
Online Appendix

For “Fixed Effects Estimation of Spatial Panel Model with Missing

Responses: An Application to US State Tax Competition”

Xiaoyu Meng and Zhenlin Yang

In this Online Appendix, we provide proofs of Lemmas B.2 and B.3 in Appendix B of the

main text, the detailed proofs of results in Sections 2 and 3, and the complete set of Monte

Carlo results. Besides, an additional application using a simulated Boston housing price panel

(obtained based on the popular Boston housing price data) is also given.

1. Proofs of Lemmas B.2 and B.3

Although ΩN (δ) is defined differently in Sections 2 and 3, Lemmas B.2 and B.3 can be

shown in a similar manner. In particular, Lemma B.2 (ii) is assumed to be true in Assumption

F′ of Section 3. Therefore, the lemmas and following proofs are based on ΩN (δ) in Section 2.

Proof of Lemma B.2:

Proof of (i). Let MnT (δ) = A′
nT (λ)B

′
nT (ρ)BnT (ρ)AnT (λ). As ΩN (δ) is the principal

submatrix of M−1
nT (δ), it is sufficient to show that M−1

nT (δ) is uniformly bounded in both row

and column sums, uniformly in δ ∈ ∆, which is directly implied by Assumption E (i) and

Lemma B.1. Similarly, we have

Ω̇λ(δ) = S[( ∂
∂λA

−1
nT (λ))B

−1
nT (ρ)B

−1′
nT (ρ)A−1′

nT (λ) +A−1
nT (λ)B

−1
nT (ρ)B

−1′
nT (ρ)( ∂

∂λA
−1′
nT (λ))]S ′, and

Ω̇ρ(δ) = SA−1
nT (λ)[

∂
∂ρB

−1
nT (ρ) +

∂
∂ρB

−1′
nT (ρ)]A−1′

nT (λ)S ′.

By Assumption E (i) and Lemma B.1, both ∂
∂λA

−1
nT (λ) = A−1

nT (λ)WA−1
nT (λ) and ∂

∂ρB
−1
nT (ρ) =

B−1
nT (ρ)MB−1

nT (ρ) are bounded in both row and column sums, uniformly in δ ∈ ∆. Thus, Ω̇λ(δ)

and Ω̇ρ(δ) are also bounded in row (column) sum, uniformly in δ ∈ ∆.

Note that Ω−1
N (δ) = [SM−1

nT (δ)S ′]−1. We first show [SM−1
nT (δ)S

′]−1, where S is a (nT −

1)× nT selection matrix with a single observation omitted. Let r be the complement unit row

such that S′S + r′r = InT . Thus, we have MnT (δ) = S′M1(δ)S + S′M2(δ)r + r′M3(δ)R +

r′M4(δ)r, where M1(δ) = SMnT (δ)S
′, M2(δ) = SMnT (δ)r

′, M3(δ) = rMnT (δ)S
′, and M4(δ) =

rMnT (δ)r
′. As MnT (δ) is a positive definite (p.d.) matrix, all of its principal submatrices

(including diagonal elements) are also p.d. matrices, uniformly in δ ∈ ∆. Thus, with the

inverse formula of a partitioned matrix and S′S + r′r = InT , we have M−1
nT (δ) = S′[M1(δ) −

M2(δ)M
−1
4 (δ)M3(δ)]

−1S+S′ . . . r+r′ . . . R+r′ . . . r. Using SS′ = I(n−1)T and rS′ = 0, we have

[SM−1
nT (δ)S

′]−1 =M1(δ)−M2(δ)M
−1
4 (δ)M3(δ) = SMnT (δ)S

′− SMnT (δ)r′rMnT (δ)S′

rMnT (δ)r′ . As S, r and
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MnT (δ) are all uniformly bounded in both row and column sums and rMnT (δ)r
′ is positive,

we have [SM−1
nT (δ)S

′]−1 is also bounded in both row and column sums, uniformly in δ ∈ ∆, by

Lemma B.1. Note that the selection matrix S can be written as the product of nT −N selection

matrices with a single observation deleted. Therefore, we can repeat the above procedures and

show that Ω−1
N (δ) is also bounded in both row and column sums, uniformly in δ ∈ ∆.

Proof of (ii). Proof is simpler using a D⋆
α under the constraint α1 = 0. Recall D(δ) =

[Dµ(δ),Dα(δ)] with Dµ(δ) = C(δ)Dµ, Dα(δ) = C(δ)D⋆
α and C(δ) = Ω

− 1
2

N (δ)SA−1
nT (λ). Denote

D11(δ) = D′
µ(δ)Dµ(δ), D12(δ) = D′

µ(δ)Dα(δ), D22(δ) = D′
α(δ)Dα(δ). Using the inverse formula

of a partitioned matrix, we have

[D′(δ)D(δ)]−1 =

 F−1(δ) −F−1(δ)D12(δ)D−1
22 (δ)

−D−1
22 (δ)D′

12(δ)F−1(δ) D−1
22 (δ) +D−1

22 (δ)D′
12(δ)F−1(δ)D12(δ)D−1

22 (δ)

 ,
where F(δ) = D11(δ)−D12(δ)D−1

22 (δ)D′
12(δ). Plugging this into QD(δ), we obtain,

QD(δ) = QDα(δ)−QDα(δ)Dµ(δ)[D′
µ(δ)QDα(δ)Dµ(δ)]

−1D′
µ(δ)QDα(δ).

Plugging this into Ψ(δ), we first show Ω
− 1

2
N (δ)QDα(δ)Ω

− 1
2

N (δ). Given the special structure of

Dα(δ), one has QDα(δ) = blkdiag(Q1(δ), . . . , QT (δ)), where Q1(δ) = In and Qt(δ) = In −
1
nCt(δ)ln[

1
n l

′
nC

′
t(δ)Ct(δ)ln]

−1l′nC
′
t(δ) for t = 2, · · · , T . Note that ΩN (δ) is block diagonal and

denote its tth block by Ωt(δ). Thus, we only need to show that Ω
− 1

2
t (δ)Qt(δ)Ω

− 1
2

t (δ), t = 1, · · · , T

are uniformly bounded in both row and column sums, uniformly in δ ∈ ∆. It is trivial when

t = 1. For t = 2, · · · , T , by Assumption E and Lemma B.2(i), the limit of 1
n l

′
nC

′
t(δ)Ct(δ)ln

is bounded away from zero and the elements of Ω
− 1

2
t (δ)Ct(δ)lnl

′
nC

′
t(δ)Ω

− 1
2

t (δ) are uniformly

bounded, uniformly in δ ∈ ∆. Therefore, Ω
− 1

2
t (δ)Qt(δ)Ω

− 1
2

t (δ), t = 2, · · · , T must be uniformly

bounded in both row and column sums, uniformly in δ ∈ ∆.

We next consider Ω
− 1

2
N (δ)QDα(δ)Dµ(δ)[D′

µ(δ)QDα(δ)Dµ(δ)]
−1D′

µ(δ)QDα(δ)Ω
− 1

2
N (δ). Denote

it as Q̄(δ), which can be partitioned into T × T blocks with (s, t)th block being

Q̄s,t(δ) =
1
T Ω

− 1
2

s (δ)Qs(δ)Cs(δ)[
1
T

∑T
t=1C

′
t(δ)Qt(δ)Ct(δ)]

−1C ′
t(δ)Qt(δ)Ω

− 1
2

t (δ).

By assuming A−1
s (λ)[ 1T

∑T
t=1C

′
t(δ)Qt(δ)Ct(δ)]

−1A−1′
t (λ) is uniformly bounded in both row and

column sum norms, uniformly in δ ∈ ∆, for all s and t, we have that the row and column sums

of each Q̄s,t(δ) must have uniform order O(1/T ), uniformly in δ ∈ ∆. As there are T blocks

in each row or in each column of Q̄(δ), we must have Q̄(δ) bounded in both row and column

sum norms, uniformly in δ ∈ ∆. Consequently, Ψ(δ) is bounded in both row and column sum

norms, uniformly in δ ∈ ∆.
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Proof of (iii). Let ZN (δ) = [ 1N X̃′(δ)X̃(δ)]−1 = [ 1NX′(δ)QD(δ)X(δ)]−1 with its (j, k)th ele-

ment being denoted by zjk(δ). From Assumption C, ZN (δ) converges to a finite limit uniformly

in δ ∈ ∆. Therefore, there exists a constant cz such that |zjk(δ)| ≤ cz uniformly in δ ∈ ∆

for large enough N . Note that X(δ) = C(δ)X. As the elements of X are uniformly bounded

(Assumption C), and Ω
− 1

2
N (δ)QD(δ)C(δ) ≡ Ψ(δ)SA−1

nT (λ) are bounded in both row and col-

umn sum norms, uniformly in δ ∈ ∆, the elements of Ω
− 1

2
N (δ)QD(δ)X(δ) are also uniformly

bounded, uniformly in δ ∈ ∆. Hence, there exists a constant cx such that |xjk(δ)| ≤ cx uni-

formly in δ ∈ ∆, where xjk(δ) is the (j, k)th element of Ω
− 1

2
N (δ)QD(δ)X(δ). Let pjl(δ) be the

(j, l)th element of Ω
− 1

2
N (δ)PX̃(δ)Ω

− 1
2

N (δ). It follows that uniformly in δ ∈ ∆,
∑N

j=1 |pjl(δ)| ≤
1
N

∑N
j=1

∑k
r=1

∑k
s=1 |zrs(δ)xjr(δ)xls(δ)| ≤ k2czc

2
x for all l = 1, 2, . . . , N . Similarly, uniformly

in δ ∈ ∆, we have
∑nT

l=1 |pjl(δ)| ≤
1
N

∑nT
l=1

∑k
r=1

∑k
s=1 |zrs(δ)xjr(δ)xls(δ)| ≤ k2czc

2
x for all j =

1, 2, . . . , N . That is, both ∥Ω− 1
2

N (δ)PX̃(δ)Ω
− 1

2
N (δ)∥1 and ∥Ω− 1

2
N (δ)PX̃(δ)Ω

− 1
2

N (δ)∥∞ are bounded,

uniformly in δ ∈ ∆. ■

Proof of Lemma B.3: From the proof of Lemma B.2, the elements of [ 1NX′(δ)QD(δ)X(δ)]−1

are uniformly bounded, uniformly in δ ∈ ∆. If AN and BN are bounded in row (column)

sum norm, then ANBN is also bounded in row (column) sum norm. Thus, Lemma A.6

of Lee (2004) implies that the elements of 1
NX′ANBNX are uniformly bounded. It follows

tr[ANX[X′(δ)QD(δ)X(δ)]−1X′BN ] = tr[( 1
NX′(δ)QD(δ)X(δ))−1 1

NX′(δ)ANBNX(δ)] = O(1), uni-

formly in δ ∈ ∆ because the number of regressors k is fixed. ■

2. Proofs for Section 2

Proofs use the following facts: (i) the eigenvalues of a projection matrix are either 0 or 1; (ii)

the eigenvalues of a positive definite (p.d.) matrix are strictly positive; (iii) γmin(A)tr(B) ≤

tr(AB) ≤ γmax(A)tr(B) for symmetric matrix A and positive semi-definite (p.s.d.) matrix

B; (iv) γmax(A+ B) ≤ γmax(A) + γmax(B) for symmetric matrices A and B; (v) γmax(AB) ≤

γmax(A)γmax(B) for p.s.d. matrices A and B; and (vi) Let γk(·) denote the k-th smallest

eigenvalue of a matrix. Then γk(A) ≤ γk(Ar) ≤ γk+n−r(A), 1 ≤ k ≤ r, for symmetric matrix A

and its r-by-r principal submatrix Ar.

Proof of Theorem 2.1: By theorem 5.9 of Van der Vaart (1998), we only need to show

supδ∈δ
1
N1

∥∥S∗c
N (δ)− S̄∗c

N (δ)
∥∥ p−→ 0 under the assumptions in Theorem 2.1. From (2.9) and (C.2),

the consistency of δ̂M follows from:

(a) infδ∈∆σ̄
2
v,M(δ) is bounded away from zero,
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(b) supδ∈∆
∣∣σ̂2v,M(δ)− σ̄2v,M(δ)

∣∣ = op(1),

(c) supδ∈∆
1
N1

∣∣V̂′(δ)Hω(δ)V̂(δ)− E[V̄′(δ)Hω(δ)V̄(δ)]
∣∣ = op(1), for ω = λ, ρ,

(d) supδ∈∆
1
N1

∣∣V̂′(δ)J(δ)ε(β̂M(δ), δ)− E[V̄′(δ)J(δ)ε(β̄M(δ), δ)]
∣∣ = op(1).

Proof of (a). Note that σ̄2v,M(δ) = 1
N1
η′Ω

− 1
2

N (δ)Q(δ)Ω
− 1

2
N (δ)η +

σ2
v0
N1

tr[QD(δ)ON (δ)]. The

first term can be written in the form of a′(δ)a(δ) for an N × 1 vector function of δ, and thus is

non-negative, uniformly in δ ∈ ∆. For the second term,

σ2
v0
N1

tr[QD(δ)ON (δ)] ≥ σ2
v0
N1
γmin[ON (δ)]tr[QD(δ)] ≥ σ2v0γmax(ΩN )−1γmin[ΩN (δ)]

≥ σ2v0γmax(A
′
NAN )−1γmax(B

′
NBN )−1γmin[A

′
N (λ)AN (λ)]γmin[B

′
N (ρ)BN (ρ)] > 0,

uniformly in δ ∈ ∆, by Assumption E(iii). It follows that infδ∈∆σ̄
2
v,M(δ) > 0.

Proof of (b). From (2.8), V̂(δ) = QD(δ)[Y(δ) − X(δ)β̂M(δ)] = QX̃(δ)QD(δ)Y(δ) and

σ̂2v,M(δ) = 1
N1

Y′(δ)Q(δ)Y(δ). From (C.3), σ̄2v,M(δ) = 1
N1

E[Y′(δ)Q(δ)Y(δ)] + σ2
v0
N1

tr[P(δ)ON (δ)].

Thus, σ̂2v,M(δ)− σ̄2v,M(δ) =
1
N1

[Y′(δ)Q(δ)Y(δ)− E(Y′(δ)Q(δ)Y(δ))]− σ2
v0
N1

tr[P(δ)ON (δ)].

For the second term, 0 ≤ 1
N1

tr[P(δ)ON (δ)] ≤ 1
N1
γmax[ON (δ)]γ2max[QD(δ)]tr[PX̃(δ)] = o(1),

because tr[PX̃(δ)] = k, γmax[QD(δ)] = 1 and, by Assumption E(iii),

γmax[ON (δ)] ≤ γmin(A
′
NAN )−1γmin(B

′
NBN )−1γmax[A

′
N (λ)AN (λ)]γmax[B

′
N (ρ)BN (ρ)] <∞.

Therefore, one has supδ∈∆ |σ
2
v0
N1

tr[P(δ)ON (δ)]| = o(1). For the first term, letting Q̄(δ) =

Ω
− 1

2
N (δ)Q(δ)Ω

− 1
2

N (δ) and using SY = η + SA−1
nTB

−1
nTV, we have

1
N1

[Y′(δ)Q(δ)Y(δ)− E(Y′(δ)Q(δ)Y(δ))] = 1
N1

[Y′S ′Q̄(δ)SY − E(Y′S ′Q̄(δ)SY)]

= 2
N1
η′Q̄(δ)SA−1

nTB
−1
nTV + 1

N1
[V′B−1′

nT A−1′
nT SQ̄(δ)SA−1

nTB
−1
nTV − σ2v0tr(Q̄(δ)ΩN )].

Note that Q̄(δ) ≡ Ψ(δ) −Ω
− 1

2
N (δ)PX̃(δ)Ω

− 1
2

N (δ), bounded in both row and column sum norms,

uniformly in δ ∈ ∆, by Lemma B.2. Then, by Assumption E and Lemma B.1, Q̄(δ)SA−1
nTB

−1
nT

and B−1′
nT A−1′

nT SQ̄(δ)SA−1
nTB

−1
nT are also bounded in both row and column sum norms, uniformly

in δ ∈ ∆. Further, the elements of η are uniformly bounded. Thus, the pointwise convergence

of the first term follows from Lemma B.4 (v), and that of the second term follows from Lemma

B.4 (iv). Therefore, 1
N1

[Y′(δ)Q(δ)Y(δ)− E(Y′(δ)Q(δ)Y(δ))] p−→ 0, for each δ ∈ ∆.

Next, let δ1 and δ2 be in ∆. By the mean value theorem (MVT):

1
N1

Y′(δ1)Q(δ1)Y(δ1)− 1
N1

Y′(δ2)Q(δ2)Y(δ2) = 1
N1

Y′S ′[ ∂
∂δ′ Q̄(δ̄)]SY(δ2 − δ1),

where δ̄ lies between δ1 and δ2. It follows that
1
N1

Y′(δ)Q(δ)Y(δ) is stochastically equicontinuous

if supδ∈∆
1
N1

Y′S ′[ ∂
∂ϖ Q̄(δ)]SY = Op(1), ϖ = λ, ρ. We only show when ϖ = λ as the proof of

the other case is similar and simpler. To derive the expression of the partial derivative ∂
∂λQ̄(δ),

write Q̄(δ) ≡ Ψ(δ)−Ψ(δ)X (λ)[X ′(λ)Ψ(δ)X (λ)]−1X ′(λ)Ψ(δ), where X (λ) = SA−1
nT (λ)X. For a
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conformable vector a and using (A.2) and Hλ(δ) = Ω
− 1

2
N (δ)[ ∂

∂λΩN (δ)]Ω
− 1

2
N (δ), we have,

a′ ∂
∂λQ̄(δ)a = − a′Q̄(δ)[ ∂

∂λΩN (δ)]Q̄(δ)a− 2a′Q̄(δ)K(δ)a

− 2a′Q̄(δ)S[ ∂
∂λA

−1
nT (λ)]X[X ′(λ)Ψ(δ)X (λ)]−1X ′(λ)Ψ(δ)a.

Again, Lemma B.2 implies Q̄(δ) is bounded in both row and column sum norms, uniformly in

δ ∈ ∆. In addition, following exactly the same way of proving Lemma B.2(ii) and (iii), we show

that K(δ) and X[X ′(λ)Ψ(δ)X (λ)]−1X ′(λ) are also bounded in both row and column sum norms,

uniformly in δ ∈ ∆. For ease of presentation, we let Q̄†
λ(δ) = Q̄(δ)[ ∂

∂λΩN (δ)]Q̄(δ)+2Q̄(δ)K(δ)+

2Q̄(δ)S[ ∂
∂λA

−1
nT (λ)]X[X ′(λ)Ψ(δ)X (λ)]−1X ′(λ)Ψ(δ) and then a′ ∂

∂λQ̄(δ)a ≡ −a′Q̄†
λ(δ)a. With

these, Lemma B.1 implies that ∥Q̄†
λ(δ)∥1 and ∥Q̄†

λ(δ)∥∞ are bounded uniformly in δ ∈ ∆.

Thus, Lemma B.4 implies

1
N1

Y′S ′[ ∂
∂λQ̄(δ)]SY = − 1

N1
Y′S ′Q̄†

λ(δ)SY = − 1
N1

(η + SA−1
nTB

−1
nTV)′Q̄†

λ(δ)(η + SA−1
nTB

−1
nTV)

= − 1
N1
η′Q̄†

λ(δ)η −
2
N1η

′Q̄†
λ(δ)SA

−1
nTB

−1
nTV − 1

N1
V′B−1′

nT A−1′
nT S ′Q̄†

λ(δ)SA
−1
nTB

−1
nTV = Op(1),

uniformly in δ ∈ ∆. Thus, supδ∈∆
1
N1

Y′S ′[ ∂
∂λQ̄(δ)]SY = Op(1). Following a similar analysis,

supδ∈∆
1
N1

Y′S ′[ ∂
∂ρQ̄(δ)]SY = Op(1). With the pointwise convergence of 1

N1
[Y′(δ)Q(δ)Y(δ) −

E(Y′(δ)Q(δ)Y(δ))] to zero for each δ ∈ ∆ and the stochastic equicontinuity of 1
N1

Y′(δ)Q(δ)Y(δ),

the uniform convergence result, supδ∈∆ | 1
N1

[Y′(δ)Q(δ)Y(δ)−E(Y′(δ)Q(δ)Y(δ))]| = op(1), follows

(Andrews, 1992). Thus, (b) is shown.

Proof of (c). As the two results can be shown in a similar manner, we only show

supδ∈∆
1
N1

∣∣V̂′(δ)Hλ(δ)V̂(δ) − E[V̄′(δ)Hλ(δ)V̄(δ)]
∣∣ = op(1). By the expressions of Hλ(δ), V̂(δ)

and V̄(δ) given above, we have

1
N1

V̂′(δ)Hλ(δ)V̂(δ)− 1
N1

E[V̄′(δ)Hλ(δ)V̄(δ)]

= 1
N1

[Y′S ′Q̄(δ)( ∂
∂λΩN (δ))Q̄(δ)SY − E(Y′S ′Q̄(δ)( ∂

∂λΩN (δ))Q̄(δ)SY)]

− σ2
v0
N1

tr[P̄(δ)( ∂
∂λΩN (δ))P̄(δ)ΩN ],

where P̄(δ) = Ω
− 1

2
N (δ)QD(δ)PX̃(δ)QD(δ)Ω

− 1
2

N (δ). We see that the first term is similar in form to

1
N1

[Y′S ′Q̄(δ)SY − E(Y′S ′Q̄(δ)SY)] from (b) and its uniform convergence is shown similarly.

Furthermore, by Lemma B.3, it is easy to see the second term is o(1) uniformly in δ ∈ ∆.

Proof of (d). Again, using the expressions of β̂M(δ), β̄M(δ), V̂(δ) and V̄(δ), we have

1
N1

V̂′(δ)J(δ)ε(β̂M(δ), δ)− 1
N1

E[V̄′(δ)J(δ)ε(β̄M(δ), δ)]

= 1
N1

[Y′S ′Q̄(δ)(M(δ) +K(δ))SY − E(Y′S ′Q̄(δ)(M(δ) +K(δ))SY)]

− σ2
v0
N1

tr[P̄(δ)K(δ)ΩN ]− σ2
v0
N1

tr[Q̄(δ)M(δ)ΩN ],
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where M(δ) = [S( ∂
∂λA

−1
nT (λ))X − K(δ)X (λ)][X ′(λ)Ψ(δ)X (λ)]−1X ′(λ)Ψ(δ). Therefore, the uni-

form convergence of the first term can be shown in a similar way as we do for 1
N1

[Y′S ′Q̄(δ)SY−

E(Y′S ′Q̄(δ)SY)] from (b) due to their similar forms. By Lemma B.3, the remaining two terms

are easily shown to be o(1), uniformly in δ ∈ ∆. ■

Proof of Theorem 2.2: Applying the MVT to each element of S∗
N (θ̂M), we have

0 = 1√
N1
S∗
N (θ̂M) =

1√
N1
S∗
N (θ0) +

[
1
N1

∂
∂θ′S

∗
N (θ)

∣∣
θ=θ̄r in rth row

]√
N1(θ̂M − θ0), (O.1)

where {θ̄r} are on the line segment between θ̂M and θ0. The result follows if

(a) 1√
N1
S∗
N (θ0)

D−→ N [0, limN→∞ Γ∗
N (θ0)],

(b) 1
N1

[ ∂
∂θ′S

∗
N (θ)

∣∣
θ=θ̄r in rth row

− ∂
∂θ′S

∗
N (θ0)] = op(1), and

(c) 1
N1

[ ∂
∂θ′S

∗
N (θ0)− E( ∂

∂θ′S
∗
N (θ0))] = op(1).

Proof of (a). As seen from (2.10), the elements of S∗
N (θ0) are linear-quadratic forms in V.

Thus, for every non-zero (k + 3)× 1 constant vector a, a′S∗
N (θ0) is of the form:

a′S∗
N (θ0) = b′NV +V′ΦNV − σ2vtr(ΦN ),

for suitably defined non-stochastic vector bN and matrix ΦN . Based on Assumptions A-F, it is

easy to verify (by Lemma B.1 and Lemma B.2) that bN and matrix ΦN satisfy the conditions

of the CLT for LQ form of Kelejian and Prucha (2001), and hence the asymptotic normality

of 1√
N1
a′S∗

N (θ0) follows. By Cramér-Wold device, 1√
N1
S∗
N (θ0)

D−→ N [0, limN→∞ Γ∗
N (θ0)], where

elements of Γ∗
N (θ0) are given in Appendix A.

Proof of (b). The Hessian matrix H∗
N (θ) = ∂

∂θ′S
∗
N (θ) is given in Appendix A. Note that we

can rewrite Ψ̇λ(δ) in (A.2) and Ψ̇ρ(δ) in (A.3) as −Ψ(δ)Ω̇λ(δ)Ψ(δ)−Ψ(δ)K(δ)−K′(δ)Ψ(δ) and

−Ψ(δ)Ω̇ρ(δ)Ψ(δ), respectively. Following exactly the same way of proving Lemma B.2(ii), we

show that both K(δ) and ∂
∂ωK(δ),ω = λ, ρ are uniformly bounded in both row and column sums,

uniformly in δ ∈ ∆. In addition, the proof of Lemma B.2(i) also implies Ω̈ωϖ(δ), ω,ϖ = λ, ρ

is bounded in row and column sum norms, uniformly in δ ∈ ∆. Thus, by Lemma B.1, we

have Ψ̇ω(δ) and Ψ̈ωϖ(δ), ω,ϖ = λ, ρ are all bounded in row and column sum norms, uniformly

in δ ∈ ∆. With these, Ṽ(β0, δ0) = QDΓV and V(β0, λ0) = SA−1
nT [Dϕ0 + B−1

nTV], Lemma

B.4 leads to 1
N1
H∗

N (θ0) = Op(1). Thus, 1
N1
H∗

N (θ̄) = Op(1) since θ̄
p−→ θ0 due to θ̂M

p−→ θ0,

where for simplicity, H∗
N (θ̄) is used to denote ∂

∂θ′S
∗
N (θ)

∣∣
θ=θ̄r in rth row

. As σ̄2v
p−→ σ2v0, we have

σ̄−r
v = σ−r

v0 + op(1), for r = 2, 4, 6. As σ−r
v appears in H∗

N (θ) multiplicatively, 1
N1
H∗

N (θ̄) =

1
N1
H∗

N (β̄, δ̄, σ2v0) + op(1). Thus, the proof of (b) is equivalent to the proof of

1
N1

[H∗
N (β̄, δ̄, σ2v0)−H∗

N (θ0)]
p−→ 0,
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or the proofs of 1
N1

[H∗S
N (β̄, δ̄, σ2v0) − H∗S

N (θ0)]
p−→ 0 and 1

N1
[H∗NS

N (δ̄) − H∗NS
N (δ0)]

p−→ 0, where

H∗S
N and H∗NS

N denote, respectively, the stochastic and non-stochastic parts of H∗
N .

For the stochastic part, we see that all the components of H∗S
N (β, δ, σ2v0) are linear or

quadratic in β, but nonlinear in δ. Hence, with an application of the MVT on H∗S
N (β̄, δ̄, σ2v0)

w.r.t δ̄, we can write 1
N1

[H∗S
N (β̄, δ̄, σ2v0)−H∗S

N (θ0)] as

1
N1

[ ∂
∂δ′H

∗S
N (β̄, δ̇, σ2v0)](δ̄ − δ0) +

1
N1

[H∗S
N (β̄, δ0, σ

2
v0)−H∗S

N (θ0)],

where for simplicity, ∂
∂δ′H

∗S
N (β̄, δ̇, σ2v0) is used to denote ∂

∂δ′H
∗S
N (β, δ, σ2v0)

∣∣
β=β̄s,δ=δ̇s in sth row

and

{δ̇s} are on the line segment between δ̄ and δ0. Therefore, it suffices to show

(i) 1
N1

∂
∂δ′H

∗S
N (β̄, δ̇, σ2v0) = Op(1) and (ii) 1

N1
[H∗S

N (β̄, δ0, σ
2
v0)−H∗S

N (θ0)] = op(1).

We do so for the most complicated term, H∗S
λλ(θ). As

∂
∂λH

∗S
λλ(β̄, δ̇, σ

2
v0) and

∂
∂ρH

∗S
λλ(β̄, δ̇, σ

2
v0) can

be analyzed in a similar manner, we show the later case for instance. We have,

1
N1

∂
∂ρH

∗S
λλ(β̄, δ̇, σ

2
v0) =

2
N1σ2

v0
V ′(β̄, λ̇)Ψ̈λρ(δ̇)S[ ∂

∂λA
−1
nT (λ̇)]Xβ̄

+ 2
N1σ2

v0
V ′(β̄, λ̇)Ψ̇ρ(δ̇)[

∂
∂λA

−1
nT (λ̇)]WnTA

−1
nT (λ̇)Xβ̄

− 1
N1σ2

v0
β̄′X′[ ∂

∂λA
−1
nT (λ̇)]

′Ψ̇ρ(δ̇)[
∂
∂λA

−1
nT (λ̇)]Xβ̄

− 1
2N1σ2

v0
V ′(β̄, λ̇)[ ∂

∂ρΨ̈λλ(δ̇)]V(β̄, λ̇)

From (A.2), we note that the expression of Ψ̈λλ(δ) involves only Ω̈λλ(δ), Ψ̇λ(δ) and ∂
∂λK(δ).

The partial derivatives of these components w.r.t ρ are easily shown to be bounded in both

row and column sums, uniformly in δ ∈ ∆. It follows by Lemmas B.1 and B.4 that the above

equation is Op(N), and then the result (i) follows.

To prove (ii), we note that all the terms in H∗S
λλ(θ) are quadratic in β and therefore,

1
N1

[H∗S
λλ(β̄, δ0, σ

2
v0)−H∗S

λλ(θ0)] =
1

N1σ2
v0
(β̄ + β0)

′H(δ0)(β̄ − β0),

whereH(δ) = 2X′A−1′
nT (λ)Ψ̇λ(δ)S[ ∂

∂λA
−1
nT (λ)]X+2X′(δ)QD(δ)J(δ)WnTA

−1
nT (λ)X−X′J′(δ)QD(δ)J(δ)X−

1
2X

′A−1′
nT (λ)Ψ̈λλ(δ)A

−1
nT (λ)X. By Lemmas B.1 and B.2, it is easy to show that H(δ0) are

bounded in both row and column sums. Therefore, (ii) holds as β̄ − β0 = op(1).

For the non-stochastic part, we still illustrate the proof using the most complicated λλ-term.

As the non-stochastic part is nonlinear in both λ̄ and ρ̄, we have by the MVT,

1
N1

[H∗NS
λλ (δ̄)−H∗NS

λλ (δ0)]

= − (λ̄− λ0)
1

2N1
tr[Ω̈λλ(δ̇)Ψ̇λ(δ̇) + Ω̇λ(δ̇)Ψ̈λλ(δ̇) + [ ∂

∂λΩ̈λλ(δ̇)]Ψ(δ̇) + Ω̈λλ(δ̇)Ψ̇λ(δ̇)]

− (ρ̄− ρ0)
1

2N1
tr[Ω̈λρ(δ̇)Ψ̇λ(δ̇) + Ω̇λ(δ̇)Ψ̈λρ(δ̇) + [ ∂

∂ρΩ̈λλ(δ̇)]Ψ(δ̇) + Ω̈λλ(δ̇)Ψ̇ρ(δ̇)],

where λ̇ lies between λ̄ and λ0 and ρ̇ lies between ρ̄ and ρ0. Again, by Lemmas B.1 and B.2, we
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conclude that both terms in the trace operator are uniformly bounded in both row and column

sums. Therefore, the terms inside the trace both have elements that are uniformly bounded.

As δ̄ − δ0 = op(1), we have 1
N1

[H∗NS
λλ (δ̄)−H∗NS

λλ (δ0)] = op(1).

Proof of (c). Since Ṽ(β0, δ0) = QDΓV and V(β0, λ0) = SA−1
nT [Dϕ0 +B−1

nTV], the Hessian

matrix at true θ0 are seen to be linear combinations of terms linear or quadratic in V, and

constants. The constant terms are canceled out. Other terms are shown to be op(1) based on

Lemma B.4. For example,

1
N1

[H∗
ρρ(ρ0)− E(H∗

ρρ(ρ0))]

= 1
N1σ2

v0
[V′B−1′

nT A−1′
nT S ′Ψ̈ρρ(δ0)SA−1

nTB
−1
nTV − E(V′B−1′

nT A−1′
nT S ′Ψ̈ρρ(δ0)SA−1

nTB
−1
nTV)] = op(1). ■

Proof of Corollary 2.1: Note that Γ∗
N (θ̂M) = Γ∗

N (θ)|(θ=θ̂M,ϕ=ϕ̂M,κ3=κ̂3,N ,κ4=κ̂4,N ). As θ̂M, κ̂3,N

and κ̂4,N are consistent estimators for θ0, κ3 and κ4, plugging these estimators into Γ∗
N (θ) will

not bring additional bias to the estimation of Γ∗
N (θ0). However, due to incidental parameters

problem, the µ̂M component of ϕ̂M is not consistent for the estimation of µ0 when T is fixed. To

estimate the bias caused by replacing ϕ0 by ϕ̂M, rewrite (2.4),

ϕ̂(β, δ) = [D′(δ)D(δ)]−1D′(δ)C(δ)[AN (λ)Y −Xβ].

Thus, the unconstrained estimate of ϕ0 is just ϕ̂M = ϕ̂(β̂M, δ̂M). From the expression of Γ∗
λλ(θ0),

we see that ϕ0 is embedded in Γ′QDJDϕ0 from Π2, where we recall Γ(δ) = C(δ)B−1
nT (ρ), C(δ) =

Ω
− 1

2
N (δ)SA−1

nT (λ) and J(δ) = Ω
− 1

2
N (δ)S[ ∂

∂λA
−1
nT (λ)]. Thus, we have Γ′(δ̂M)QD(δ̂M)J(δ̂M)Dϕ̂M =

M(δ̂M)[AN (λ̂M)Y −Xβ̂M], where M(δ̂M) = Γ′(δ̂M)QD(δ̂M)J(δ̂M)D[D′(δ̂M)D(δ̂M)]−1D′(δ̂M)C(δ̂M). Note

ANY−Xβ̂M = ANY−Xβ0−X(β̂M−β0). Applying the MVT on each row of M(δ̂M)[AN (λ̂M)Y−

Xβ̂M] w.r.t δ, we have,

M(δ̂M)[AN (λ̂M)Y −Xβ̂M]

= M[ANY −Xβ0 −X(β̂M − β0)] + [ ∂
∂ρM(δ̄)][AN (λ̄)Y −Xβ̂M](ρ̂M − ρ0)

+
{
[ ∂
∂λM(δ̄)][AN (λ̄)Y −Xβ̂M]−M(δ̄)WY

}
(λ̂M − λ0)

= Γ′QDJDϕ0 +MB−1
N V −MX(β̂M − β0) + [ ∂

∂ρM(δ̄)][AN (λ̄)Y −Xβ̂M](ρ̂M − ρ0)

+
{
[ ∂
∂λM(δ̄)][AN (λ̄)Y −Xβ̂M]−M(δ̄)WY

}
(λ̂M − λ0), (O.2)

where δ̄ lies between ρ̂M and ρ0 and changes over the rows of [ ∂
∂ρM(δ̄)][AN (λ̄)Y − Xβ̂M] and

[ ∂
∂λM(δ̄)][AN (λ̄)Y−Xβ̂M]−M(δ̄)WY. Note that M(δ) ≡ B−1′

nT (ρ)A−1′
nT (λ)S ′Ψ(δ)K(δ)SA−1

nT (λ),

and thus it is easy to see that M(δ) and ∂
∂ωM(δ̄), ω = λ, ρ, are uniformly bounded in both row

and column sums, uniformly in δ ∈ ∆, by Lemma B.1. From the expression of Γ∗
N (θ̂M), it has

components linear or quadratic in Γ′(δ̂M)QD(δ̂M)J(δ̂M)Dϕ̂M. Let dN be a non-stochastic N -vector
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with elements being of uniform order O(1) or O(h−1
n ). Using (O.2), the terms of Γ∗

N (θ̂M) linear

in Γ′(δ̂M)QD(δ̂M)J(δ̂M)Dϕ̂M are represented as

1
N1
d′NΓ′(δ̂M)QD(δ̂M)J(δ̂M)Dϕ̂M

= 1
N1
d′NΓ′QDJDϕ0 + 1

N1
d′NMB−1

N V − 1
N1
d′NMX(β̂M − β0)

+ 1
N1
d′N [ ∂

∂ρM(δ̄)][AN (λ̄)Y −Xβ̂M](ρ̂M − ρ0)

+ 1
N1
d′N

{
[ ∂
∂λM(δ̄)][AN (λ̄)Y −Xβ̂M]−M(δ̄)WY

}
(λ̂M − λ0)

= 1
N1
d′NΓ′QDJDϕ0 + op(1),

where the last equation holds because of the consistency of θ̂M and Lemma B.4, using SY =

η+SA−1
nTB

−1
nTV. Hence, we can conclude that the terms of Γ∗

N (θ0) linear in ϕ0 can be consistently

estimated by simply replacing ϕ0 with ϕ̂M.

Note that ΓΓ′ = IN . Hence, the only term that is quadratic in ϕ0 is contained in Γ∗
λλ(θ0),

1
N1σ2

v0
ϕ′0D

′J′QDJDϕ0. The plug-in estimator, 1
N1σ̂2

v,M
ϕ̂′MD

′J′(δ̂M)QD(δ̂M)J(δ̂M)Dϕ̂M, estimates this

term. Using (O.2), θ̂∗N − θ0 = op(1) and Lemma B.4, we show that this estimator is bi-

ased/inconsistent:

1
N1σ̂2

v,M
ϕ̂′MD

′J′(δ̂M)QD(δ̂M)J(δ̂M)Dϕ̂M

= 1
N1σ2

v0
ϕ′0D

′J′QDJDϕ0 + 1
N1σ2

v0
V′B−1′

nT M′MB−1
nTV + op(1)

= 1
N1σ2

v0
ϕ′0D

′J′QDJDϕ0 + 1
N1

tr[(D′D)−1D′J′QDJD] + op(1).

We see that the bias term, 1
N1

tr[(D′D)−1D′J′QDJD], involves only the common parameters that

can be consistently estimated. Thus, a bias correction can easily be made. Define

Bias∗λλ(δ) =
1
N1

tr[(D′(δ)D(δ))−1D′J′(δ)QD(δ)J(δ)D]. (O.3)

This gives the bias matrix of Γ∗
N (θ̂M), which is a matrix of the same dimension as Γ∗

N (θ̂M), and

has the sole non-zero element Bias∗λλ(δ0) corresponding to the Γ∗
λλ(θ̂M) component. ■

Proof of Corollary 2.2.

Proof of (i). Recall Q̄D ≡ Ω
− 1

2
N QDΓ. Three vectorsV,Ω

− 1
2

N Ṽ = Q̄DV andΩ
− 1

2
N (δ̂M)V̂(β̂M, δ̂M) =

Ω
− 1

2
N (δ̂M)QD(δ̂M)Ω

− 1
2

N (δ̂M)S[Y − A−1
nT (λ̂M)Xβ̂M] are with respective elements {vl}, {ṽj} and {v̂j},

and Q̄D has elements {qjl}, l = 1, . . . , nT , j = 1, . . . , N , where j and l are the combined indices

of both cross-sectional and time dimensions.

Consistency of κ̂3,N . As σ̂v,M − σv0 = op(1) and δ̂∗N − δ0 = op(1), the denominators of

κ̂3,N and κ3 agree asymptotically. Thus, κ̂3,N is consistent if 1
N

∑N
j=1[v̂

3
j − E(ṽ3j )]

p−→ 0, or (a)

1
N

∑N
j=1[ṽ

3
j − E(ṽ3j )]

p−→ 0 and (b) 1
N

∑N
j=1(v̂

3
j − ṽ3j )

p−→ 0.
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To prove (a), noting that ṽj =
∑nT

h=1 qjhvh, we have,

1
N

∑N
j=1[ṽ

3
j − E(ṽ3j )] =

1
N

∑N
j=1

∑nT
h=1 q

3
jh[v

3
h − E(v3h)] +

3
N

∑N
j=1

∑nT
l=1

∑nT
m ̸=l
m=1

q2jlqjmv
2
l vm

+ 6
N

∑N
j=1

∑nT
m=1

∑nT
l ̸=m
l=1

∑nT
h ̸=m,l
h=1

qjmqjlqjhvmvlvh ≡ K1 +K2 +K3.

First, consider the K1 term. By Lemmas B.1 and B.2, Q̄D is uniformly bounded in both

row and column sums. This implies that the elements of Q̄D are uniformly bounded. Therefore,

there exists a constant q̄ such that |qjh| ≤ q̄ for all j and h. Given these, we have
∑N

j=1 q
3
jh ≤∑N

j=1 |qjh|3 ≤ q̄2
∑N

j=1 |qjh| < ∞. Also, note {vi} are iid by Assumption A. Thus, Khinchine’s

weak law of large number (WLLN) (Feller, 1967, pp. 243-244) implies that K1 converges to

zero in probability as the sample size increases.

For the other two terms, we have by switching the order of summations when needed,

K2 =
3
N

∑N
j=1

∑nT
l=1

∑nT
m ̸=l
m=1

q2jlqjm(v2l − σ2v)vm + 3
N

∑N
j=1

∑nT
l=1

∑nT
m ̸=l
m=1

q2jlqjmσ
2
vvm

= 3
N

∑nT
m=1(v

2
m − σ2v)(

∑N
j=1

∑m−1
l=1 q2jmqjlvl) +

3
N

∑nT
m=1 vm[

∑N
j=1

∑m−1
l=1 q2jlqjm(v2l − σ2v)]

+ 3
N

∑nT
m=1

∑N
j=1

∑N
l ̸=m
l=1

q2jlqjmσ
2
vvm ≡ 1

N

∑nT
m=1(g1,m + g2,m + g3,m), and

K3 =
18
N

∑nT
m=1 vm(

∑N
j=1

∑m−1
l=1

∑m−1
h ̸=l
h=1

qjmqjlqjhvlvh) ≡ 1
N

∑nT
m=1 g4,m,

where g1,m = 3(v2m−σ2v)
∑N

j=1

∑m−1
l=1 q2jmqjlvl, g2,m = 3vm

∑N
j=1

∑m−1
l=1 q2jlqjm(v2l −σ2v), g3,m =

3
∑N

j=1

∑nT
l̸=m
l=1

q2jlqjmσ
2
vvm, and g4,m = vm

∑N
j=1

∑m−1
l=1

∑m−1
h ̸=l
h=1

qjmqjlqjhvlvh.

Let {Gm} be the increasing sequence of σ-fields generated by (v1, · · · , vj , j = 1, · · · ,m),

m = 1, · · · , nT . Then, E[(g1,m, g2,m, g3,m, g4,m)|Gm−1] = 0; hence, {(g1,m, g2,m, g3,m, g4,m)′,Gm}

form a vector martingale difference (M.D.) sequence. As Q̄D is bounded in row and column

sum norms, by Assumption A, it is easy to see that E|gs,m|1+ϵ <∞, for s = 1, 2, 3, 4 and ϵ > 0.

Hence, {g1,m}, {g2,m}, {g3,m} and {g4,m} are uniformly integrable, and the WLLN of Davidson

(1994, Theorem 19.7) applies to give K2
p−→ 0 and K3

p−→ 0.

To prove (b), let ṽj(ξ) be the jth element of Ω
− 1

2
N (δ)Ṽ(ξ) = Ψ(δ)S[Y − A−1

nT (λ)Xβ],

where ξ = (β′, δ′)′. Thus, ṽj and v̂j are just ṽj(ξ0) and ṽj(ξ̂M), respectively. Let S(ξ) =

∂
∂ξ′ [Ω

− 1
2

N (δ)Ṽ(ξ)], which has components Sβ(ξ) = −Ψ(δ)SA−1
nT (λ)X, Sλ(ξ) = Ψ̇λ(δ)S[Y −

A−1
nT (λ)Xβ] − Ψ(δ)S[ ∂

∂λA
−1
nT (λ)]Xβ, and Sρ(ξ) = Ψ̇ρ(δ)S[Y − A−1

nT (λ)Xβ]. Let s′j(ξ) be the

jth row of S(ξ). We have by the MVT, for each j = 1, 2, . . . , N ,

v̂j ≡ ṽj(ξ̂M) = ṽj(ξ0) + s′j(ξ̄)(ξ̂M − ξ0) = ṽj + ψ′
j(ξ̂M − ξ0) + op(∥ξ̂M − ξ0∥), (O.4)

where ξ̄ lies between ξ̂M and ξ0, and ψ
′
j = plimN→∞s

′
j(ξ̄), which is easily shown to be Op(1) as

follows. Consider the first k (the number of regressors) elements of ψ′
j first. They are the limits

of the jth row of −X(ρ̄), which are just the jth row of −Ψ(δ̄)SA−1
nT (λ̄)X because δ̄

p−→ δ0,

implied by δ̂∗N − δ0 = op(1). Hence, we conclude that the first k elements of ψ′
j are O(1), for
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each j = 1, 2, . . . , N . For the remaining two elements in each ψ′
j , they are the limits of elements

from the last two columns of S(ξ̄). It is easy to see the limits of the last two columns of S(ξ̄) are

just Sλ(ξ0) and Sρ(ξ0). Using S[Y −A−1
nTXβ0] = SA−1

nT [Dϕ0 +B−1
nTV], we can easily see that

each element of Sλ(ξ0) and Sρ(ξ0) are Op(1), i.e., the last two elements in ψ′
j are also Op(1), for

each j = 1, 2, . . . , N .

As ṽj = Op(1), ψ
′
j = Op(1) and ξ̂M − ξ0 = Op(

1√
N1

), we have by (O.4), v̂3j = ṽ3j + 3ṽ2jψ
′
j(ξ̂M −

ξ0) + op(∥ξ̂M − ξ0∥). It follows that

1
N

∑N
j=1(v̂

3
j − ṽ3j ) =

3
N

∑N
j=1 ṽ

2
jψ

′
j(ξ̂M − ξ0) + op(∥ξ̂M − ξ0∥)

= 3σ2
v

N

∑N
j=1(

∑nT
k=1 q

2
jkψ

′
j)(ξ̂M − ξ0) + op(∥ξ̂M − ξ0∥) = op(1),

as 1
N

∑N
j=1(

∑nT
k=1 q

2
jkψ

′
j) = (

∑nT
k=1 q

2
jk)

1
N (

∑N
j=1 ψ

′
j) = O(1).

Consistency of κ̂4,N . As σ̂v,M − σv0 = op(1) and δ̂∗N − δ0 = op(1), the result follows if

1
N

∑N
j=1[v̂

4
j − E(ṽ4j )]

p−→ 0. This shows that

(c) 1
N

∑N
j=1[ṽ

4
j − E(ṽ4j )]

p−→ 0 and (d) 1
N

∑N
j=1(v̂

4
j − ṽ4j )

p−→ 0.

To prove (c), we have

1
N

∑N
j=1 ṽ

4
j − 1

N

∑N
j=1 E(ṽ

4
j )

= 1
N

∑N
j=1

∑nT
h=1 q

4
jh[v

4
h − E(v4h)] +

3
N

∑N
j=1

∑nT
l=1

∑nT
m ̸=l
m=1

q2jlq
2
jm(v2l v

2
m − σ4v)

+ 4
N

∑N
j=1

∑nT
l=1

∑nT
m̸=l
m=1

q3jlqjmv
3
l vm + 6

N

∑N
j=1

∑nT
l=1

∑nT
m ̸=l
m=1

∑nT
h̸=m,l
h=1

q2jlqjmqjhv
2
l vmvh

+ 1
N

∑N
j=1

∑nT
l=1

∑nT
m̸=l
m=1

∑nT
h ̸=m,l
h=1

∑nT
p ̸=m,l,h

p=1

qjlqjmqjhqjpvlvmvhvp ≡
∑5

r=1Rr.

By using WLLN of Davidson (1994, Theorem 19.7) for M.D. arrays as in the proof of (a),

we have Rr = op(1) for r = 1, 3, 4, 5. For R2, we have

R2 =
6
N

∑nT
l=1(v

2
l − σ2v)[

∑N
j=1

∑l−1
m=1 q

2
jlq

2
jm(v2m − σ2v)]

+ 6
N

∑nT
l=1[

∑N
j=1

∑nT
m ̸=l
m=1

q2jlq
2
jmσ

2
v(v

2
l − σ2v)] ≡ 6

N

∑nT
l=1(f1,l + f2,l),

noting that v2l v
2
m − σ4v = (v2l − σ2v)(v

2
m − σ2v) + σ2v(v

2
m − σ2v) + σ2v(v

2
l − σ2v). Since E[f1,l|Gl−1] = 0

and {f2,l} are independent, both {fl} and {f2,l} form M.D. sequences. It is easy to see that

E|fs,l|1+ϵ < ∞, for s = 1, 2 and ϵ > 0, so that {f1,l} and {f2,l} are uniformly integrable.

Therefore, the WLLN of Davidson (1994, Theorem 19.7) implies that 6
N

∑nT
l=1 f1,l = op(1) and

6
N

∑nT
l=1 f2,l = op(1).

To prove (d), v̂4j = ṽ4j + 4ṽ3jψ
′
j(ξ̂M − ξ0) + op(∥ξ̂M − ξ0∥) by (O.4). It follows that

1
N

∑N
j=1(v̂

4
j − ṽ4j ) =

4
N

∑N
j=1 ṽ

3
jψ

′
j(ξ̂M − ξ0) + op(∥ξ̂M − ξ0∥)

= 4σ3
vκ3

N

∑N
j=1(

∑nT
k=1 q

3
jkψ

′
j)(ξ̂M − ξ0) + op(∥ξ̂M − ξ0∥) = op(1).
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Proof of (ii). The consistency of Σ̂∗
N to Σ∗

N (θ0) can be shown similarly as what we do in

the proof of Theorem 2.2 for results (b) and (c). For Γ̂∗
N − Γ∗

N (θ0)
p−→ 0, we only need to show

that Bias∗(δ̂∗N )− Bias∗(δ0) = op(1), based on Corollary 2.1. That is to show

1
N1

{tr[(D′(δ̂M)D(δ̂M))−1D′J′(δ̂M)QD(δ̂M)J(δ̂M)D]− tr[(D′D)−1D′J′QDJD]} = op(1),

which can be proved as that for 1
N1

[H∗NS
λλ (δ̄)−H∗NS

λλ (δ0)] in the proof of Theorem 2.2 (b). ■

3. Proofs for Section 3

Proof of Theorem 3.1: Similar to the proof of Theorem 2.1 in Appendix C and with δ

and ΩN (δ) being redefined, the consistency of δ̂⋄M follows if:

(a) infδ∈∆σ̄
⋄2
v,M(δ) is bounded away from zero,

(b) supδ∈∆
∣∣σ̂⋄2v,M(δ)− σ̄⋄2v,M(δ)

∣∣ = op(1),

(c) supδ∈∆
1
N1

∣∣V̂′(δ)Hω(δ)V̂(δ)− E[V̄′(δ)Hω(δ)V̄(δ)]
∣∣ = op(1), for ω = λ, ρ, τ ,

(d) supδ∈∆
1
N1

∣∣V̂′(δ)J(δ)ε(β̂⋄M(δ), δ)− E[V̄′(δ)J(δ)ε(β̄⋄M(δ), δ)]
∣∣ = op(1).

Proof of (a). Note that σ̄⋄2v,M(δ) =
1
N1
η′Ω

− 1
2

N (δ)Q(δ)Ω
− 1

2
N (δ)η+

σ2
v0
N1

tr[QD(δ)ON (δ)]. The first

term is still non-negative as it can be written in the form of a′(δ)a(δ) for an N×1 vector function

of δ, uniformly in δ ∈ ∆. For the second term, as 0 < cτ ≤ infτ∈∆τ γmin[Υ(τ)Υ′(τ) ⊗ In] ≤

supτ∈∆τ
γmax[Υ(τ)Υ′(τ)⊗ In] ≤ c̄τ <∞,

σ2
v0
N1

tr[QD(δ)ON (δ)] ≥ σ2
v0
N1
γmin[ON (δ)]tr[QD(δ)] ≥ σ2v0γmax[ΩN (δ)]−1γmin(ΩN )

≥ cτ
c̄τ
σ2v0γmax(A

′
NAN )−1γmax(B

′
NBN )−1γmin[A

′
N (λ)AN (λ)]γmin[B

′
N (ρ)BN (ρ)] > 0,

uniformly in δ ∈ ∆, by Assumption E(iii). It follows that infδ∈∆σ̄
⋄2
v,M(δ) > 0.

Proofs of (b), (c) and (d) are quite similar to the proofs of (b), (c) and (d) of Theorem

2.1 (the results of Lemma B.2 still hold with the redefined ΩN (δ)). Thus, they are omitted. ■

Proof of Theorem 3.2: Applying the MVT to each element of S⋄
N (θ̂M), we have

0 = 1√
N1
S⋄
N (θ̂⋄M) =

1√
N1
S⋄
N (θ0) +

[
1
N1

∂
∂θ′S

⋄
N (θ)

∣∣
θ=θ̄r in rth row

]√
N1(θ̂

⋄
M − θ0), (O.5)

where {θ̄r} are on the line segment between θ̂⋄M and θ0. The result follows if

(a) 1√
N1
S⋄
N (θ0)

D−→ N [0, limN→∞ Γ⋄
N (θ0)],

(b) 1
N1

[ ∂
∂θ′S

⋄
N (θ)

∣∣
θ=θ̄r in rth row

− ∂
∂θ′S

⋄
N (θ0)] = op(1), and

(c) 1
N1

[ ∂
∂θ′S

⋄
N (θ0)− E( ∂

∂θ′S
⋄
N (θ0))] = op(1).

Proof of (a). Again, from (3.2), the elements of S⋄
N (θ0) are linear-quadratic forms in E .
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Thus, for every non-zero (k + 3)× 1 constant vector a, a′S⋄
N (θ0) is of the form:

a′S⋄
N (θ0) = b′NE + E ′ΦNE − σ2vtr(ΦN ),

for suitably defined non-stochastic vector bN and matrix ΦN . Based on Assumptions A′-F′, it

is easy to verify (by Lemma B.1 and Lemma B.2) that bN and matrix ΦN satisfy the conditions

of the CLT for LQ form of Kelejian and Prucha (2001), and hence the asymptotic normality

of 1√
N1
a′S⋄

N (θ0) follows. By Cramér-Wold device, 1√
N1
S⋄
N (θ0)

D−→ N [0, limN→∞ Γ⋄
N (θ0)], where

elements of Γ⋄
N (θ0) are given in Appendix A.

Proofs of (b) and (c) are similar to those of Theorem 2.2, and thus are omitted. ■

Proofs of the results in Corollaries 3.1 and 3.2 are similar to those of Corollaries 2.1 and

2.2 and thus are omitted to conserve space. They are available from the authors upon request.

4. Full Monte Carlo Results

In this section, we design a Monte Carlo experiment for the FE-ISPD-MR model with iid

errors or serially correlated errors. For the model with serial correlation, we assume vit =

τeit + ei,t−1 and {eit} are iid(0, σ2e) across i and t. Let ϵt = (e1t, e2t, . . . , ent)
′. Thus, two types

of DGPs employed in this Monte Carlo study are

DGP 1 : StYt = StA
−1
t (λ)(Xtβ + µ+ αtln + Ut), Ut = ρMtUt + Vt,

DGP 2 : StYt = StA
−1
t (λ)(Xtβ + µ+ αtln + Ut), Ut = ρMtUt + Vt, Vt = τVt−1 + ϵt,

for t = 1, . . . , T . We choose n = 50, 100, 200, 400, and T = 5, 10. The parameters values are set

at β = 1, λ = 0.2, ρ = 0.2 and σ2v = 1 for DGP 1, and β = 1, λ = 0.2, ρ = 0.2, τ = 0.5 and

σ2e = 1 for DGP 2. X ′
ts are generated independently from N(0, 22In), and individual effects are

set to be µ = 1
T Σ

T
t=1Xt + e, where e ∼ N(0, In). The time fixed effects α are generated from

N(0, IT ). The number of Monte Carlo runs is 1000.

The spatial weight matrices can be Rook contiguity and Queen contiguity. To generate Wt

under Rook, randomly permute the indices {1, 2, . . . , n} for n spatial units and then allocate

them into a lattice of k × m squares. Let Wnt,ij = 1 if the index j is in a square that is

immediately left or right, above, or below the square that contains the index i. Similarly, Wnt

under Queen is generated with additional neighbors sharing a common vertex with the unit i.

The distribution of the idiosyncratic errors {vit} can be (i) normal, (ii) standardized normal

mixture (10% N(0, 42) and 90% N(0, 1)), or (iii) standardized chi-square with 3 degrees of

freedom. See Yang (2015) for details.

The selection matrices St are generated as follows: for each t, associate with each row of In
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a uniform (0, 1) random number, and the rows with random numbers smaller than pt ∈ (0, 1)

are deleted. This gives 100pt% missing on the responses. We consider two randomly missing

percentages, at 10% and 30%, which allow us to see the effect of the degree of missingness on

the estimation. To generate the MR data, a full sample of size n is first generated for each

period, and then the “observed” responses are selected based on the generated selection matrix.

The Monte Carlo experiments involve five estimators: naı̈ve estimator, QMLE-GU, QMLE-MR,

M-Est-GU, and M-Est-MR. The naı̈ve estimator (näıve to missingness) is the M-estimator based

on a balanced panel formed by deleting the spatial units with missing responses; QMLE-GU and

QMLE-MR are the QMLEs assuming GU and MR, respectively; and M-Est-GU and M-Est-MR are

the M-estimators assuming GU and MR, respectively. Clearly, only the estimator M-Est-MR is

valid as the data is generated according to FE-ISPD-MR and the estimation is done accordingly.

These Monte Carlo experiments allow us not only to see the finite sample performance of

the proposed estimation and inference methods but also the consequence of a wrong choice

of estimator, and a wrong choice of modeling mechanism or model specification. Monte Carlo

(empirical) means and standard deviations (sd, shown in parentheses) are recorded for the naı̈ve

estimator, QMLE, M-estimator (M-Est), and RM-estimator (RM-Est). The empirical averages of

the standard error estimates (ŝe, shown in square brackets) are also recorded for the naı̈ve

estimator, M-Est and RM-Est, based on the VC matrix estimates in Sections 2 and 3.

Tables 1a and 1b present Monte Carlo results for the FE-ISPD-MR model with missing per-

centages 10% and 30%, respectively, when {Wt} are Rook and {Mt} are Queen. As expected,

the results show an excellent performance of M-Est-MR and its inference methods. M-Est-MR

performs well even when the sample size is quite small, and shows convergence to their true

values as the sample size increases. Their corresponding standard error estimates are also close

to Monte Carlo standard deviations. In contrast, the QMLE of σ2 is inconsistent and the finite

sample performance of the QMLE of the spatial estimates is not as good as that of the pro-

posed M-estimation. By comparing M-Est-GU and M-Est-MR, we can see the consequences of

treating MR models as GU models in that M-Est-GU cannot provide consistent estimation for

spatial parameters even when the sample size is large enough. When the missing percentage is

higher, M-Est-GU becomes more biased. This is consistent with our expectation as treating an

FE-SPD-MR mechanism as FE-SPD-GU will ignore the spatial effects from the missing units. The

larger the missing percentage is, the more serious the consequence is.

Table 1c reports QMLE-GU and the naı̈ve estimator for the FE-ISPD-MR model with iid

errors and missing percentages 10% , when {Wt} are Queen contiguity and {Mt} are Rook

contiguity. We can see that QMLE-GU cannot provide unbiased estimation for spatial parameters
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even when the sample size is large enough. It can even give the opposite sign for spatial

parameter estimation when the sample size is small. This is due to the fact that treating an

FE-ISPD-MR model as an FE-USPD-GUmodel will ignore the spatial effects of the missing units on

their neighbors. Similarly, the naı̈ve estimation cannot give us unbiased estimation for spatial

parameters as well, as it completely ignores the spatial effects of deleted units on remaining

units. These together show again the serious consequences when models are misspecified and

wrong estimation methods are applied.

Table 2 reports Monte Carlo results for the FE-ISPD-MR model with serial correlation. We

only report QMLE-MR and M-Est-MR, as QMLE-GU and M-Est-GU are unavailable and naı̈ve es-

timator is expected to have a very poor performance. The M-Est-MR of all the parameters

has a good finite sample performance. Their corresponding standard error estimates are also

close to Monte Carlo standard deviations. In contrast, the QMLE-MR typically provides much

worse estimates for error variance parameter σ2, spatial error parameter ρ, and serial correlation

parameter τ .

5. Analyses of Simulated Housing Price Panels

Lastly, we generate an incomplete housing price panel by mimicking the housing price en-

vironment using the popular Boston housing price data. The data is given by Harrison Jr and

Rubinfeld (1978) and is corrected and augmented with longitude and latitude by Gilley and

Pace (1996). It is cross-sectional data with the median housing price (for each of the 506 census

tracts in the Boston metropolitan statistical area) as the response. The explanatory variables

include per capita crime rate by town (crime), proportion of residential land zoned for lots

over 25,000 square feet (zoning), proportion of non-retail business acres per town (industry),

tract bounding river Charles River dummy (charlesr), nitric oxide concentration (noxsq), av-

erage number of rooms per dwelling (rooms), proportion of owner-occupied units built prior

to 1940 (houseage), weighted distances to five Boston employment centers (distance), index

of accessibility to radial highways (access), full-value property-tax rate per 10,000 (taxrate),

pupil-teacher ratio by town (ptratio), 1000(Bk − 0.63) where Bk is the proportion of blacks

by town (blackpop), and lower status of the population proportion (lowclass).

Housing price panels are usually formed through aggregation (e.g., median, mean) and may

be incomplete (with missing observations on response) when researchers aggregate the data to

the least possible level (e.g., the census tracts as in the Boston housing price data) to keep as

much information as possible. However, the characteristics (values of the explanatory variables)

of the aggregated spatial units are usually completely available, giving rise to incomplete spatial
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panel data with missing responses (MR). The spatial weight matrix is constructed using the

Euclidean distance with longitude and latitude.

We first estimate a spatial cross-sectional model with spatial lag and spatial error based

on the original data and using QML method. Then, we use the estimated model as the true

model to generate data for “future” periods. For the time-invariant variables (charlesr and

distance), we can simply repeat them for each period. For the time-varying variables, we

perturb them to give their observations for future periods. With error distribution assumed to

be log-normally distributed, we generate values of the dependent variable using the generated

panel of explanatory variables, and individual and time-fixed effects in a similar way as in the

Monte Carlo experiments. We generate four more periods of data to give a 506× 5 panel (with

the original data in the first period). Clearly, the characteristics of the census tracts are always

available but the median price may not be available at every census tract and in every time

period, if the time periods are short, e.g., month, or quarter.

For the missing percentages, Ross and Zhou (2021), Shen and Ross (2021) and Nowak

and Smith (2020) point out that housing transaction frequencies have a cyclical nature, with

higher volumes during economic booms and lower volumes during recessions. In addition, high-

quality houses are more likely to sell than low-quality houses, so the frequency of transactions

in high-quality census tracts would be higher. Moreover, high-quality houses recover faster than

low-quality houses in the economic boom period in terms of transactions, so the average house

quality of each census tract also influences the change in the frequency of transactions with

the cycle. To capture these features, we first divide the units into high-quality and low-quality

groups, depending on whether or not their first-period dependent variable values are higher

than the average of the first-period dependent variable values. With these considerations, the

randomly missing percentages of the dependent variable are chosen to be [15%, 25%, 15%, 5%,

15%] in the five periods for the high-quality group, and [25%, 40%, 35%, 25%, 40%] in the five

periods for the low-quality group. The number of Monte Carlo runs is also set to 1000.

Table 3 presents Monte Carlo results for this experiment, in which three types of estimations

are reported: the naı̈ve estimation, M-Est-GU and M-Est-MR. The naı̈ve estimation result shows

a large bias for spatial parameters as a lot of units are deleted whose spatial effects on remaining

units are totally ignored. This leads to a highly biased estimation for variance parameter and

thus standard error estimates. The M-Est-GU cannot give us unbiased estimation for spatial

parameters either, as treating an FE-ISPD-MRmodel as an FE-USPD-GUmodel completely ignores

the spatial interaction effects from those spatial units with MR. In contrast, we can see much

more reasonable results from the M-Est-MR. The standard error estimates are also close to the
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empirical standard errors.
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Table 1a: Empirical mean(sd)[ŝe] of QMLE, M-Est-GU and M-Est-MR: MR model with iid errors, Missing
percentage = 10%, (β, λ, ρ, σ2

v) = (1, 0.2, 0.2, 1), and W = Queen and M=Rook.

T=5 T=10

QMLE M-Est-GU M-Est-MR QMLE M-Est-GU M-Est-MR

n = 50; error = 1, 2, 3, for the three panels below
β .9982(.041) 1.0066(.038)[.038] .9983(.040)[.040] 1.0012(.026) 1.0015(.024)[.024] 1.0013(.026)[.026]
λ .1811(.060) .1348(.059)[.057] .1980(.061)[.062] .1839(.040) .1731(.037)[.036] .2018(.040)[.042]
ρ .1849(.155) .2005(.119)[.125] .1978(.122)[.119] .1667(.078) .1925(.072)[.074] .1987(.071)[.073]
σ2v .7471(.089) 1.0013(.111)[.110] .9843(.115)[.107] .8618(.063) 1.0161(.077)[.073] .9875(.072)[.071]

β .9977(.040) 1.0030(.038)[.038] .9978(.039)[.041] .9993(.026) 1.0016(.022)[.024] .9994(.026)[.025]
λ .1818(.064) .1357(.057)[.057] .1993(.065)[.062] .1772(.041) .1712(.036)[.036] .1952(.042)[.042]
ρ .1861(.146) .2030(.126)[.125] .1983(.115)[.119] .1687(.080) .1996(.073)[.074] .2006(.073)[.074]
σ2v .7572(.177) .9911(.226)[.217] .9966(.231)[.219] .8603(.138) 1.0073(.168)[.155] .9856(.158)[.154]

β .9999(.039) 1.0070(.039)[.038] 1.0001(.039)[.040] .9985(.027) 1.0000(.023)[.024] .9985(.027)[.026]
λ .1805(.060) .1392(.057)[.058] .1976(.061)[.061] .1812(.042) .1709(.036)[.036] .1990(.042)[.042]
ρ .1840(.148) .2011(.126)[.125] .1972(.116)[.119] .1671(.079) .1989(.072)[.074] .1991(.072)[.073]
σ2v .7401(.126) 1.0060(.175)[.162] .9750(.165)[.158] .8669(.104) 1.0070(.120)[.113] .9933(.119)[.115]

n = 100; error = 1, 2, 3, for the three panels below
β 1.0015(.030) 1.0039(.028)[.028] 1.0016(.030)[.029] 1.0008(.019) .9970(.018)[.018] 1.0008(.019)[.018]
λ .1913(.041) .1666(.039)[.040] .1990(.041)[.041] .1905(.028) .1607(.029)[.027] .1998(.029)[.029]
ρ .2228(.100) .1983(.083)[.084] .1956(.079)[.082] .1972(.057) .1991(.049)[.051] .2000(.052)[.051]
σ2v .7603(.064) 1.0228(.080)[.078] .9937(.082)[.076] .8710(.043) 1.0175(.052)[.051] .9903(.048)[.050]

β 1.0008(.029) 1.0039(.029)[.028] 1.0008(.029)[.029] .9993(.017) .9967(.018)[.018] .9993(.017)[.018]
λ .1875(.040) .1650(.040)[.040] .1949(.040)[.041] .1916(.031) .1632(.027)[.027] .2005(.031)[.029]
ρ .2267(.108) .2023(.081)[.084] .1985(.085)[.083] .1972(.054) .1948(.050)[.051] .2000(.049)[.051]
σ2v .7614(.126) 1.0263(.170)[.162] .9963(.164)[.161] .8740(.104) 1.0121(.117)[.112] .9937(.118)[.112]

β 1.0023(.029) 1.0028(.028)[.028] 1.0024(.029)[.029] 1.0007(.018) .9980(.017)[.018] 1.0007(.018)[.018]
λ .1874(.040) .1669(.041)[.040] .1957(.040)[.041] .1908(.030) .1629(.027)[.027] .1997(.030)[.029]
ρ .2285(.105) .1916(.083)[.084] .1999(.082)[.083] .1945(.056) .1981(.049)[.051] .1976(.050)[.051]
σ2v .7554(.093) 1.0238(.123)[.121] .9886(.120)[.117] .8743(.074) 1.0200(.084)[.082] .9940(.084)[.081]

n = 200; error = 1, 2, 3, for the three panels below
β .9995(.020) .9981(.020)[.019] .9994(.020)[.020] 1.0015(.012) 1.0028(.012)[.012] 1.0016(.012)[.013]
λ .1985(.029) .1688(.028)[.027] .2024(.029)[.029] .1927(.020) .1733(.020)[.020] .1973(.020)[.021]
ρ .2479(.073) .1957(.060)[.059] .1989(.057)[.058] .2089(.038) .1958(.036)[.036] .1974(.034)[.036]
σ2v .7632(.043) 1.0208(.055)[.056] .9960(.054)[.054] .8825(.031) 1.0166(.036)[.036] .9992(.035)[.036]

β 1.0000(.020) .9996(.020)[.020] .9999(.020)[.020] 1.0008(.012) 1.0016(.012)[.012] 1.0008(.012)[.013]
λ .1982(.026) .1674(.027)[.027] .2020(.027)[.028] .1957(.021) .1735(.020)[.020] .2000(.021)[.021]
ρ .2450(.071) .1966(.057)[.059] .1968(.056)[.058] .2138(.041) .1952(.037)[.036] .2019(.037)[.036]
σ2v .7616(.087) 1.0288(.120)[.117] .9935(.112)[.114] .8803(.072) 1.0203(.085)[.081] .9968(.082)[.081]

β .9997(.020) 1.0002(.020)[.019] .9996(.020)[.020] .9991(.013) 1.0023(.012)[.012] .9991(.013)[.013]
λ .1954(.028) .1671(.028)[.027] .1993(.028)[.028] .1947(.020) .1720(.020)[.020] .1993(.020)[.021]
ρ .2482(.077) .1975(.056)[.059] .1995(.061)[.058] .2122(.039) .1961(.036)[.036] .2004(.035)[.036]
σ2v .7599(.067) 1.0263(.089)[.086] .9918(.087)[.084] .8752(.053) 1.0178(.057)[.059] .9911(.060)[.058]

n = 400; error = 1, 2, 3, for the three panels below
β 1.0000(.013) .9990(.014)[.014] 1.0000(.013)[.014] 1.0000(.009) 1.0009(.009)[.009] .9999(.009)[.009]
λ .1972(.019) .1701(.020)[.020] .1991(.020)[.020] .1977(.014) .1609(.014)[.014] .1998(.014)[.014]
ρ .2597(.051) .1948(.041)[.041] .2006(.040)[.040] .2191(.028) .1971(.024)[.026] .2001(.026)[.025]
σ2v .7655(.031) 1.0239(.039)[.039] .9964(.039)[.038] .8835(.024) 1.0208(.027)[.026] .9994(.027)[.025]

β .9993(.014) 1.0001(.013)[.014] .9992(.014)[.014] .9994(.009) 1.0028(.008)[.009] .9992(.009)[.009]
λ .1968(.020) .1701(.020)[.020] .1986(.020)[.020] .1983(.014) .1596(.014)[.014] .2005(.014)[.014]
ρ .2617(.050) .1965(.042)[.041] .2017(.039)[.041] .2179(.030) .1988(.026)[.026] .1990(.027)[.025]
σ2v .7641(.063) 1.0241(.078)[.082] .9949(.081)[.082] .8845(.049) 1.0216(.055)[.058] 1.0005(.055)[.058]

β 1.0000(.013) .9996(.013)[.014] 1.0000(.014)[.014] 1.0002(.009) 1.0017(.009)[.009] 1.0001(.009)[.009]
λ .1979(.020) .1695(.021)[.020] .1995(.020)[.019] .1981(.016) .1608(.014)[.014] .2004(.016)[.014]
ρ .2649(.051) .1948(.042)[.041] .2047(.041)[.040] .2187(.027) .1974(.025)[.026] .1998(.025)[.025]
σ2v .7636(.047) 1.0220(.057)[.060] .9945(.061)[.060] .8864(.036) 1.0211(.043)[.042] 1.0026(.040)[.042]

Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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Table 1b: Empirical mean(sd)[ŝe] of QMLE, M-Est-GU and M-Est-MR: MR model with iid errors, Missing
percentage = 30%, (β, λ, ρ, σ2

v) = (1, 0.2, 0.2, 1), W = Queen and M = Rook.

T=5 T=10

QMLE M-Est-GU M-Est-MR QMLE M-Est-GU M-Est-MR

n = 50; error = 1, 2, 3, for the three panels below
β .9983(.047) 1.0034(.047)[.047] .9977(.047)[.046] 1.0003(.027) 1.0017(.027)[.028] .9994(.027)[.027]
λ .1790(.075) .1029(.064)[.063] .1982(.079)[.072] .1827(.041) .1290(.040)[.041] .1990(.043)[.044]
ρ .1498(.234) .1844(.169)[.172] .1887(.162)[.166] .1447(.111) .1944(.099)[.104] .1984(.098)[.100]
σ2v .6621(.090) 1.0179(.132)[.129] .9601(.127)[.126] .8252(.067) 1.0371(.083)[.086] .9851(.080)[.084]

β 1.0017(.044) 1.0067(.044)[.047] 1.0011(.044)[.046] 1.0013(.027) 1.0029(.027)[.028] 1.0004(.027)[.027]
λ .1749(.074) .0991(.062)[.063] .1935(.076)[.072] .1844(.042) .1286(.042)[.041] .2005(.043)[.044]
ρ .1719(.230) .1947(.158)[.175] .2038(.158)[.170] .1583(.115) .2097(.104)[.104] .2107(.102)[.101]
σ2v .6663(.182) 1.0265(.265)[.245] .9666(.261)[.240] .8264(.150) 1.0411(.184)[.180] .9861(.178)[.176]

β .9986(.047) 1.0037(.046)[.047] .9979(.046)[.046] .9978(.028) .9996(.028)[.028] .9972(.028)[.027]
λ .1812(.074) .1052(.067)[.064] .2013(.080)[.073] .1857(.044) .1311(.042)[.041] .2016(.045)[.044]
ρ .1680(.225) .1903(.160)[.174] .2008(.157)[.165] .1475(.104) .1994(.095)[.103] .2010(.092)[.101]
σ2v .6696(.137) 1.0283(.201)[.188] .9700(.196)[.185] .8307(.121) 1.0444(.148)[.136] .9914(.144)[.132]

n = 100; error = 1, 2, 3, for the three panels below
β .9992(.035) .9980(.035)[.037] .9988(.035)[.036] 1.0004(.021) .9983(.021)[.021] 1.0002(.021)[.021]
λ .1895(.046) .0923(.042)[.044] .1978(.048)[.049] .1920(.032) .1310(.031)[.032] .2010(.034)[.033]
ρ .2336(.189) .1879(.129)[.126] .1948(.127)[.121] .1884(.073) .1962(.064)[.067] .1959(.064)[.065]
σ2v .6662(.066) 1.0538(.091)[.098] .9832(.090)[.095] .8461(.049) 1.0409(.060)[.059] .9941(.058)[.058]

β 1.0008(.037) .9992(.037)[.037] 1.0003(.037)[.036] .9993(.022) .9972(.022)[.021] .9990(.022)[.021]
λ .1941(.050) .0979(.045)[.044] .2024(.051)[.049] .1878(.031) .1281(.030)[.031] .1971(.032)[.033]
ρ .2428(.185) .1890(.125)[.126] .2007(.122)[.124] .1938(.071) .2005(.065)[.067] .2005(.063)[.065]
σ2v .6643(.131) 1.0541(.194)[.188] .9813(.190)[.183] .8389(.110) 1.0306(.131)[.127] .9856(.129)[.125]

β 1.0009(.036) .9994(.036)[.037] 1.0003(.036)[.036] 1.0007(.021) .9987(.021)[.021] 1.0005(.021)[.021]
λ .1910(.050) .0945(.045)[.044] .1988(.052)[.049] .1883(.033) .1278(.032)[.032] .1980(.033)[.033]
ρ .2455(.176) .1941(.122)[.126] .2016(.117)[.121] .1885(.073) .1970(.066)[.067] .1959(.065)[.065]
σ2v .6625(.100) 1.0487(.149)[.141] .9781(.143)[.138] .8463(.083) 1.0395(.100)[.093] .9942(.098)[.091]

n = 200; error = 1, 2, 3, for the three panels below
β .9994(.023) 1.0039(.023)[.024] .9992(.023)[.024] 1.0005(.015) 1.0027(.015)[.014] 1.0003(.015)[.014]
λ .1960(.031) .1195(.030)[.031] .1998(.032)[.032] .1943(.023) .1361(.024)[.024] .1986(.023)[.023]
ρ .2675(.107) .1921(.079)[.083] .1980(.077)[.080] .2119(.053) .1917(.048)[.049] .1977(.046)[.047]
σ2v .6857(.049) 1.0501(.068)[.067] .9878(.065)[.065] .8433(.036) 1.0443(.043)[.043] .9945(.042)[.042]

β 1.0010(.023) 1.0053(.023)[.024] 1.0007(.023)[.024] 1.0005(.014) 1.0029(.014)[.015] 1.0004(.014)[.014]
λ .1961(.032) .1206(.031)[.031] .1998(.033)[.032] .1956(.023) .1355(.025)[.024] .2004(.023)[.023]
ρ .2685(.113) .1916(.080)[.083] .1983(.080)[.081] .2164(.056) .1940(.051)[.049] .2016(.049)[.048]
σ2v .6864(.094) 1.0516(.133)[.135] .9895(.132)[.132] .8505(.074) 1.0550(.089)[.095] 1.0031(.087)[.093]

β .9986(.023) 1.0030(.023)[.024] .9982(.023)[.024] 1.0003(.014) 1.0026(.014)[.015] 1.0001(.014)[.014]
λ .1979(.032) .1197(.031)[.031] .2023(.033)[.032] .1937(.022) .1350(.023)[.024] .1987(.023)[.023]
ρ .2662(.110) .1903(.080)[.083] .1969(.078)[.081] .2174(.053) .1962(.047)[.049] .2025(.046)[.047]
σ2v .6886(.075) 1.0559(.109)[.101] .9920(.104)[.098] .8474(.058) 1.0500(.068)[.069] .9993(.068)[.067]

n = 400; error = 1, 2, 3, for the three panels below
β 1.0008(.015) 1.0061(.015)[.017] 1.0007(.015)[.016] .9997(.011) 1.0054(.011)[.011] .9996(.011)[.010]
λ .1972(.024) .1249(.022)[.022] .1996(.024)[.024] .1965(.015) .1237(.015)[.016] .1991(.016)[.017]
ρ .2869(.075) .1947(.055)[.056] .1999(.054)[.055] .2281(.037) .1958(.032)[.034] .2022(.032)[.034]
σ2v .6963(.037) 1.0496(.050)[.047] .9945(.049)[.046] .8474(.027) 1.0490(.032)[.031] .9986(.031)[.030]

β 1.0003(.016) 1.0053(.016)[.017] .9999(.016)[.016] 1.0003(.011) 1.0059(.011)[.011] 1.0001(.011)[.010]
λ .1950(.024) .1228(.023)[.022] .1977(.025)[.024] .1972(.016) .1249(.016)[.016] .1998(.017)[.017]
ρ .2859(.077) .1930(.057)[.057] .1989(.056)[.055] .2259(.037) .1958(.034)[.035] .2004(.032)[.033]
σ2v .6926(.070) 1.0438(.099)[.094] .9891(.098)[.092] .8443(.055) 1.0445(.066)[.066] .9948(.064)[.065]

β .9997(.017) 1.0051(.017)[.017] .9995(.016)[.016] .9997(.011) 1.0052(.011)[.011] .9995(.011)[.010]
λ .1976(.025) .1244(.023)[.022] .2006(.025)[.024] .1964(.016) .1241(.016)[.016] .1990(.016)[.017]
ρ .2912(.073) .1975(.055)[.056] .2030(.054)[.055] .2230(.036) .1919(.032)[.035] .1977(.031)[.034]
σ2v .6962(.053) 1.0514(.075)[.070] .9948(.073)[.069] .8484(.040) 1.0491(.048)[.049] .9996(.047)[.048]

Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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Table 1c: Empirical mean(sd)[ŝe] of QMLE based on GU and the naı̈ve estimator: MR model with iid
errors, Missing percentage = 10%, (β, λ, ρ, σ2

v) = (1, 0.2, 0.2, 1), W = Queen and M = Rook.

T=5 T=10

QMLE-GU Näıve-Est QMLE-GU Näıve-Est

n = 50; error = 1, 2, 3, for the three panels below
β 1.0002(.041) .9972(.047)[.050] .9999(.026) .9996(.040)[.040]
λ .1223(.067) .0802(.053)[.060] .1652(.042) .0589(.035)[.037]
ρ -.0395(.287) .0292(.122)[.172] -.0361(.132) .0543(.089)[.111]
σ2v .7688(.088) 1.0225(.152)[.144] .8986(.069) 1.0694(.114)[.112]

β 1.0026(.038) 1.0000(.048)[.048] .9992(.023) 1.0019(.038)[.040]
λ .1151(.070) .0770(.057)[.059] .1620(.041) .0572(.034)[.037]
ρ -.0080(.269) .0336(.127)[.170] -.0341(.129) .0594(.090)[.112]
σ2v .7677(.182) .9983(.321)[.273] .8972(.146) 1.0695(.249)[.229]

β 1.0061(.041) .9970(.050)[.049] 1.0007(.024) .9979(.041)[.040]
λ .1245(.066) .0808(.057)[.060] .1626(.041) .0584(.034)[.037]
ρ -.0296(.286) .0309(.119)[.174] -.0431(.124) .0542(.093)[.112]
σ2v .7748(.131) 1.0111(.219)[.205] .8911(.104) 1.0603(.176)[.169]

n = 100; error = 1, 2, 3, for the three panels below
β 1.0024(.028) 1.0013(.035)[.035] .9978(.018) 1.0001(.026)[.026]
λ .1486(.048) .1154(.048)[.055] .1466(.031) .0541(.026)[.028]
ρ .0278(.185) .0286(.101)[.128] .0312(.088) .0527(.063)[.071]
σ2v .8029(.064) 1.0511(.097)[.096] .9179(.049) 1.0681(.076)[.075]

β 1.0040(.029) 1.0025(.034)[.035] .9977(.017) .9994(.024)[.026]
λ .1522(.048) .1127(.046)[.055] .1469(.032) .0539(.026)[.028]
ρ .0197(.187) .0393(.107)[.129] .0330(.095) .0500(.061)[.071]
σ2v .8029(.130) 1.0582(.212)[.196] .9156(.106) 1.0599(.166)[.162]

β 1.0050(.029) 1.0005(.035)[.035] .9975(.017) .9990(.026)[.026]
λ .1516(.049) .1109(.050)[.054] .1494(.031) .0562(.027)[.028]
ρ .0338(.180) .0299(.100)[.128] .0328(.093) .0494(.063)[.071]
σ2v .8047(.099) 1.0508(.151)[.145] .9224(.075) 1.0641(.129)[.117]

n = 200; error = 1, 2, 3, for the three panels below
β .9983(.020) .9987(.023)[.025] 1.0020(.012) .9999(.019)[.020]
λ .1565(.032) .0904(.025)[.028] .1609(.023) .0472(.018)[.020]
ρ .0584(.127) .0276(.063)[.077] .0414(.066) .0407(.042)[.051]
σ2v .8115(.044) 1.0702(.076)[.073] .9248(.033) 1.0780(.056)[.059]

β .9990(.019) .9995(.024)[.025] 1.0007(.012) 1.0003(.020)[.020]
λ .1576(.031) .0889(.025)[.028] .1596(.024) .0468(.019)[.020]
ρ .0539(.125) .0233(.061)[.078] .0476(.062) .0425(.042)[.051]
σ2v .8127(.096) 1.0548(.155)[.149] .9267(.079) 1.0913(.132)[.130]

β .9987(.020) .9991(.024)[.025] 1.0013(.012) 1.0008(.020)[.020]
λ .1545(.031) .0897(.027)[.028] .1614(.024) .0476(.018)[.020]
ρ .0594(.129) .0245(.061)[.077] .0440(.067) .0355(.043)[.051]
σ2v .8162(.068) 1.0733(.117)[.114] .9240(.055) 1.0806(.094)[.094]

n = 400; error = 1, 2, 3, for the three panels below
β .9987(.014) 1.0061(.018)[.018] 1.0007(.009) 1.0026(.015)[.016]
λ .1571(.022) .0953(.021)[.022] .1451(.017) .0440(.013)[.014]
ρ .0726(.084) .0298(.047)[.058] .0755(.044) .0354(.029)[.037]
σ2v .8176(.031) 1.0668(.051)[.049] .9296(.023) 1.0880(.046)[.045]

β .9983(.013) 1.0063(.018)[.018] 1.0005(.009) 1.0037(.015)[.016]
λ .1556(.024) .0969(.021)[.022] .1452(.016) .0436(.013)[.014]
ρ .0812(.089) .0319(.047)[.058] .0730(.045) .0341(.030)[.037]
σ2v .8168(.068) 1.0675(.102)[.102] .9279(.053) 1.0842(.095)[.098]

β .9978(.014) 1.0079(.019)[.018] 1.0014(.009) 1.0027(.015)[.016]
λ .1569(.023) .0963(.020)[.022] .1458(.017) .0433(.013)[.014]
ρ .0773(.087) .0300(.047)[.058] .0710(.046) .0380(.029)[.037]
σ2v .8171(.049) 1.0607(.076)[.074] .9297(.037) 1.0862(.072)[.072]

Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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Table 2: Empirical mean(sd)[ŝe] of QMLE and M-Est-MR: MR model with serially correlated errors,
Missing percentage=10%, (β, λ, ρ, τ, σ2

e) = (1, 0.2, 0.2, 0.5, 1), W = Queen and M = Rook.
T=5 T=10

QMLE M-Est-MR QMLE M-Est-MR

n = 50; error = 1, 2, 3, for the three panels below
β1 .9987(.037) .9985(.036)[.034] .9998(.020) .9993(.020)[.021]
λ .1828(.054) .1979(.059)[.056] .1880(.034) .1995(.035)[.032]
ρ .2070(.162) .2032(.116)[.111] .1870(.068) .2009(.059)[.065]
τ .2873(.124) .5872(.114)[.130] .4234(.067) .5071(.057)[.058]
σ2v .7504(.089) .9394(.120)[.117] .8700(.062) .9877(.071)[.071]

β1 .9987(.034) .9987(.032)[.034] 1.0000(.021) .9997(.020)[.021]
λ .1838(.059) .2010(.063)[.057] .1883(.033) .1990(.035)[.032]
ρ .2074(.146) .1973(.107)[.111] .1777(.069) .1926(.061)[.065]
τ .3076(.157) .6045(.139)[.150] .4283(.066) .5105(.058)[.062]
σ2v .7460(.172) .9298(.223)[.215] .8744(.136) .9927(.155)[.154]

β1 .9993(.037) 1.0005(.036)[.033] 1.0001(.022) .9996(.022)[.021]
λ .1788(.060) .1965(.061)[.056] .1883(.032) .2005(.034)[.032]
ρ .2175(.147) .2081(.107)[.110] .1891(.071) .2037(.063)[.065]
τ .3000(.144) .5901(.128)[.136] .4239(.068) .5073(.058)[.060]
σ2v .7300(.136) .9151(.177)[.164] .8703(.106) .9879(.120)[.111]

n = 100; error = 1, 2, 3, for the three panels below
β1 1.0020(.027) 1.0018(.026)[.025] 1.0003(.016) 1.0000(.015)[.016]
λ .1894(.035) .1952(.037)[.035] .1922(.024) .1993(.025)[.025]
ρ .2325(.101) .1908(.073)[.076] .2048(.049) .1953(.043)[.045]
τ .2325(.096) .5291(.066)[.074] .4245(.042) .5041(.038)[.039]
σ2v .7779(.063) .9823(.080)[.076] .8824(.045) .9930(.051)[.050]

β1 1.0023(.026) 1.0020(.025)[.025] 1.0012(.015) 1.0008(.015)[.016]
λ .1881(.038) .1971(.039)[.035] .1923(.026) .2001(.028)[.025]
ρ .2370(.105) .1913(.075)[.076] .2124(.052) .2022(.045)[.045]
τ .2576(.118) .5471(.098)[.091] .4283(.051) .5075(.045)[.043]
σ2v .7742(.124) .9735(.160)[.154] .8826(.092) .9933(.104)[.109]

β1 1.0002(.026) .9998(.025)[.025] 1.0001(.016) 1.0000(.016)[.016]
λ .1948(.038) .2023(.038)[.035] .1913(.025) .1987(.026)[.025]
ρ .2425(.102) .1972(.074)[.075] .2132(.050) .2025(.044)[.045]
τ .2447(.106) .5387(.076)[.082] .4233(.048) .5031(.042)[.041]
σ2v .7769(.095) .9795(.121)[.115] .8852(.078) .9964(.088)[.080]

n = 200; error = 1, 2, 3, for the three panels below
β1 1.0000(.019) 1.0001(.018)[.017] 1.0003(.011) 1.0002(.011)[.011]
λ .1927(.026) .1971(.025)[.025] .1954(.017) .1985(.018)[.018]
ρ .2635(.067) .2009(.050)[.052] .2200(.036) .1981(.031)[.032]
τ .2321(.078) .5200(.047)[.051] .4209(.032) .5010(.027)[.027]
σ2v .7892(.042) .9928(.052)[.055] .8886(.031) .9970(.035)[.036]

β1 .9980(.020) .9977(.019)[.017] 1.0008(.011) 1.0007(.011)[.011]
λ .1950(.026) .1998(.026)[.025] .1960(.017) .1991(.018)[.017]
ρ .2628(.071) .2004(.052)[.052] .2202(.037) .1982(.032)[.032]
τ .2445(.079) .5235(.054)[.060] .4238(.035) .5038(.031)[.030]
σ2v .7934(.094) .9974(.118)[.113] .8818(.071) .9892(.080)[.079]

β1 .9989(.019) .9991(.018)[.017] 1.0004(.012) 1.0002(.012)[.011]
λ .1932(.026) .1982(.027)[.025] .1959(.018) .1997(.018)[.017]
ρ .2574(.070) .1969(.052)[.052] .2211(.037) .1989(.033)[.032]
τ .2342(.081) .5242(.052)[.055] .4216(.033) .5016(.029)[.029]
σ2v .7891(.063) .9908(.079)[.082] .8880(.054) .9962(.061)[.057]

n = 400; error = 1, 2, 3, for the three panels below
β 1.0010(.012) 1.0009(.012)[.012] .9989(.009) .9989(.009)[.008]
λ .1962(.017) .1985(.017)[.017] .1942(.011) .1959(.012)[.013]
ρ .2714(.050) .2009(.037)[.037] .2233(.019) .1950(.016)[.016]
τ .2040(.057) .5072(.032)[.036] .4129(.021) .4953(.017)[.018]
σ2v .7856(.029) .9919(.036)[.038] .8918(.017) .9986(.019)[.020]

β .9990(.013) .9992(.012)[.012] .9970(.008) .9969(.008)[.008]
λ .1966(.020) .1991(.020)[.017] .1983(.012) .2019(.013)[.013]
ρ .2686(.049) .1974(.035)[.037] .2329(.020) .2043(.018)[.019]
τ .2071(.069) .5118(.037)[.042] .4168(.028) .4977(.025)[.024]
σ2v .7820(.062) .9863(.078)[.079] .8807(.040) .9864(.044)[.043]

β .9988(.014) .9985(.014)[.012] 1.0002(.009) 1.0002(.009)[.008]
λ .1985(.019) .2010(.017)[.017] .1970(.014) .1975(.014)[.013]
ρ .2709(.050) .1998(.036)[.037] .2366(.025) .2065(.022)[.023]
τ .2091(.061) .5093(.038)[.038] .4282(.021) .5072(.018)[.019]
σ2v .7871(.047) .9934(.058)[.058] .8914(.035) .9986(.039)[.040]

Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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Table 3: Empirical mean(sd)[ŝe] of Näıve-Est, M-Est-GU and M-Est-MR: Boston housing price DGP
with MR, n = 506 and T = 5 .

QMLE-CS Näıve-Est M-Est-GU M-Est-MR

Time-varying variables
crime -1.0982 -1.0945(.360)[.347] -1.0893(.134)[.135] -1.0950(.133)[.141]
zoning .9164 .9405(.202)[.196] .9152(.111)[.112] .9193(.112)[.115]
industry -.0143 -.0209(.225)[.230] -.0274(.124)[.124] -.0244(.124)[.127]
noxsq -2.0339 -2.0458(.240)[.243] -2.0196(.125)[.127] -2.0273(.125)[.133]
rooms2 2.9906 3.0222(.199)[.209] 2.9747(.121)[.120] 2.9858(.119)[.127]
houseage -.6105 -.6130(.208)[.219] -.6152(.120)[.120] -.6170(.120)[.123]
access 2.7855 2.7978(.230)[.243] 2.7643(.124)[.124] 2.7759(.123)[.132]
taxrate -2.2076 -2.2131(.246)[.239] -2.1823(.128)[.124] -2.1952(.128)[.133]
ptratio -1.3875 -1.3902(.209)[.212] -1.3726(.118)[.118] -1.3793(.117)[.122]
blackpop .9256 .9213(.308)[.310] .9220(.137)[.136] .9231(.136)[.139]
lowclass -3.0573 -3.0746(.243)[.243] -3.0290(.130)[.125] -3.0465(.128)[.141]

Spatial dependence
SL(λ) .0828 .0937(.022)[.064] .0266(.044)[.041] .0920(.062)[.067]
SE(ρ) .6277 .1278(.030)[.088] .5404(.043)[.041] .6449(.062)[.063]

Variance parameter
σ2v 15.3924 20.7510(1.890)[1.924] 16.3664(1.005)[.980] 15.8950(1.079)[1.075]

Missing percentages: [15%, 25%, 15%, 5%, 15%] for high-quality group; [25%, 40%, 35%, 25%, 40%] for low-quality

group.
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