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Abstract

We consider estimation and inferences for general spatial panel data models

with randomly missing observations on responses, allowing unobserved spatiotem-

poral heterogeneity, time-varying endogenous and contextual spatial interactions,

time-varying cross-sectional error dependence, and serial correlation. A general M-

estimation method is proposed for model estimation and a novel corrected plug-in

method is proposed for model inference, taking into account the estimation of fixed

effects. Asymptotic properties of the proposed methods are studied and finite sam-

ple properties are investigated. An empirical application is given using US state

tax competition data. The proposed methods apply to matrix exponential spatial

specification and can be further extended to include higher order spatial effects.
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1. Introduction

The classical spatial panel data (SPD) model takes the following vector form:

Yt = λ0WtYt +X1tβ10 +WdtX2tβ20 + Zγ0 + µ0 + αt0ln + Ut,

Ut = ρ0MtUt + Vt, t = 1, . . . , T,

(1.1)

where Yt is a vector of observations on n spatial units at time t, Xt is an n×k matrix con-

taining values of k time-varying exogenous regressors, Z is an n×p matrix containing val-

ues of time-invariant regressors, and Ut = (u1t, u2t, . . . , untt)
′ and Vt = (v1t, v2t, . . . , vntt)

′

are n × 1 vectors of disturbance and idiosyncratic errors, respectively. Wt, Wdt, and Mt

are given n × n spatial weight matrices, which together with the “spatial coefficients”

λ0, β20 and ρ0, characterize the spatial lag or endogenous social effects, spatial Durbin

or contextual effects, and spatial error (SE) effects, respectively.1 β10 and γ0 are vectors

of regression coefficients, µ0 is an n× 1 vector of unit-specific effects, and α0 = {αt0}Tt=1

a T × 1 vector of time-specific effects. ln is an n × 1 vector of ones. The µ0 and α0 can

be fixed effects (FE), or random effects (RE), or correlated random effects (CRE). Model

(1.1) has been extensively studied. See, among others, Lee and Yu (2010a,b, 2015), Yang

et al. (2016), Lee and Yu (2010b, 2015), and Liu and Yang (2020).

In many panels, not all (n) spatial units appeared in every time period, or even if they

all appeared in every time period some spatial units at certain time periods were not fully

observed. Kelejian and Prucha (2010) classify the spatial units in spatial data into three

groups: (1) units with full observations on themselves and on their neighbors, (2) units

with observations on their neighbors missing, and (3) units with their own observations

missing. Meng and Yang (2021) studied SPD models where all units are of Type (1) but

1X2t is typically a submatrix of X1t. In the context of social networks, the three terms correspond
to endogenous social effects, contextual effects, and correlated effects (Manski, 1993).

2



number of them can change from time to time. They refer to these as SPD models with

genuine unbalancedness. In this paper, we study SPD models where all units are of Types

(2) and (3) but missing occurs only on responses, referred to in this paper as incomplete

SPD model with missing responses (MR) to emphasize on the fact that although panel

is incomplete the spatial connectivity or network structure is completely observed.

Let St be an nt×n selection matrix that selects the observed part of the n×1 vector of

responses Yt. Define At(λ) = In −λWt. If A
−1
t (λ0) exists, the SPD model with randomly

missing responses has the following reduced-form representation:

StYt = StA
−1
t (λ0)(X1tβ10 +WdtX2tβ20 + Zγ0 + µ0 + αt0ln + Ut),

Ut = ρ0MtUt + Vt, t = 1, . . . , T.

(1.2)

The model exploits the observed responses StYt while keeping the full structure on the

other parts of the model, including regressors, spatial connectivity, and heterogeneity.

In this paper, we focus on the FE specification of Model (1.2) to give full control of

unobserved unit-time heterogeneity. We propose a general M-estimation framework for

model estimation and a novel corrected plug-in method for model inference, which take

into account the estimation of the fixed effects.2 The proposed methods are then extended

to allow for serial correlation. Consistency and asymptotic normality of the proposed M-

estimators are established, and consistency of the proposed corrected plug-in estimators

of the variance-covariance matrices of M-estimators is proved. Monte Carlo results show

that the proposed methods perform very well in finite samples and that “discarding” the

spatial units with missing responses can give misleading results. An empirical illustration

is given using US state tax competition data. Our methods apply to matrix exponential

spatial specification, and can be further extended to include higher order spatial effects.

2Simpler versions of Model (1.2) are studied by Wang and Lee (2013) and Zhou et al. (2022) under
RE or CRE specifications. Wang and Lee (2013, Appendix D) discussed the FE estimation of a much
simpler model and pointed out the difficulty in handling the FEs for a general model.
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Section 2 presents methods under iid errors. Section 3 extends the methods to allow

for serial correlation. Section 4 presents some Monte Carlo results. Section 5 presents

an empirical application. Section 6 concludes the paper and discusses some important

extensions. Necessary results facilitating statistical inference are given in Appendix A.

Technical lemmas and short proofs of the theories are presented in Appendices B-D.

Detailed proofs and complete Monte Carlo results are given in Online Appendix.

Notations and conventions. First, | · |, tr(·), ′ and ∥A∥ are the usual notations for

determinant, trace, transpose and matrix norm. For a real symmetric matrix, γmin(·) and

γmax(·) denote its smallest and largest eigenvalues. For a real matrix A, ∥A∥1 and ∥A∥∞

are the maximum absolute column and row sum norms, and A◦ = A + A′. For a real

matrix A of full rank, PA = A(A′A)−1A′ and QA = In − PA are the projection matrices.

diagv(·) forms a column vector by the diagonal elements of a square matrix; bdiag(· · · )

a block-diagonal matrix; [· , · , . . . , ·] a row vector; and [· ; · ; . . . ; ·] a column vector.

2. M-Estimation of Fixed Effects SPD-MR Model

Consider Model (1.2) with FE specification. For ease of exposition, the Z variables

are dropped (see comments below (2.1)). Define Xt = (X1t,WdtX2), β = (β′
1, β

′
2)

′,

and k = dim(β). Let Y, X, U, and V be the stacked Yt, Xt, Ut and Vt. Define

W = bdiag(W1, . . . ,WT ), M = bdiag(M1, . . . ,MT ), AnT (λ) = InT −λW, and BnT (ρ) =

InT − ρM, where Im is an m×m identify matrix. To identify the FE parameters, a zero-

sum constraint is imposed on {αt}. Define Dµ = lT ⊗ In, D
⋆
α = [−lnl

′
T−1; IT−1 ⊗ ln],

and D = [Dµ, D⋆
α]. Let S = bdiag(S1, . . . ,ST ) be the N × nT selection matrix with

N =
∑T

t=1 nt. Denote ϕ = (µ′, α2, . . . , αT )
′. Model (1.2) is written in matrix form:

SY = SA−1
nT (λ0)[Xβ0 +Dϕ0 +B−1

nT (ρ0)V]. (2.1)

4



It is important to note that Model (2.1) allows time-invariant covariate effects, such as

gender, to be “decomposed” from D by adding relevant constraints on it.

Let ΩN(δ) = SA−1
nT (λ)B

−1
nT (ρ)B

−1′
nT (ρ)A−1′

nT (λ)S ′ and Ω
1
2
N(δ) be its square root matrix,

where δ = (λ, ρ)′. To simplify the presentation, denote a parametric quantity at the

true parameter values by dropping its argument(s), e.g., A ≡ AnT (λ0), B ≡ BnT (ρ0),

ΩN ≡ ΩN(δ0). Pre-multiplying Ω
− 1

2
N ≡ Ω

− 1
2

N (δ0), Model (2.1) is transformed to:

Y = Xβ0 + Dϕ0 + V, (2.2)

where Y = Ω
− 1

2
N SY, X = CX, D = CD, and V = CB−1

nTV, and C = Ω
− 1

2
N SA−1

nT .

2.1. The M-estimation

If the elements of V are iid(0, σ2
v0), then Var(V) = σ2

v0IN . If further, the time-varying

regressors are exogenous, then the quasi Gaussian loglikelihood of θ = (β′, σ2
v , δ

′)′ and ϕ,

given X, in terms of the observed SY takes the form:

ℓN(θ, ϕ) = −N
2
ln 2π − N

2
lnσ2

v − 1
2
ln |ΩN(δ)| − 1

2σ2
v
V′(β, δ, ϕ)V(β, δ, ϕ), (2.3)

where V(β, δ, ϕ) = Y(δ) − X(δ)β − D(δ)ϕ, with Y(δ), X(δ) and D(δ) being Y, X and D

at the general δ value. ℓN(θ, ϕ) is partially maximized at:

ϕ̂(β, δ) = [D′(δ)D(δ)]−1D′(δ)[Y(δ)− X(δ)β], (2.4)

which is simply an OLS estimate of ϕ (given β and δ) from regressing Y(δ) − X(δ)β on

D(δ). Therefore, the concentrated quasi Gaussian loglikelihood function of θ is:

ℓcN(θ) =− N
2
ln 2π − N

2
lnσ2

v − 1
2
ln |ΩN(δ)| − 1

2σ2
v
Ṽ′(β, δ)Ṽ(β, δ), (2.5)

where Ṽ(β, δ) = QD(δ)[Y(δ)−X(δ)β], and QD(δ) is the projection matrix based on D(δ).

The QML estimator (QMLE) θ̂QML of θ maximizes ℓcN(θ), which can be inconsistent or
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asymptotically biased due to the ignorance of the effect of estimating the incidental ϕ.

To rectify these problems, we adjust the concentrated quasi score (CQS) function

Sc
N(θ) =

∂
∂θ
ℓcN(θ) to remove the effect of estimating ϕ, where,

Sc
N(θ) =



1
σ2
v
X′(δ)Ṽ(β, δ),

1
2σ4

v
[Ṽ′(β, δ)Ṽ(β, δ)−Nσ2

v ],

1
2σ2

v
Ṽ′(β, δ)Hλ(δ)Ṽ(β, δ) + 1

σ2
v
Ṽ′(β, δ)J(δ)ε(β, δ)− 1

2
tr[Hλ(δ)],

1
2σ2

v
Ṽ′(β, δ)Hρ(δ)Ṽ(β, δ)− 1

2
tr[Hρ(δ)],

(2.6)

where Hω(δ) = Ω
− 1

2
N (δ)[ ∂

∂ω
ΩN(δ)]Ω

− 1
2

N (δ), ω = λ, ρ, J(δ) = Ω
− 1

2
N (δ)S[ ∂

∂λ
A−1

nT (λ)], and

ε(β, δ) = Xβ +Dϕ̂(β, δ). Under mild conditions, θ̂QML = arg{Sc
N(θ) = 0}.

At the true θ0, Ṽ = QDV and ε = Xβ0+Dϕ0+D(D′D)−1D′V. We have, E(X′Ṽ) = 0,

E(Ṽ′Ṽ) = (N−n−T +1)σ2
v0, E(Ṽ′Jε) = 0, and E(Ṽ′HωṼ) = σ2

v0tr(HωQD), ω = λ, ρ.

Thus, 1
N
E[Sc

N(θ0)] =
1
N
{0′k,−n− T +1,−1

2
tr(HλPD),−1

2
tr(HρPD)}′ ̸= 0, which may not

even converge to 0 when either n or T is fixed. This is the root cause of inconsistency

or asymptotic bias of the QMLE θ̂QML. Therefore, removing the bias in Sc
N(θ0) due to the

estimation of ϕ0 may lead to a way for consistent and asymptotically unbiased estimation

of θ. The adjusted quasi score (AQS), or estimating function, takes the general form:

S∗
N(θ) =



1
σ2
v
X′(δ)Ṽ(β, δ),

1
2σ4

v
[Ṽ′(β, δ)Ṽ(β, δ)−N1σ

2
v ],

1
2σ2

v
Ṽ′(β, δ)Hλ(δ)Ṽ(β, δ) + 1

σ2
v
Ṽ′(β, δ)J(δ)ε(β, δ)− 1

2
tr[Hλ(δ)QD(δ)],

1
2σ2

v
Ṽ′(β, δ)Hρ(δ)Ṽ(β, δ)− 1

2
tr[Hρ(δ)QD(δ)],

(2.7)

where N1 = N − n− T + 1. Solving S∗
N(θ) = 0 gives the M-estimator θ̂M of θ.

The root-finding process can be simplified by first solving the equations for β and σ2
v :

β̂M(δ) = [X′(δ)QD(δ)X(δ)]−1X′(δ)QD(δ)Y(δ) and σ̂2
v,M(δ) =

1
N1

V̂′(δ)V̂(δ), (2.8)
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where V̂(δ) = Ṽ(β̂M(δ), δ). Then, plugging β̂M(δ) and σ̂2
v,M(δ) back into the δ-component

of (2.7) gives the concentrated AQS (estimating) function of δ:

S∗c
N (δ) =


V̂′(δ)Hλ(δ)V̂(δ)
2V̂′(δ)V̂(δ)/N1

+
V̂′(δ)J(δ)ε(β̂M(δ), δ)

V̂′(δ)V̂(δ)/N1

− 1

2
tr[Hλ(δ)QD(δ)],

V̂′(δ)Hρ(δ)V̂(δ)
2V̂′(δ)V̂(δ)/N1

− 1

2
tr[Hρ(δ)QD(δ)],

(2.9)

Solving S∗c
N (δ) = 0 gives us the unconstrained M-estimator δ̂M of δ, and the M-estimators

of β and σ2
v : β̂M ≡ β̂M(δ̂M) and σ̂2

v,M ≡ σ̂2
v,M(δ̂M). The M-estimator of θ is thus θ̂M =

(β̂′
M, σ̂

2
v,M, δ̂

′
M)

′. As discussed in the introduction, this estimation method does not suffer

from the problems associated with incidental parameters. It provides a consistent and

asymptotically unbiased estimation of all parameters as long as N is large.

2.2. Asymptotic properties of M-estimator

To study the asymptotic properties of the proposed M-estimator, it is necessary that

the errors, regressors, and spatial weight matrices satisfy certain basic conditions. Let

∆ϖ be the parameter space for ϖ = λ, ρ and ∆ = ∆λ ×∆ρ.

Assumption A. The elements vit of V are iid for all i and t with mean zero, variance

σ2
v0, and E|vit|4+ϵ0 < ∞ for some ϵ0 > 0.

Assumption B. The space ∆ of δ is compact with the true δ0 in its interior.

Assumption C. The elements of X are non-stochastic and bounded uniformly in i

and t. limN→∞
1
N
X′(δ)QD(δ)X(δ) exists and is non-singular, uniformly in δ ∈ ∆.

Assumption D. {Wt} and {Mt} are known time-varying matrices, and W and M

are such that (i) elements are at most of uniform order h−1
n such that hn

n
→ 0, as n → ∞;

(ii) diagonal elements are zero; and (iii) column and row sum norms are bounded.

Assumption E. Denoting by A(ϖ) either AN(λ) or BN(ρ), where ϖ = λ, ρ,

(i) both ∥A−1(ϖ)∥∞ and ∥A−1(ϖ)∥1 are bounded;
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(ii) 0 < cϖ ≤ infϖ∈∆ϖ γmin[A′(ϖ)A(ϖ)] ≤ supϖ∈∆ϖ
γmax[A′(ϖ)A(ϖ)] ≤ c̄ϖ < ∞.

Under Assumption E, ΩN(δ), its partial derivatives, and its inverse are all uniformly

bounded in both row and column sum norms, uniformly in δ ∈ ∆, as shown in Lemma

B.2(i). Some additional technical assumptions are required. Note that AnT (λ) and C(δ)

are both block diagonal. Denote their tth blocks by At(λ) and Ct(δ), respectively.

Assumption F: A−1
s (λ)[ 1

T

∑T
t=1C

′
t(δ)Qt(δ)Ct(δ)]

−1A−1′
t (λ) is bounded in both row

and column sum norms, uniformly in δ ∈ ∆ for all s and t, where Q1(δ) = In1 and

Qt(δ) = Int − Ct(δ)ln[l
′
nC

′
t(δ)Ct(δ)ln]

−1l′nC
′
t(δ), t = 2, . . . , T .

Under Assumption F, Ω
− 1

2
N (δ)QD(δ)Ω

− 1
2

N (δ) is bounded in both row and column sum

norms uniformly in δ ∈ ∆, as shown in Lemma B.2(ii). This facilitates our asymptotic

analysis. As in the GMM estimation, a high-level assumption, identification uniqueness,

on the population object function S̄∗c
N (δ) is imposed, where S̄∗c

N (δ) is the concentrated

E[S∗
N(θ)] with β and σ2

v being concentrated out (see Appendix C).

Assumption G: infδ:d(δ,δ0)≥ϵ

∥∥S̄∗c
N (δ)

∥∥ > 0 for every ϵ > 0, where d(δ, δ0) is a measure

of distance between δ and δ0.

More primitive conditions under which Assumption G is satisfied are discussed in

Appendix C. Finally, to cater to various asymptotic scenarios, the missingness cannot be

“too heavy”, and in the case of a fixed T or n, the number of observed responses is at

least 2 to ensure the spatial structure is complete after ϕ is concentrated out. Let Ti be

the number of times that the unit-i response is observed.

Theorem 2.1. Under Assumptions A-G, as N → ∞, if nt

n
→ ct and

Ti

T
→ di, where

ct, di ∈ (0, 1], and min(Ti ≥ 2) and min(nt) ≥ 2, then we have θ̂M
p−→ θ0.

The asymptotic distribution of θ̂M can be derived by applying the mean value theorem:

0 = S∗
N(θ̂M) = S∗

N(θ0) +
∂
∂θ′

S∗
N(θ̄)(θ̂M − θ0), where θ̄ lies between θ̂M and θ0, and its value
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varies over the rows of ∂
∂θ′

S∗
N(θ̄). The key result is the asymptotic normality of 1√

N1
S∗
N(θ0).

Recall Ṽ = QDV, ε = Xβ0+Dϕ0+D(D′D)−1D′V, and V = ΓV, where Γ = CB−1
nT . Then,

S∗
N(θ0) can be written in linear-quadratic (LQ) forms in V:

S∗
N(θ0) =



1
σ2
v0
Π′

1V,

1
2σ4

v0
V′Φ1V − N1

2σ2
v0
,

1
2σ2

v0
V′Φ2V + 1

σ2
v0
Π′

2V − 1
2
tr(HλQD),

1
2σ2

v0
V′Φ3V − 1

2
tr(HρQD),

(2.10)

where Π1 = Γ′QDX, Π2 = Γ′QDJ(Xβ0 + Dϕ0), Φ1 = Γ′QDΓ, Φ2 = Γ′QD[HλQD +

2JD(DD)−1D′]Γ, and Φ3 = Γ′QDHρQDΓ.

The representation (2.10) allows the application of the central limit theorem (CLT)

for LQ forms of Kelejian and Prucha (2001) and the Wold device to give 1√
N1

S∗
N(θ0)

D−→

N(0, limN→∞ Γ∗
N(θ0)), an important step toward the establishment of the asymptotic

normality of θ̂M. It also allows an easy derivation of E[ ∂
∂θ′

S∗
N(θ0)] as seen in Appendix A.

The consistency of θ̂M leads to 1
N1

[ ∂
∂θ′

S∗
N(θ̄)− E[ ∂

∂θ′
S∗
N(θ0)]] = op(1).

Theorem 2.2. Under the assumptions of Theorem 2.1, we have, as N → ∞,

√
N1

(
θ̂M − θ0

) D−→ N
(
0, lim

N→∞
Σ∗−1

N (θ0)Γ
∗
N(θ0)Σ

∗−1′
N (θ0)

)
,

where Σ∗
N(θ0) = − 1

N1
E[ ∂

∂θ′
S∗
N(θ0)] and Γ∗

N(θ0) = 1
N1

Var[S∗
N(θ0)], both assumed to exist

and Σ∗
N(θ0) assumed to be positive definite for sufficiently large N .

2.3. Estimation of the VC matrix

Inferences for θ require a consistent estimator of the asymptotic variance-covariance

(VC) matrix Σ∗−1
N (θ0)Γ

∗
N(θ0)Σ

∗−1′
N (θ0). The analytical expressions of

∂
∂θ′

S∗
N(θ) and Γ∗

N(θ0)

are given in Appendix A. First, it is easy to show that Σ̂∗
N = − 1

N1

∂
∂θ′

S∗
N(θ)|θ=θ̂M

consis-
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tently estimates Σ∗
N(θ0), i.e., Σ̂

∗
N − Σ∗

N(θ0) = op(1).

Γ∗
N(θ0) contains the common parameters θ0, the fixed effects ϕ0 embedded in Π2, and

the skewness κ3 and excess kurtosis κ4 of the idiosyncratic errors. The common plug-

in method may not be valid due to the involvement of the incidental parameters ϕ0. A

corrected plug-in method is proposed. Let Γ∗
N(θ̂M) = Γ∗

N(θ)|(θ=θ̂M,ϕ=ϕ̂M,κ3=κ̂3,N ,κ4=κ̂4,N ) be the

plug-in estimator, where ϕ̂M is the M-estimator of ϕ,3 and κ̂3,N and κ̂4,N are consistent

estimators of κ3 and κ4. When both n and T are large, Γ∗
N(θ̂M) would be consistent as

ϕ̂M is. However, when either n or T is fixed, ϕ̂M is not consistent and a bias correction

is necessary after plugging ϕ̂M into Γ∗
N(θ). We show that the only term that cannot be

consistently estimated is the one quadratic in ϕ0, embedded in Π′
2Π2.

Corollary 2.1. Under the assumptions of Theorem 2.1, we have,

Γ∗
N(θ̂M) = Γ∗

N(θ0) + Bias∗(δ0) + op(1),

where Bias∗(δ0) has a solo non zero λ-λ entry 1
N1
tr[(D′D)−1D′J′QDJD].

See the proof of Corollary 2.1 in Online Appendix for details on the above discussions.

Corollary 2.1 leads immediately to a general consistent estimator of Γ∗
N(θ0):

Γ̂∗
N = Γ∗

N(θ̂M)− Bias∗(δ̂M),

referred to in this paper as the corrected plug-in estimator.

Finally, we provide consistent estimators for κ3 and κ4. As V is infeasible for es-

timation due to the incidental parameters problem and incompleteness, we start from

Ω
− 1

2
N Ṽ = Ω

− 1
2

N QDΓV, which can be “consistently” estimated by Ω
− 1

2
N (δ̂M)V̂(β̂M, δ̂M) =

Ω
− 1

2
N (δ̂M)QD(δ̂M)Ω

− 1
2

N (δ̂M)S[Y−A−1
nT (λ̂M)Xβ̂M]. Let qjk be the (j, k)th element of N×nT ma-

trix Q̄D ≡ Ω
− 1

2
N QDΓ. Denote the elements of V by vl, l = 1, . . . , nT , and the elements of

3Or a GLS estimator by regressing S[Y −A−1
nT (λ̂M)Xβ̂M] on SA−1

nT (λ̂M)D with VC matrix ΩN (δ̂M).
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Q̄DV by ṽj, j = 1, . . . , N , where l and j are the combined index of cross-sectional and time

dimensions. Then, ṽj =
∑nT

k=1 qjkvk, and thus E(ṽ3j ) =
∑nT

k=1 q
3
jkE(v

3
k) = σ3

v0κ3

∑nT
k=1 q

3
jk.

Summing E(ṽ3j ) over j gives κ3 = (
∑N

j=1 E(ṽ
3
j ))(σ

3
v0

∑N
j=1

∑nT
k=1 q

3
jk)

−1. Its sample analog:

κ̂3,N =

∑N
j=1 v̂

3
j

σ̂3
v,M

∑N
j=1

∑nT
k=1 q̂

3
jk

(2.11)

gives a consistent estimator of κ3, where v̂j is the jth element of Ω
− 1

2
N (δ̂M)V̂(β̂M, δ̂M), and

q̂jk is the (j, k)th element of Q̄D(δ̂M). Similarly, to estimate κ4, we have,

E(ṽ4j ) =
∑nT

k=1 q
4
jkE(v

4
k) + 3σ4

v0

∑nT
k=1

∑nT
l=1 q

2
jkq

2
jl − 3σ4

v0

∑nT
k=1 q

4
jk

=
∑nT

k=1 q
4
jkκ4σ

4
v0 + 3σ4

v0

∑nT
k=1

∑nT
l=1 q

2
jkq

2
jl, j = 1, . . . , N,

which gives κ4 =
(∑N

j=1 E(ṽ
4
j )− 3σ4

v0

∑N
j=1

∑nT
k=1

∑nT
l=1 q

2
jkq

2
jl

)(
σ4
v0

∑N
j=1

∑nT
k=1 q

4
jk

)−1
, by

summing E(ṽ4j ) over j. Hence, a consistent estimator for κ4 is

κ̂4,N =

∑N
j=1 v̂

4
j − 3σ̂4

v,M

∑N
j=1

∑nT
k=1

∑nT
l=1 q̂

2
jkq̂

2
jl

σ̂4
v,M

∑N
j=1

∑nT
k=1 q̂

4
jk

. (2.12)

Corollary 2.2. Under the assumptions of Theorem 2.1, we have, as N → ∞,

(i) κ̂3,N
p−→ κ3,0 and κ̂4,N

p−→ κ4,0; (ii) Σ̂∗
N −Σ∗

N(θ0)
p−→ 0 and Γ̂∗

N −Γ∗
N(θ0)

p−→ 0;

and therefore Σ̂∗−1
N Γ̂∗

N Σ̂
∗−1′
N − Σ∗−1

N (θ0)Γ
∗
N(θ0)Σ

∗−1′
N (θ0)

p−→ 0.

See the proof of Corollary 2.2 in Online Appendix for details on the above discussions.

3. M-Estimation with Serial Correlation

In this section, we show that our M-estimation and inference methods introduced in

Section 2 can be extended to allow the errors to be serially correlated.

Assumption A′: The innovations follow an MA process, vit = eit + τei,t−1, for all i

and t with |τ | < 1, eit ∼ iid(0, σ2
e), and E|eit|4+ϵ0 < ∞ for some ϵ0 > 0.
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To conserve space, we use the same set of notations of Section 2, with relevant

quantities being redefined to cater to the extra parameter τ . Let now δ = (λ, ρ, τ)′,

θ = (β′, σ2
e , δ

′)′ and ΩN(δ) ≡ SA−1
nT (λ)B

−1
nT (ρ)[Υ(τ)Υ′(τ) ⊗ In]B

−1′
nT (ρ)A−1′

nT (λ)S ′, where

Υ(τ) is T × (T + 1) with rows: (τ, 1, 0, . . . , 0), (0, τ, 1, . . . , 0), · · · , (0, 0, . . . , τ, 1).

With the redefined δ, θ and ΩN(δ), update Y, X, D, and V in (2.2). The transformed

model remains in the form as (2.2) except that now Var(V) = σ2
e0IN . The loglikelihood

function of (θ, ϕ) remains in the same form as (2.3) with σ2
v0 being replaced by σ2

e0.

The constrained QMLE of ϕ remains in the same form as (2.4). Updating QD(δ) with

the updated D(δ) and thus Ṽ(β, δ), we then see that the concentrated quasi Gaussian

loglikelihood of θ has the same form as (2.5), which leads to the direct QMLE of θ.

The CQS function of θ is obtained and its expectation at the true θ0 is found in a

similar way as that in Section 2. The desired AQS function of θ is obtained:

S⋄
N(θ) =



1
σ2
e
X′(δ)Ṽ(β, δ),

1
2σ4

e
[Ṽ′(β, δ)Ṽ(β, δ)−N1σ

2
e ],

1
2σ2

e
Ṽ′(β, δ)Hλ(δ)Ṽ(β, δ) + 1

σ2
e
Ṽ′(β, δ)J(δ)ε(β, δ)− 1

2
tr[Hλ(δ)QD(δ)],

1
2σ2

e
Ṽ′(β, δ)Hρ(δ)Ṽ(β, δ)− 1

2
tr[Hρ(δ)QD(δ)],

1
2σ2

e
Ṽ′(β, δ)Hτ (δ)Ṽ(β, δ)− 1

2
tr[Hτ (δ)QD(δ)],

(3.1)

where Hω(δ), J(δ), and ε(β, δ) are defined in (2.6), and now are extended/redefined to

cater the extra parameter (ω = λ, ρ, τ). Solving S⋄
N(θ) = 0 gives the M-estimator θ̂⋄M of θ.

The asymptotic properties of θ̂⋄M can be established in a similar way as for θ̂M in Section

2, based on a similar sequence of assumptions (A′−G′). Assumption A′ can be extended

to a higher order MA process. Assumptions B′ and C′ take the same form as Assumptions

B and C but with relevant quantities being redefined, and D′ and E′ are the same as D

and E. As ΩN(δ) is no longer block diagonal, Assumption F needs to be modified.

12



Assumption F′: ∥Ω− 1
2

N (δ)QD(δ)Ω
− 1

2
N (δ)∥1 and ∥Ω− 1

2
N (δ)QD(δ)Ω

− 1
2

N (δ)∥∞ are bounded

uniformly in δ ∈ ∆.

The key steps for asymptotic analysis are: concentrating β and σ2
e out from (3.1)

to give the concentrated AQS functions of δ, S⋄c
N (δ); concentrating β and σ2

e out from

S̄⋄
N(θ) = E[S⋄

N(θ)] to give the population counterpart S̄⋄c
N (δ) of S⋄c

N (δ), and then showing

that supδ∈∆
1
N1

∥∥S⋄c
N (δ)− S̄⋄c

N (δ)
∥∥ p−→ 0. This and the identification condition given below

lead to the consistency of δ̂⋄M for δ0, and thus the consistency of θ̂⋄M.

Assumption G′: infδ:d(δ,δ0)≥ϵ

∥∥S̄⋄c
N (δ)

∥∥ > 0 for every ϵ > 0, where d(δ, δ0) is a measure

of distance between δ and δ0.

Theorem 3.1. Under Assumptions A′-G′, as N → ∞, if nt

n
→ ct and

Ti

T
→ di, where

ct, di ∈ (0, 1], and min(Ti ≥ 2) and min(nt) ≥ 2, then θ̂⋄M
p−→ θ0.

To derive the asymptotic distribution of θ̂⋄M, note that the AQS functions at the true θ0,

expressed inV, take similar forms as (2.10), with an extra τ -component. In (2.10), replace

V by (Υ ⊗ In)E and σ2
v0 by σ2

e0, where E = (E ′
0, E ′

1, . . . , E ′
T )

′, and Et = (e1t, e2t, . . . , ent)
′;

redefine Γ as Ω
− 1

2
N SA−1

nTB
−1
nT (Υ ⊗ In) and update Πr and Φs accordingly, r = 1, 2, s =

1, 2, 3; and introduce new Φ4 (defined as Φ3) and Hτ (defined as Hρ). We have,

S⋄
N(θ0) =



1
σ2
e0
Π′

1E ,

1
2σ4

e0
E ′Φ1E − N1

2σ2
v0
,

1
2σ2

e0
E ′Φ2E + 1

σ2
v0
Π′

2V − 1
2
tr(HλQD),

1
2σ2

e0
E ′Φ3E − 1

2
tr(HρQD),

1
2σ2

e0
E ′Φ4E − 1

2
tr(HτQD),

(3.2)

which is linear-quadratic in E with iid elements. Again, the importance of this represen-

tation is two fold: it allows the application of CLT for LQ forms of Kelejian and Prucha
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(2001) and the Wold device to establish the asymptotic normality of 1√
N1

S⋄
N(θ0) (thus

the asymptotic normality θ̂⋄M) and an easy derivation of E[S⋄
N(θ0)] as seen in Appendix A.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have, as N → ∞,

√
N1

(
θ̂⋄M − θ0

) D−→ N
(
0, lim

N→∞
Σ⋄−1

N (θ0)Γ
⋄
N(θ0)Σ

⋄−1′
N (θ0)

)
,

where Σ⋄
N(θ0) = − 1

N1
E[ ∂

∂θ′
S⋄
N(θ0)] and Γ⋄

N(θ0) = 1
N1

Var[S⋄
N(θ0)], both assumed to exist

and Σ⋄
N(θ0) assumed to be positive definite for sufficiently large N .

For statistical inference, Σ⋄
N(θ0) is estimated by Σ̂⋄

N = − 1
N1

∂
∂θ′

S⋄
N(θ)|θ=θ̂⋄M

. The ana-

lytical expressions of ∂
∂θ′

S⋄
N(θ) and Γ⋄

N(θ0) are given in Appendix A. Similar to Γ∗
N(θ0)

in Section 2, Γ⋄
N(θ0) contains the common parameters θ0, the incidental parameters ϕ0,

and the skewness κe
3 and the excess kurtosis κe

4 of the idiosyncratic errors {eit}. Again,

the usual plug-in estimator would not lead to a consistent estimation of Γ⋄
N(θ0), and a

corrected plug-in estimator (correction on Π′
2Π2) is developed:

Γ̂⋄
N = Γ⋄

N(θ̂
⋄
M)− Bias⋄(δ̂⋄M),

where Bias⋄(δ0) has a sole non-zero λ-λ element 1
N1
tr[(D′D)−1D′J′QDJD].

Corollary 3.1. Under the assumptions of Theorem 3.1, we have,

Γ⋄
N(θ̂

⋄
M) = Γ⋄

N(θ0) + Bias⋄(δ0) + op(1),

where Bias⋄(δ0) has a solo non zero λ-λ entry 1
N1
tr[(D′D)−1D′J′QDJD].

Finally, we note that Ω
− 1

2
N Ṽ = Q̄D(Υ ⊗ In)E can be “consistently” estimated by

Ω
− 1

2
N (δ̂⋄M)V̂(β̂⋄

M , δ̂
⋄
M) = Ω

− 1
2

N (δ̂⋄M)QD(δ̂
⋄
M)Ω

− 1
2

N (δ̂⋄M)S[Y − A−1
nT (λ̂

⋄
M)Xβ̂⋄

M ]. We follow the idea of

Corollary 2.2 and develop a pair of consistent estimators for κe
3 and κe

4 as follows:

κ̂e
3,N =

∑N
j=1 v̂

3
j

σ̂⋄3
e,M

∑N
j=1

∑n(T+1)
k=1 q̂3jk

and κ̂e
4,N =

∑N
j=1 v̂

4
j − 3σ̂⋄4

e,M

∑N
j=1

∑n(T+1)
k=1

∑nT
l=1 q̂

2
jkq̂

2
jl

σ̂⋄4
e,M

∑N
j=1

∑n(T+1)
k=1 q̂4jk

.
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where q̂jk is the (j, k)th element of N × n(T +1) matrix Ω
− 1

2
N (δ̂⋄M)Q̄D(δ̂

⋄
M)(Υ(τ̂ ⋄M )⊗ In) and

v̂j the jth element of Ω
− 1

2
N (δ̂⋄M)V̂(β̂⋄

M , δ̂
⋄
M).

Corollary 3.2. Under the assumptions of Theorem 3.1, we have, as N → ∞,

(i) κ̂e
3,N

p−→ κe
3,0 and κ̂e

4,N

p−→ κe
4,0; (ii) Σ̂⋄

N −Σ⋄
N(θ0)

p−→ 0 and Γ̂⋄
N −Γ⋄

N(θ0)
p−→ 0;

and therefore Σ̂⋄−1
N Γ̂⋄

N Σ̂
⋄−1′
N − Σ⋄−1

N (θ0)Γ
⋄
N(θ0)Σ

⋄−1′
N (θ0)

p−→ 0.

4. Monte Carlo Results

Monte Carlo experiments are conducted to investigate (i) the finite sample perfor-

mance of the proposed M-estimators of the common parameters and the corrected plug-in

estimator of the VC matrix, and (ii) the consequence of discarding the units with missing

responses. The following data generating process is used:

StYt = StA
−1
t (λ)(Xtβ + µ+ αtln + Ut), Ut = ρMtUt + Vt, t = 1, . . . , T,

The parameters values are set at β = 1, λ = 0.2, ρ = 0.2, and σ2
v = 1. The X ′

ts are

generated independently from N(0, 22In), the individual fixed effects from µ = 1
T
ΣT

t=1Xt+

e, where e ∼ N(0, In), and the time fixed effects α from N(0, IT ). The sample sizes are

based on n ∈ (50, 100, 200, 400) and T ∈ (5, 10). For each Monte Carlo experiment, the

number of Monte Carlo runs is set to 1000.

The spatial weight matrices can be Rook contiguity or Queen contiguity. To generate

Wnt under Rook, randomly permute the indices {1, 2, . . . , n} for n spatial units and then

allocate them into a lattice of k ×m squares. Let Wnt,ij = 1 if the index j is in a square

that is immediately left or right, above, or below the square that contains the index i.

Similarly, Wnt under Queen is generated with additional neighbors sharing a common
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vertex with the unit i. The distribution of the idiosyncratic errors can be (i) normal,

(ii) standardized normal mixture (10% N(0, 42) and 90% N(0, 1)), or (iii) standardized

chi-square with 3 degrees of freedom. See Yang (2015) for details.

The selection matrices St are generated as follows: for each t, associate with each row

of In a uniform (0, 1) random number, and the rows with random numbers smaller than

pt ∈ (0, 1) are deleted. This gives 100pt% missing on the responses. We consider a case

with iid errors, and a case with serially correlated errors with τ = 0.5. We consider two

randomly missing percentages, 10% and 30%, to see the effect of the degree of missingness.

The Monte Carlo experiments involve five estimators: naı̈ve, QMLE-GU and M-Est-GU,

and QMLE-MR and M-Est-MR. The naı̈ve estimator is the M-estimator based on a balanced

panel formed by deleting entirely the spatial units with missing responses; QMLE-GU and

M-Est-GU are the estimators developed by Meng and Yang (2021) for genuinely unbal-

anced spatial panels; and QMLE-MR and M-Est-MR are our proposed estimators. Clearly,

only the estimator M-Est-MR is valid when data is generated according to FE-SPD-MR.

These Monte Carlo experiments allow us not only to see the finite sample performance

of the proposed estimation and inference methods but also the consequence of a wrong

choice of estimator, and a wrong choice of modeling mechanism. To conserve space, only

partial Monte Carlo results are reported. The full set of results is in Online Appendix.

Table 1 contains partial results on QMLE-MR, M-Est-GU and M-Est-MR for the case of

iid errors. The results (reported and unreported) show an excellent performance of the

proposed M-estimation and inference methods, irrespective of the error distributions, the

spatial layouts, parameter values, as well as the missing percentage. In contrast, the

QMLE-MR (the closest estimator to M-Est-MR) of σ2 is inconsistent, and the QMLE-MRs of

spatial parameters do not perform as well as the M-Est-MRs. By comparing M-Est-GU
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with M-Est-MR, we can see the consequences of treating an MR mechanism as a GU

mechanism: M-Est-GUs of the spatial parameters perform poorly even when the sample

size is fairly large. When the missing percentage is higher, M-Est-GU estimator becomes

more biased. This is consistent with our expectation as treating FE-SPD-MR as FE-

SPD-GU ignores the spatial effects from the units with missing responses. The larger

the missing percentage is, the more serious the consequence. Furthermore, the very poor

performance of naı̈ve and QMLE-GU is also clearly demonstrated by the Monte Carlo

results (see Table 1c in Online Appendix). Therefore, in spatial panel frameworks, a

wrong choice of estimator, i.e., näive estimator and QMLEs, and a wrong choice of

mechanism, i.e., treating MR as GU, can have a very serious consequence.

Table 2 contains partial results on QMLE-MR and M-Est-MR for the case of serially

correlated errors, as M-Est-GU is unavailable. The proposed M-Est-MRs of all the param-

eters have a very good finite sample performance. Their corresponding standard error

estimates are also close to Monte Carlo standard deviations. In contrast, the QMLE-MR

typically provides much worse estimates for error variance parameter σ2 and serial cor-

relation parameter τ , showing that the incidental parameters problem is more serious to

the estimation of the parameters in the error term.

5. An Empirical Application

In this section, we present an empirical study to analyze horizontal competition in

excise taxes on beer and gasoline among US states. The theoretical models set up in

Kanbur and Keen (1993) and Nielsen (2001) imply that independent jurisdictions have

incentives to engage in commodity tax competition in order to attract cross-border shop-

pers and thus maximize their tax revenue. Therefore, the tax rates of neighboring states
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are likely to play a role in the determination of the state’s own tax policy. Egger et al.

(2005) and Devereux et al. (2007) find empirical evidence for positive spillover effects.

Egger et al. (2005) estimate the SE parameter using GMM and the SL parameter by 2SLS.

Devereux et al. (2007) does not include the SE effect in the model. They treat the data as

genuinely unbalanced (GU) panel data (some states in certain periods had observations

on the response and covariate missing) in the sense of Meng and Yang (2021), thereby

spillover effects to/from these ignored units with missing tax rates were not captured.

In this section, we reconsider this study under the missing-on-response-only (MR)

mechanism since the explanatory variables can be fully observed over a chosen period.

We construct two panels based on 48 contiguous US states over 19 years (1978-1996), the

tax rates on beer and the tax rates on gasoline. The numbers of observations for beer

and gasoline tax rates are, respectively, 911 and 888. We define the spatial neighboring

states as those that share a common border. The overall spatial weight matrix W is row-

normalized. The explanatory variables we use are state size (population density), spatially

weighted size (WSize), dependency ratio (DR), government ideological orientation (GIO),

lagged sales tax rate (LSTR), gross state product (GSP), and public expenditure (PE).4

Table A1 summarizes the estimation results based on tax rates on beer and tax rates on

gasoline. For each set of data, we report three types of estimation results: M-estimation

based on GU (Meng and Yang, 2021), M-estimation based on MR, and M-estimation

based on MR with serial correlation (MRSC). Our analyses lead to a deeper understanding

on the mechanism of tax competition, and offer more insights on the nature of spatial

interactions. Both analyses point to the existence of strong and positive endogenous

4Data sources. Tax rates and PE: World Tax Database (https://www.bus.umich.edu/otpr/otpr/
default.asp); GSP: US Bureau of Economic Analysis (https://www.bea.gov/data/gdp/gdp-state);
other control variables: the data sources described in Egger et al. (2005); and the missing values on
PE are recovered from United States Census Bureau (https://www.census.gov/programs-surveys/
state/data/historical_data.html).
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spatial spillover effects (tax competition), and strong and positive serial correlation.

Table A1: Spatial missing response panel analyses of US state tax rates

Variables Beer Gasoline

GU MR MRSC GU MR MRSC

State Size 0.160∗∗∗ 0.159∗∗∗ 0.147∗∗∗ 0.038 0.053∗ 0.048

(0.04) (0.04) (0.04) (0.03) (0.03) (0.03)

WSize −0.113∗ −0.124∗∗ −0.155∗∗∗ −0.129∗∗∗ −0.119∗∗∗ −0.114∗∗

(0.07) (0.06) (0.07) (0.05) (0.05) (0.05)

DR 0.194∗ 0.175∗∗ 0.116 0.003 0.014 0.034

(0.10) (0.09) (0.08) (0.08) (0.07) (0.07)

GIO −0.034∗∗ −0.036∗∗∗ −0.008 0.014 0.014 0.016

(0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

LSTR 0.273 0.270 −0.085 −0.044 0.007 −0.086

(0.23) (0.23) (0.23) (0.18) (0.19) (0.18)

GSP −0.783∗∗∗ −0.758∗∗∗ −0.586∗∗∗ −0.108 −0.173∗ −0.146

(0.09) (0.10) (0.10) (0.09) (0.10) (0.10)

PE 0.007∗∗∗ 0.007∗∗∗ 0.005∗∗∗ 0.000 0.001 0.000

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

SL(λ) 0.197 0.316∗ 0.370∗∗ 0.081 0.329∗∗∗ 0.262∗∗

(0.24) (0.18) (0.18) (0.11) (0.12) (0.13)

SE(ρ) −0.026 −0.165 −0.245 0.270∗∗ 0.010 0.038

(0.28) (0.23) (0.22) (0.13) (0.16) (0.16)

SC(τ) 0.699∗∗∗ 0.692∗∗∗

(0.02) (0.02)

Pseudo R2 96.56% 96.64% 98.26% 82.31% 82.52% 90.59%

States FE 48 48 48 48 48 48

Years FE 19 19 19 19 19 19

Observed Responses 911 911 911 888 888 888

Significance levels: ∗:10%, ∗∗:5%, and ∗∗∗: 1%. Standard error are in parentheses.

The first estimation serves to show the effects of ignoring the spatial effects from units

with missing responses. For both data sets, the M-estimates of SL parameter based on

MR or MRSC are all significantly positive, suggesting the existence of tax competition. In

contrast, these based on GU are not. It is interesting to note that beer data have only one

response value gone missing, but taking it into account by MR scheme completely changes

the conclusion on tax competition. The estimates of SE coefficient exhibit negative but

insignificant values for beer data, which is in line with Egger et al. (2005). However, our

approach has an advantage in that we can make statistical inferences on the SE effect. The

MR and MRSC estimates of SE coefficient for gasoline data are positive but insignificant.

Lastly, the MRSC estimates of serial correlation are significantly positive for both data

sets, suggesting the path dependence in setting state tax rates.
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6. Conclusions and Discussions

We consider fixed effects estimation of spatial panel data models with missing re-

sponses, allowing unobserved spatiotemporal heterogeneity, time-varying endogenous and

contextual spatial interactions, time-varying cross-sectional error dependence, and serial

correlation. We propose an M-estimation method for model estimation and a corrected

plug-in method for model inference, both taking into account the effects of estimating

the fixed effects. We study the asymptotic and finite sample properties of the proposed

methods. We apply our methods to US state tax competition data, which leads to a

much deeper understanding on tax competition mechanism. An important feature of the

proposed method is that it allows the estimation of time-invariant covariate effects, such

as gender, by imposing relevant constraints on the D matrix in Model (2.1).

The proposed methods apply to matrix exponential spatial specification (MESS) by

replacing, in Model (1.2), In − λWt by exp(λWt) =
∑∞

i=0(λWt)
i/i! and In − ρMt by

exp(ρMt) =
∑∞

i=0(ρMt)
i/i!, and can be easily extended to allow for a high-order MA

process for serial correlation. They can be further extended to allow for high-order spatial

effects by replacing In−λWt by In−
∑p

l=1 λlWlt and In−ρMt by In−
∑p

e=1 ρeMet. Details

on these are available from the authors upon request. Extending MESS to high order

runs into a computational issue as the partial derivatives do not possess analytical form.
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Appendix A: AQS, Hessian, and Variance of AQS

A.1. Derivation for Section 2

AQS function. Write Ṽ′(β, δ)Ṽ(β, δ) = V ′(β, λ)Ψ(δ)V(β, λ), where V(β, λ) = S[Y−

A−1
nT (λ)Xβ] and Ψ(δ) = Ω

− 1
2

N (δ)QD(δ)Ω
− 1

2
N (δ). Letting D(λ) = SA−1

nT (λ)D, then,

Ψ(δ) = Ω−1
N (δ)−Ω−1

N (δ)D(λ)[D′(λ)Ω−1
N (δ)D(λ)]−1D′(λ)Ω−1

N (δ), (A.1)

which allows the use of the matrix result: ∂
∂ω
Ω−1

N (δ) = −Ω−1
N (δ)[ ∂

∂ω
Ω(δ)]Ω−1

N (δ), ω = λ, ρ.

Denoting Ψ̇ω(δ) ≡ ∂
∂ω
Ψ(δ), ω = λ, ρ, we obtain, after some tedious algebra:

Ψ̇λ(δ) = −Ω
− 1

2
N (δ)QD(δ)Hλ(δ)QD(δ)Ω

− 1
2

N (δ)−Ψ(δ)K(δ)−K′(δ)Ψ(δ), (A.2)

Ψ̇ρ(δ) = −Ω
− 1

2
N (δ)QD(δ)Hρ(δ)QD(δ)Ω

− 1
2

N (δ), (A.3)

where K(δ) = S[ ∂
∂λ
A−1

nT (λ)]D[D′(δ)D(δ)]−1D′(δ)Ω
− 1

2
N (δ). These lead immediately to the

CQS function (2.6) and thus the AQS function (2.7).

Hessian matrix. To derive H∗
N(θ) = ∂

∂θ′
S∗
N(θ), let Ω̇ω(δ) and Ω̈ωϖ(δ) be the 1st-

and 2nd-order partial derivatives of Ω(δ), ω,ϖ = λ, ρ; similarly are Ψ̇ω(δ) and Ψ̈ωϖ(δ)

defined. Denoting J(δ) = Ω
− 1

2
N (δ)S[ ∂

∂λ
A−1

nT (λ)], we obtain the components of H∗
N(θ):

H∗
ββ(θ) = − 1

σ2
v
X′(δ)QD(δ)X(δ), H∗

βσ2
v
(θ) = − 1

σ4
v
X′(ρ)Ṽ(β, δ) = H∗′

σ2
vβ
(θ),

H∗
βλ(θ) =

1
σ2
v
X′J′(δ)Ṽ(β, δ) + 1

σ2
v
X′A−1′

nT (λ)S ′Ψ̇λ(δ)V(β, λ)− 1
σ2
v
X′(ρ)J(δ)Xβ = H∗′

λβ(θ),

H∗
βρ(θ) =

1
σ2
v
X′A−1′

nT (λ)S ′Ψ̇ρ(δ)V(β, λ) = H∗′
ρβ(θ),

H∗
σ2
vσ

2
v
(θ) = − 1

σ6
v
Ṽ′(β, δ)Ṽ(β, δ) + 1

2σ4
v
N1,

H∗
σ2
vλ
(θ) = 1

2σ4
v
V ′(β, λ)Ψ̇λ(δ)V(β, λ)− 1

σ4
v
Ṽ′(β, δ)J(δ)Xβ = H∗′

λσ2
v
(θ),

H∗
σ2
vρ
(θ) = 1

2σ4
v
V ′(β, λ)Ψ̇ρ(δ)V(β, λ) = H∗′

ρσ2
v
(θ),

H∗
λλ(θ) =

2
σ2
v
V ′(β, λ)Ψ̇λ(δ)S[ ∂

∂λ
A−1

nT (λ)]Xβ + 2
σ2
v
Ṽ′(β, δ)J(δ)WnTA

−1
nT (λ)Xβ
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− 1
σ2
v
β′X′J′(δ)QD(δ)J(δ)Xβ − 1

2σ2
v
V ′(β, λ)Ψ̈λλ(δ)V(β, λ)

−1
2
tr[Ω̇λ(δ)Ψ̇λ(δ) + Ω̈λλ(δ)Ψ(δ)],

H∗
λρ(θ) = − 1

2σ2
v
V ′(β, λ)Ψ̈λρ(δ)V(β, λ) + 1

σ2
v
V ′(β, λ)Ψ̇ρ(δ)S[ ∂

∂λ
A−1

nT (λ)]Xβ

−1
2
tr[Ω̇λ(δ)Ψ̇ρ(δ) + Ω̈λρ(δ)Ψ(δ)],

H∗
ρλ(θ) = − 1

2σ2
v
V ′(β, λ)Ψ̈λρ(δ)V(β, λ) + 1

σ2
v
V ′(β, λ)Ψ̇ρ(δ)S[ ∂

∂λ
A−1

nT (λ)]Xβ

−1
2
tr[Ω̇ρ(δ)Ψ̇λ(δ) + Ω̈λρ(δ)Ψ(δ)],

H∗
ρρ(θ) = − 1

2σ2
v
V ′(β, λ)Ψ̈ρρ(δ)V(β, λ)− 1

2
tr[Ω̇ρ(δ)Ψ̇ρ(δ) + Ω̈ρρ(δ)Ψ(δ)].

VC matrix. For stochastic terms of the forms in (2.10), one easily shows,

(i) Cov(Π′
rV, Π′

sV) = σ2
v0Π

′
rΠs, r, s = 1, 2, . . .;

(ii) Cov(V′ΦrV, Π′
sV) = σ3

v0κ3φ
′
rΠs, r = 1, 2, ..., s = 1, 2, . . .; and

(iii) Cov(V′ΦrV, V′ΦsV) = σ4
v0κ4φ

′
rϕs + σ4

v0tr(ΦrΦ
◦
s), r, s = 1, 2, . . .,

where φr = diagv(Φr), for r = 1, 2, . . ..

Apply these results to (2.10), we obtain,

Var[S∗
N(θ0)] =

1

σ2
v0



Π′
1Π1,

1
σ0
κ3Π

′
1φ1, Π′

1Π2 + σ0κ3Π
′
1φ2, σ0κ3Π

′
1φ3

∼, 1
σ2
0
Ξ11, Ξ12,

1
σ2
0
Ξ13

∼, ∼, Ξ22 +Π′
2Π2 + 2σ0κ3Π

′
2φ2, Ξ23 + σ0κ3Π

′
2φ3

∼, ∼, ∼, Ξ33


where Ξrs = tr(ΦrΦ

◦
s) + κ4φ

′
rφs, r, s = 1, 2, 3.

A.2. Derivation for Section 3.

Hessian matrix. With ΩN(δ) = SA−1
nT (λ)B

−1
nT (ρ)(Υ

′(τ)Υ(τ)⊗In)B
−1′
nT (ρ)A−1′

nT (λ)S ′,

the non-τ -components of H⋄
N(θ) =

∂
∂θ′

S∗
N(θ) remain in the same form as those of H∗

N(θ)

in Section 2. Extending the notations, Ω̇ω(δ), Ω̈ωϖ(δ), Ψ̇ω(δ), and Ψ̈ωϖ(δ) of Section 2

to ω,ϖ = λ, ρ, τ , we obtain the τ -components of H⋄
N(θ):
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H⋄
βτ (θ) =

1
σ2
e
X′A−1′

nT (λ)S ′Ψ̇τ (δ)V(β, λ) = H⋄′
τβ(θ),

H⋄
σ2
eτ
(θ) = 1

2σ4
e
V ′(β, λ)Ψ̇τ (δ)V(β, λ) = H⋄′

τσ2
e
(θ),

H⋄
λτ (θ) = − 1

2σ2
e
V ′(β, λ)Ψ̈λτ (δ)V(β, λ) + 1

σ2
e
V ′(β, λ)Ψ̇τ (δ)S[ ∂

∂λ
A−1

nT (λ)]Xβ

−1
2
tr[Ω̇λ(δ)Ψ̇τ (δ) + Ω̈λτ (δ)Ψ(δ)],

H⋄
τλ(θ) = − 1

2σ2
e
V ′(β, λ)Ψ̈λτ (δ)V(β, λ) + 1

σ2
e
V ′(β, λ)Ψ̇τ (δ)S[ ∂

∂λ
A−1

nT (λ)]Xβ

−1
2
tr[Ω̇τ (δ)Ψ̇λ(δ) + Ω̈λτ (δ)Ψ(δ)],

H⋄
ρτ (θ) = − 1

2σ2
e
V ′(β, λ)Ψ̈ρτ (δ)V(β, λ)− 1

2
tr[Ωρ(δ)Ψ̇τ (δ) + Ω̈ρτ (δ)Ψ(δ)],

H⋄
τρ(θ) = − 1

2σ2
e
V ′(β, λ)Ψ̈τρ(δ)V(β, λ)− 1

2
tr[Ω̇τ (δ)Ψ̇ρ(δ) + Ω̈τρ(δ)Ψ(δ)],

H⋄
ττ (θ) = − 1

2σ2
e
V ′(β, λ)Ψ̈ττ (δ)V(β, λ)− 1

2
tr[Ω̇τ (δ)Ψ̇τ (δ) + Ω̈ττ (δ)Ψ(δ)].

VC matrix. Applying the results (i)-(iii) in Section A.1 to (3.2), we obtain,

Var[S⋄
N(θ0)]

=
1

σ2
e0



Π′
1Π1,

1
σe0

κ3Π
′
1φ1, Π′

1Π2 + σe0κ3Π
′
1φ2, σe0κ3Π

′
1φ3, σe0κ3Π

′
1φ4

∼, 1
σ2
e0
Ξ11, Ξ12,

1
σ2
e0
Ξ13,

1
σ2
e0
Ξ14

∼, ∼, Ξ22 +Π′
2Π2 + 2σe0κ3Π

′
2φ2, Ξ23 + σe0κ3Π

′
2φ3, Ξ24 + σe0κ3Π

′
2φ4

∼, ∼, ∼, Ξ33, Ξ34

∼, ∼, ∼, ∼, Ξ44


where Ξrs = tr(ΦrΦ

◦
s) + κ4φ

′
rφs, r, s = 1, 2, 3, 4.

Appendix B: Some Basic Lemmas

The following lemmas, existing or new, are essential to the proofs of main results in

Sections 2 and 3. The proofs of the new lemmas are given in Online Appendix.

Lemma B.1. (Kelejian and Prucha, 1999): Let {AN} and {BN} be two sequences

of N × N matrices that are bounded in both r-norm and c-norm. Let CN be a sequence

23



of conformable matrices whose elements are uniformly O(h−1
n ). Then,

(i) the sequence {ANBN} are bounded in both row and column sum norms,

(ii) the elements of AN are uniformly bounded and tr(AN) = O(N), and

(iii) the elements of ANCN and CNAN are uniformly O(h−1
N ).

Lemma B.2. Under the setup of Section 2 and Assumptions C-F, the following

matrices are all bounded in both row and column sum norms, uniformly in δ ∈ ∆:

(i) ΩN(δ), Ω̇ω(δ) ≡ ∂
∂ω
ΩN(δ), ω = λ, ρ, Ω−1

N (δ), (ii) Ω
− 1

2
N (δ)QD(δ)Ω

− 1
2

N (δ), and (iii)

Ω
− 1

2
N (δ)PX̃(δ)Ω

− 1
2

N (δ), where PX̃(δ) is the projection matrix based on X̃(δ) = QD(δ)X(δ).

Lemma B.3. Under Assumptions C-E, tr[ANX[X′(δ)QD(δ)X(δ)]−1X′BN ] = O(1),

uniformly in δ ∈ ∆, for AN and BN bounded in row or column sum norm.

Lemma B.4. Let AN be an N×N matrix bounded in row and column sum norm, with

elements being O(h−1
N ) uniformly in i and j. Let V = (v1, · · · , vN)′ and vj ∼ iid(0, σ2).

Let cN be an N × 1 vector with elements of uniform order O(h
−1/2
n ). Then,

(i) E(V′ANV) = O( N
hn
), (ii) Var(V′ANV) = O( N

hn
),

(iii) V′ANV = Op(
N
hn
), (iv) V′ANV − E(V′ANV) = Op((

N
hn
)
1
2 ),

(v) c′NANV = Op((
N
hn
)
1
2 ), if ∥AN∥1 is bounded.

Appendix C: Proofs for Section 2

Population objective function. The population counterpart of S∗c
N (δ) is

S̄∗c
N (δ) =


E[V̄′(δ)Hλ(δ)V̄(δ)]
2E[V̄′(δ)V̄(δ)]/N1

+
E[V̄′(δ)J(δ)ε(β̄M(δ), δ)]

E[V̄′(δ)V̄(δ)]/N1
− 1

2
tr[Hλ(δ)QD(δ)],

E[V̄′(δ)Hρ(δ)V̄(δ)]
2E[V̄′(δ)V̄(δ)]/N1

− 1

2
tr[Hρ(δ)QD(δ)],

(C.1)

where V̄(δ) = Ṽ(β̄M(δ), δ), obtained by first solving S̄∗
N(θ) = E[S∗

N(θ)] for β and σ2:

β̄M(δ) = [X′(δ)QD(δ)X(δ)]−1X′(δ)QD(δ)E[Y(δ)] and σ̄2
v,M(δ) =

1
N1

E[V̄′(δ)V̄(δ)], (C.2)
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and then substituting β̄M(δ) and σ̄2
v,M(δ) back into the δ-component of S̄∗

N(θ).

More on Assumption G. By (C.2), we have V̄(δ) = QD(δ)Y(δ)−QD(δ)X(δ)β̄M(δ) =

QX̃(δ)QD(δ)Y(δ)+PX̃(δ)QD(δ)[Y(δ)−E(Y(δ))], where PX̃(δ) and QX̃(δ) are the projection

matrices based on X̃(δ) = QD(δ)X(δ). Let η = SA−1
nT (Xβ0+Dϕ0). As Y(δ) = Ω

− 1
2

N (δ)η+

Ω
− 1

2
N (δ)SA−1

nTB
−1
nTV, we have by orthogonality between QX̃(δ) and PX̃(δ),

σ̄2
v,M(δ) =

1
N1

E[V̄′(δ)V̄(δ)]

= 1
N1

E[Y′(δ)Q(δ)Y(δ)] + 1
N1

E
{
[Y(δ)− E(Y(δ))]′P(δ)[Y(δ)− E(Y(δ))]

}
(C.3)

= 1
N1

E(Y(δ))′Q(δ)E(Y(δ)) + 1
N1

E
{
[Y(δ)− E(Y(δ))]′[Q(δ) +P(δ)][Y(δ)− E(Y(δ))]

}
= 1

N1
E(Y(δ))′Q(δ)E(Y(δ)) + 1

N1
E
{
[Y(δ)− E(Y(δ))]′QD(δ)[Y(δ)− E(Y(δ))]

}
= 1

N1
η′Ω

− 1
2

N (δ)Q(δ)Ω
− 1

2
N (δ)η +

σ2
v0

N1
tr[QD(δ)ON(δ)],

whereQ(δ) = QD(δ)QX̃(δ)QD(δ), P(δ) = QD(δ)PX̃(δ)QD(δ) andON(δ) = Ω
− 1

2
N (δ)ΩNΩ

− 1
2

N (δ).

Denote QN(δ) = QX̃(δ)QD(δ)Ω
− 1

2
N (δ) and D†(δ) = D[D′(δ)D(δ)]−1D′(δ). A more

primitive condition for Assumption G to hold is that either (a) or (b) holds for δ ̸= δ0:

(a) 1
2σ̄2

v,M(δ)
η′Q′

N(δ)Hλ(δ)QN(δ)η+
1

σ̄2
v,M(δ)

η′Q′
N(δ)J(δ)[D†(δ)Ω

− 1
2

N (δ)η−X(δ)β̄M(δ)+Xβ̄M(δ)]+

σ2
v0

σ̄2
v,M(δ)

tr[J(δ)D†(δ)ON(δ)QD(δ)] +
1
2
tr[

σ2
v0

σ̄2
v,M(δ)

Hλ(δ)QD(δ)ON(δ)QD(δ)−Hλ(δ)QD(δ)] ̸= 0,

(b) 1
2σ̄2

v,M(δ)
η′Q′

N(δ)Hρ(δ)QN(δ)η +
1
2
tr[

σ2
v0

σ̄2
v,M(δ)

Hρ(δ)QD(δ)ON(δ)QD(δ)−Hρ(δ)QD(δ)] ̸= 0.

As QN(δ0)η = 0, ON(δ0) = IN , β̄M(δ0) = β0 and σ̄2
v,M(δ0) = σ2

v0, the two quantities in

(a) and (b) are both 0 when δ = δ0.

Proof of Theorem 2.1: By theorem 5.9 of Van der Vaart (1998), we only need to

show supδ∈δ
1
N1

∥∥S∗c
N (δ)− S̄∗c

N (δ)
∥∥ p−→ 0 under the assumptions in Theorem 2.1. From

(2.9) and (C.1), the consistency of δ̂M follows from:

(a) infδ∈∆σ̄
2
v,M(δ) is bounded away from zero,
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(b) supδ∈∆
∣∣σ̂2

v,M(δ)− σ̄2
v,M(δ)

∣∣ = op(1),

(c) supδ∈∆
1
N1

∣∣V̂′(δ)Hω(δ)V̂(δ)− E[V̄′(δ)Hω(δ)V̄(δ)]
∣∣ = op(1), for ω = λ, ρ,

(d) supδ∈∆
1
N1

∣∣V̂′(δ)J(δ)ε(β̂M(δ), δ)− E[V̄′(δ)J(δ)ε(β̄M(δ), δ)]
∣∣ = op(1).

Proof of (a). Note that σ̄2
v,M(δ) = 1

N1
η′Ω

− 1
2

N (δ)Q(δ)Ω
− 1

2
N (δ)η +

σ2
v0

N1
tr[QD(δ)ON(δ)].

The first term can be written in the form of a′(δ)a(δ) for an N × 1 vector function of δ,

and thus is non-negative, uniformly in δ ∈ ∆. For the second term,

σ2
v0

N1
tr[QD(δ)ON(δ)] ≥ σ2

v0

N1
γmin[ON(δ)]tr[QD(δ)] ≥ σ2

v0γmax(ΩN)
−1γmin[ΩN(δ)]

≥ σ2
v0γmax(A

′
NAN)

−1γmax(B
′
NBN)

−1γmin[A
′
N(λ)AN(λ)]γmin[B

′
N(ρ)BN(ρ)] > 0,

uniformly in δ ∈ ∆, by Assumption E(iii). It follows that infδ∈∆σ̄
2
v,M(δ) > 0.

Proof of (b). From (2.8), V̂(δ) = QD(δ)[Y(δ) − X(δ)β̂M(δ)] = QX̃(δ)QD(δ)Y(δ) and

σ̂2
v,M(δ) =

1
N1

Y′(δ)Q(δ)Y(δ). From (C.3), σ̄2
v,M(δ) =

1
N1

E[Y′(δ)Q(δ)Y(δ)]+σ2
v0

N1
tr[P(δ)ON(δ)].

Thus, σ̂2
v,M(δ)− σ̄2

v,M(δ) =
1
N1

[Y′(δ)Q(δ)Y(δ)− E(Y′(δ)Q(δ)Y(δ))]− σ2
v0

N1
tr[P(δ)ON(δ)].

For the second term, 0 ≤ 1
N1
tr[P(δ)ON(δ)] ≤ 1

N1
γmax[ON(δ)]γ

2
max[QD(δ)]tr[PX̃(δ)] =

o(1), because tr[PX̃(δ)] = k, γmax[QD(δ)] = 1 and, by Assumption E(iii),

γmax[ON(δ)] ≤ γmin(A
′
NAN)

−1γmin(B
′
NBN)

−1γmax[A
′
N(λ)AN(λ)]γmax[B

′
N(ρ)BN(ρ)] < ∞.

Therefore, one has supδ∈∆ |σ
2
v0

N1
tr[P(δ)ON(δ)]| = o(1). For the first term, letting Q̄(δ) =

Ω
− 1

2
N (δ)Q(δ)Ω

− 1
2

N (δ) and using SY = η + SA−1
nTB

−1
nTV, we have

1
N1

[Y′(δ)Q(δ)Y(δ)− E(Y′(δ)Q(δ)Y(δ))] = 1
N1

[Y′S ′Q̄(δ)SY − E(Y′S ′Q̄(δ)SY)]

= 2
N1

η′Q̄(δ)SA−1
nTB

−1
nTV + 1

N1
[V′B−1′

nT A−1′
nT SQ̄(δ)SA−1

nTB
−1
nTV − σ2

v0tr(Q̄(δ)ΩN)].

Thus, the pointwise convergence of the first term follows from Lemma B.4(v), and

the pointwise convergence of the second term follows from Lemma B.4(iv). Therefore,

1
N1

[Y′(δ)Q(δ)Y(δ)− E(Y′(δ)Q(δ)Y(δ))] p−→ 0, for each δ ∈ ∆.
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Next, let δ1 and δ2 be in ∆. By the mean value theorem (MVT):

1
N1

Y′(δ1)Q(δ1)Y(δ1)− 1
N1

Y′(δ2)Q(δ2)Y(δ2) = 1
N1

Y′S ′[ ∂
∂δ′

Q̄(δ̄)]SY(δ2 − δ1),

where δ̄ lies between δ1 and δ2. It follows that
1
N1

Y′(δ)Q(δ)Y(δ) is stochastically equicon-

tinuous as supδ∈∆
1
N1

Y′S ′[ ∂
∂ϖ

Q̄(δ)]SY = Op(1), ϖ = λ, ρ (See Online Appendix for

details). With the pointwise convergence of 1
N1

[Y′(δ)Q(δ)Y(δ) − E(Y′(δ)Q(δ)Y(δ))] to

zero for each δ ∈ ∆ and the stochastic equicontinuity of 1
N1

Y′(δ)Q(δ)Y(δ), the uniform

convergence result, supδ∈∆ | 1
N1

[Y′(δ)Q(δ)Y(δ)−E(Y′(δ)Q(δ)Y(δ))]| = op(1), follows (An-

drews, 1992). Thus, (b) is shown.

Proof of (c). As the two results can be shown in a similar manner, we only show

supδ∈∆
1
N1

∣∣V̂′(δ)Hλ(δ)V̂(δ) − E[V̄′(δ)Hλ(δ)V̄(δ)]
∣∣ = op(1). By the expressions of Hλ(δ),

V̂(δ) and V̄(δ) given above, we have

1
N1

V̂′(δ)Hλ(δ)V̂(δ)− 1
N1

E[V̄′(δ)Hλ(δ)V̄(δ)]

= 1
N1

[Y′S ′Q̄(δ)( ∂
∂λ
ΩN(δ))Q̄(δ)SY − E(Y′S ′Q̄(δ)( ∂

∂λ
ΩN(δ))Q̄(δ)SY)]

− σ2
v0

N1
tr[P̄(δ)( ∂

∂λ
ΩN(δ))P̄(δ)ΩN ],

where P̄(δ) = Ω
− 1

2
N (δ)QD(δ)PX̃(δ)QD(δ)Ω

− 1
2

N (δ). The first term is similar in form to

1
N1

[Y′S ′Q̄(δ)SY−E(Y′S ′Q̄(δ)SY)] from (b) and its uniform convergence is shown in a

similar way. Furthermore, by Lemma B.3, the second term is o(1) uniformly in δ ∈ ∆.

Proof of (d). Again, using the expressions of β̂M(δ), β̄M(δ), V̂(δ) and V̄(δ), we have

1
N1

V̂′(δ)J(δ)ε(β̂M(δ), δ)− 1
N1

E[V̄′(δ)J(δ)ε(β̄M(δ), δ)]

= 1
N1

[Y′S ′Q̄(δ)(M(δ) +K(δ))SY − E(Y′S ′Q̄(δ)(M(δ) +K(δ))SY)]

− σ2
v0

N1
tr[P̄(δ)K(δ)ΩN ]− σ2

v0

N1
tr[Q̄(δ)M(δ)ΩN ],

where M(δ) = [S( ∂
∂λ
A−1

nT (λ))X − K(δ)X (λ)][X ′(λ)Ψ(δ)X (λ)]−1X ′(λ)Ψ(δ), and X (λ) =
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SA−1
nT (λ)X. Therefore, the uniform convergence of the first term can be shown in a similar

way as we do for 1
N1

[Y′S ′Q̄(δ)SY−E(Y′S ′Q̄(δ)SY)] from (b) due to their similar forms.

By Lemma B.3, the remaining two terms are shown to be o(1), uniformly in δ ∈ ∆. ■

Proof of Theorem 2.2: Applying the MVT to each element of S∗
N(θ̂M), we have

0 = 1√
N1

S∗
N(θ̂M) =

1√
N1

S∗
N(θ0) +

[
1
N1

∂
∂θ′

S∗
N(θ)

∣∣
θ=θ̄r in rth row

]√
N1(θ̂M − θ0), (C.4)

where {θ̄r} are on the line segment between θ̂M and θ0. The result follows if

(a) 1√
N1

S∗
N(θ0)

D−→ N [0, limN→∞ Γ∗
N(θ0)],

(b) 1
N1

[ ∂
∂θ′

S∗
N(θ)

∣∣
θ=θ̄r in rth row

− ∂
∂θ′

S∗
N(θ0)] = op(1), and

(c) 1
N1

[ ∂
∂θ′

S∗
N(θ0)− E( ∂

∂θ′
S∗
N(θ0))] = op(1).

Proof of (a). As seen from (2.10), the elements of S∗
N(θ0) are linear-quadratic forms

in V. Thus, for every non-zero (k + 3)× 1 constant vector a, a′S∗
N(θ0) is of the form:

a′S∗
N(θ0) = b′NV +V′ΦNV − σ2

vtr(ΦN),

for suitably defined non-stochastic vector bN and matrix ΦN . Based on Assumptions

A-F, it is easy to verify (by Lemma B.1 and Lemma B.2) that bN and matrix ΦN satisfy

the conditions of the CLT for LQ form of Kelejian and Prucha (2001), and hence the

asymptotic normality of 1√
N1

a′S∗
N(θ0) follows. By Cramér-Wold device, 1√

N1
S∗
N(θ0)

D−→

N [0, limN→∞ Γ∗
N(θ0)], where elements of Γ∗

N(θ0) are given in Appendix A.

Proof of (b). The Hessian matrix H∗
N(θ) =

∂
∂θ′

S∗
N(θ) is given in Appendix A. Note

that we can rewrite Ψ̇λ(δ) in (A.2) and Ψ̇ρ(δ) in (A.3) as −Ψ(δ)Ω̇λ(δ)Ψ(δ)−Ψ(δ)K(δ)−

K′(δ)Ψ(δ) and −Ψ(δ)Ω̇ρ(δ)Ψ(δ), respectively. Following exactly the same way of proving

Lemma B.2(ii), we show that both K(δ) and ∂
∂ω
K(δ),ω = λ, ρ are uniformly bounded in

both row and column sums, uniformly in δ ∈ ∆. In addition, the proof of Lemma B.2(i)
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also implies Ω̈ωϖ(δ), ω,ϖ = λ, ρ is bounded in row and column sum norms, uniformly in

δ ∈ ∆. Thus, by Lemma B.1, we have Ψ̇ω(δ) and Ψ̈ωϖ(δ), ω,ϖ = λ, ρ are all bounded

in row and column sum norms, uniformly in δ ∈ ∆. With these, Ṽ(β0, δ0) = QDΓV

and V(β0, λ0) = SA−1
nT [Dϕ0 + B−1

nTV], Lemma B.4 leads to 1
N1

H∗
N(θ0) = Op(1). Thus,

1
N1

H∗
N(θ̄) = Op(1) since θ̄

p−→ θ0 due to θ̂M
p−→ θ0, where for simplicity, H∗

N(θ̄) is used to

denote ∂
∂θ′

S∗
N(θ)

∣∣
θ=θ̄r in rth row

. As σ̄2
v

p−→ σ2
v0, we have σ̄−r

v = σ−r
v0 + op(1), for r = 2, 4, 6.

As σ−r
v appears in H∗

N(θ) multiplicatively, 1
N1

H∗
N(θ̄) =

1
N1

H∗
N(β̄, δ̄, σ

2
v0)+op(1). Thus, the

proof of (b) is equivalent to the proof of

1
N1

[H∗
N(β̄, δ̄, σ

2
v0)−H∗

N(θ0)]
p−→ 0,

or the proofs of 1
N1

[H∗S
N (β̄, δ̄, σ2

v0) − H∗S
N (θ0)]

p−→ 0 and 1
N1

[H∗NS
N (δ̄) − H∗NS

N (δ0)]
p−→ 0,

where H∗S
N and H∗NS

N denote, respectively, the stochastic and non-stochastic parts of H∗
N .

For the stochastic part, we see that all the components of H∗S
N (β, δ, σ2

v0) are linear

or quadratic in β, but nonlinear in δ. Hence, with an application of the MVT on

H∗S
N (β̄, δ̄, σ2

v0) w.r.t δ̄, the result follows. For the non-stochastic part, the results can

also be shown using the MVT (See Online Appendix for details).

Proof of (c). Since Ṽ(β0, δ0) = QDΓV and V(β0, λ0) = SA−1
nT [Dϕ0 + B−1

nTV], the

Hessian matrix at true θ0 are seen to be linear combinations of terms linear or quadratic in

V. We have, e.g., 1
N1

[H∗
ρρ(ρ0)− E(H∗

ρρ(ρ0))] =
1

N1σ2
v0
[V′B−1′

nT A−1′
nT S ′Ψ̈ρρ(δ0)SA−1

nTB
−1
nTV −

E(V′B−1′
nT A−1′

nT S ′Ψ̈ρρ(δ0)SA−1
nTB

−1
nTV)] = op(1). The other terms follow similarly. ■

Appendix D: Proofs for Section 3

More on Assumption G′. With the redefined δ and ΩN(δ), update Y(δ), X(δ),

D(δ), and V̄(δ) in (C.2) and obtain β̄⋄
M(δ) and σ̄⋄2

v,M(δ). Similarly, we can obtain the
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population counterpart S̄⋄c
N (δ) of S⋄c

N (δ), corresponding to S̄∗c
N (δ) in (C.1). With the

updated σ̄⋄2
v,M(δ), QN(δ), J(δ), D†(δ) and Hω(δ), ω = λ, ρ, τ , a more primitive condition

for Assumption G to hold is that either (a), (b) or (c) holds for δ ̸= δ0, where

(a) 1
2σ̄⋄2

v,M(δ)
η′Q′

N(δ)Hλ(δ)QN(δ)η+
1

σ̄⋄2
v,M(δ)

η′Q′
N(δ)J(δ)

{
D†(δ)Ω

− 1
2

N (δ)[η−SA−1
nT (λ)Xβ̄⋄

M(δ)]+

Xβ̄⋄
M(δ)

}
+

σ2
v0

σ̄⋄2
v,M(δ)

tr[J(δ)D†(δ)ON(δ)QD(δ)] +
1
2
tr[

σ2
v0

σ̄⋄2
v,M(δ)

Hλ(δ)QD(δ)ON(δ)QD(δ) −

Hλ(δ)QD(δ)] ̸= 0,

(b) 1
2σ̄⋄2

v,M(δ)
η′Q′

N(δ)Hρ(δ)QN(δ)η+
1
2
tr[

σ2
v0

σ̄⋄2
v,M(δ)

Hρ(δ)QD(δ)ON(δ)QD(δ)−Hρ(δ)QD(δ)] ̸= 0,

(c) 1
2σ̄⋄2

v,M(δ)
η′Q′

N(δ)Hτ (δ)QN(δ)η+
1
2
tr[

σ2
v0

σ̄⋄2
v,M(δ)

Hτ (δ)QD(δ)ON(δ)QD(δ)−Hτ (δ)QD(δ)] ̸= 0.

Again, as QN(δ0)η = 0, ON(δ0) = IN , β̄
⋄
M(δ0) = β0 and σ̄⋄2

v,M(δ0) = σ2
v0, the quantities

in (a), (b) and (b) are all 0 when δ = δ0.

Proof of Theorem 3.1: Similar to the proof of Theorem 2.1 in Appendix C and

with δ and ΩN(δ) redefined, the consistency of δ̂⋄M follows if:

(a) infδ∈∆σ̄
⋄2
v,M(δ) is bounded away from zero,

(b) supδ∈∆
∣∣σ̂⋄2

v,M(δ)− σ̄⋄2
v,M(δ)

∣∣ = op(1),

(c) supδ∈∆
1
N1

∣∣V̂′(δ)Hω(δ)V̂(δ)− E[V̄′(δ)Hω(δ)V̄(δ)]
∣∣ = op(1), for ω = λ, ρ, τ ,

(d) supδ∈∆
1
N1

∣∣V̂′(δ)J(δ)ε(β̂⋄
M(δ), δ)− E[V̄′(δ)J(δ)ε(β̄⋄

M(δ), δ)]
∣∣ = op(1).

Proof of (a). Note that σ̄⋄2
v,M(δ) = 1

N1
η′Ω

− 1
2

N (δ)Q(δ)Ω
− 1

2
N (δ)η +

σ2
v0

N1
tr[QD(δ)ON(δ)].

The first term is still non-negative as it can be written in the form of a′(δ)a(δ) for an

N × 1 vector function of δ, uniformly in δ ∈ ∆. For the second term, as 0 < cτ ≤

infτ∈∆τ γmin[Υ(τ)Υ′(τ)⊗ In] ≤ supτ∈∆τ
γmax[Υ(τ)Υ′(τ)⊗ In] ≤ c̄τ < ∞,

σ2
v0

N1
tr[QD(δ)ON(δ)] ≥ σ2

v0

N1
γmin[ON(δ)]tr[QD(δ)] ≥ σ2

v0γmax[ΩN(δ)]
−1γmin(ΩN)

≥ cτ
c̄τ
σ2
v0γmax(A

′
NAN)

−1γmax(B
′
NBN)

−1γmin[A
′
N(λ)AN(λ)]γmin[B

′
N(ρ)BN(ρ)] > 0,
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uniformly in δ ∈ ∆, by Assumption E(iii). It follows that infδ∈∆σ̄
⋄2
v,M(δ) > 0.

Proofs of (b), (c), and (d) are similar to proofs of (b), (c), and (d) of Theorem 2.1

(the results in Lemma B.2 still hold with redefined ΩN(δ)). Thus, they are omitted. ■

Proof of Theorem 3.2: Applying the MVT to each element of S⋄
N(θ̂M), we have

0 = 1√
N1

S⋄
N(θ̂

⋄
M) =

1√
N1

S⋄
N(θ0) +

[
1
N1

∂
∂θ′

S⋄
N(θ)

∣∣
θ=θ̄r in rth row

]√
N1(θ̂

⋄
M − θ0), (D.1)

where {θ̄r} are on the line segment between θ̂⋄M and θ0. The result follows if

(a) 1√
N1

S⋄
N(θ0)

D−→ N [0, limN→∞ Γ⋄
N(θ0)],

(b) 1
N1

[ ∂
∂θ′

S⋄
N(θ)

∣∣
θ=θ̄r in rth row

− ∂
∂θ′

S⋄
N(θ0)] = op(1), and

(c) 1
N1

[ ∂
∂θ′

S⋄
N(θ0)− E( ∂

∂θ′
S⋄
N(θ0))] = op(1).

Proof of (a). Again, from (3.2), the elements of S⋄
N(θ0) are linear-quadratic forms

in E . Thus, for every non-zero (k + 3)× 1 constant vector a, a′S⋄
N(θ0) is of the form:

a′S⋄
N(θ0) = b′NE + E ′ΦNE − σ2

vtr(ΦN),

for suitably defined non-stochastic vector bN and matrix ΦN . Based on Assumptions

A′-F′, it is easy to verify (by Lemma B.1 and Lemma B.2) that bN and matrix ΦN satisfy

the conditions of the CLT for LQ form of Kelejian and Prucha (2001), and hence the

asymptotic normality of 1√
N1

a′S⋄
N(θ0) follows. By Cramér-Wold device, 1√

N1
S⋄
N(θ0)

D−→

N [0, limN→∞ Γ⋄
N(θ0)], where elements of Γ⋄

N(θ0) are given in Appendix A.

Proofs of (b) and (c) are similar to those of Theorem 2.2, and thus are omitted. ■

Online Appendix: Detailed Proofs and More Results

This Online Appendix contains detailed proofs of the lemmas in Appendix B and

the theories introduced in the main text, the complete set of Monte Carlo results, and
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an additional application using a simulated Boston housing price panel.
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Table 1: Empirical mean(sd)[ŝe] of estimators, MR model with iid errors. (β, λ, ρ, σ2
v) =

(1, 0.2, 0.2, 1), and W = Queen and M=Rook.

T=5 T=10

QMLE-MR M-Est-GU M-Est-MR QMLE-MR M-Est-GU M-Est-MR

n = 100; error = 1, 2, 3, for the three panels below; Missing percentage = 10%

β 1.0015(.030) 1.0039(.028)[.028] 1.0016(.030)[.029] 1.0008(.019) .9970(.018)[.018] 1.0008(.019)[.018]

λ .1913(.041) .1666(.039)[.040] .1990(.041)[.041] .1905(.028) .1607(.029)[.027] .1998(.029)[.029]

ρ .2228(.100) .1983(.083)[.084] .1956(.079)[.082] .1972(.057) .1991(.049)[.051] .2000(.052)[.051]

σ2
v .7603(.064) 1.0228(.080)[.078] .9937(.082)[.076] .8710(.043) 1.0175(.052)[.051] .9903(.048)[.050]

β 1.0008(.029) 1.0039(.029)[.028] 1.0008(.029)[.029] .9993(.017) .9967(.018)[.018] .9993(.017)[.018]

λ .1875(.040) .1650(.040)[.040] .1949(.040)[.041] .1916(.031) .1632(.027)[.027] .2005(.031)[.029]

ρ .2267(.108) .2023(.081)[.084] .1985(.085)[.083] .1972(.054) .1948(.050)[.051] .2000(.049)[.051]

σ2
v .7614(.126) 1.0263(.170)[.162] .9963(.164)[.161] .8740(.104) 1.0121(.117)[.112] .9937(.118)[.112]

β 1.0023(.029) 1.0028(.028)[.028] 1.0024(.029)[.029] 1.0007(.018) .9980(.017)[.018] 1.0007(.018)[.018]

λ .1874(.040) .1669(.041)[.040] .1957(.040)[.041] .1908(.030) .1629(.027)[.027] .1997(.030)[.029]

ρ .2285(.105) .1916(.083)[.084] .1999(.082)[.083] .1945(.056) .1981(.049)[.051] .1976(.050)[.051]

σ2
v .7554(.093) 1.0238(.123)[.121] .9886(.120)[.117] .8743(.074) 1.0200(.084)[.082] .9940(.084)[.081]

n = 400; error = 1, 2, 3, for the three panels below; Missing percentage = 10%

β 1.0000(.013) .9990(.014)[.014] 1.0000(.013)[.014] 1.0000(.009) 1.0009(.009)[.009] .9999(.009)[.009]

λ .1972(.019) .1701(.020)[.020] .1991(.020)[.020] .1977(.014) .1609(.014)[.014] .1998(.014)[.014]

ρ .2597(.051) .1948(.041)[.041] .2006(.040)[.040] .2191(.028) .1971(.024)[.026] .2001(.026)[.025]

σ2
v .7655(.031) 1.0239(.039)[.039] .9964(.039)[.038] .8835(.024) 1.0208(.027)[.026] .9994(.027)[.025]

β .9993(.014) 1.0001(.013)[.014] .9992(.014)[.014] .9994(.009) 1.0028(.008)[.009] .9992(.009)[.009]

λ .1968(.020) .1701(.020)[.020] .1986(.020)[.020] .1983(.014) .1596(.014)[.014] .2005(.014)[.014]

ρ .2617(.050) .1965(.042)[.041] .2017(.039)[.041] .2179(.030) .1988(.026)[.026] .1990(.027)[.025]

σ2
v .7641(.063) 1.0241(.078)[.082] .9949(.081)[.082] .8845(.049) 1.0216(.055)[.058] 1.0005(.055)[.058]

β 1.0000(.013) .9996(.013)[.014] 1.0000(.014)[.014] 1.0002(.009) 1.0017(.009)[.009] 1.0001(.009)[.009]

λ .1979(.020) .1695(.021)[.020] .1995(.020)[.019] .1981(.016) .1608(.014)[.014] .2004(.016)[.014]

ρ .2649(.051) .1948(.042)[.041] .2047(.041)[.040] .2187(.027) .1974(.025)[.026] .1998(.025)[.025]

σ2
v .7636(.047) 1.0220(.057)[.060] .9945(.061)[.060] .8864(.036) 1.0211(.043)[.042] 1.0026(.040)[.042]

n = 100; error = 1, 2, 3, for the three panels below; Missing percentage = 30%

β .9992(.035) .9980(.035)[.037] .9988(.035)[.036] 1.0004(.021) .9983(.021)[.021] 1.0002(.021)[.021]

λ .1895(.046) .0923(.042)[.044] .1978(.048)[.049] .1920(.032) .1310(.031)[.032] .2010(.034)[.033]

ρ .2336(.189) .1879(.129)[.126] .1948(.127)[.121] .1884(.073) .1962(.064)[.067] .1959(.064)[.065]

σ2
v .6662(.066) 1.0538(.091)[.098] .9832(.090)[.095] .8461(.049) 1.0409(.060)[.059] .9941(.058)[.058]

β 1.0008(.037) .9992(.037)[.037] 1.0003(.037)[.036] .9993(.022) .9972(.022)[.021] .9990(.022)[.021]

λ .1941(.050) .0979(.045)[.044] .2024(.051)[.049] .1878(.031) .1281(.030)[.031] .1971(.032)[.033]

ρ .2428(.185) .1890(.125)[.126] .2007(.122)[.124] .1938(.071) .2005(.065)[.067] .2005(.063)[.065]

σ2
v .6643(.131) 1.0541(.194)[.188] .9813(.190)[.183] .8389(.110) 1.0306(.131)[.127] .9856(.129)[.125]

β 1.0009(.036) .9994(.036)[.037] 1.0003(.036)[.036] 1.0007(.021) .9987(.021)[.021] 1.0005(.021)[.021]

λ .1910(.050) .0945(.045)[.044] .1988(.052)[.049] .1883(.033) .1278(.032)[.032] .1980(.033)[.033]

ρ .2455(.176) .1941(.122)[.126] .2016(.117)[.121] .1885(.073) .1970(.066)[.067] .1959(.065)[.065]

σ2
v .6625(.100) 1.0487(.149)[.141] .9781(.143)[.138] .8463(.083) 1.0395(.100)[.093] .9942(.098)[.091]

n = 400; error = 1, 2, 3, for the two panels below; Missing percentage = 30%

β 1.0008(.015) 1.0061(.015)[.017] 1.0007(.015)[.016] .9997(.011) 1.0054(.011)[.011] .9996(.011)[.010]

λ .1972(.024) .1249(.022)[.022] .1996(.024)[.024] .1965(.015) .1237(.015)[.016] .1991(.016)[.017]

ρ .2869(.075) .1947(.055)[.056] .1999(.054)[.055] .2281(.037) .1958(.032)[.034] .2022(.032)[.034]

σ2
v .6963(.037) 1.0496(.050)[.047] .9945(.049)[.046] .8474(.027) 1.0490(.032)[.031] .9986(.031)[.030]

β 1.0003(.016) 1.0053(.016)[.017] .9999(.016)[.016] 1.0003(.011) 1.0059(.011)[.011] 1.0001(.011)[.010]

λ .1950(.024) .1228(.023)[.022] .1977(.025)[.024] .1972(.016) .1249(.016)[.016] .1998(.017)[.017]

ρ .2859(.077) .1930(.057)[.057] .1989(.056)[.055] .2259(.037) .1958(.034)[.035] .2004(.032)[.033]

σ2
v .6926(.070) 1.0438(.099)[.094] .9891(.098)[.092] .8443(.055) 1.0445(.066)[.066] .9948(.064)[.065]

β .9997(.017) 1.0051(.017)[.017] .9995(.016)[.016] .9997(.011) 1.0052(.011)[.011] .9995(.011)[.010]

λ .1976(.025) .1244(.023)[.022] .2006(.025)[.024] .1964(.016) .1241(.016)[.016] .1990(.016)[.017]

ρ .2912(.073) .1975(.055)[.056] .2030(.054)[.055] .2230(.036) .1919(.032)[.035] .1977(.031)[.034]

σ2
v .6962(.053) 1.0514(.075)[.070] .9948(.073)[.069] .8484(.040) 1.0491(.048)[.049] .9996(.047)[.048]

Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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Table 2: Empirical mean(sd)[ŝe] of estimators, MR model with serially correlated errors.
Missing percentage=10%, (β, λ, ρ, τ, σ2

e) = (1, 0.2, 0.2, 0.5, 1), and W = Queen and M = Rook.

T=5 T=10

QMLE-MR M-Est-MR QMLE-MR M-Est-MR

n = 100; error = 1, 2, 3, for the two panels below

β1 1.0020(.027) 1.0018(.026)[.025] 1.0003(.016) 1.0000(.015)[.016]

λ .1894(.035) .1952(.037)[.035] .1922(.024) .1993(.025)[.025]

ρ .2325(.101) .1908(.073)[.076] .2048(.049) .1953(.043)[.045]

τ .2325(.096) .5291(.066)[.074] .4245(.042) .5041(.038)[.039]

σ2
v .7779(.063) .9823(.080)[.076] .8824(.045) .9930(.051)[.050]

β1 1.0023(.026) 1.0020(.025)[.025] 1.0012(.015) 1.0008(.015)[.016]

λ .1881(.038) .1971(.039)[.035] .1923(.026) .2001(.028)[.025]

ρ .2370(.105) .1913(.075)[.076] .2124(.052) .2022(.045)[.045]

τ .2576(.118) .5471(.098)[.091] .4283(.051) .5075(.045)[.043]

σ2
v .7742(.124) .9735(.160)[.154] .8826(.092) .9933(.104)[.109]

β1 1.0002(.026) .9998(.025)[.025] 1.0001(.016) 1.0000(.016)[.016]

λ .1948(.038) .2023(.038)[.035] .1913(.025) .1987(.026)[.025]

ρ .2425(.102) .1972(.074)[.075] .2132(.050) .2025(.044)[.045]

τ .2447(.106) .5387(.076)[.082] .4233(.048) .5031(.042)[.041]

σ2
v .7769(.095) .9795(.121)[.115] .8852(.078) .9964(.088)[.080]

n = 400; error = 1, 2, 3, for the two panels below

β 1.0010(.012) 1.0009(.012)[.012] .9989(.009) .9989(.009)[.008]

λ .1962(.017) .1985(.017)[.017] .1942(.011) .1959(.012)[.013]

ρ .2714(.050) .2009(.037)[.037] .2233(.019) .1950(.016)[.016]

τ .2040(.057) .5072(.032)[.036] .4129(.021) .4953(.017)[.018]

σ2
v .7856(.029) .9919(.036)[.038] .8918(.017) .9986(.019)[.020]

β .9990(.013) .9992(.012)[.012] .9970(.008) .9969(.008)[.008]

λ .1966(.020) .1991(.020)[.017] .1983(.012) .2019(.013)[.013]

ρ .2686(.049) .1974(.035)[.037] .2329(.020) .2043(.018)[.019]

τ .2071(.069) .5118(.037)[.042] .4168(.028) .4977(.025)[.024]

σ2
v .7820(.062) .9863(.078)[.079] .8807(.040) .9864(.044)[.043]

β .9988(.014) .9985(.014)[.012] 1.0002(.009) 1.0002(.009)[.008]

λ .1985(.019) .2010(.017)[.017] .1970(.014) .1975(.014)[.013]

ρ .2709(.050) .1998(.036)[.037] .2366(.025) .2065(.022)[.023]

τ .2091(.061) .5093(.038)[.038] .4282(.021) .5072(.018)[.019]

σ2
v .7871(.047) .9934(.058)[.058] .8914(.035) .9986(.039)[.040]

Note: error = 1(normal), 2(normal mixture), 3(chi-square).
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