)Y−Xβ]′B′
N (ρ)QD(ρ)BN (ρ)[AN (λ)Y−Xβ]. The derivatives

of Φ(ρ) ≡ B′
N (ρ)QD(ρ)BN (ρ), in deriving the ρ-components of S∗

N (θ) and ∂S∗
N (θ)/∂θ′, are the

most complicated. With ∂D(ρ)/∂ρ = −MD = −GN (ρ)D(ρ), we obtain:

Q̇D(ρ) ≡ ∂
∂ρQD(ρ) = QD(ρ)GN (ρ)PD(ρ) + PD(ρ)G

′
N (ρ)QD(ρ), (A.1)

Φ̇(ρ) ≡ − ∂
∂ρΦ(ρ) = B′

N (ρ)QD(ρ)G
◦
N (ρ)QD(ρ)BN (ρ), (A.2)

S∗
N,ρ(θ) =

1
2σ2

v
Ṽ′(β, δ)G◦

N (ρ)Ṽ′(β, δ)− tr[QD(ρ)GN (ρ)], (A.3)

a′[ ∂
∂ρ Φ̇(ρ)]a = 2a′B′

N (ρ)QD(ρ)[G
◦
N (ρ)PD(ρ)G

◦
N (ρ)−G′

N (ρ)GN (ρ)]QD(ρ)BN (ρ)a, (A.4)
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where a is a constant vector, and S∗
N,ρ(θ) denotes the ρ-component of S∗

N (θ).

By (A.1)-(A.4), S∗
N (θ) in (3.7), ∂ ln |A(λ)|/∂λ = tr[A−1(λ)∂A(λ)/∂λ] and ∂A−1(λ)/∂λ =

−A−1(λ)[∂A(λ)/∂λ]A−1(λ), one has the components of H∗
N (θ) = ∂S∗

N (θ)/∂θ′:

H∗
ββ(θ) = − 1

σ2
v
X′(ρ)X(ρ), H∗

βσ2
v
(θ) = − 1

σ4
v
X′(ρ)Ṽ(β, δ) = H∗′

σ2
vβ
(θ),

H∗
βλ(θ) = − 1

σ2
v
X′(ρ)Y(ρ) = H∗′

λβ(θ), H∗
βρ(θ) = − 1

σ2
v
X′(ρ)G◦

N (ρ)Ṽ(β, δ) = H∗′
ρβ(θ),

H∗
σ2
vσ

2
v
(θ) = − 1

σ6
v
Ṽ′(β, δ)Ṽ(β, δ) + 1

2σ4
v
N1, H∗

σ2
vλ
(θ) = − 1

σ4
v
Y′(ρ)Ṽ(β, δ) = H∗′

λσ2
v
(θ),

H∗
σ2
vρ
(θ) = − 1

2σ4
v
Ṽ′(β, δ)G◦

N (ρ)Ṽ(β, δ) = H∗′
ρσ2

v
(θ),

H∗
λλ(θ) = − 1

σ2
v
Y′(ρ)Y(ρ)− tr[QD(ρ)BN (ρ)F2

N (λ)B−1
N (ρ)],

H∗
λρ(θ) = − 1

σ2
v
Y′(ρ)G◦

N (ρ)Ṽ(β, δ)− tr[FN (λ)RN (ρ)],

H∗
ρλ(θ) = − 1

σ2
v
Y′(ρ)G◦

N (ρ)Ṽ(β, δ), H∗
ρρ(θ) =

1
σ2
v
Ṽ′(β, δ)R1N (ρ)Ṽ(β, δ)− tr[R2N (ρ)],

where Y(ρ) = QD(ρ)BN (ρ)WY, RN (ρ) = B−1
N (ρ)PD(ρ)G

◦
N (ρ)QD(ρ)BN (ρ), R1N (ρ) =

G◦
N (ρ)PD(ρ)G

◦
N (ρ)−G′

N (ρ)GN (ρ), and R2N (ρ) = QD(ρ)GN (ρ)[PD(ρ)G
◦
N (ρ) +GN (ρ)].

Now, applying Lemma B.5 to (3.11), we obtain Γ∗
N (θ0) having distinct elements:

N1Γ
∗
βθ =

[
1

σ2
v0
X′X, κ3

2σ3
v0
X′q, κ3

σv0
X′f̄ + 1

σ2
v0
X′η∗, κ3

σv0
X′g

]
,

N1Γ
∗
σ2
vσ

2
v
= 1

4σ4
v0
(2N1 + κ4q

′q), N1Γ
∗
σ2
vλ

= κ3

2σ3
v0
q′η∗ + 1

2σ2
v0
[2tr(F̄N ) + κ4q

′f̄ ],

N1Γ
∗
σ2
vρ

= 1
2σ2

v0
[2tr(G) + κ4q

′g], N1Γ
∗
λλ = 1

σ2
v0
η∗′η∗ + 2κ3

σv0
f̄ ′η∗ + tr(F̄F̄◦) + κ4f̄

′f̄ ,

N1Γ
∗
λρ = tr(GF̄◦) + κ4f̄

′g + κ3
σv0

g′η∗, N1Γ
∗
ρρ = tr(GG◦) + κ4g

′g,

where η∗ = QDBNFNη, F̄ = QDF̄N , G = QDGNQD, and f̄ , g, and q are the vectors of diagonal

elements of F̄ , G and QD, respectively.

For Section 4. Let Lλ(δ) = QD(ρ)[F̄N (δ)−F̄′
N (δ)] and Lρ(ρ) = QD(ρ)[Ḡ

′
N (ρ)−ḠN (ρ)]. For

S⋄
N (ξ) in (4.3), H⋄

N (ξ) = ∂S⋄
N (ξ)/∂ξ′ is shown to have components:

H⋄
ββ(ξ) = −X′(ρ)X(ρ), H⋄

βλ(ξ) = −X′(ρ)Y(ρ),

H⋄
βρ(ξ) = −X′(ρ)G◦

N (ρ)Ṽ(β, δ), H⋄
λβ(ξ) = −Y′C′

N (δ)L′
λ(δ)X(ρ),

H⋄
λλ(ξ) =−Y′W′B′

N (ρ)L′
λ(δ)Ṽ(β, δ)+Y′C′

N (δ)
[
L′
λλ(δ)Ṽ(β, δ)−L′

λ(δ)Y(ρ)
]
,

H⋄
λρ(ξ) = Y′C′

N (δ)
[
L′
λρ(δ)+L′

λ(δ)GN (ρ)−G′
N (ρ)L′

λ(δ)
]
Ṽ(β, δ),

H⋄
ρβ(ξ) = −V′

0(β, δ)L′
ρ(ρ)X(ρ)− Ṽ′(β, δ)Lρ(ρ)BN (ρ)X,

H⋄
ρλ(ξ) = −Y′W′B′

N (ρ)L′
ρ(ρ)Ṽ(β, δ)−V′

0(β, δ)L′
ρ(ρ)Y(ρ),

H⋄
ρρ(ξ) = V′

0(β, δ)
[
Lρρ(ρ)+L′

ρ(ρ)GN (ρ)−G′
N (δ)L′

ρ(ρ)
]
Ṽ(β, δ),

where V0(β, δ) = BN (ρ)[AN (λ)Y −Xβ], GN (ρ) = PD(ρ)G
′
N (ρ)−QD(ρ)GN (ρ),

Lλλ(δ) = QD(ρ)
[
BN (ρ)F2

N (λ)B−1
N (ρ)−diag[B−1′

N (ρ)F′2
N (λ)B′

N (ρ)QD(ρ)]diag[QD(ρ)]
−1

]
,

Lλρ(δ) =
∂
∂ρLλ(δ) = Q̇D(ρ)[F̄N (δ)−F̄′

N (δ)] +QD(ρ)[F̄ρ(δ)−F̄′
ρ(δ)],

F̄ρ(δ) = −MFN (λ)B−1
N (ρ) +BN (ρ)FN (λ)B−1

N (ρ)GN (ρ),

F̄′
ρ(δ) = diag[F̄′

ρ(δ)QD(ρ) + F̄′
N (δ)Q̇D(ρ)]diag[QD(ρ)]

−1 + diag[F̄′
N (δ)QD(ρ)]Q̄D(ρ),
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Q̄D(ρ) = −diag[QD(ρ)]
−1diag[Q̇D(ρ)]diag[QD(ρ)]

−1,

Lρρ(ρ) =
∂
∂ρL

′
ρ(ρ) = Q̇D(ρ)[Ḡ

′
N (ρ)−ḠN (ρ)] +QD(ρ)[Ḡ

′
ρ(ρ)−Ḡρ(ρ)],

Ḡρ(ρ) = Q̇D(ρ)GN (ρ) +QD(ρ)G
2
N (ρ), and

Ḡρ(ρ) = diag[Ḡρ(ρ)QD(ρ) + ḠN (ρ)Q̇D(ρ)]diag[QD(ρ)]
−1 + diag[ḠN (ρ)QD(ρ)]Q̄D(ρ).

For Section 5 (Homoskedasticity). Again, the derivations of the ρ-components of S∗
N (θ)

give in (5.1) and the ρ-components of ∂S∗
N (θ)/∂ρℓ are the most complicated. Denote Φ(ρ) =

B′
N (ρ)QD(ρ)BN (ρ). We have, similarly to (A.1)-(A.4),

Q̇Dℓ(ρ) ≡ ∂
∂ρℓ

QD(ρ) = QD(ρ)GNℓ(ρ)PD(ρ) + PD(ρ)G
′
Nℓ(ρ)QD(ρ),

Φ̇ℓ(ρ) ≡ − ∂
∂ρℓ

Φ(ρ) = B′
N (ρ)QD(ρ)G

◦
Nℓ(ρ)QD(ρ)BN (ρ),

S∗
N,ρℓ

(θ) = 1
2σ2

v
Ṽ′(β, δ)G◦

Nℓ(ρ)Ṽ
′(β, δ)− tr[QD(ρ)GNℓ(ρ)],

a′[ ∂
∂ρℓ2

Φ̇ℓ1(ρ)]a = 2a′B′
N (ρ)QD(ρ)[G

◦
Nℓ1

(ρ)PD(ρ)G
◦
Nℓ2

(ρ)−G′
Nℓ1

(ρ)GNℓ2(ρ)]QD(ρ)BN (ρ)a,

for k, k1, k2 = 1, . . . , p and ℓ, ℓ1, ℓ2 = 1, . . . , q, where a is a constant vector.

With the above results, we obtain H∗
N (θ) = ∂S∗

N (θ)/∂θ′ having components:

H∗
ββ(θ) = − 1

σ2
v
X′(ρ)X(ρ), H∗

βσ2
v
(θ) = − 1

σ4
v
X′(ρ)Ṽ(β, δ) = H∗′

σ2
vβ
(θ),

H∗
βλk

(θ) = − 1
σ2
v
X′(ρ)Yk(ρ) = H∗′

λkβ
(θ), H∗

βρℓ
(θ) = − 1

σ2
v
X′(ρ)G◦

Nℓ(ρ)Ṽ(β, δ) = H∗′
ρℓβ

(θ),

H∗
σ2
vσ

2
v
(θ) = − 1

σ6
v
Ṽ′(β, δ)Ṽ(β, δ) + 1

2σ4
v
N1, H∗

σ2
vλk

(θ) = − 1
σ4
v
Ṽ′(β, δ)Yk(ρ) = H∗′

λkσ2
v
(θ),

H∗
σ2
vρℓ

(θ) = − 1
2σ4

v
Ṽ′(ρ)G◦

Nℓ(ρ)Ṽ(β, δ) = H∗′
ρℓσ2

v
(θ), H∗

ρℓλk
(θ) = − 1

σ2
v
Ṽ′(ρ)G◦

Nℓ(ρ)Yk(ρ)

H∗
λk1

λk2
(θ) = − 1

σ2
v
Y′
k1
(ρ)Yk2(ρ)− tr[QD(ρ)F̄Nk1k2(δ)],

H∗
λkρℓ

(θ) = − 1
σ2
v
Ṽ′(ρ)G◦

Nℓ(ρ)Yk(ρ) + tr[FNk(λ)RNℓ(ρ)], ,

H∗
ρℓ1ρℓ2

(θ) = 1
σ2
v
Ṽ′(β, δ)RNℓ1ℓ2(ρ)Ṽ(β, δ)− tr[Q̇Dℓ2(ρ)GNℓ1(ρ) +QD(ρ)GNℓ1(ρ)GNℓ2(ρ)],

where X(ρ) = QD(ρ)BN (ρ)X, Yk(ρ) = QD(ρ)BN (ρ)ȦNk(λ)Y, FNk1k2(λ) = FNk1(λ)FNk2(λ),

F̄Nk1k2(δ) = BN (ρ)FNk1k2(λ)B
−1
N (ρ), RNℓ(ρ) = B−1

N (ρ)PD(ρ)G
◦
Nℓ(ρ)QD(ρ)BN (ρ), and lastly

RNℓ1ℓ2(ρ) = G◦
Nℓ1

(ρ)PD(ρ)G
◦
Nℓ2

(ρ)−G′
Nℓ1

(ρ)GNℓ2(ρ).

To derive Var[S∗
N (θ0)], we first derive S∗

N (θ0) as done in (3.11) for the first-order model.

Then, denote η∗k = QDBNFNkη, F̄k = QDF̄Nk, and Gℓ = QDGNℓQD. By applying Lemma B.5

to S∗
N (θ0), we obtain Var[S∗

N (θ0)], which has distinct elements:

N1Γ
∗
β[β,σ2

v ,λk,ρℓ]
=

[
1

σ2
v0
X′X, κ3

2σ3
v0
X′q, κ3

σv0
X′f̄k +

1
σ2
v0
X′η∗k,

κ3
σv0

X′gℓ
]
,

N1Γ
∗
σ2
vσ

2
v
= 1

4σ4
v0
(2N1 + κ4q

′q), N1Γ
∗
σ2
vλk

= κ3

2σ3
v0
q′η∗k +

1
2σ2

v0
[2tr(F̄k) + κ4q

′f̄k],

N1Γ
∗
σ2
vρℓ

= 1
2σ2

v0
[2tr(Gℓ) + κ4q

′gℓ],

N1Γ
∗
λk1

λk2
= 1

σ2
v0
η∗′k1η

∗
k2

+ 2κ3
σv0

f̄ ′
k1
η∗k2 + tr(F̄k1F̄◦

k2
) + κ4f̄

′
k1
f̄k2 ,

N1Γ
∗
λkρℓ

= tr(GℓF̄◦
k ) + κ4f̄

′
kgℓ +

κ3
σv0

g′ℓη
∗
k, N1Γ

∗
ρℓ1ρℓ2

= tr(Gℓ1G◦
ℓ2
) + κ4g

′
ℓ1
gℓ2 ,
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where f̄k = diagv(F̄k) and gℓ = diagv(Gℓ). A consistent estimator of Γ∗
N (θ0) is Γ∗

N (θ̂∗N ) −

Bias∗(δ̂∗N ), where Bias∗(δ0) has non-zero λk1-λk2 entries: N−1
1 tr(F̄′

Nk1
QDF̄Nk2PD).

For Section 5 (Heteroskedasticity). Let ξ = (β′, δ′)′, Lλk
(δ) = QD(ρ)[F̄Nk(δ) − F̄′

Nk(δ)],

and Lρℓ(ρ) = QD(ρ)[Ḡ
′
Nℓ(ρ)− ḠNℓ(ρ)]. H

⋄
N (ξ) = ∂S⋄

N (ξ)/∂ξ′ has components:

H⋄
ββ(ξ) = −X′(ρ)X(ρ), H⋄

βλk
(ξ) = −X′(ρ)Yk(ρ),

H⋄
βρℓ

(ξ) = −X′(ρ)G◦
Nℓ(ρ)Ṽ(β, δ), H⋄

λkβ
(ξ) = −Y′C′

N (δ)L′
λk
(δ)X(ρ),

H⋄
λk1

λk2
(ξ) =−Y′Ȧ′

Nk2
(λ)B′

N (ρ)L′
λk1

(δ)Ṽ(β, δ)+Y′C′
N (δ)

[
L′
λk1

λk2
(δ)Ṽ(β, δ)−L′

λk1
(δ)Yk2(ρ)

]
,

H⋄
λkρℓ

(ξ) = Y′C′
N (δ)

[
L′
λkρℓ

(δ)+L′
λk
(δ)GNℓ(ρ)−G′

Nℓ(ρ)L′
λk
(δ)

]
Ṽ(β, δ),

H⋄
ρℓβ

(ξ) = −V′
0(β, δ)L′

ρℓ
(ρ)X(ρ)− Ṽ′(β, δ)Lρℓ(ρ)BN (ρ)X,

H⋄
ρℓλk

(ξ) = −Y′Ȧ′
Nk(λ)B

′
N (ρ)L′

ρℓ
(ρ)Ṽ(β, δ)−V′

0(β, δ)L′
ρℓ
(ρ)Yλk

(ρ),

H⋄
ρℓ1ρℓ2

(ξ) = V′
0(β, δ)

[
Lρℓ1ρℓ2

(ρ)+L′
ρℓ1

(ρ)GNℓ2(ρ)−G′
Nℓ2

(δ)L′
ρℓ1

(ρ)
]
Ṽ(β, δ),

where V0(β, δ) = BN (ρ)[AN (λ)Y −Xβ], GNℓ(ρ) = PD(ρ)G
′
Nℓ(ρ)−QD(ρ)GNℓ(ρ),

Lλk1
λk2

(δ) = QD(ρ)
[
BN (ρ)FNk1k2(λ)B

−1
N (ρ)−diag[B−1′

N (ρ)F′
Nk1k2

(λ)B′
N (ρ)QD(ρ)]diag[QD(ρ)]

−1
]
,

Lλkρℓ(δ) = Q̇Dℓ(ρ)[F̄Nk(δ)−F̄′
Nk(δ)] +QD(ρ)[F̄Nkℓ(δ)−F̄′

Nkℓ(δ)],

F̄Nkℓ(δ) = −ḂNℓ(ρ)FNk(λ)B
−1
N (ρ) +BN (ρ)FNk(λ)B

−1
N (ρ)GNℓ(ρ),

F̄′
Nkℓ(δ) = diag[F̄′

Nkℓ(δ)QD(ρ) + F̄′
Nk(δ)Q̇Dℓ(ρ)]diag[QD(ρ)]

−1 + diag[F̄′
Nk(δ)QD(ρ)]Q̄Dℓ(ρ),

Q̄Dℓ(ρ) = −diag[QD(ρ)]
−1diag[Q̇Dℓ(ρ)]diag[QD(ρ)]

−1,

Lρℓ1ρℓ2
(ρ) = Q̇Dℓ2(ρ)[Ḡ

′
Nℓ1

(ρ)−ḠNℓ1(ρ)] +QD(ρ)[Ḡ
′
Nℓ1ℓ2

(ρ)−ḠNℓ1ℓ2(ρ)],

ḠNℓ1ℓ2(ρ) = Q̇Dℓ2(ρ)GNℓ1(ρ) +QD(ρ)GNℓ1(ρ)GNℓ2(ρ), and

ḠNℓ1ℓ2(ρ) = diag[ḠNℓ1ℓ2(ρ)QD(ρ)+ḠNℓ1(ρ)Q̇Dℓ2(ρ)]diag[QD(ρ)]
−1+diag[ḠNℓ1(ρ)QD(ρ)]Q̄Dℓ2(ρ).

Similar to (4.5), the distinct elements of Γ⋄
N (ξ0) ≡ Var

[
S⋄
N (ξ0)

]
/N1 are:

N1Γ
⋄
β[β,λk,ρℓ]

= [X′HX, X′HLλk
BNη, X′HLρℓDϕ0],

N1Γ
⋄
λk1

λk2
= η′B′

NL′
λk1

HLλk2
BNη + tr(HLλk1

HL◦
λk2

),

N1Γ
⋄
λkρℓ

= η′B′
NL′

λk
HLρℓDϕ0 + tr(HLλk

HL◦
ρℓ
),

N1Γ
⋄
ρℓ1ρℓ2

= ϕ′
0D′L′

ρℓ1
HLρℓ2

Dϕ0 + tr(HLρℓ1
HL◦

ρℓ2
).

(A.5)

A consistent estimator of Γ⋄
N (ξ0) is Γ̂

⋄
N = Γ⋄

N (ξ̂⋄N , ϕ̂⋄
N , Ĥ)−Bias⋄ϕ(δ̂

⋄
N , Ĥ)−Bias⋄H (̂̂δ⋄N , Ĥ), where

Bias⋄ϕ(δ0,H) and Bias⋄H(δ0,H) have non-zero δ entries: tr(HPDL′
aHLbPD)/N1 and 2tr((La ⊙

L◦
b − PDL′

a ⊙ LbPD)ΠNΛ(H)ΠN )/N1, respectively, for a, b = λk, ρℓ.

Supplementary Material

The online Supplementary Material contains proofs of the theoretical results and a full

set of the Monte Carlo results.
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