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Abstract

We consider estimation and inferences for fixed effects spatial panel data models based

on unbalanced panels that result from randomly missing spatial units. The unbalanced

nature of the panel data renders the standard method of estimation inapplicable. In this

paper, we proposed an M-estimation method where the estimating functions are obtained

by adjusting the concentrated quasi scores to account for the estimation of fixed effects

and/or the presence of unknown spatiotemporal heteroskedasticity. The method allows

for general time-varying spatial weight matrices without row-normalization, and is able

to give full control of the individual and time specific effects for all the spatial units

involved in the data. Consistency and asymptotic normality of the proposed estimators

are established. Inference methods are introduced and their consistency is proved. Monte

Carlo results show excellent finite sample performance of the proposed methods.

Key Words: Adjusted quasi score; Fixed effects; Spatial effects; Time-varying

spatial weights; Unbalanced panel; Spatiotemporal heteroskedasticity.
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1. Introduction

The literature on spatial panel data (SPD) models has been fast-growing since Anselin

(1988), due to the facts that the SPD models are able to take into account the spatial interac-

tion effects and control for the unobservable heterogeneity. Most of the works on SPD models

are based on “complete” or “balanced” panels, i.e., a set of observations collected on n spatial

units over the entire T periods in time (e.g., Baltagi et al., 2003; Lee and Yu, 2010; Baltagi
∗Corresponding author. Email: zlyang@smu.edu.sg
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and Yang, 2013a,b; Yang et al., 2016; Liu and Yang, 2020, to mention a few); only a few on

“incomplete” or “unbalanced” panels (Wang and Lee, 2013b; Egger et al., 2005; Baltagi et

al., 2007; Baltagi et al., 2015). This is in stark contrast to the usual panel model literature,

which contains a sizable portion of works on unbalanced panels (e.g., Wansbeek and Kapteyn,

1989; Baltagi and Chang, 1994; Davis, 2001; Baltagi et al., 2001; Antweiler, 2001; Baltagi and

Song, 2006; Bai et al., 2015; Wooldridge, 2019, among others), textbook treatments (Baltagi,

2013; Hsiao, 2014; Greene, 2018), and software implementations (STATA, SAS, and R).

Unbalanced panels are likely to be the norm in typical economic empirical settings (Baltagi

and Song, 2006), so are the unbalanced spatial panels. Unbalancedness may be the result of

“randomly missing” observations such as early drop-outs, late entrants and lack of economic

activities, or “nonrandomly missing” observations such as attrition and sample selection (Bal-

tagi and Song, 2006; Baltagi, 2013, Ch. 9). The key difference between the two missing

mechanisms is that in the former analyses can simply be done based on the actual observed

data, but in the latter “imputation” may be necessary before formal analyses. Under the ran-

dom missing mechanism, most of the methods and techniques developed for balanced panels

can be adapted to suit the unbalanced panels, but these may not be true or cannot be easily

done for spatial panels. Under the nonrandom missing mechanism, the treatments become

much more complicated for both regular and spatial panels, in particular the latter.

The limited literature on unbalanced spatial panels contains three interesting empirical

studies under the randomly missing mechanism (RMM). Baltagi et al. (2007) studied the

third-country effects on foreign direct investment (FDI) based on an unbalanced SPD model

with only spatial error effects. Egger et al. (2005) studied US state tax competition based

on an unbalanced SPD model with both spatial lag and spatial error. Both papers focus on

random effects model and adapt the GMM approach of Kapoor et al. (2007). There are no

theoretical studies being given on the properties of these methods and no formal considerations

being given on the models with fixed effects. Baltagi et al. (2015) studied hedonic housing

prices based on an unbalanced spatial lag pseudo-panel data model with nested random effects

by adapting the ML approach of Antweiler (2001). The sole theoretical work in this literature

is Wang and Lee (2013b) who studied SPD models with (correlated) random effects where

missing data occur only on the response variable.1 Many important and common issues remain
1The fixed effects model was treated in an appendix. It requires the spatial weights matrices to be time-

invariant that is clearly not satisfied by the unbalanced SPD models. Related works but under spatial cross-
sectional setup include Kelejian and Prucha (2010), LeSage and Pace (2004) and Wang and Lee (2013a).
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for the unbalanced SPD models even under the simpler random missing mechanism, such as

fixed effects, heteroskedasticity (spatial and temporal), and serial correlation. It is therefore

highly desirable to develop general estimation and inference methods to address these issues.

In this paper, we consider the unbalanced SPD models with RMM. In a spatial panel

framework, by RMM we mean specifically “randomly missing spatial units” in the sense that

the spatial units not present in the tth time period did not make impacts on their ‘neighbors’

at that time so that analyses can simply be done based on the observed spatial units and

their spatial interactions. The popular transformation method (Lee and Yu, 2010) cannot

be applied to handle the fixed effects due to the fact that spatial weight matrices are time-

varying, and may not be row-normalizable (Liu and Lee, 2010). The heteroskedasticity-robust

method of Liu and Yang (2020) cannot be applied either due to a similar reason.2 Allowing

serial correlation in the error term is interesting but has not been considered. We focus on

the unbalanced SPD models with both unit- and time-specific fixed effects, where the errors

can be homoskedastic or heteroskedastic of unknown form in both cross-sectional and time

dimensions, leaving the issue of serial correlation to the discussion section.

We propose a general M-, or adjusted quasi score (AQS), estimation method, for estimating

the unbalanced SPD models. The method starts from the joint quasi score functions of both

the common parameters and fixed effects, then concentrates out the fixed effects to give the

concentrated quasi score functions, and then adjusts these concentrated score functions to

give a set of unbiased estimating functions for the common parameters – the AQS functions.

Solving the AQS equations gives the AQS estimators that are shown to be consistent and

asymptotically unbiased. We first consider an FE-SPD model with both spatial lag and spatial

error effects under homoskedasticity to fix the main ideas behind the proposed methodology.

Then, we make a full extension of the methods to allow for unknown heteroskedasticity in

the errors across both space and time. For this, a new way of adjusting the concentrated

quasi score functions is required to make them robust against the unknown heteroskedasticity.

Consistency and asymptotic normality of all these proposed estimators are established. Simple

methods of inference are introduced under both homoskedastic and heteroskedastic errors.

Monte Carlo results show excellent finite sample performance of the proposed methods. The

proposed methods are simple and reliable, and yet quite general, having a great extendibility
2The GMM-type methods of Moscone and Tosetti (2011) and Badinger and Egger (2015) cannot be easily

adapted either, besides the issues on efficiency, time fixed effects, and incidental parameters problem.
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for extra features in the model (e.g., serial correlation and time-varying coefficients), and for

different types of models (e.g., models with random effects and interactive fixed effects).

The rest of the paper is organized as follows. Section 2 introduces the M-estimation

method for estimating an unbalance SPD model with two-way FE under homoskedasticity,

studies the consistency and asymptotic normality of the AQS estimators, and presents a simple

method for standard errors estimation. Section 3 makes a full extension of the AQS methods

in Section 2 by allowing the errors to be heteroskedastic across both space and time. Section

4 presents Monte Carlo results and Section 5 concludes. Proofs of the main results are given

in Appendices B and C. Additional proofs and some extensions are given in Appendix D.

2. Unbalanced FE-SPD Model with Homoskedasticity

2.1. The Model

Consider a study that lasts T periods and involves a total of n spatial units. At time

t, only nt of these n spatial units are available to give observations on their responses and

explanatory variables, and the rest are not due to random missing, e.g., early drop-outs,

late entries, lack of economic activities, etc., as discussed in the introduction. These spatial

units are interconnected with their ‘connectivity’ changing over time;3 they typically vary in

size, causing the error distributions to be heteroskedastic; and certain unit- and time-specific

features may not be observed but must be acknowledged. These give rise to a spatial panel

data (SPD) model with unbalanced panels, time-varying spatial weight matrices, unknown

heteroskedasticity, and unit- and time-specific fixed effects (FE):

Yt = λ0WtYt +Xtβ0 +Dtµ0 + αt0lnt + Ut, Ut = ρ0MtUt + Vt, t = 1, . . . , T, (2.1)

where Yt is a vector of observations on nt spatial units at time t, Xt is an nt × k matrices

containing values of k time-varying exogenous regressors, and Ut = (u1t, u2t, . . . , untt)′ and

Vt = (v1t, v2t, . . . , vntt)′ are nt×1 vectors of disturbances and idiosyncratic errors, respectively.

Wt and Mt are given nt×nt spatial weight matrices. λ0 and ρ0 are spatial coefficients, which

together with Wt and Mt characterize the spatial lag (SL) effects and the spatial error (SE)

effects, respectively.4 β0 is a k × 1 vector of regression coefficients. µ0 = {µi0}n
i=1 denotes an

3Changes in connectivity may be simply due to the changes in the available spatial units in each period or
due to more fundamental changes in connectivity among spatial units over time.

4Spatial Durbin terms, WtXt, can be added. However, there might be overfitting identification problem if
the model contains all three spatial effects (Anselin et al., 2008; Lee and Yu, 2016).
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n× 1 vector of unit-specific effects and α0 = {αt0}T
t=1 a T × 1 vector of time-specific effects.5

Dt is an nt × n ‘selection’ matrix obtained from the n × n identity matrix In by deleting its

rows that correspond to the missing units at time t, and lnt is an nt × 1 vector of ones.

Both µ0 and α0 are allowed to correlate with the time-varying regressors in an arbitrary

manner and hence are considered as fixed effects. When the change in Wt and Mt is due only

to the missing spatial units, they can be written as Wt = DtWD′
t and Mt = DtMD′

t, where

W and M are the spatial weight matrices for all the n spatial units involved in the study.

The idiosyncratic errors {vit} are first treated as independent and identically distributed (iid)

across i and over t, and then extended to be independent but not identically distributed (inid).

An important advantage of the modeling strategy of (2.1) is that it allows the full control

of the unobserved heterogeneity of all n spatial units, as long as each of the n spatial units is

observed at least twice over the entire period of study so that all the n units remain in the

model after the fixed effects being concentrated out. Moreover, the spatial weight matrices Wt

and Mt are not necessarily row-normalized, and they are allowed to be generally time-varying,

catering to both the random-missing mechanism and the genuine time-varying features.

Some generic notations and conventions will be followed. For a square matrix, | · | denotes

its determinant and tr(·) its trace. For a real symmetric matrix, γmin(·) and γmax(·) denote its

smallest and largest eigenvalues. For a real n×m matrix A, A′ denotes its transpose, ‖A‖F its

Frobenius norm, ‖A‖1 its maximum column sum norm, ‖A‖∞ its maximum row sum norm,

and A◦ = A + A′. For a real n × m matrix A with a full column rank, PA = A(A′A)−1A′

and QA = In − PA are the two orthogonal projection matrices. The operator diag(·) forms

a diagonal matrix by diagonal elements of a square matrix or elements of a given vector,

diagv(·) forms a column vector using diagonal elements of a square matrix, and blkdiag(· · · )

forms a block-diagonal matrix by the given submatrices. The usual expectation and variance

operators, E(·) and Var(·), correspond to true parameter values with a subscript 0.

2.2. Quasi-Maximum Likelihood Estimation

Define W = blkdiag(W1, . . . ,WT ), M = blkdiag(M1, . . . ,MT ), Dµ = (D′
1, . . . , D

′
T )′,

and Dα = blkdiag(ln1 , . . . , lnT ). DenoteN =
∑T

t=1 nt, Y = (Y ′1 , . . . , Y
′
T )′, X = (X ′

1, . . . , X
′
T )′,

U = (U ′1, . . . , U
′
T )′, and V = (V ′1 , . . . , V

′
T )′. Model (2.1) is written in the matrix form:

5They may appear in the model in the interactive form (Bai, 2009; Bai and Ng, 2013) to capture heterogenous
responses on multiple shocks in time. This paper focuses on the case of additive fixed effects.
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Y = λ0WY + Xβ0 + Dµµ0 + Dαα0 + U and U = ρ0MU + V. The existing method of

estimating an SPD model with fixed effects is to apply orthogonal transformations to wipe

out the fixed effects so that the transformed model remains in the same spatial structure

and the (quasi) likelihood can be formed (see, e.g., Lee and Yu, 2010; Yang et al., 2016).

This method requires that the panel is balanced, spatial weight matrices are time-invariant

and row-normalized, and idiosyncratic errors are homoskedastic. However, none of these is

met in the current model specification. To overcome this difficulty, we start with the quasi

maximum likelihood (QML) method that estimates the common parameters and the fixed

effects together. To eliminate the effects of estimating the fixed effects on the estimation of

the common parameters, we in next subsection modify the quasi score functions to produce

a set of unbiased and consistent estimating equations. For QML estimation, first note that

there are n+T fixed effects parameters but only n+T−1 of them are identifiable. A zero-sum

constraint is put on the α′ts and the QML estimation is based on the following model form:

Y = λ0WY + Xβ0 + Dµµ0 + D?
αα

?
0 + U, U = ρ0MU + V. (2.2)

where α?
0 = (α?

20, . . . , α
?
T0)

′, and D?
α = [−ln1 l

′
T−1; blkdiag(ln2 , . . . , lnT )].

Denote the set of common parameters by θ = (β′, σ2
v , δ

′)′ where δ = (λ, ρ)′, and the set of

incidental parameters by φ = (µ′, α?′)′. Define AN (λ) = IN − λW and BN (ρ) = IN − ρM.

We have the quasi Gaussian loglikelihood function of θ and φ:

`N (θ, φ) = −N
2 ln 2π − N

2 lnσ2
v + ln |AN (λ)|+ ln |BN (ρ)| − 1

2σ2
v
V′(β, δ, φ)V(β, δ, φ), (2.3)

where V(β, δ, φ) = BN (ρ)[AN (λ)Y −Xβ −Dφ], and D = [Dµ, D?
α].

Let D(ρ) = BN (ρ)D. Given θ, `N (θ, φ) is partially maximized at

φ̂N (β, δ) = [D′(ρ)D(ρ)]−1D′(ρ)BN (ρ)[AN (λ)Y −Xβ]. (2.4)

Substituting φ̂N (β, δ) into `N (θ, φ) gives the concentrated quasi loglikelihood function for θ:

`cN (θ) = −N
2 ln 2π − N

2 lnσ2
v + ln |AN (λ)|+ ln |BN (ρ)| − 1

2σ2
v
Ṽ′(β, δ)Ṽ(β, δ), (2.5)

where Ṽ(β, δ) = QD(ρ)BN (ρ)[AN (λ)Y −Xβ] and QD(ρ) is the projection matrix based on

D(ρ). The direct quasi maximum likelihood (QML) estimator θ̂QML of θ maximizes `cN (θ).

However, such a direct estimation of the common parameters θ completely ignores the

impact from the estimation of the incidental parameters φ, rendering θ̂QML be inconsistent or

asymptotically biased – the well known incidental parameters problem of Neyman and Scott
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(1948). In their study for a balanced FE-SPD model, Lee and Yu (2010) show that the

direct QMLEs of β and δ are consistent no matter T is large or small, but their distributions

are asymptotically centered only when T is small relative to n. They further show that the

QMLE of σ2
v is inconsistent and its limiting distribution is degenerate due to the incidental

parameters problem when T is finite. Therefore, if the direct QML approach were followed, a

bias correction needs to be done to remove the asymptotic bias for valid statistical inferences,

which needs one additional condition that T
n3 → 0. To overcome these problems, Lee and Yu

(2010) propose a transformation approach to wipe out the fixed effects, taking advantages of

the panel being balanced and spatial weight matrices being time-invariant and row-normalized.

In our model specification, none of these features holds and the transformation approach fails

to work. Therefore, an alternative (and more general) approach is highly desirable.

2.3. Adjusted Quasi Score Estimation

The root cause of inconsistency or asymptotic bias for the direct QML estimation is that

a necessary condition for consistency of QML estimators, plim 1
N S

c
N (θ0) = 0, is violated due

to the concentration/estimation of the incidental parameters µ and α, where θ0 denotes the

true value of the parameter vector θ, and Sc
N (θ) = ∂

∂θ `
c
N (θ) is a set of the concentrated quasi

score (CQS) functions given as (see Appendix B)

Sc
N (θ) =



1
σ2

v
X′B′

N (ρ)Ṽ(β, δ),

1
2σ4

v
[Ṽ′(β, δ)Ṽ(β, δ)−Nσ2

v ],

1
σ2

v
Y′W′B′

N (ρ)Ṽ(β, δ)− tr[FN (λ)],

1
σ2

v
Ṽ′(β, δ)GN (ρ)Ṽ(β, δ)− tr[GN (ρ)],

(2.6)

where FN (λ) = WA−1
N (λ) and GN (ρ) = MB−1

N (ρ).

Under mild conditions, maximizing `cN (θ) is equivalent to solving Sc
N (θ) = 0. It is easy to

show that at the true value θ0 of θ,

E[Sc
N (θ0)] =



0k,

−n+T−1
2σ2

v0
,

tr[QD(ρ0)BN (ρ0)FN (λ0)B−1
N (ρ0)]− tr[FN (λ0)],

tr[QD(ρ0)GN (ρ0)]− tr[GN (ρ0)],

(2.7)

and that limN→∞
1
N E[Sc

N (θ0)] 6= 0 with a fixed T . This suggests that plimN→∞
1
N S

c
N (θ0) 6= 0,
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and therefore θ̂QML cannot be consistent when T is fixed. When T goes large with n, consistency

can be achieved but one can show that the limiting distribution of
√
N(θ̂QML − θ0) is a non-

centered normal, suggesting that θ̂N has a bias of order 1√
N

.

Note that E[Sc
N (θ0)] depends only on the common parameters θ0 and the observables.

It therefore offers a feasible way to analytically correct the CQS functions to give a set of

unbiased estimating functions, or the adjusted quasi score (AQS) functions, as S∗N (θ0) =

Sc
N (θ0)− E[Sc

N (θ0)], which takes the form at the general θ:

S∗N (θ) =



1
σ2

v
X′B′

N (ρ)Ṽ(β, δ),

1
2σ4

v

[
Ṽ′(β, δ)Ṽ(β, δ)−N1σ

2
v

]
,

1
σ2

v
Y′W′B′

N (ρ)Ṽ(β, δ)− tr[QD(ρ)BN (ρ)FN (λ)B−1
N (ρ)],

1
σ2

v
Ṽ′(β, δ)GN (ρ)Ṽ(β, δ)− tr[QD(ρ)GN (ρ)],

(2.8)

where N1 = N − n− T + 1, the effective sample size after taking into account the estimation

of fixed effects. Solving the AQS equations: S∗N (θ) = 0, gives the AQS estimator of θ, i.e.,

θ̂∗N = arg{S∗N (θ) = 0}. It is easy to verity that E[S∗N (θ0)] = 0 and plim 1
N S

∗
N (θ0) = 0, making

it possible for θ̂∗N to be
√
N1-consistent with a proper limiting distribution.

The AQS approach falls in spirit to the “Modified Equations of Maximum Likelihood” of

Neyman and Scott (1948, Sec. 5), in searching for a potential method to handle the incidental

parameters problem. Its generality and versatility in dealing with the incidental parameters

problems have been demonstrated by recent works: Baltagi and Yang (2013a,b), Liu and Yang

(2015, 2020), Yang (2018), Li and Yang (2020a,b) and Xu and Yang (2020).6 In the special

case of a balanced panel with time-invariant and row-normalized spatial weight matrices, our

AQS method is equivalent to the QML method of Lee and Yu (2010) based on orthonormal

transformations, with effective sample size N1 = N − n− T + 1 = (n− 1)(T − 1).

The root-finding process for the AQS estimation can be simplified by first solving the

equations for β and σ2
v , giving the constrained AQS estimators of β and σ2

v :

β̂∗N (δ) = [X′(ρ)X(ρ)]−1X′(ρ)CN (δ)Y and σ̂∗2v,N (δ) = 1
N1

V̂′(δ)V̂(δ), (2.9)

where X(ρ) = QD(ρ)BN (ρ)X, CN (δ) = BN (ρ)AN (λ) and V̂(δ) = Ṽ(β̂∗N (δ), δ). Substituting

β̂∗N (δ) and σ̂∗2v,N (δ) back into (2.8) gives the concentrated AQS functions of δ:

6Clearly, this approach falls into the M-estimation method, and it is also a method of moments under the
‘just identified’ scenario. Therefore, the resulting estimator is also called the M-estimator or MM estimator.
The AQS approach offers a special way of finding the ‘right set’ of estimating equations or moment conditions.
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S∗cN (δ) =


1

σ̂∗2v,N (δ)
Y′W′B′

N (ρ)V̂(δ)− tr[QD(ρ)BN (ρ)FN (λ)B−1
N (ρ)],

1
σ̂∗2v,N (δ)

V̂′(δ)GN (ρ)V̂(δ)− tr[QD(ρ)GN (ρ)].
(2.10)

Solving the concentrated estimating (or AQS) equations, S∗cN (δ) = 0, we obtain the uncon-

strained AQS estimator δ̂∗N of δ. Thus the unconstrained AQS estimators of β and σ2
v are

β̂∗N ≡ β̂∗N (δ̂∗N ) and σ̂∗2v,N ≡ σ̂∗2v,N (δ̂∗N ). The AQS estimator of θ is thus θ̂∗N = (β̂∗′N , σ̂
∗2
v,N , δ̂

∗
N )′.

From the above developments, we see that a big advantage of this method is that it provides

a consistent estimation of all estimators including σ2
v with the joint asymptotic distribution of

the AQS estimators being centered as long asN is large. Therefore, all the problems associated

with the incidental parameters are gone. Furthermore, we do not have any restriction on the

proportion of n and T as they go to infinity, and T (or n) can be even fixed. As this method

is based on the adjusted quasi score functions, it may inherit the nice properties from the

maximum likelihood estimation. It is well known that ML estimators often have better finite-

samples properties than GMM/IV estimators. See also Hsiao (2018) for more discussions on

the advantages of the quasi-likelihood approach compared with GMM estimation.

2.4. Asymptotic Properties of the AQS Estimators

Denote a parametric quantity evaluated at the true parameter values by dropping its

argument(s), e.g., AN ≡ AN (λ0), BN ≡ BN (ρ0), and CN ≡ CN (δ0). Let ∆ be the parameter

space for δ, and ∆λ and ∆ρ be the sub-spaces for λ and ρ, respectively. Consistency and

asymptotic normality of the proposed AQS estimators for the unbalanced FE-SPD model are

established under the following set of regularity conditions.

Assumption A: The innovations vit are iid for all i and t with mean zero, variance σ2
v0,

and E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption B: The space ∆ is compact, and the true parameters δ0 lie in its interior.

Assumption C: (i) The elements of X are non-stochastic and bounded, uniformly in i

and t, and (ii) limN→∞
1
N X′(ρ)X(ρ) exists and is non-singular, uniformly in ρ ∈ ∆ρ.

Assumption D: {Wt} and {Mt} are known time-varying matrices. W and M are such

that (i) their elements are at most of uniform order h−1
n such that hn

n → 0, as n → ∞; (ii)

their diagonal elements are zero; and (iii) ‖W‖∞, ‖W‖1, ‖M‖∞, and ‖M‖1 are all bounded.

Assumption E: For A($) = AN (λ) or BN (ρ) with $ = λ or ρ,

(i) both ‖A−1($0)‖∞ and ‖A−1($0)‖1 are bounded;
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(ii) either ‖A−1($)‖∞ or ‖A−1($)‖1 is bounded, uniformly in $ ∈ ∆$;

(iii) 0 < c$ ≤ inf$∈∆$ γmin[A′($)A($)] ≤ sup$∈∆$
γmax[A′($)A($)] ≤ c̄$ <∞;

(iv) Bs(ρ)Ds[ 1
T

∑T
t=1D

′
tB

′
t(ρ)Jt(ρ)Bt(ρ)Dt]−1D′

tB
′
t(ρ) is bounded in both row and column

sum norms, uniformly in ρ ∈ ∆ρ for all s and t, where Bt(ρ) = Int − ρMt for t = 1, . . . , T ,

and Jt(ρ) = In1 for t = 1, and Int −Bt(ρ)lnt [l′nt
B′t(ρ)Bt(ρ)lnt ]−1l′nt

B′t(ρ) for t = 2, . . . , T .

Assumption F: (i) n is large (T is large or small), (ii) ∀t, nt increases with n in the

same rate, and (iii) all spatial units are observed at least twice over a total of T periods.

Assumptions A-E are standard in the spatial econometrics literature (see, e.g., Lee, 2004a;

Lee and Yu, 2010; Yang, 2018) except Assumption E(iv). With this additional condition,

Lemma A.3 shows that ‖QD(ρ)‖1 and ‖QD(ρ)‖∞ are bounded uniformly in ρ ∈ ∆ρ, which is

necessary to facilitate the study of the asymptotic properties of the spatial parameter estima-

tors. Assumption E(iv) is not restrictive as it holds for a special balanced panel.7 Assumption

F(i) allows (a) both n and T are large and (b) n is large and T is finite. Both scenarios en-

counter the so-called incidental parameters problem of Neyman and Scott (1948) due to the

direct estimation of the individual and time fixed effects. The former leads to the asymptotic

bias and the latter the inconsistency in the estimation of the structural parameters. As the

usual transformation method is inapplicable to handle the incidental parameters problem in

the unbalanced panels, a new (AQS) method is therefore introduced. Assumption F(ii) re-

quires that each nt increases with n, indicating that the number of observed individual should

not be too small relative to n in each period. Assumption F(iii) ensures that the spatial

structure is complete after µ being concentrated out.

We first prove the consistency of δ̂∗N . The key step in the proof is to compare S∗cN (δ) with

its population counterpart. Let S̄∗N (θ) = E[S∗N (θ)]. Given δ, S̄∗N (θ) = 0 is partially solved at

β̄∗N (δ) = [X′(ρ)X(ρ)]−1X′(ρ)CN (δ)E(Y) and σ̄∗2v,N (δ) = 1
N1

E[V̄′(δ)V̄(δ)], (2.11)

where V̄(δ) = Ṽ(β̄∗N (δ), δ) = QD(ρ)BN (ρ)[AN (λ)Y − Xβ̄∗N (δ)]. Substituting β̄∗N (δ) and

σ̄∗2v,N (δ) into the δ-component of S̄∗N (θ), we obtain the population counterpart of S∗cN (δ) as

S̄∗cN (δ) =


1

σ̄∗2v,N (δ)
E[Y′W′B′

N (ρ)V̄(δ)]− tr[QD(ρ)BN (ρ)FN (λ)B−1
N (ρ)],

1
σ̄∗2v,N (δ)

E[V̄′(δ)GN (ρ)V̄(δ)]− tr[QD(ρ)GN (ρ)].
(2.12)

7 For a balanced panel with a time-invariant and row-normalized spatial weight matrix, we have for all t,
nt = n, Dt = In, Mt = M , and Bt(ρ) = In − ρM ≡ B(ρ). As M × ln = ln, Jt(ρ) = In − 1

n
lnl′n, t = 2, . . . , T .

Thus, Bs(ρ)Ds[
1
T

PT
t=1 D′

tB
′
t(ρ)Jt(ρ)Bt(ρ)Dt]

−1D′
tB

′
t(ρ) = (In − T−1

nT
lnl′n)−1. As In − T−1

nT
lnl′n is strictly

diagonally dominant in rows and columns, its inverse is bounded in row and column sum norms (Varah, 1975).
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Clearly, S∗cN (δ̂∗N ) = 0 by construction. Also, it is easy to see that S̄∗cN (δ0) = 0 as β̄∗N (δ0) = β0

and σ̄∗2v,N (δ0) = σ2
v0. Thus, by theorem 5.9 of van der Vaart (1988), δ̂∗N will be consistent for

δ0 if supδ∈∆
1

N1

∥∥S∗cN (δ)− S̄∗cN (δ)
∥∥ p−→ 0 and the following identification condition holds:

Assumption G: infδ:d(δ,δ0)≥ε

∥∥S̄∗cN (δ)
∥∥ > 0 for every ε > 0, where d(δ, δ0) is a measure of

distance between δ and δ0.

Assumption G is a high level assumption being put up for simplicity of presentation. It

can be shown to be true under some low level conditions. We have (see (B.5), Appendix B),

σ̄∗2v,N (δ) = 1
N1
η′A′−1

N Q′N (δ)QN (δ)A−1
N η + σ2

v0
N1

tr[QD(ρ)CN (δ)],

where η = Xβ0 + Dφ0, QN (δ) = QX(ρ)QD(ρ)CN (δ), and CN (δ) = CN (δ)(C′
NCN )−1C′

N (δ).

A sufficient condition for Assumption G to hold is either (a) or (b) holds, where

(a) 1
σ̄∗2v,N (δ)

η′F′NB′
N (ρ)QN (δ)A−1

N η + tr[ σ2
v0

σ̄∗2v,N (δ)
P1(δ)− P2(δ)] 6= 0, for δ 6= δ0,

(b) 1
σ̄∗2v,N (δ)

η′A′−1
N Q′N (δ)GN (ρ)QN (δ)A−1

N η+tr[ σ2
v0

σ̄∗2v,N (δ)
P3(ρ)CN (δ)−P3(ρ)] 6= 0, for δ 6= δ0,

with P1(δ) = C′−1
N C′

N (δ)QD(ρ)BN (ρ)FNB−1
N , P2(δ) = QD(ρ)BN (ρ)FN (λ)B−1

N (ρ), and P3(ρ) =

QD(ρ)GN (ρ)QD(ρ). It is easy to see that QN (δ0)A−1
N η = 0, CN (δ0) = IN and σ̄∗2v,N (δ0) = σ2

v0.

Hence the two quantities in (a) and (b) are identical 0 at the true parameter values. Once the

consistency of δ̂∗N is established, the consistency of β̂∗N and σ̂∗2v,N follows by Assumptions C-E.

Theorem 2.1. Suppose Assumptions A-G hold. We have, as N →∞, θ̂∗N
p−→ θ0.

To derive the asymptotic distribution of θ̂∗N , we apply the mean value theorem: 0 =

S∗N (θ̂∗N ) = S∗N (θ0) + ∂
∂θ′S

∗
N (θ̄)(θ̂∗N − θ0), where θ̄ lies between θ̂∗N and θ0, and its value varies

over the rows of ∂
∂θ′S

∗
N (θ̄). Using Ṽ(β0, δ0) = QDV and Y = A−1

N (η + B−1
N V),

S∗N (θ0) =



1
σ2

v0
X′V,

1
2σ4

v0
(V′QDV −N1σ

2
v),

1
σ2

v0
V′P2BNη + 1

σ2
v0

V′P2V − tr(P2),

1
σ2

v0
V′P3V − tr(P3),

(2.13)

and its asymptotic normality is proved by the central limit theorem (CLT) for linear-quadratic

(LQ) forms of Kelejian and Prucha (2001). This together with the proper asymptotic behavior

of the ‘Hessian’ matrix, ∂
∂θ′S

∗
N (θ) (given in (B.4), Appendix B), lead to the following theorem.

Theorem 2.2. Under Assumptions A-G, we have, as N →∞,√
N1

(
θ̂∗N − θ0

) D−→ N
(
0, lim

N→∞
Σ∗−1

N (θ0)Γ∗N (θ0)Σ∗−1
N (θ0)

)
,
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where Σ∗N (θ0) = − 1
N1

E[ ∂
∂θ′S

∗
N (θ0)] and Γ∗N (θ0) = 1

N1
Var[S∗N (θ0)], both assumed to exist and

Σ∗N (θ0) assumed to be positive definite for sufficiently large N .

2.5. Inference based on AQS estimation

To conduct inferences for θ based on the proposed AQS estimators, consistent estimates

of Σ∗N (θ0) and Γ∗N (θ0) are needed. The analytical expression of Σ∗N (θ) can easily be obtained

from the Hessian matrix ∂
∂θ′S

∗
N (θ) that is given in (B.4). As it depends only on the common

parameters θ, a simple plug-in estimator Σ∗N (θ̂∗N ) can be used to consistently estimate Σ∗N (θ0).

Alternatively, a simpler sample analogue of Σ∗N (θ) also provides a consistent estimator:

Σ̂∗N = − 1
N1

∂
∂θ′S

∗
N (θ)

∣∣∣
θ=θ̂∗N

. (2.14)

The consistency of Σ∗N (θ̂∗N ) or Σ̂∗N is proved in the proof of Theorem 2.2.

Now, using Lemma A.5 with iid errors, one derives Γ∗N (θ0), which has the distinct elements:

N1Γ∗βθ =
[

1
σ2

v0
X′X, γ

2σ3
v0

X′q, γ
σv0

X′p2 + 1
σ2

v0
X′P2BNη,

γ
2σv0

X′p3

]
,

N1Γ∗σ2
vσ2

v
= 1

4σ4
v0

(2N1 + κq′q),

N1Γ∗σ2
vλ = γ

2σ3
v0
q′P2BNη + 1

2σ2
v0

[2tr(P2QD) + κq′p2],

N1Γ∗σ2
vρ = 1

2σ2
v0

[2tr(P3QD) + κq′p3],

N1Γ∗λλ = 1
σ2

v0
η′B′

NP ′2P2BNη + 2γ
σv0
p′2P2BNη + tr(P2P◦2 ) + κp′2p2,

N1Γ∗λρ = tr(P3P◦2 ) + κp′2p3 + γ
σv0
p′3P2BNη,

N1Γ∗ρρ = tr(P3P◦3 ) + κp′3p3,

(2.15)

where pr = diagv(Pr), r = 2, 3, and q = diagv(QD). This shows clearly that the estimation

of Γ∗N (θ0) is more complicated as Γ∗N (θ0) contains not only the common parameters θ, but

also the fixed effects φ embedded in η, and the skewness γ and the excess kurtosis κ of the

idiosyncratic errors. Thus, the common plug-in approach may not provide a valid estimate.

Let φ̂∗N be the AQS estimator of φ, obtained through (2.4), i.e., φ̂∗N = φ̂N (β̂∗N , δ̂
∗
N ). Let γ̂N

and κ̂N be consistent estimators of γ and κ. Let Γ∗N (θ̂∗N ) = Γ∗N (θ)|(θ=θ̂∗N ,φ=φ̂∗N ,γ=γ̂N ,κ=κ̂N ) be

the plug-in estimator. When both n and T are large, Γ∗N (θ̂∗N ) would be consistent as φ̂∗N is.

However, when n is large but T is fixed, φ̂∗N (its component µ̂∗N ) is not consistent. Plugging

µ̂∗N into Γ∗N (θ) will induce a bias (inconsistency), and a bias correction is necessary.

From the expression of Γ∗N (θ0) given above, we see that only the λ-components involve φ

through η, which may not be consistently estimated by the plug-in method. We can further

12



show that the components of Γ∗N (θ0) linear in φ can also be consistently estimated by the

plug-in method. Therefore, the only term that cannot be consistently estimated by the plug-

in method is 1
σ2

v0
η′B′

NP ′2P2BNη associated with the λ-λ component of Γ∗N (θ0). We have the

following corollary. See its proof in Appendix D for details on these discussions.

Corollary 2.1. Under the assumptions of Theorem 2.2, we have,

Γ∗N (θ̂∗N ) = Γ∗N (θ0) + Bias∗(δ0) + op(1),

where Bias∗(δ0) is a (k + 3) × (k + 3) matrix having zero entries everywhere except the λ-λ

entry, which takes the form 1
N1

tr(P ′2P2PD).

The result of Corollary 2.1 leads immediately a general consistent estimator of Γ∗N (θ0):

Γ̂∗N = Γ∗N (θ̂∗N )− Bias∗(δ̂∗N ). (2.16)

Then, it is only left to find consistent estimators for γ and κ. Since we cannot ‘consistently’

estimate V = BN (ANY − η) due to the incidental parameters problem, we start from Ṽ =

QDV, which can be ‘consistently’ estimated by V̂ = QD(ρ̂∗N )BN (ρ̂∗N )[AN (λ̂∗N )Y−Xβ̂∗N ]. Let

qjk be the (j, k)th element of QD. Denote the elements of V by vj , and the elements of Ṽ

by ṽj , j = 1, . . . , N , where j is the combined index for i = 1, . . . , nt and t = 1, . . . , T . Then,

ṽj = qj1v1 + qj2v2 + · · ·+ qjvN , and thus,

E(ṽ3
j ) =

∑N
k=1 q

3
jkE(v3

k) = σ3
vγ

∑N
k=1 q

3
jk, j = 1, . . . , N.

Summing E(ṽ3
j ) over j, we obtain γ =

(∑N
j=1 E(ṽ3

j )
)(
σ3

v

∑N
j=1

∑N
k=1 q

3
jk

)−1, and its sample

analogue gives a consistent estimator of γ:

γ̂N =

∑N
j=1 v̂

3
j

σ̂∗3v,N

∑N
j=1

∑N
k=1 q̂

3
jk

. (2.17)

where v̂j is the jth element of V̂(β̂∗N , λ̂
∗
N ) and q̂jk is the (j, k)th element of QD(ρ̂∗N ). Similarly,

E(ṽ4
j ) =

∑N
k=1 q

4
jkE(v4

k) + 3σ4
v

∑N
k=1

∑N
l=1 q

2
jkq

2
jl − 3σ4

v

∑N
k=1 q

4
jk

=
∑N

k=1 q
4
jkκσ

4
v + 3σ4

v

∑N
k=1

∑N
l=1 q

2
jkq

2
jl,

which gives κ =
( ∑N

j=1 E(ṽ4
j )− 3σ4

v

∑N
j=1

∑N
k=1

∑N
l=1 q

2
jkq

2
jl

)(
σ4

v

∑N
j=1

∑N
k=1 q

4
jk

)−1 by sum-

ming E(ṽ4
j ) over j. Hence, a consistent estimator for κ is

κ̂N =

∑N
j=1 v̂

4
j − 3σ̂∗4v,N

∑N
j=1

∑N
k=1

∑N
l=1 q̂

2
jkq̂

2
jl

σ̂∗4v,N

∑N
j=1

∑N
k=1 q̂

4
jk

. (2.18)
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Corollary 2.2. Under Assumptions A-G, we have, as N →∞,

(i) γ̂N
p−→ γ0 and κ̂N

p−→ κ0; (ii) Σ̂∗N − Σ∗N (θ0)
p−→ 0 and Γ̂∗N − Γ∗N (θ0)

p−→ 0;

and therefore Σ̂∗−1
N Γ̂∗N Σ̂∗−1

N − Σ∗−1
N (θ0)Γ∗N (θ0)Σ∗−1

N (θ0)
p−→ 0.

3. Unbalanced FE-SPD Model with Heteroskedasticity

Cross-sectional heteroskedasticity is rather common in spatial regression models due to

misspecification, peer interaction, aggregation, clustering, etc. (Anselin, 1988; Liu and Yang,

2015). The same is true for SPD or unbalanced SPD models. Robust methods have been intro-

duced for SPD models, but are limited to balanced panels with cross-sectional heteroskedas-

ticity only (Moscone and Tosetti, 2011; Baltagi and Yang, 2013b; Badinger and Egger, 2015;

Liu and Yang, 2020). Time-series heteroskedasticity is also important, in particular in short

panels (Alvarez and Arellano, 2004; Bai, 2013). Therefore, it is highly desirable to extend

the set of estimation and inference methods introduced in Section 2 to allow for unknown

spatiotemporal heteroskedasticity as specified in the extended assumption below.

Assumption A′: The innovations vj (or vit) are independently but not identically dis-

tributed (inid), i.e., {vj} ∼ inid(0, σ2
j ), and E|vj |4+ε0 <∞ for some ε0 > 0.

Assumption A′ relaxes Assumption A by allowing the variance of the idiosyncratic error

to vary freely across cross-section and over time. As E[S∗N (θ0)] 6= 0 under Assumption A′, we

need to readjust score functions (2.6) to make it centered under unknown heteroskedasticity.

3.1. AQS Estimation under Unknown Heteroskedasticity

Denote H = diag(σ2
1, σ

2
2, · · · , σ2

N ), and hence Var(V) = H. As in Liu and Yang (2015,

2020), we modify the relevant components of the CQS vector Sc
N (θ) given in (2.6), so that

their expectations at the true parameter θ0 are zero under unknown heteroskedasticity.

First, consider the stochastic element of the λ-component of Sc
N (θ) given in (2.6). Define

F̄N (δ) = BN (ρ)FN (λ)B−1
N (ρ), and as usual denote F̄N = F̄N (δ0). Using Ṽ(β0, δ0) = QDV

and BNWY = F̄NCNY, and noting CNY = BNη + V and η = Xβ0 + Dφ0, we have,

E[Y′W′B′
NṼ(β0, δ0)] = E(Y′C′

N F̄′NQDV) = tr(HF̄′NQD) = tr[H diag(F̄′NQD)]

= tr[H diag(F̄′NQD) diag(QD)−1QD] = E(Y′C′
N F̄′NQDV),

where F̄′N = F̄′N (δ0) and F̄′N (δ) = diag[F̄′N (δ)QD(ρ)]diag[QD(ρ)]−1. Taking the difference
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between the quantities inside the second expectation and the last expectation, we obtain:

Y′C′
N (δ)[F̄′N (δ)− F̄′N (δ)]Ṽ(β, δ), (3.1)

the adjusted λ-component of the CQS functions, having a zero expectation and a zero prob-

ability limit upon dividing by N at θ0 under unknown heteroskedasticity.

Now, consider the stochastic element of the ρ-component of the CQS vector Sc
N (θ) given

in (2.6). Similar to the above, we have,

E(Ṽ′GNṼ) = E(V′QDGNQDV) = tr(HḠNQD) = tr[H diag(ḠNQD)]

= tr[H diag(ḠNQD) diag(QD)−1QD] = E(V′ḠNQDV),

where ḠN (ρ) = QD(ρ)GN (ρ) and ḠN (ρ) = diag[ḠN (ρ)QD(ρ)]diag[QD(ρ)]−1. Replacing the

V′ in the second and last expectations by [AN (λ)Y −Xβ]′B′
N (ρ), and taking the difference

between the two quantities inside the expectations, we obtain a robust AQS function for ρ:

[AN (λ)Y −Xβ]′B′
N (ρ)[ḠN (ρ)− ḠN (ρ)]Ṽ(β, δ). (3.2)

The β-component of Sc
N (θ) is automatically robust against the unknown heteroskedasticity.

Therefore, the desired AQS functions robust against the unknown heteroskedasticity H are,

S�N (β, δ) =


X′(ρ)Ṽ(β, δ),

Y′C′
N (δ)[F̄′N (δ)− F̄′N (δ)]Ṽ(β, δ),

[AN (λ)Y −Xβ]′B′
N (ρ)[ḠN (ρ)− ḠN (ρ)]Ṽ(β, δ).

(3.3)

Solving S�N (β, δ) = 0 gives the robust AQS (RAQS) estimators, β̂�N and δ̂�N , of β and δ.

Similarly, this root-finding process can be simplified by first solving for β given δ, to give

the constrained estimator β̂�N (δ) and the concentrated RAQS functions:

S�cN (δ) =


Y′C′

N (δ)[F̄′N (δ)− F̄′N (δ)]V̂(δ),

[AN (λ)Y −Xβ̂�N (δ)]′B′
N (ρ)[ḠN (ρ)− ḠN (ρ)]V̂(δ),

(3.4)

where β̂�N (δ) = β̂∗N (δ) given in (2.9), and V̂(δ) = Ṽ(β̂�N (δ), δ). Then, solving S�cN (δ) = 0, we

obtain the RAQS estimator δ̂�N of δ, and thus the RAQS estimator β̂�N ≡ β̂�N (δ̂�N ) of β.

3.2. Asymptotic Properties of the Robust AQS Estimators

Similar to the case of the homoskedastic model, we first establish the consistency of δ̂�N .

Then, the consistency of β̂�N follows. Let S̄�N (β, δ) = E[S�N (β, δ)] be the population RAQS

functions. Then, the β-component of S̄�N (β, δ) = 0 is solved at β̄�N (δ) = β̄∗N (δ) given in (2.11).
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Upon substitution, we obtain the population counterpart of S�cN (δ):

S̄�cN (δ) =


E[Y′C′

N (δ)[F̄′N (δ)− F̄′N (δ)]V̄(δ)],

E
{
AN (λ)Y −Xβ̄�N (δ)]′B′

N (ρ)[ḠN (ρ)− ḠN (ρ)]V̄(δ)
}
,

(3.5)

where V̄(δ) = Ṽ(β̄�N (δ), δ). As S�cN (δ̂�N ) and S̄�cN (δ0) are both zero, by theorem 5.9 of van

der Vaart (1988) δ̂�N will be consistent for δ0 if supδ∈∆
1

N1

∥∥S�cN (δ)− S̄�cN (δ)
∥∥ p−→ 0 and the

following identification condition holds:

Assumption G′: infδ:d(δ,δ0)≥ε

∥∥S̄�cN (δ)
∥∥ > 0 for every ε > 0, where d(δ, δ0) is a measure of

distance between δ and δ0.

Again, Assumption G′ is put up for simplicity. More primitive conditions under which

Assumption G′ holds are that for δ 6= δ0 either of the following conditions holds:

(a) η′A′−1
N C′

N (δ)[F̄′N (δ)− F̄′N (δ)]QN (δ)A−1
N η + tr[QD(ρ)Ch

N (δ)
(
F̄′N (δ)− F̄′N (δ)

)
] 6= 0; or

(b) η′A′−1
N C′

N (δ)M′
N (ρ)

[
ḠN (ρ)−ḠN (ρ)

]
QN (δ)A−1

N η+tr[QD(ρ)Ch
N (δ)

(
ḠN (ρ)−ḠN (ρ)

)
] 6= 0,

where Ch
N (δ) = CN (δ)C−1

N HC−1′
N C′

N (δ) and MN (ρ) = IN −BN (ρ)X[X′(ρ)X(ρ)]−1X′(ρ). Sim-

ilarly, as Ch
N (δ0) = H and QN (δ0)A−1

N η = 0, the two quantities in (a) and (b) are 0 at δ0.

Denote ξ = (β′, δ′)′ and ξ̂�N = (β̂�′N , δ̂
�′
N )′. We have the following consistency theorem.

Theorem 3.1. Under Assumptions A′, B-F and G′, we have, as N →∞, ξ̂�N
p−→ ξ0.

Similarly, the asymptotic normality of ξ̂�N can be established, by applying the mean value

theorem to each element of S�N (ξ̂�N ) = 0 at ξ0. The robust AQS function at ξ0 is

S�N (ξ0) =


X′V,

η′B′
N (F̄′N − F̄′N )QDV + V′(F̄′N − F̄′N )QDV,

φ′0D′N (ḠN − ḠN )QDV + V′(ḠN − ḠN )QDV,

(3.6)

which can also be verified to be asymptotically normal by using the CLT for LQ forms of Kele-

jian and Prucha (2001). The adjusted Hessian ∂
∂ξ′S

�
N (ξ̄), shown in (C.1) in Appendix C, has a

proper asymptotic behavior, for some ξ̄ lying between ξ̂�N and ξ0 elementwise. Consequently,

the asymptotic distribution for ξ̂�N can be established in the following theorem.

Theorem 3.2. Under the assumptions of Theorem 3.1, we have, as N →∞,√
N1

(
ξ̂�N − ξ0

) D−→ N
(
0, lim

N→∞
Σ�−1

N (ξ0)Γ�N (ξ0)Σ�−1
N (ξ0)

)
,

where Σ�N (ξ0) = − 1
N1

E
[

∂
∂ξ′S

�
N (ξ0)

]
and Γ�N (ξ0) = 1

N1
Var

[
S�N (ξ0)

]
, both assumed to exist and

Σ�N (ξ0) assumed to be positive definite for sufficiently large N .
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3.3. Heteroskedasticity Robust Inferences

Robust inferences for ξ0 depends on the availability of consistent estimators of Σ�N (ξ0) and

Γ�N (ξ0). Similar to the case of homoskedastic model, Σ�N (ξ0) can be estimated by its observed

counterpart Σ̂�N = − 1
N1

∂
∂ξ′S

�
N (ξ)|ξ=ξ̂�N

, with detailed expression of ∂
∂ξ′S

�
N (ξ) being given in

(C.1), Appendix C. The consistency of Σ̂�N is proved in the proof of Theorem 3.2.

However, the VC matrix Γ�N (ξ0) involves the common parameters ξ0, the fixed effects φ0,

and the unknown H, as seen from its distinct elements derived by Lemma A.5:

N1Γ�βξ = [X′HX, X′HLλBNη, X′HLρDNφ0],

N1Γ�λλ = η′B′
NL′λHLλBNη + tr(HLλHL◦λ),

N1Γ�λρ = η′B′
NL′λHLρDNφ0 + tr(HLλHL◦ρ),

N1Γ�ρρ = φ′0D′NL′ρHLρDNφ0 + tr(HLρHL◦ρ),

(3.7)

where Lλ(δ) = QD(ρ)[F̄N (δ) − F̄N (δ)] and Lρ(ρ) = QD(ρ)[Ḡ′
N (ρ) − Ḡ′

N (ρ)]. This makes the

estimation of Γ�N (ξ0) more challenging than the case of homoskedastic model as the number

of unknown elements (parameters) in φ and H both grow with the sample size N (a more

serious incidental parameters problem). A nice feature of the analytical expression of Γ�N (ξ0)

is that it does not involve 3rd and 4th moments of the errors due to the fact that the key

matrices, Lλ(δ) and Lρ(δ), have zero diagonals. This makes it possible to adopt again the

approach of ‘plug-in’ and ‘bias-correction’ as in the case of homoskedastic model.

To facilitate the discussion, write Γ�N (ξ0) as Γ�N (ξ0, φ,H). Let φ̂�N be the estimator of

φ obtained from the RAQS estimator ξ̂�N through (2.4). Let Γ�N (ξ̂�N , φ̂
�
N ,H) be the plug-in

estimator of Γ�N (ξ0) for a given H. We have (similar to Corollary 2.1) the following corollary.

Corollary 3.1. Under the assumptions of Theorem 3.2, we have,

Γ�N (ξ̂�N , φ̂
�
N ,H) = Γ�N (ξ0) + Bias�φ(δ0,H) + op(1),

where Bias�φ(δ0,H) is a (k + 2)× (k + 2) matrix with all the β-related entries being zero and

the δ entry of the elements: 1
N1

tr(HPDL′aHLbPD), for a, b = λ, ρ.

To estimate H and thus to give a full estimate of Γ�N (ξ0, φ,H), note that Ṽ = QDV, which

can be ‘consistently’ estimated by V̂ = QD(ρ̂�N )BN (ρ̂�N )[AN (λ̂�N )Y −Xβ̂�N ]. Note also that

E(Ṽ � Ṽ) = [QD �QD](σ2
1, σ

2
2, . . . , σ

2
N )′,

where � denotes the Hadamard (elementwise) product. A natural set of estimates of the

heteroskedasticity parameters (σ2
1, σ

2
2, . . . , σ

2
N ) is therefore given as follows:
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(σ̂2
1, σ̂

2
2, . . . , σ̂

2
N )′ = [QD(ρ̂�N )�QD(ρ̂�N )]−(V̂ � V̂),

where [ · ]− denotes a generalized inverse. An estimate of H is Ĥ = diag(σ̂2
1, σ̂

2
2, . . . , σ̂

2
N ).

To ‘see’ the invertibility of QD(ρ)�QD(ρ), we have, QD(ρ)�QD(ρ) = IN − 2IN �PD(ρ)+

PD(ρ)�PD(ρ). By Schur product theorem, the last term is positive semi-definite. In addition,

when T is not too small, IN − 2IN � PD(ρ) is positive definite, because the diagonal elements

of PD(ρ) are of order Op(1/T ) (See the proof of Lemma A.3). Thus, QD(ρ)�QD(ρ) is typically

invertible, for ρ in a neighborhood of ρ0, which is assumed to facilitate the proof of theoretical

results. In practice, however, one may just use the generalized inverse of QD(ρ)�QD(ρ).

From (3.7), we see that the elements of Γ(ξ0, φ,H) take either of the forms: tr(HCN ) and

tr(HANHBN ). It is important to know the effects of replacing H by Ĥ in these two forms.

Lemma 3.1. Assume ΠN (ρ) = [QD(ρ) � QD(ρ)]−1 exists for ρ in a neighborhood of ρ0,

and is bounded in both row and column sum norms.8 Let AN = [aij ] and BN = [bij ] be square

matrices of dimension N with zero diagonals and bounded row and column sum norms. Let

CN = [cij ] be an N ×N matrix with diagonal elements being uniformly bounded. We have,

(i) 1
N tr(ĤCN )− 1

N tr(HCN ) = op(1),

(ii) 1
N tr(ĤANĤBN )− 2

N tr((AN �BN )ΠNΛ(H)ΠN )− 1
N tr(HANHBN ) = op(1),

where ΠN = ΠN (ρ0), Λ(H) = {(q′jHqk)2}N
j,k=1, and q′j is the jth row of QD.

The bias term in Corollary 3.1 needs a further correction when H is replaced by Ĥ as

it contains elements of the form tr(HANHBN ) with diagonal elements of AN and BN not

strictly zero. However, the effect of non-zero diagonals is shown to be negligible due to the

existence of a lower ranked matrix PD and its orthogonality with QD. Combining the results

of Corollary 3.1 and Lemma 3.1, we have the full estimate of Γ�N (ξ0):

Γ̂�N = Γ�N (ξ̂�N , φ̂
�
N , Ĥ)− Bias�φ(δ̂�N , Ĥ)− Bias�H(δ̂�N , Ĥ), (3.8)

where Bias�H(δ0,H) has entries 0, or 2
N1

tr((La �L◦b − PDL′a �LbPD)ΠNΛ(H)ΠN ), a, b = λ, ρ.

Corollary 3.2. Under the assumptions of Theorem 3.2, we have as N →∞,

Σ̂�N − Σ�N (ξ0)
p−→ 0 and Γ̂�N − Γ�N (ξ0)

p−→ 0,

and therefore, Σ̂�−1
N Γ̂�N Σ̂�−1

N − Σ�−1
N (ξ0)Γ�N (ξ0)Σ�−1

N (ξ0)
p−→ 0.

8These assumptions hold for a balanced SPD model. Following Footnote 7, QD(ρ) = (IT− lT l′T
T

)⊗(In− lnl′n
n

),
where ⊗ denotes the Kronecker product. Thus, [QD(ρ)� QD(ρ)]−1 exists if T > 2 by Schur product theorem.

Further, |(QD(ρ)�QD(ρ))ii| −
P

j 6=i |(QD(ρ)�QD(ρ))ij | = (n−1)(T−1)[(n−2)(T−2)−2]

n2T2 > c > 0, ∀i, T > 2. As
QD(ρ)�QD(ρ) is symmetric, we conclude it is strictly diagonally dominant in both rows and columns. Hence,
Theorem 1 and Corollary 1 of Varah (1975) imply that ‖ΠN (ρ)‖1 and ‖ΠN (ρ)‖∞ are both bounded.
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4. Monte Carlo Study

Extensive Monte Carlo experiments are carried out to investigate the finite sample per-

formance of the proposed AQS estimators, the robust AQS (RAQS) estimators, and the

corresponding standard error estimators of the unbalanced SPD models with two-way fixed

effects. To see the effectiveness of the adjustments on the concentrated quasi scores in con-

trolling the effects of estimating the fixed effects, we also include the direct QML estimators

in the Monte Carlo study. We choose different values of n and T , and fix the percentage

of randomly missing observations at 10%, and make sure that each individual is observed at

least twice over the entire period. We consider two data generating processes: unbalanced

FE-SPD models with SL and SE effects or with SL and SD (spatial Durbin) effects:

SL-SE Model : Yt = λWtYt +Xtβ1 +Dtµ+ αtlnt + Ut, Ut = ρMtUt + Vt, (4.1)

SL-SD Model : Yt = λWtYt +Xtβ1 +WtXtβ2 +Dtµ+ αtlnt + Vt, (4.2)

for t = 1, . . . , T . Note that we consider Durbin effects, WtXt, only in the SL model due

to the identification issue mentioned earlier. We choose β1 = 1, β2 = 0 or 0.5, λ = 0.2

and ρ = 0.2. Generate X ′
ts independently from N(0, 22In), and set the individual effects

µ = 1
T ΣT

t=1Xt + e, where e ∼ N(0, In). Then, omit the “missing” elements of Xt. The time

fixed effects α are generated from N(0, IT ). The error (vit) distributions can be (i) normal,

(ii) normal mixture (10% N(0, 42) and 90% N(0, 1)), or (iii) chi-square with 3 degrees of

freedom.9 For the purpose of comparison, we set σ2
v0 = 1 for homoskedastic case, and set the

average of error variances in the heteroskedastic case to 1. Monte Carlo (empirical) means

and standard deviations (shown in the brackets) are reported for QMLE, AQSE and RAQSE.

Further, empirical averages of the standard error estimates (shown in the square brackets) are

also reported for AQSE and RAQSE, based on the robust VC matrix estimates, Σ̂∗−1
N Γ̂∗N Σ̂∗−1

N

for the AQSE and Σ̂�−1
N Γ̂�N Σ̂�−1

N for the RAQSE. The number of Monte Carlo runs is 1000.

The spatial weights Wt and Mt are first generated as time-varying n×n matrices according

to rook contiguity, queen contiguity, or group interaction scheme, and then their rows and

columns corresponding to the missing spatial units are deleted. The groups’ sizes in the

group interaction scheme can be either increasing or fixed as n increases. In the latter case,

the variation in group sizes does not shrink to zero as n increases. As a result, the AQSE
9In the cases (ii) and (iii), the generated errors are standardized to have mean zero and variance σ2

v.
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would not be consistent under heteroskedasticity (Liu and Yang, 2015, 2020).10 In this case,

the heteroskedasticity is generated as follows: for each group, if the group size is larger than

the mean group size, then the variance is set to be the same as the group size, otherwise, the

variance is the square of the inverse of the group size (Lin and Lee, 2010).

Tables 1a and 1b report partial Monte Carlo results for the unbalanced FE-SPD model

with SL and SE effects and homoskedastic errors, for T = 5 and 10, respectively. The results

show an excellent finite performance of the proposed AQS and RAQS estimators, as well as

their standard error estimators. The proposed AQS method performs uniformly much better

than the QML method in the estimation of σ2
v , λ and ρ, irrespective of the choices of the spatial

weight matrices and the values of n and T . Our AQS estimators exhibit a good performance

even when the sample size is as small as n = 50 and T = 5, and improve on average when

the sample expands, regardless of the error distributions. The
√
N1-consistency of the AQSEs

is clearly demonstrated by the Monte Carlo sds. Moreover, the robust estimates of standard

errors ŝd’s are on average very close to the corresponding Monte Carlo standard errors. By

comparing the results of AQS and RAQS, we cannot see which one beats the other in terms

of bias and efficiency for these homoskedastic models.

Tables 2a and 2b present partial Monte Carlo results for the unbalanced FE-SPD model

with SL and SD effects and homoskedastic errors, for T = 5 and 10, respectively. The results

again show an excellent performance of the proposed set of estimation and inference methods.

As in the case of the SL-SE model, the AQSE and RAQSE give quite similar results, and

both show a clear convergence as sample size increases. Their corresponding standard error

estimates also perform very well. In contrast, the QMLE can perform poorly.

Tables 3a and 3b report partial Monte Carlo results for the unbalanced FE-SPD model

with SL and SE effects and heteroskedastic errors, for T = 5 and 10, respectively. The

results show an excellent finite sample performance of the proposed RAQSE and its estimated

standard error. In contrast, the QMLE and AQSE typically provide worse estimates for spatial

parameters than RAQSE. Our RAQSEs perform well even when sample size is quite small,

and show convergence to the true value as sample size increases. In addition, ŝds are very

closed to sds for our RAQSE, consistent with our theoretical expectation.

Tables 4 presents partial Monte Carlo results for the unbalanced FE-SPD model with SL

10In the former, we let K(n) = Round(n0.5) be the number of groups and then generate K(n) group sizes
according to a uniform distribution, and in the latter, we start with six groups of sizes (3,5,7,9,11,15) and then
replicate to give a n to be multiples of 50. See Yang (2015) for details in generating these spatial layouts.
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and SD effects and heteroskedastic errors, for T = 5 and 10, respectively. The weight matrix

is specified as group interaction with a fixed group sizes scheme. We can see a much better

finite sample performance for our RAQSE than QMLE and AQSE, and the corresponding

standard error estimates also have a good performance.

5. Conclusion and Discussion

We consider estimation and inference for an unbalanced spatial panel data model with both

individual and time fixed effects, where the unbalancedness is caused by, e.g., late entries, early

dropouts, lack of economic activities, such that the missing spatial units at a given time period

do not generate any spillover effects on their ‘neighbors”. Unbalanced spatial panels with fixed

effects render the commonly adopted approach, the orthogonal transformation, inapplicable.

An adjusted quasi score (AQS) is proposed, which adjusts the concentrated quasi scores (with

the fixed effects being concentrated out) to remove the effects of estimating these incidental

parameters. For the statistical inferences, the main difficulty lies with the fact that ‘consistent’

estimates of the idiosyncratic errors are unavailable due to the incidental parameters problem.

A ‘plug-in and then bias-correction’ method is proposed to give consistent estimates of the

standard errors of the AQS estimators. The proposed methods are then extended to allow for

unknown heteroskedasticity along both the cross-sectional and time dimensions. Monte Carlo

results show excellent performance of the proposed estimation and inference methods.

The proposed methods are seen to be very general in handling the unbalanced SPD models

in the presence of incidental parameters such as fixed effects and unknown heteroskedasticity,

allowing the spatial weight matrices to be time-varying and without row-normalizations. The

generality of the proposed methods is further demonstrated in Appendix D by considering

the following extensions: the unbalanced SPD model with (i) two-way fixed effects (FE)

and serial correlation, (ii) two-way FE, heteroskedasticity and serial correlation, (iii) two-

way random effects (RE) and serial correlation, and (iv) two-way RE, heteroskedasticity

and serial correlation. The current study also sheds light on an interesting but challenging

extension: unbalanced SPD models with interactive fixed effects in the spirit of Bai et al.

(2015). However, rigorous studies on these extensions can only be done in future works.
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Appendix A: Some Basic Lemmas

The following lemmas are essential to the proofs of the main results in this paper. Lemmas

A.1, A.2 and A.5 are taken from the literature. The other lemmas contain new elements and

their proofs are given in Appendix D.

Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002): Let {AN} and {BN} be two

sequences of N ×N matrices that are uniformly bounded in both row and column sums. Let

CN be a sequence of conformable matrices whose elements are uniformly O(h−1
n ). Then,

(i) the sequence {ANBN} are uniformly bounded in both row and column sums,

(ii) the elements of AN are uniformly bounded and tr(AN ) = O(N), and

(iii) the elements of ANCN and CNAN are uniformly O(h−1
n ).

Lemma A.2. (Lemma A.3, Lee, 2004b): For W and AN (λ) defined in Model (2.2), if

‖W‖ and ‖A−1
N ‖ are uniformly bounded, where ‖ · ‖ is a matrix norm, then ‖A−1

N (λ)‖ is

uniformly bounded in a neighborhood of λ0.

Lemma A.3. Under Assumptions C-E, we have

(i) QD(ρ) is uniformly bounded in both row and column sums, uniformly in ρ ∈ ∆ρ;

(ii) QX(ρ) is uniformly bounded in both row and column sums, uniformly in ρ ∈ ∆ρ.

Lemma A.4. Suppose that {AN} and {BN} are two sequences of N×N matrices that are

uniformly bounded in either row or column sums. Under Assumptions C-E, tr[ANPX(ρ)BN ] =

O(1), uniformly in ρ ∈ ∆ρ.

Lemma A.5. (Lemma A.2, Lin and Lee, 2010; Lemma A.3, Liu and Yang, 2015): Let

AN = [aij ] and BN = [bij ] be two square matrices of dimension N and cN be an N × 1 vector

of elements ci. Assume that innovations {vj} have zero mean and are mutually independent,

i.e. vj ∼ inid(0, σ2
j ). Letting H = diag{σ2

1, · · · , σ2
N} and V = (v1, · · · , vN )′, we have,

(i) E(V′ANV) = tr(HAN ) =
∑N

i=1 aiiσ
2
i ,

(ii) E(V′ANV · c′NV) =
∑N

i=1 aiiciE(v3
i ),

(iii) E(V′ANV ·V′BNV) =
∑N

i=1 aiibii[E(v4
i )−3σ4

i ]+tr(HAN )tr(HBN )+tr(HANHB◦N ),

(iv) Var(V′ANV) =
∑N

i=1 a
2
ii[E(v4

i )− 3σ4
i ] + tr(HANHA◦N ).

Lemma A.6. (Lemma A.3, Lin and Lee, 2010, extended): Let {AN} be a sequence of

N ×N matrices such that either ‖AN‖∞ or ‖AN‖1 is bounded. Suppose that the elements of
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AN are O(h−1
n ) uniformly in all i and j. Let innovation vector V be defined as in Lemma

A.5. Let cN be an N × 1 vector with elements of uniform order O(h−1/2
n ). Then

(i) E(V′ANV) = O( N
hn

), (ii) Var(V′ANV) = O( N
hn

),

(iii) V′ANV = Op( N
hn

), (iv) V′ANV − E(V′ANV) = Op(( N
hn

)
1
2 ),

(v) c′NANV = Op(( N
hn

)
1
2 ), if ‖AN‖1 is bounded.

Appendix B: Proofs for Section 2

In proving the theorems, the following facts are used: (i) the eigenvalues of a projection

matrix are either 0 or 1; (ii) the eigenvalues of a positive definite (p.d.) matrix are strictly

positive; (iii) γmin(A)tr(B) ≤ tr(AB) ≤ γmax(A)tr(B) for symmetric matrix A and positive

semi-definite (p.s.d.) matrix B; (iv) γmax(A+B) ≤ γmax(A)+γmax(B) for symmetric matrices

A and B; and (v) γmax(AB) ≤ γmax(A)γmax(B) for p.s.d. matrices A and B.

Derivation of the AQS functions and the Hessian matrix:

Writing the key quantity in the concentrated quasi loglikelihood (2.5) as Ṽ′(β, δ)Ṽ(β, δ) =

[AN (λ)Y−Xβ]′B′
N (ρ)QD(ρ)BN (ρ)[AN (λ)Y−Xβ], and using the facts that for an invertible

matrix A(λ), ∂
∂λ ln |A(λ)| = tr[A−1(λ) ∂

∂λA(λ)] and ∂
∂λA

−1(λ) = −A−1(λ)[ ∂
∂λA(λ)]A−1(λ), it

is straightforward to derive Sc
N (θ). However, the derivation of the ρ-component is complicated

and some intermediate results are useful. First, ∂
∂ρ [B′

N (ρ)QD(ρ)BN (ρ)] = −M′QD(ρ)BN (ρ)−

B′
N (ρ)QD(ρ)M+B′

N (ρ)Q̇D(ρ)QD(ρ)BN (ρ)+B′
N (ρ)QD(ρ)Q̇D(ρ)BN (ρ), where Q̇D(ρ) = ∂

∂ρQD(ρ).

With ∂
∂ρDN (ρ) = −M[D,D?

α] = −GN (ρ)DN (ρ), we have

Q̇D(ρ) = QD(ρ)GN (ρ)PD(ρ) + PD(ρ)G′
N (ρ)QD(ρ). (B.1)

This leads to − ∂
∂ρ [B′

N (ρ)QD(ρ)BN (ρ)] = B′
N (ρ)QD(ρ)G◦

N (ρ)QD(ρ)BN (ρ) ≡ Ψ(ρ), the ρ-

component of the CQS function (2.6), and the ρ-component of the AQS function (2.8):

S∗ρ(θ) = 1
2σ2

v
[AN (λ)Y −Xβ]′Ψ(ρ)[AN (λ)Y −Xβ]− tr[QD(ρ)GN (ρ)]. (B.2)

This is expressed in terms of Ψ(ρ) and G◦
N (ρ) to facilitate the derivations of the ρ-related

terms of the Hessian matrix ∂
∂ρΨ(ρ). Again, the (ρ, ρ) term of ∂

∂ρΨ(ρ) is most complicate. For

a comformable vector a, we have by taking use of (B.1) and after some tedious algebra,

a′[ ∂
∂ρΨ(ρ)]a = 2a′B′

N (ρ)QD(ρ)[G◦
N (ρ)PD(ρ)G◦

N (ρ)−G′
N (ρ)GN (ρ)]QD(ρ)BN (ρ)a. (B.3)

With the set of AQS functions S∗N (θ) given in (2.8) and (B.1)-(B.3), we obtain the components
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of the Hessian matrix H∗
N (θ) = ∂

∂θ′S
∗
N (θ):

H∗
ββ(θ) = − 1

σ2
v
X′(ρ)X(ρ),

H∗
βσ2

v
(θ) = − 1

σ4
v
X′(ρ)Ṽ(β, δ) = H∗′

σ2
vβ,

H∗
βλ(θ) = − 1

σ2
v
X′(ρ)Y(ρ) = H∗′

λβ,

H∗
βρ(θ) = − 1

σ2
v
X′(ρ)G◦

N (ρ)Ṽ(β, δ) = H∗′
ρβ ,

H∗
σ2

vσ2
v
(θ) = − 1

σ6
v
Ṽ′(β, δ)Ṽ(β, δ) + 1

2σ4
v
N1,

H∗
σ2

vλ(θ) = − 1
σ4

v
Y′(ρ)Ṽ(β, δ) = H∗′

λσ2
v
,

H∗
σ2

vρ(θ) = − 1
2σ4

v
Ṽ′(β, δ)G◦

N (ρ)Ṽ(β, δ) = H∗′
ρσ2

v
,

H∗
λλ(θ) = − 1

σ2
v
Y′(ρ)Y(ρ)− tr[QD(ρ)BN (ρ)F2

N (λ)B−1
N (ρ)],

H∗
λρ(θ) = − 1

σ2
v
Y′(ρ)G◦

N (ρ)Ṽ(β, δ)− tr[FN (λ)RN (ρ)],

H∗
ρλ(θ) = − 1

σ2
v
Y′(ρ)G◦

N (ρ)Ṽ(β, δ),

H∗
ρρ(θ) = 1

σ2
v
Ṽ′(β, δ)R1N (ρ)Ṽ(β, δ)− tr[R2N (ρ)],

(B.4)

where Y(ρ) = QD(ρ)BN (ρ)WY, RN (ρ) = B−1
N (ρ)PD(ρ)G◦

N (ρ)QD(ρ)BN (ρ), R1N (ρ) =

G◦
N (ρ)PD(ρ)G◦

N (ρ)−G′
N (ρ)GN (ρ) and R2N (ρ) = QD(ρ)GN (ρ)[PD(ρ)G◦

N (ρ) + GN (ρ)].

Proof of Theorem 2.1: By theorem 5.9 of van der Vaart (1988), we only need to show

supδ∈δ
1

N1

∥∥S∗cN (δ)− S̄∗cN (δ)
∥∥ p−→ 0 under the assumptions in Theorem 2.1. From (2.10) and

(2.12), the consistency of δ̂∗N follows from:

(a) infδ∈∆σ̄
∗2
v,N (δ) is bounded away from zero,

(b) supδ∈∆

∣∣σ̂∗2v,N (δ)− σ̄∗2v,N (δ)
∣∣ = op(1),

(c) supδ∈∆
1

N1

∣∣Y′W′B′
N (ρ)V̂(δ)− E[Y′W′B′

N (ρ)V̄(δ)]
∣∣ = op(1),

(d) supδ∈∆
1

N1

∣∣V̂′(δ)GN (ρ)V̂(δ)− E[V̄′(δ)GN (ρ)V̄(δ)]
∣∣ = op(1).

Proof of (a). From (2.11), we can write β̄∗N (δ) = [X′(ρ)X(ρ)]−1X′(ρ)QD(ρ)CN (δ)E(Y) as

X(ρ) = QD(ρ)BN (ρ)X and QD(ρ) is idempotent. Thus, V̄(δ) = QD(ρ)CN (δ)Y−X(ρ)β̄∗N (δ) =

QX(ρ)QD(ρ)CN (δ)Y + PX(ρ)QD(ρ)CN (δ)[Y − E(Y)]. By the orthogonality between QD(ρ)

and PD(ρ) and using Y = A−1
N (η + B−1

N V), we have,

σ̄∗2v,N (δ) = 1
N1

E[V̄′(δ)V̄(δ)]

= 1
N1

E[Y′Q(δ)Y] + 1
N1

E
{
[Y − E(Y)]′P(δ)[Y − E(Y)]

}
(B.5)

= 1
N1

E(Y)′Q(δ)E(Y) + 1
N1

E
{
[Y − E(Y)]′[Q(δ) + P(δ)][Y − E(Y)]

}
= 1

N1
E(Y)′Q(δ)E(Y) + 1

N1
E

{
[Y − E(Y)]′C′

N (δ)QD(ρ)CN (δ)[Y − E(Y)]
}

= 1
N1
η′A′−1

N Q(δ)A−1
N η + σ2

v0
N1

tr[QD(ρ)CN (δ)],
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where Q(δ) = C′
N (δ)QD(ρ)QX(ρ)QD(ρ)CN (δ) and P(δ) = C′

N (δ)QD(ρ)PX(ρ)QD(ρ)CN (δ).

The first term can be written in the form of a′(δ)a(δ) for an N × 1 vector function of δ, and

thus is non-negative, uniformly in δ ∈ ∆. For the second term,

σ2
v0

N1
tr[QD(ρ)CN (δ)] ≥ σ2

v0
N1
γmin[CN (δ)]tr[QD(ρ)] = σ2

v0γmin[CN (δ)]

≥ σ2
v0γmax(A′

NAN )−1γmax(B′
NBN )−1γmin[A′

N (λ)AN (λ)]γmin[B′
N (ρ)BN (ρ)] > 0,

uniformly in δ ∈ ∆, by Assumption E(iii). It follows that infδ∈∆σ̄
∗2
v,N (δ) > 0.

Proof of (b). From (2.9), we can write β̂∗N (δ) = [X′(ρ)X(ρ)]−1X′(ρ)QD(ρ)CN (δ)Y. Then,

V̂(δ) = QD(ρ)BN (ρ)[AN (λ)Y−Xβ̂∗N (δ)] = QX(ρ)QD(ρ)CN (δ)Y and σ̂∗2v,N (δ) = 1
N1

Y′Q(δ)Y.

From (B.5), σ̄∗2v,N (δ) = 1
N1

E[Y′Q(δ)Y] + σ2
v0

N1
tr[C′−1

N P(δ)C−1
N ]. Thus,

σ̂∗2v,N (δ)− σ̄∗2v,N (δ) = 1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)]− σ2
v0

N1
tr[C′−1

N P(δ)C−1
N ].

For the second term, we have, 0 ≤ 1
N1

tr[C′−1
N P(δ)C−1

N ] ≤ 1
N1
γmax[CN (δ)]γ2

max[QD(ρ)]tr[PX(ρ)]

= o(1), because tr[PX(ρ)] = k, γmax[QD(ρ)] = 1 and, by Assumption E(iii), γmax[CN (δ)] ≤

γmin(A′
NAN )−1γmin(B′

NBN )−1γmax[A′
N (λ)AN (λ)]γmax[B′

N (ρ)BN (ρ)] < ∞. Therefore, one

has supδ∈∆ |
σ2

v0
N1

tr[C′−1
N P(δ)C−1

N ]| = o(1). For the first term, we prove the uniform con-

vergence result: supδ∈∆ | 1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)]| = op(1), which follows from pointwise

convergence of 1
N1

[Y′Q(δ)Y−E(Y′Q(δ)Y)] to zero for each δ ∈ ∆ and the stochastic equicon-

tinuity of 1
N1

Y′Q(δ)Y, according to Andrews (1992). We have,

1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)]

= 1
N1

(η + B−1
N V)′A′−1

N Q(δ)A−1
N (η + B−1

N V)− 1
N1

E[(η + B−1
N V)′A′−1

N Q(δ)A−1
N (η + B−1

N V)]

= 2
N1

V′C−1′
N Q(δ)A−1

N η + 1
N1

[V′C−1′
N Q(δ)C−1

N V − σ2
v0tr(C

−1′
N Q(δ)C−1

N )].

By Assumption E, and Lemmas A.1 and A.3, one shows that C−1′
N Q(δ)A−1

N and C−1′
N Q(δ)C−1

N

are bounded in both row and column sum norms, for each δ ∈ ∆. Further, the elements of

η are uniformly bounded. Thus, the pointwise convergence of the first term follows from

Lemma A.6 (v), and the pointwise convergence of the second term follows from Lemma A.6

(iv). Therefore, 1
N1

[Y′Q(δ)Y − E(Y′Q(δ)Y)]
p−→ 0, for each δ ∈ ∆.

Next, let δ1 and δ2 be in ∆. We have by the mean value theorem (MVT):

1
N1

Y′Q(δ2)Y − 1
N1

Y′Q(δ1)Y = 1
N1

Y′[ ∂
∂δ′Q(δ̄)]Y(δ2 − δ1),

where δ̄ lies between δ1 and δ2. It follows that 1
N1

Y′Q(δ)Y is stochastically equicontinuous if

supδ∈∆
1

N1
Y′[ ∂

∂$Q(δ)]Y = Op(1), $ = λ, ρ. We only show supδ∈∆
1

N1
Y′[ ∂

∂ρQ(δ)]Y = Op(1)
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as the proof of supδ∈∆
1

N1
Y′[ ∂

∂λQ(δ)]Y = Op(1) is similar and simpler. Note that

∂
∂ρQ(δ) = −C′

N (δ)G′
N (ρ)QD(ρ)QX(ρ)QD(ρ)CN (δ) + C′

N (δ)Q̇D(ρ)QX(ρ)QD(ρ)CN (δ)

+ C′
N (δ)QD(ρ)Q̇X(ρ)QD(ρ)CN (δ) + C′

N (δ)QD(ρ)QX(ρ)Q̇D(ρ)CN (δ)

−C′
N (δ)QD(ρ)QX(ρ)QD(ρ)GN (ρ)CN (δ),

where Q̇X(ρ) = ∂
∂ρQX(ρ). Using (B.1), we have after some algebra, Ẋ(ρ) = ∂

∂ρX(ρ) =

GN (ρ)X(ρ) where GN (ρ) = PD(ρ)G′
N (ρ)−QD(ρ)GN (ρ), which gives

Q̇X(ρ) = −PX(ρ)G′
N (ρ)QX(ρ)−QX(ρ)GN (ρ)PX(ρ). (B.6)

For a comformable vector a and taking use (B.1) and (B.6), we have after some algebra,

a′[ ∂
∂ρQ(δ)]a = −2a′Q̄(δ)a, (B.7)

where Q̄(δ) = Q′N (δ)GN (ρ)QN (δ) and QN (δ) = QX(ρ)QD(ρ)CN (δ). Some rearrangements

lead to Q̄(δ) = Q′N (δ)MQ̄D(ρ)Q̄X(ρ)AN (λ), where Q̄D(ρ) = IN −D[D′(ρ)D(ρ)]−1D′(ρ)BN (ρ)

and Q̄X(ρ) = IN −X[X′(ρ)X(ρ)]−1X′(ρ)QD(ρ)BN (ρ). Following exactly the same way as we

prove Lemma A.3, we show that Q̄D(ρ) and Q̄X(ρ) are also uniformly bounded in both row

and column sums, uniformly in ρ ∈ ∆ρ. This implies that both ‖Q̄(δ)‖1 and ‖Q̄(δ)‖∞ are

bounded uniformly in δ ∈ ∆. As Y = A−1
N (η + B−1

N V), Lemma A.1 and Lemma A.6 imply

1
N1

Y′[ ∂
∂ρQ(δ)]Y = − 2

N1
Y′Q̄(δ)Y = − 2

N1
(η + B−1

N V)′A′−1
N Q̄(δ)A−1

N (η + B−1
N V)

= − 2
N1
η′A′−1

N Q̄(δ)A−1
N η − 4

N1η
′A′−1

N Q̄(δ)C−1
N V − 2

N1
V′C′−1

N Q̄(δ)C−1
N V = Op(1),

uniformly in δ ∈ ∆. Thus, supδ∈∆
1

N1
Y′[ ∂

∂ρQ(δ)]Y = Op(1). Following the similar analysis,

one also has supδ∈∆
1

N1
Y′[ ∂

∂λQ(δ)]Y = Op(1). Therefore, supδ∈∆ |σ̂∗2v,N (δ)− σ̄∗2v,N (δ)| = op(1).

Proof of (c). By the expressions of V̂(λ) and V̄(δ) given above, we have

1
N1

Y′W′B′
N (ρ)V̂(δ)− 1

N1
E[Y′W′B′

N (ρ)V̄(δ)]

= 1
N1

[Y′W′B′
N (ρ)QN (δ)Y − E(Y′W′B′

N (ρ)QN (δ)Y)]− σ2
v0

N1
tr[C′−1

N W′B′
N (ρ)PN (δ)C−1

N ],

where PN (δ) = PX(ρ)QD(ρ)CN (δ). The first term is similar in form to 1
N1

[Y′Q(δ)Y −

E(Y′Q(δ)Y)] from (b), and its uniform convergence is shown in a similar way. Furthermore,

by Lemma A.4, it is easy to see that the second term is o(1) uniformly in δ ∈ ∆.

Proof of (d). Again, using the expressions of V̄(δ) and V̂(δ), we have

1
N1

V̂′(δ)GN (ρ)V̂(δ)− 1
N1

E[V̄′(δ)GN (ρ)V̄(δ)]

= 1
N1

[Y′Q̄(δ)Y − E(Y′Q̄(δ)Y)]− σ2
v0

N1
tr[C′−1

N P ′N (δ)G◦
N (ρ)QN (δ)C−1

N ]

− σ2
v0

N1
tr[C′−1

N P ′N (δ)GN (ρ)PN (δ)C−1
N ].
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Therefore, the uniform convergence of the first term can also be shown similarly as we do for
1

N1
[Y′Q(δ)Y − E(Y′Q(δ)Y)] since they have similar forms. By Lemma A.4, the remaining

two terms are easily seen to be o(1), uniformly in δ ∈ ∆. �

Proof of Theorem 2.2: Applying the MVT to each element of S∗N (θ̂∗N ), we have

0 = 1√
N1
S∗N (θ̂∗N ) = 1√

N1
S∗N (θ0) +

[
1

N1

∂
∂θ′S

∗
N (θ)

∣∣∣
θ=θ̄r in rth row

]√
N1(θ̂∗N − θ0), (B.8)

where {θ̄r} are on the line segment between θ̂∗N and θ0. The result of the theorem follows if

(a) 1√
N1
S∗N (θ0)

D−→ N [0, limN→∞ Γ∗N (θ0)],

(b) 1
N1

[ ∂
∂θ′S

∗
N (θ)

∣∣
θ=θ̄r in rth row

− ∂
∂θ′S

∗
N (θ0)] = op(1), and

(c) 1
N1

[ ∂
∂θ′S

∗
N (θ0)− E( ∂

∂θ′S
∗
N (θ0))] = op(1).

Proof of (a). From (2.13), we see that the elements of S∗N (θ0) are linear-quadratic forms

in V. Thus, for every non-zero (k + 3)× 1 vector of constants a, a′S∗N (θ0) is of the form:

a′S∗N (θ0) = b′NV + V′ΦNV − σ2
vtr(ΦN ),

for suitably defined non-stochastic vector bN and matrix ΦN . Based on Assumptions A-F, it is

easy to verify (by Lemma A.1 and Lemma A.3(i)) that bN and matrix ΦN satisfy the conditions

of the CLT for LQ form of Kelejian and Prucha (2001), and hence the asymptotic normality of
1√
N1
a′S∗N (θ0) follows. By Cramér-Wold device, 1√

N1
S∗N (θ0)

D−→ N [0, limN→∞ Γ∗N (θ0)], where

elements of Γ∗N (θ0) are given in (2.15).

Proof of (b). The Hessian matrix H∗
N (θ) = ∂

∂θ′S
∗
N (θ) is given in (B.4). By Assumptions

D and E, and Lemma A.1 and Lemma A.3(i), RN (ρ0), R1N (ρ0) and R2N (ρ0) are all bounded

in row and column sum norms. With these and Y = A−1
N (η + B−1

N V), Lemma A.6 leads to
1

N1
H∗

N (θ0) = Op(1). Thus, 1
N1
H∗

N (θ̄) = Op(1) since θ̄
p−→ θ0 due to θ̂∗N

p−→ θ0, where for

ease of exposition, H∗
N (θ̄) is used to denote ∂

∂θ′S
∗
N (θ)

∣∣
θ=θ̄r in rth row

. As σ̄2
v

p−→ σ2
v0, we have

σ̄−r
v = σ−r

v0 + op(1), for r = 2, 4, 6. As σ−r
v appears in H∗

N (θ) multiplicatively, 1
N1
H∗

N (θ̄) =
1

N1
H∗

N (β̄, λ̄, ρ̄, σ2
v0) + op(1). Thus, the proof of (b) is equivalent to the proof of

1
N1

[H∗
N (β̄, λ̄, ρ̄, σ2

v0)−H∗
N (θ0)]

p−→ 0,

or the proofs of 1
N1

[H∗S
N (β̄, λ̄, ρ̄, σ2

v0)−H∗S
N (θ0)]

p−→ 0 and 1
N1

[H∗NS
N (δ̄)−H∗NS

N (δ0)]
p−→ 0, where

H∗S
N and H∗NS

N denote, respectively, the stochastic and non-stochastic parts of H∗
N .

For the stochastic part, we see from (B.4) that all the components of H∗S
N (β, λ, ρ, σ2

v0) are

linear, bilinear or quadratic in β and λ, but nonlinear in ρ. Hence, with an application of the
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MVT on H∗S
N (β̄, λ̄, ρ̄, σ2

v0) w.r.t ρ̄ ‘variable’, we can write 1
N1

[H∗S
N (β̄, λ̄, ρ̄, σ2

v0)−H∗S
N (θ0)] as

1
N1

[ ∂
∂ρH

∗S
N (β̄, λ̄, ρ̇, σ2

v0)](ρ̄− ρ0) + 1
N1

[H∗S
N (β̄, λ̄, ρ0, σ

2
v0)−H∗S

N (θ0)],

where ρ̇ lies between ρ̄ and ρ0. Therefore, it suffices to show (i) 1
N1

∂
∂ρH

∗S
N (β̄, λ̄, ρ̇, σ2

v0) = Op(1),

and (ii) 1
N1

[H∗S
N (β̄, λ̄, ρ0, σ

2
v0)−H∗S

N (θ0)] = op(1).

We select one of the most complicated components, H∗S
ρλ(θ) = − 1

σ2
v
Y′(ρ)G◦

N (ρ)Ṽ(β, δ), to

illustrate the general idea in the proof. We have, after some algebra,

1
N1

∂
∂ρH

∗S
ρλ(β̄, λ̄, ρ̇, σ2

v0) = 2
N1σ2

v0
Y′(ρ̇)R1N (ρ̇)QD(ρ̇)BN (ρ̇)(AN (λ̄)Y −Xβ̄),

1
N1

[H∗S
N (β̄, λ̄, ρ0, σ

2
v0)−H∗S

N (θ0)] = 1
N1σ2

v0
Y′G◦

NY(λ̄− λ0) + 1
N1σ2

v0
Y′G◦

NX(β̄ − β0).

By Lemmas A.1 and A.6, it is easy to show that 1
N1

Y′G◦
NY = Op(1) and 1

N1
Y′G◦

NX = Op(1).

Therefore, (ii) holds. To prove (i), we have

Y′(ρ̇)R1N (ρ̇)QD(ρ̇)BN (ρ̇)(AN (λ̄)Y −Xβ̄)

=(A−1
N η + C−1

N V)′HN (ρ̇)[AN (λ̄)A−1
N η + AN (λ̄)C−1

N V −Xβ̄]

where HN (ρ̇) = W′B′
N (ρ̇)QD(ρ̇)R1N (ρ̇)QD(ρ̇)BN (ρ̇). Lemma A.2 implies B−1

N (ρ̇) embedded

in HN (ρ̇) is uniformly bounded in both row and column sums since ρ̇−ρ0 = op(1). Therefore,

it is easy to see the above equation is Op(N) by Lemma A.6 and then result (i) follows.

For the non-stochastic part, we illustrate the proof using the most complicate λλ-term.

Noting that the non-stochastic part is nonlinear in both λ̄ and ρ̄, we have by the MVT,

1
N1

[H∗NS
λλ (δ̄)−H∗NS

λλ (δ0)] = − 1
N1

tr[QD(ρ̄)BN (ρ̄)F2
N (λ̄)B−1

N (ρ̄)−QDBNF2
NB−1

N ]

= − (λ̄− λ0) 1
N1

tr[2QD(ρ̇)BN (ρ̇)F3
N (λ̇)B−1

N (ρ̇)]− (ρ̄− ρ0) 1
N1

tr[F2
N (λ̇)RN (ρ̇)],

where λ̇ lies between λ̄ and λ0 and ρ̇ lies between ρ̄ and ρ0. Again, by Lemma A.2, we

conclude that both A−1
N (λ̇) and B−1

N (ρ̇) are uniformly bounded in both row and column sums.

Therefore, the terms inside the trace both have elements that are uniformly bounded. As

δ̄ − δ0 = op(1), we have 1
N1

[H∗NS
λλ (δ̄)−H∗NS

λλ (δ0)] = op(1).

Proof of (c). Since Y = A−1
N (η + B−1

N V), the Hessian matrix at true θ0 are seen to be

linear combinations of terms linear or quadratic in V, and constants. The constant terms are

canceled out. Other terms are shown to be op(1) based on Lemma A.6. For example,
1

N1
[H∗

ρρ(ρ0)− E(H∗
ρρ(ρ0))] = 1

N1σ2
v0

[V′QDR1NQDV − E(V′QDR1NQDV)] = op(1). �

Proof of Corollary 2.1: The proof is given in Appendix D. �

Proof of Corollary 2.2: The proof is given in Appendix D. �
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Appendix C: Proofs for Section 3

Derivation of the Hessian matrix for robust AQS functions:

With the set of robust AQS functions S�N (ξ) given in (3.3), we obtain the components of

the Hessian matrix H�
N (ξ) = ∂

∂ξ′S
�
N (ξ):

H�
ββ(ξ) = −X′(ρ)X(ρ), H�

βλ(ξ) = −X′(ρ)Y(ρ),

H�
βρ(ξ) = −X′(ρ)G◦

N (ρ)Ṽ(β, δ), H�
λβ(ξ) = −Y′C′

N (δ)L′λ(δ)X(ρ),

H�
λλ(ξ) = −Y′(ρ)Y(ρ) + Y′W′B′

N (ρ)F̄′N (δ)Ṽ(β, δ)

−Y′C′
N (δ)[F̄′Nλ(δ)Ṽ(β, δ)− F̄′N (δ)Y(ρ)],

H�
λρ(ξ) = −Y′(ρ)G◦

N (ρ)Ṽ(β, δ)−Y′C′
N (δ)[−G′

N (δ)F̄′N (δ)

+F̄′Nρ(δ) + F̄′N (δ)GN (ρ)]Ṽ(β, δ),

H�
ρβ(ξ) = −[AN (λ)Y −Xβ]′B′

N (ρ)L′ρ(ρ)X(ρ)− Ṽ′(β, δ)Lρ(ρ)BN (ρ)X,

H�
ρλ(ξ) = −Y′(ρ)G◦

N (ρ)Ṽ(β, δ) + Y′W′B′
N (ρ)ḠN (ρ)Ṽ(β, δ)

+[AN (λ)Y −Xβ]′B′
N (ρ)ḠN (ρ)Y(ρ),

H�
ρρ(ξ) = Ṽ′(β, δ)R1N (ρ)Ṽ(β, δ)− [AN (λ)Y −Xβ]′B′

N (ρ)[−G′
N (δ)ḠN (ρ)

+ḠNρ(ρ) + ḠN (ρ)GN (ρ)]Ṽ(β, δ),

(C.1)

where F̄′Nλ(δ) = diag[B−1′
N (ρ)F′2N (λ)B′

N (ρ)QD(ρ)]diag[QD(ρ)]−1,

F̄′Nρ(δ) = diag[K1N (δ)]diag[QD(ρ)]−1 − F̄′N (δ)diag[Q̇D(ρ)]diag[QD(ρ)]−1,

K1N (δ) = F̄′N (δ)G′
N (ρ)QD(ρ)− F̄′N (δ)QD(ρ)G′

N (ρ) + F̄′N (δ)QD(ρ)G◦
N (ρ)PD(ρ),

ḠNρ(ρ) = diag[K2N (ρ)]diag[QD(ρ)]−1 − ḠN (ρ)diag[Q̇D(ρ)]diag[QD(ρ)]−1,

K2N (ρ) = [QD(ρ)GN (ρ)PD(ρ) + PD(ρ)G′
N (ρ)QD(ρ)]G◦

N (ρ)QD(ρ) + QD(ρ)G2
N (ρ)QD(ρ).

Proof of Theorem 3.1. Since the consistency of β̂�N follows almost immediately that of

δ̂�N under Assumptions C and E, we only need to prove that δ̂�N is consistent to δ0. By theorem

5.9 of van der Vaart (1988), δ̂�N will be consistent for δ0 if supδ∈∆
1

N1

∥∥S�cN (δ)− S̄�cN (δ)
∥∥ p−→ 0.

Let Lλ(δ) = QD(ρ)[F̄N (δ) − F̄N (δ)], Lρ(ρ) = QD(ρ)[Ḡ′
N (ρ) − Ḡ′

N (ρ)] and NN (ρ) = IN −

MN (ρ). Note that BN (ρ)[AN (λ)Y − Xβ̂�N (δ)] = MN (ρ)CN (δ)Y and BN (ρ)[AN (λ)Y −

Xβ̄�N (δ)] = MN (ρ)CN (δ)Y + NN (ρ)CN (δ)[Y − E(Y)]. Recall V̂(δ) = QN (δ)Y and V̄(δ) =

QN (δ)Y + PN (δ)[Y − E(Y)]. With Assumption G′, the consistency of δ̂�N follows if:

(i) supδ∈∆
1

N1

∣∣Y′Qh
r (δ)Y − E[Y′Qh

r (δ)Y]
∣∣ = op(1), for r = 1, 2;

(ii) supδ∈∆
σ2

v0
N1

tr[C′−1
N Ph

s (δ)C−1
N ] = o(1), for s = 1, 2, 3;

where Qh
1 (δ) = C′

N (δ)L′
λ(δ)QN (δ), Qh

2 (δ) = C′
N (δ)M′

N (ρ)L′
ρ(ρ)QN (δ), Ph

1 (δ) = C′
N (δ)L′

λ(δ)PN (δ),
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Ph
2 (δ) = C′

N (δ)L′
ρ(ρ)PN (δ) and Ph

3 (δ) = C′
N (δ)N′

N (ρ)L′
ρ(ρ)QN (δ).

Note that Qh
1(δ) = C′

N (δ)[F̄′N (δ)− F̄′N (δ)]QN (δ) = W′B′
N (ρ)QN (δ)−C′

N (δ)F̄′N (δ)QN (δ).

As F̄′N (δ) is a diagonal matrix which is naturally bounded in both row and column sums,

uniformly in δ ∈ ∆, we conclude Qh
1(δ) is bounded in both row and column sum norms, uni-

formly in δ ∈ ∆, by Lemma A.1. Similarly, Qh
2(δ) = C′

N (δ)M′
N (ρ)[ḠN (ρ)− ḠN (ρ)]QN (δ) =

Q̄(δ) −C′
N (δ)M′

N (ρ)ḠN (ρ)QN (δ) is also bounded in both row and column sum norms, uni-

formly in δ ∈ ∆. Hence, Qh
1(δ) and Qh

2(δ) have forms similar to Q(δ). The proof of (i) thus

follows that of Theorem 2.1 (b). For (ii), noting that PN (δ) = PX(ρ)QD(ρ)CN (δ), we have

supδ∈∆
σ2

v0
N1

tr[C′−1
N Ph

s (δ)C−1
N ] = o(1), s = 1, 2, by Lemma A.4. For the final result, we have,

1
N1

tr[C′−1
N Ph

3(δ)C−1
N ] = − 1

N1
tr[C′

N (δ)N′N (ρ)L′ρ(ρ)QN (δ)Var(Y)]

= − 1
N1

tr
[
( 1

N1
X′(ρ)X(ρ))−1( 1

N1
X′B′

N (ρ)L′ρ(ρ)QX(ρ)QD(ρ)Ch
N (δ)X(ρ))

]
.

Assumption C implies that the elements of [ 1
N1

X′(ρ)X(ρ)]−1 are uniformly bounded for large

enough N , uniformly in ρ ∈ ∆ρ. Lemma A.1 and Lemma A.3 together imply the term between

X′ and X(ρ) are uniformly bounded in both row and column sums, uniformly in δ ∈ ∆. Hence,

the elements of the second part in the trace are also uniformly bounded. As the number of

regressors k is finite, the quantity σ2
v0

N1
tr[C′−1

N Ph
3(δ)C−1

N ] will shrink to zero as N goes large,

uniformly in δ ∈ ∆. These complete the proof of the theorem. �

Proofs of Theorem 3.2, Corollary 3.1, Lemma 3.1 and Corollary 3.2 are in Appendix D.

Appendix D: Supplementary data

Supplementary material, containing additional proofs and some extensions, can be found online at

http://www.mysmu.edu.sg/faculty/zlyang/SubPages/research.htm
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Table 1a. Empirical mean(sd)[ŝd] of the estimators for FE-SPD model with SL-SE effects
10% random missing, homoskedasticity, (β1, λ, ρ, σ

2
v) = (1, 0.2, 0.2, 1), T=5.

W= Rook, M=Queen W=Group-I, M=Queen
QMLE AQSE RAQSE QMLE AQSE RAQSE

n = 50; error = 1, 2, 3, for the three panels below
β1 .9998(.039) 1.0007(.039)[.039] 1.0007(.039)[.039] .9976(.038) .9986(.038)[.038] .9986(.038)[.038]
λ .1848(.063) .1999(.063)[.062] .1999(.063)[.062] .1666(.077) .1885(.075)[.075] .1887(.076)[.074]
ρ .1112(.152) .1868(.146)[.148] .1867(.146)[.146] .1101(.147) .1889(.141)[.150] .1889(.141)[.147]
σ2

v .7394(.083) .9829(.110)[.107] − .7390(.082) .9828(.109)[.106] −
β1 .9981(.038) .9989(.038)[.039] .9989(.038)[.038] .9980(.038) .9989(.038)[.038] .9989(.038)[.038]
λ .1849(.061) .1998(.061)[.062] .1999(.061)[.060] .1689(.076) .1909(.074)[.074] .1909(.074)[.072]
ρ .1179(.149) .1933(.143)[.148] .1932(.144)[.140] .1121(.148) .1915(.143)[.150] .1913(.143)[.143]
σ2

v .7358(.172) .9780(.228)[.215] − .7420(.176) .9867(.234)[.218] −
β1 .9981(.038) .9990(.038)[.039] .9990(.038)[.038] .9980(.038) .9990(.037)[.038] .9990(.037)[.038]
λ .1825(.061) .1976(.061)[.062] .1976(.061)[.061] .1688(.078) .1907(.076)[.074] .1908(.076)[.073]
ρ .1165(.150) .1919(.144)[.148] .1917(.144)[.143] .1104(.150) .1894(.145)[.150] .1894(.145)[.146]
σ2

v .7421(.128) .9864(.169)[.161] − .7380(.129) .9814(.171)[.161] −
n = 100; error = 1, 2, 3, for the three panels below

β1 1.0010(.027) 1.0011(.026)[.027] 1.0011(.026)[.027] 1.0015(.029) 1.0009(.029)[.029] 1.0009(.029)[.028]
λ .1922(.043) .1993(.043)[.042] .1994(.043)[.042] .1842(.055) .1960(.055)[.054] .1961(.055)[.053]
ρ .1565(.099) .1906(.096)[.100] .1906(.096)[.099] .1626(.104) .1954(.101)[.099] .1954(.101)[.098]
σ2

v .7617(.060) .9942(.078)[.076] − .7604(.058) .9928(.076)[.076] −
β1 .9993(.028) .9994(.028)[.027] .9994(.028)[.027] 1.0015(.029) 1.0009(.029)[.029] 1.0009(.029)[.028]
λ .1923(.042) .1994(.042)[.042] .1994(.042)[.042] .1829(.055) .1948(.054)[.054] .1948(.054)[.053]
ρ .1623(.102) .1962(.099)[.099] .1962(.099)[.096] .1588(.100) .1917(.097)[.099] .1916(.097)[.097]
σ2

v .7624(.128) .9951(.167)[.160] − .7674(.128) 1.0019(.167)[.161] −
β1 .9983(.027) .9984(.027)[.027] .9984(.027)[.027] 1.0000(.028) .9994(.028)[.029] .9994(.028)[.028]
λ .1937(.043) .2009(.043)[.042] .2009(.043)[.042] .1831(.056) .1950(.055)[.054] .1950(.055)[.053]
ρ .1621(.100) .1961(.097)[.099] .1961(.097)[.098] .1599(.098) .1928(.095)[.099] .1929(.096)[.097]
σ2

v .7625(.092) .9951(.120)[.118] − .7636(.091) .9970(.118)[.118] −
n = 200; error = 1, 2, 3, for the three panels below

β1 1.0002(.019) 1.0001(.019)[.019] 1.0001(.019)[.019] 1.0002(.020) 1.0001(.020)[.020] 1.0001(.020)[.019]
λ .1964(.028) .1998(.028)[.029] .1998(.028)[.029] .1856(.049) .1955(.049)[.048] .1955(.049)[.048]
ρ .1805(.071) .1947(.069)[.068] .1948(.069)[.068] .1829(.069) .1970(.068)[.068] .1970(.068)[.068]
σ2

v .7703(.042) .9958(.054)[.053] − .7708(.040) .9966(.052)[.053] −
β1 .9997(.019) .9996(.019)[.019] .9996(.019)[.019] 1.0001(.020) .9999(.020)[.020] .9999(.020)[.019]
λ .1969(.029) .2003(.029)[.029] .2003(.029)[.028] .1851(.049) .1950(.049)[.048] .1950(.049)[.048]
ρ .1850(.069) .1991(.067)[.068] .1991(.067)[.067] .1864(.068) .2004(.066)[.068] .2004(.066)[.067]
σ2

v .7679(.089) .9927(.115)[.114] − .7701(.091) .9956(.118)[.114] −
β1 1.0007(.019) 1.0006(.019)[.019] 1.0006(.019)[.019] 1.0002(.019) 1.0000(.019)[.020] 1.0000(.019)[.020]
λ .1968(.028) .2002(.028)[.029] .2002(.028)[.029] .1861(.049) .1960(.048)[.048] .1960(.048)[.048]
ρ .1840(.069) .1981(.067)[.068] .1981(.067)[.067] .1832(.070) .1973(.068)[.068] .1973(.068)[.067]
σ2

v .7688(.063) .9939(.082)[.083] − .7736(.066) 1.0002(.085)[.085] −
n = 400; error = 1, 2, 3, for the three panels below

β1 1.0003(.014) 1.0003(.014)[.013] 1.0003(.014)[.013] 1.0003(.013) 1.0003(.013)[.013] 1.0003(.013)[.013]
λ .1985(.019) .2001(.019)[.019] .2001(.019)[.019] .1875(.041) .1949(.040)[.042] .1949(.040)[.042]
ρ .1936(.049) .1982(.048)[.047] .1982(.048)[.047] .1953(.049) .1999(.048)[.047] .1999(.048)[.047]
σ2

v .7738(.028) .9966(.036)[.038] − .7734(.029) .9961(.037)[.038] −
β1 1.0001(.013) 1.0000(.013)[.013] 1.0000(.013)[.013] 1.0007(.013) 1.0007(.013)[.013] 1.0007(.013)[.013]
λ .1985(.019) .2001(.019)[.020] .2001(.019)[.019] .1899(.041) .1972(.041)[.042] .1972(.041)[.042]
ρ .1937(.048) .1983(.047)[.048] .1983(.047)[.047] .1922(.048) .1969(.047)[.047] .1969(.047)[.047]
σ2

v .7782(.063) 1.0023(.081)[.082] − .7767(.062) 1.0004(.080)[.082] −
β1 1.0001(.013) 1.0001(.013)[.013] 1.0001(.013)[.013] .9999(.013) .9999(.013)[.013] .9999(.013)[.013]
λ .1972(.020) .1988(.020)[.020] .1987(.020)[.019] .1921(.042) .1994(.041)[.042] .1994(.041)[.042]
ρ .1944(.050) .1990(.049)[.047] .1990(.049)[.047] .1924(.049) .1970(.048)[.047] .1970(.048)[.047]
σ2

v .7743(.049) .9973(.063)[.060] − .7729(.046) .9955(.059)[.060] −
Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 1b. Empirical mean(sd)[ŝd] of the estimators for FE-SPD model with SL-SE effects
10% random missing, homoskedasticity, (β1, λ, ρ, σ

2
v) = (1, 0.2, 0.2, 1), T=10.

W=Rook, M=Queen W=Group-I, M=Queen
QMLE AQSE RAQSE QMLE AQSE RAQSE

n = 50; error = 1, 2, 3, for the three panels below
β1 1.0019(.026) 1.0008(.026)[.026] 1.0008(.026)[.026] .9993(.025) .9989(.025)[.026] .9989(.025)[.026]
λ .1820(.039) .1976(.039)[.040] .1976(.039)[.040] .1780(.046) .1971(.045)[.045] .1971(.046)[.045]
ρ .1239(.093) .1974(.091)[.091] .1974(.092)[.091] .1210(.093) .1927(.092)[.091] .1927(.092)[.091]
σ2

v .8641(.062) .9930(.071)[.071] − .8641(.063) .9936(.072)[.071] −
β1 1.0006(.026) .9995(.026)[.026] .9995(.026)[.026] .9986(.025) .9982(.025)[.026] .9982(.025)[.025]
λ .1849(.039) .2004(.039)[.040] .2004(.039)[.039] .1779(.047) .1968(.046)[.045] .1969(.047)[.045]
ρ .1203(.093) .1941(.091)[.092] .1940(.091)[.089] .1235(.093) .1951(.091)[.091] .1950(.091)[.089]
σ2

v .8625(.144) .9912(.166)[.156] − .8641(.138) .9935(.158)[.156] −
β1 1.0019(.026) 1.0008(.026)[.026] 1.0008(.026)[.026] 1.0003(.026) .9999(.026)[.026] .9999(.026)[.026]
λ .1819(.040) .1976(.040)[.040] .1976(.040)[.040] .1771(.046) .1960(.045)[.045] .1961(.045)[.045]
ρ .1194(.094) .1931(.093)[.091] .1931(.093)[.090] .1211(.093) .1928(.091)[.091] .1928(.092)[.090]
σ2

v .8667(.105) .9962(.121)[.113] − .8615(.101) .9906(.116)[.113] −
n = 100; error = 1, 2, 3, for the three panels below

β1 1.0001(.018) .9997(.018)[.018] .9997(.018)[.018] 1.0004(.018) 1.0004(.018)[.017] 1.0004(.018)[.017]
λ .1924(.027) .1993(.027)[.027] .1993(.027)[.027] .1817(.040) .1963(.039)[.039] .1964(.039)[.039]
ρ .1600(.063) .1952(.062)[.063] .1952(.062)[.063] .1638(.064) .1988(.063)[.063] .1989(.063)[.063]
σ2

v .8792(.044) .9986(.050)[.050] − .8787(.046) .9981(.052)[.050] −
β1 1.0005(.018) 1.0000(.018)[.018] 1.0000(.018)[.018] 1.0001(.018) 1.0000(.018)[.017] 1.0000(.018)[.017]
λ .1932(.027) .2001(.027)[.027] .2000(.027)[.027] .1838(.040) .1983(.040)[.039] .1983(.040)[.039]
ρ .1634(.062) .1985(.061)[.063] .1985(.061)[.062] .1601(.063) .1952(.062)[.063] .1952(.062)[.062]
σ2

v .8773(.102) .9964(.116)[.112] − .8780(.101) .9973(.115)[.113] −
β1 1.0005(.018) 1.0001(.018)[.018] 1.0001(.018)[.018] .9998(.018) .9998(.018)[.017] .9998(.018)[.017]
λ .1923(.027) .1992(.027)[.027] .1992(.027)[.027] .1834(.041) .1979(.040)[.039] .1979(.040)[.039]
ρ .1609(.064) .1961(.063)[.063] .1961(.063)[.063] .1618(.064) .1969(.063)[.063] .1969(.063)[.062]
σ2

v .8782(.073) .9975(.083)[.082] − .8763(.072) .9954(.082)[.082] −
n = 200; error = 1, 2, 3, for the three panels below

β1 1.0004(.013) 1.0001(.013)[.013] 1.0001(.013)[.013] .9996(.013) .9996(.013)[.012] .9996(.013)[.012]
λ .1961(.018) .1994(.018)[.019] .1994(.018)[.019] .1883(.033) .1986(.033)[.033] .1986(.033)[.033]
ρ .1823(.044) .1985(.044)[.044] .1986(.044)[.044] .1834(.044) .1997(.043)[.044] .1997(.043)[.044]
σ2

v .8826(.030) .9973(.034)[.035] − .8836(.031) .9986(.035)[.035] −
β1 1.0002(.013) .9999(.013)[.013] .9999(.013)[.013] .9998(.013) .9997(.013)[.012] .9997(.013)[.012]
λ .1960(.018) .1993(.018)[.019] .1993(.018)[.019] .1876(.033) .1979(.033)[.033] .1980(.033)[.033]
ρ .1821(.043) .1984(.043)[.044] .1984(.043)[.044] .1808(.045) .1972(.044)[.044] .1972(.044)[.044]
σ2

v .8820(.071) .9967(.080)[.080] − .8825(.075) .9973(.084)[.081] −
β1 .9996(.012) .9993(.012)[.013] .9993(.012)[.013] 1.0005(.012) 1.0005(.012)[.012] 1.0005(.012)[.012]
λ .1968(.019) .2000(.019)[.019] .2000(.019)[.019] .1878(.033) .1981(.033)[.033] .1982(.033)[.033]
ρ .1818(.044) .1980(.043)[.044] .1980(.043)[.044] .1834(.046) .1997(.046)[.044] .1997(.046)[.044]
σ2

v .8842(.053) .9992(.060)[.058] − .8829(.051) .9978(.057)[.058] −
n = 400; error = 1, 2, 3, for the three panels below

β1 1.0004(.009) 1.0003(.009)[.009] 1.0003(.009)[.009] 1.0001(.009) 1.0000(.009)[.009] 1.0000(.009)[.009]
λ .1982(.014) .1998(.014)[.014] .1999(.014)[.014] .1922(.027) .1987(.027)[.026] .1989(.027)[.026]
ρ .1918(.033) .1989(.032)[.031] .1989(.032)[.031] .1915(.033) .1986(.033)[.031] .1986(.033)[.031]
σ2

v .8854(.022) .9982(.024)[.025] − .8853(.022) .9982(.024)[.025] −
β1 .9998(.009) .9997(.009)[.009] .9997(.009)[.009] 1.0001(.009) 1.0000(.009)[.009] 1.0000(.009)[.009]
λ .1983(.013) .1999(.013)[.014] .2000(.013)[.014] .1913(.027) .1978(.027)[.026] .1981(.027)[.026]
ρ .1931(.031) .2001(.030)[.031] .2001(.030)[.031] .1905(.032) .1976(.032)[.031] .1976(.032)[.031]
σ2

v .8847(.050) .9974(.056)[.057] − .8851(.051) .9979(.057)[.057] −
β1 .9995(.009) .9994(.009)[.009] .9994(.009)[.009] .9997(.009) .9996(.009)[.009] .9996(.009)[.009]
λ .1978(.013) .1994(.013)[.014] .1996(.013)[.014] .1926(.026) .1991(.026)[.026] .1993(.026)[.026]
ρ .1931(.031) .2002(.031)[.031] .2002(.031)[.031] .1907(.032) .1978(.031)[.031] .1978(.031)[.031]
σ2

v .8873(.038) 1.0004(.043)[.042] − .8881(.036) 1.0013(.041)[.042] −
Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 2a. Empirical mean(sd)[ŝd] of estimators for FE-SPD model with SL-SD effects
10% random missing, homoskedasticity, (β1, β2, λ, σ

2
v) = (1, 0.5, 0.2, 1), T=5.

W=Queen W=Group-I
QMLE AQSE RAQSE QMLE AQSE RAQSE

n = 50; error = 1, 2, 3, for the three panels below
β1 1.0056(.041) .9999(.041)[.041] .9999(.041)[.041] 1.0130(.043) 1.0060(.043)[.043] 1.0060(.043)[.042]
β2 .5898(.194) .5147(.195)[.194] .5146(.195)[.193] .6567(.251) .5636(.241)[.231] .5637(.242)[.228]
λ .1276(.125) .1862(.125)[.123] .1863(.125)[.122] .1103(.131) .1644(.125)[.119] .1643(.126)[.117]
σ2

v .7390(.082) .9779(.109)[.106] − .7398(.081) .9793(.108)[.106] −
β1 1.0081(.040) 1.0024(.040)[.041] 1.0024(.040)[.040] 1.0101(.044) 1.0032(.044)[.042] 1.0031(.044)[.042]
β2 .5909(.196) .5158(.197)[.195] .5156(.197)[.189] .6426(.238) .5504(.229)[.229] .5497(.230)[.220]
λ .1235(.122) .1822(.122)[.124] .1823(.123)[.120] .1130(.124) .1668(.119)[.119] .1673(.120)[.114]
σ2

v .7410(.180) .9806(.238)[.216] − .7413(.171) .9812(.226)[.215] −
β1 1.0066(.041) 1.0009(.041)[.041] 1.0009(.041)[.041] 1.0113(.043) 1.0044(.042)[.042] 1.0044(.042)[.042]
β2 .5904(.192) .5151(.193)[.195] .5151(.194)[.192] .6385(.242) .5463(.232)[.229] .5458(.234)[.225]
λ .1252(.123) .1840(.123)[.124] .1841(.123)[.122] .1183(.126) .1719(.121)[.118] .1723(.122)[.116]
σ2

v .7436(.128) .9841(.169)[.160] − .7411(.130) .9809(.172)[.158] −
n = 100; error = 1, 2, 3, for the three panels below

β1 1.0047(.030) 1.0016(.030)[.031] 1.0016(.030)[.031] 1.0038(.027) 1.0012(.027)[.027] 1.0012(.027)[.027]
β2 .5502(.135) .5114(.135)[.133] .5114(.135)[.138] .5879(.180) .5307(.175)[.173] .5306(.176)[.177]
λ .1621(.085) .1908(.085)[.084] .1908(.085)[.088] .1466(.095) .1808(.093)[.092] .1808(.093)[.094]
σ2

v .7618(.059) .9903(.076)[.075] − .7630(.058) .9921(.075)[.075] −
β1 1.0053(.031) 1.0021(.031)[.031] 1.0021(.031)[.031] 1.0043(.027) 1.0016(.027)[.027] 1.0016(.027)[.027]
β2 .5551(.130) .5163(.130)[.133] .5162(.130)[.136] .5956(.189) .5384(.183)[.173] .5385(.183)[.175]
λ .1585(.084) .1872(.084)[.084] .1872(.084)[.087] .1433(.100) .1775(.097)[.092] .1774(.097)[.093]
σ2

v .7675(.129) .9977(.168)[.159] − .7644(.129) .9940(.167)[.159] −
β1 1.0032(.030) 1.0001(.030)[.030] 1.0001(.030)[.031] 1.0044(.027) 1.0017(.027)[.027] 1.0017(.027)[.027]
β2 .5535(.136) .5149(.136)[.133] .5150(.136)[.136] .5859(.180) .5285(.175)[.173] .5283(.175)[.176]
λ .1598(.086) .1884(.085)[.084] .1883(.085)[.087] .1465(.096) .1808(.093)[.092] .1810(.093)[.094]
σ2

v .7616(.091) .9900(.119)[.116] − .7676(.095) .9981(.123)[.118] −
n = 200; error = 1, 2, 3, for the three panels below

β1 1.0020(.021) 1.0006(.021)[.020] 1.0006(.021)[.021] 1.0027(.020) 1.0011(.020)[.020] 1.0011(.020)[.020]
β2 .5244(.096) .5056(.096)[.094] .5056(.096)[.097] .5722(.170) .5257(.165)[.157] .5257(.165)[.160]
λ .1824(.058) .1962(.059)[.057] .1962(.059)[.060] .1597(.083) .1858(.081)[.079] .1859(.081)[.080]
σ2

v .7713(.041) .9948(.053)[.053] − .7726(.041) .9949(.053)[.053] −
β1 1.0013(.020) .9999(.020)[.020] .9999(.020)[.021] 1.0026(.020) 1.0011(.020)[.020] 1.0011(.020)[.020]
β2 .5269(.093) .5082(.093)[.093] .5081(.093)[.097] .5687(.160) .5224(.156)[.157] .5222(.156)[.158]
λ .1808(.057) .1945(.057)[.057] .1946(.057)[.060] .1605(.080) .1866(.078)[.079] .1867(.078)[.079]
σ2

v .7726(.091) .9964(.118)[.114] − .7740(.089) .9967(.114)[.113] −
β1 1.0017(.020) 1.0002(.020)[.020] 1.0002(.020)[.021] 1.0033(.019) 1.0018(.019)[.020] 1.0018(.019)[.020]
β2 .5248(.094) .5060(.094)[.094] .5060(.094)[.097] .5759(.164) .5293(.160)[.158] .5293(.160)[.159]
λ .1826(.056) .1963(.056)[.057] .1963(.056)[.060] .1564(.082) .1827(.080)[.079] .1827(.080)[.080]
σ2

v .7741(.065) .9984(.083)[.084] − .7726(.067) .9950(.087)[.083] −
n = 400; error = 1, 2, 3, for the three panels below

β1 1.0012(.014) 1.0005(.014)[.014] 1.0005(.014)[.014] 1.0012(.014) 1.0005(.014)[.014] 1.0005(.014)[.014]
β2 .5120(.065) .5028(.065)[.064] .5028(.065)[.067] .5526(.142) .5197(.139)[.136] .5196(.139)[.138]
λ .1909(.041) .1980(.041)[.041] .1980(.041)[.043] .1702(.069) .1890(.067)[.067] .1891(.067)[.068]
σ2

v .7761(.030) .9992(.039)[.038] − .7759(.029) .9989(.038)[.038] −
β1 1.0011(.014) 1.0004(.014)[.014] 1.0004(.014)[.014] 1.0010(.014) 1.0003(.014)[.014] 1.0003(.014)[.014]
β2 .5116(.064) .5024(.064)[.064] .5024(.064)[.067] .5553(.141) .5224(.139)[.136] .5225(.139)[.138]
λ .1904(.042) .1975(.042)[.041] .1975(.042)[.043] .1682(.070) .1870(.069)[.067] .1870(.069)[.068]
σ2

v .7730(.062) .9952(.080)[.081] − .7756(.064) .9986(.082)[.082] −
β1 1.0010(.014) 1.0003(.014)[.014] 1.0003(.014)[.014] 1.0012(.014) 1.0004(.014)[.014] 1.0004(.014)[.014]
β2 .5101(.063) .5009(.063)[.064] .5009(.063)[.067] .5551(.140) .5223(.138)[.136] .5222(.138)[.138]
λ .1913(.040) .1984(.040)[.041] .1984(.040)[.043] .1692(.068) .1879(.066)[.067] .1880(.067)[.068]
σ2

v .7764(.047) .9996(.061)[.060] − .7763(.048) .9996(.061)[.060] −
Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 2b. Empirical mean(sd)[ŝd] of estimators for FE-SPD model with SL-SD effects
10% random missing, homoskedasticity, (β1, β2, λ, σ

2
v) = (1, 0.5, 0.2, 1), T=10.

W=Queen W=Group-I
QMLE AQSE RAQSE QMLE AQSE RAQSE

n = 50; error = 1, 2, 3, for the three panels below
β1 1.0072(.026) 1.0014(.026)[.027] 1.0014(.026)[.027] 1.0083(.029) 1.0016(.029)[.028] 1.0016(.029)[.028]
β2 .5823(.122) .5074(.123)[.124] .5073(.123)[.125] .6090(.159) .5238(.152)[.149] .5237(.152)[.149]
λ .1368(.078) .1935(.078)[.080] .1935(.079)[.081] .1357(.081) .1861(.078)[.075] .1861(.078)[.075]
σ2

v .8604(.060) .9889(.069)[.070] − .8607(.062) .9894(.071)[.071] −
β1 1.0069(.027) 1.0011(.027)[.027] 1.0011(.027)[.027] 1.0099(.028) 1.0032(.027)[.028] 1.0032(.027)[.028]
β2 .5850(.122) .5104(.123)[.124] .5104(.123)[.124] .6074(.156) .5223(.150)[.149] .5224(.150)[.148]
λ .1354(.080) .1918(.080)[.079] .1919(.080)[.079] .1355(.079) .1858(.075)[.075] .1857(.075)[.073]
σ2

v .8674(.140) .9970(.161)[.158] − .8686(.143) .9984(.164)[.159] −
β1 1.0068(.027) 1.0010(.027)[.027] 1.0010(.027)[.027] 1.0069(.028) 1.0003(.028)[.028] 1.0003(.028)[.028]
β2 .5827(.124) .5082(.125)[.124] .5079(.125)[.125] .6057(.153) .5208(.147)[.148] .5209(.147)[.148]
λ .1364(.080) .1929(.080)[.079] .1931(.080)[.080] .1370(.078) .1872(.074)[.074] .1871(.074)[.074]
σ2

v .8607(.105) .9893(.120)[.113] − .8575(.101) .9857(.116)[.112] −
n = 100; error = 1, 2, 3, for the three panels below

β1 1.0024(.019) .9997(.019)[.018] .9997(.019)[.018] 1.0033(.019) .9999(.019)[.019] .9999(.019)[.019]
β2 .5381(.083) .5025(.083)[.083] .5025(.083)[.086] .5815(.135) .5142(.130)[.127] .5140(.131)[.128]
λ .1697(.055) .1982(.055)[.055] .1982(.055)[.057] .1528(.069) .1927(.067)[.065] .1928(.067)[.066]
σ2

v .8765(.043) .9956(.049)[.050] − .8766(.044) .9958(.050)[.050] −
β1 1.0036(.018) 1.0008(.018)[.018] 1.0008(.018)[.018] 1.0036(.019) 1.0002(.019)[.019] 1.0002(.019)[.019]
β2 .5403(.083) .5046(.083)[.083] .5045(.083)[.086] .5882(.133) .5207(.128)[.128] .5206(.128)[.128]
λ .1678(.056) .1963(.056)[.055] .1963(.056)[.057] .1480(.069) .1881(.066)[.066] .1882(.066)[.066]
σ2

v .8771(.101) .9963(.115)[.113] − .8752(.101) .9942(.114)[.113] −
β1 1.0029(.018) 1.0001(.018)[.018] 1.0001(.018)[.018] 1.0045(.019) 1.0011(.019)[.019] 1.0011(.019)[.019]
β2 .5381(.083) .5024(.083)[.083] .5024(.083)[.086] .5853(.131) .5179(.127)[.127] .5179(.126)[.128]
λ .1686(.055) .1971(.055)[.055] .1971(.055)[.057] .1488(.068) .1889(.066)[.066] .1889(.066)[.066]
σ2

v .8755(.074) .9944(.084)[.081] − .8755(.075) .9945(.086)[.081] −
n = 200; error = 1, 2, 3, for the three panels below

β1 1.0017(.013) 1.0003(.013)[.013] 1.0003(.013)[.013] 1.0023(.013) 1.0007(.013)[.013] 1.0007(.013)[.013]
β2 .5218(.061) .5034(.061)[.060] .5034(.061)[.062] .5592(.109) .5124(.106)[.104] .5124(.106)[.106]
λ .1827(.039) .1972(.039)[.039] .1972(.039)[.040] .1653(.055) .1926(.054)[.054] .1925(.054)[.055]
σ2

v .8835(.032) .9979(.036)[.035] − .8837(.032) .9983(.036)[.035] −
β1 1.0018(.013) 1.0005(.013)[.013] 1.0005(.013)[.013] 1.0021(.013) 1.0005(.013)[.013] 1.0005(.013)[.013]
β2 .5202(.060) .5017(.060)[.060] .5018(.060)[.062] .5580(.106) .5112(.103)[.104] .5110(.103)[.106]
λ .1838(.040) .1982(.040)[.039] .1982(.040)[.040] .1661(.055) .1933(.053)[.054] .1934(.053)[.055]
σ2

v .8816(.073) .9958(.082)[.080] − .8839(.072) .9985(.082)[.081] −
β1 1.0017(.013) 1.0003(.013)[.013] 1.0003(.013)[.013] 1.0019(.013) 1.0004(.013)[.013] 1.0004(.013)[.013]
β2 .5220(.060) .5035(.060)[.060] .5035(.060)[.062] .5581(.107) .5113(.104)[.104] .5112(.104)[.106]
λ .1834(.039) .1978(.039)[.039] .1978(.039)[.040] .1670(.054) .1942(.053)[.054] .1943(.053)[.055]
σ2

v .8837(.052) .9981(.059)[.058] − .8844(.051) .9991(.057)[.058] −
n = 400; error = 1, 2, 3, for the three panels below

β1 1.0007(.009) 1.0000(.009)[.009] 1.0000(.009)[.010] 1.0012(.009) 1.0004(.009)[.009] 1.0004(.009)[.009]
β2 .5101(.043) .5004(.043)[.044] .5004(.043)[.046] .5476(.100) .5120(.098)[.091] .5121(.098)[.093]
λ .1918(.026) .1990(.026)[.028] .1989(.026)[.029] .1732(.049) .1935(.048)[.046] .1934(.048)[.047]
σ2

v .8851(.022) .9980(.025)[.025] − .8867(.023) .9998(.026)[.025] −
β1 1.0006(.009) .9998(.009)[.009] .9998(.009)[.010] 1.0007(.009) .9999(.009)[.009] .9999(.009)[.009]
β2 .5086(.043) .4989(.043)[.044] .5018(.060)[.062] .5444(.093) .5088(.091)[.091] .5088(.091)[.092]
λ .1934(.026) .2006(.026)[.028] .1982(.040)[.040] .1753(.047) .1955(.046)[.046] .1956(.046)[.047]
σ2

v .8867(.052) .9998(.059)[.058] − .8853(.051) .9983(.058)[.057] −
β1 1.0009(.009) 1.0002(.009)[.009] 1.0003(.013)[.013] 1.0012(.009) 1.0003(.009)[.009] 1.0003(.009)[.009]
β2 .5127(.042) .5030(.042)[.044] .5035(.060)[.062] .5489(.094) .5131(.092)[.092] .5131(.092)[.093]
λ .1913(.026) .1984(.026)[.028] .1978(.039)[.040] .1726(.048) .1930(.047)[.046] .1930(.047)[.047]
σ2

v .8840(.037) .9967(.042)[.041] − .8864(.036) .9996(.041)[.042] −
Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).

37



Table 3a. Empirical mean(sd)[ŝd] of estimators for FE-SPD model with SL-SE effects
10% random missing, heteroskedasticity, (β1, λ, ρ, σ

2
v) = (1, 0.2, 0.2, 1), T=5.

W=M=Group-II W=Group-II, M=Queen
QMLE AQSE RAQSE QMLE AQSE RAQSE

n = 50; error = 1, 2, 3, for the three panels below
β1 1.0001(.042) 1.0001(.042)[.041] .9993(.042)[.042] .9974(.039) .9978(.039)[.040] .9979(.039)[.039]
λ .1878(.070) .1944(.068)[.098] .1973(.080)[.080] .1311(.086) .1735(.083)[.106] .1894(.089)[.090]
ρ -.0161(.209) .0905(.177)[.199] .1016(.272)[.247] .1077(.147) .1845(.141)[.145] .1889(.141)[.142]
σ2

v .7664(.102) 1.0237(.136)[.150] − .7717(.102) 1.0264(.136)[.150] −
β1 1.0012(.042) 1.0013(.042)[.040] 1.0005(.043)[.041] .9980(.039) .9985(.039)[.040] .9985(.039)[.038]
λ .1873(.072) .1938(.069)[.098] .1956(.082)[.080] .1343(.083) .1757(.080)[.105] .1915(.085)[.088]
ρ -.0008(.198) .1036(.168)[.198] .1235(.248)[.232] .1086(.146) .1853(.140)[.146] .1894(.140)[.135]
σ2

v .7606(.217) 1.0154(.290)[.274] − .7695(.221) 1.0234(.294)[.277] −
β1 .9986(.041) .9986(.042)[.041] .9978(.042)[.041] .9980(.040) .9984(.040)[.040] .9985(.040)[.039]
λ .1843(.070) .1911(.067)[.099] .1928(.081)[.080] .1316(.084) .1737(.081)[.106] .1896(.087)[.089]
ρ -.0072(.205) .0980(.174)[.198] .1144(.260)[.238] .1113(.144) .1878(.138)[.145] .1919(.138)[.139]
σ2

v .7727(.158) 1.0319(.211)[.212] − .7744(.161) 1.0300(.214)[.210] −
n = 100; error = 1, 2, 3, for the three panels below

β1 1.0005(.028) 1.0005(.028)[.028] 1.0002(.028)[.028] 1.0003(.025) 1.0005(.025)[.026] 1.0006(.025)[.026]
λ .1927(.049) .1954(.048)[.064] .1992(.056)[.054] .1733(.045) .1849(.045)[.054] .1960(.046)[.048]
ρ .0883(.131) .1304(.120)[.127] .1573(.167)[.160] .1665(.095) .1995(.093)[.095] .1980(.092)[.094]
σ2

v .7572(.071) .9925(.093)[.105] − .7706(.070) .9985(.090)[.102] −
β1 1.0004(.029) 1.0004(.029)[.028] 1.0001(.029)[.028] .9994(.026) .9996(.026)[.026] .9997(.026)[.026]
λ .1921(.049) .1948(.048)[.063] .1985(.055)[.053] .1736(.045) .1851(.045)[.054] .1960(.046)[.047]
ρ .0884(.129) .1305(.118)[.128] .1578(.165)[.157] .1668(.093) .1997(.090)[.095] .1984(.090)[.090]
σ2

v .7554(.155) .9901(.203)[.199] − .7648(.153) .9910(.198)[.194] −
β1 .9997(.029) .9997(.029)[.028] .9995(.029)[.028] .9996(.026) .9998(.026)[.026] .9999(.026)[.026]
λ .1914(.049) .1941(.048)[.063] .1979(.055)[.054] .1739(.045) .1854(.045)[.054] .1964(.047)[.047]
ρ .0877(.130) .1299(.119)[.128] .1566(.167)[.159] .1656(.097) .1985(.095)[.095] .1971(.094)[.093]
σ2

v .7614(.115) .9979(.150)[.152] − .7646(.112) .9907(.145)[.146] −
n = 200; error = 1, 2, 3, for the three panels below

β1 .9991(.019) .9991(.019)[.019] .9990(.019)[.019] .9987(.020) .9988(.020)[.019] .9989(.020)[.019]
λ .1950(.034) .1962(.034)[.044] .2000(.040)[.040] .1784(.035) .1853(.034)[.042] .1980(.036)[.037]
ρ .1272(.086) .1441(.082)[.084] .1763(.112)[.107] .1862(.071) .2006(.070)[.068] .1996(.069)[.069]
σ2

v .7657(.050) .9907(.065)[.073] − .7647(.051) .9883(.065)[.073] −
β1 .9996(.019) .9996(.019)[.019] .9995(.019)[.019] .9992(.019) .9993(.019)[.019] .9994(.019)[.019]
λ .1939(.035) .1951(.035)[.044] .1984(.041)[.040] .1773(.035) .1842(.034)[.042] .1968(.036)[.037]
ρ .1345(.083) .1511(.079)[.083] .1857(.106)[.105] .1816(.071) .1960(.069)[.068] .1952(.069)[.068]
σ2

v .7704(.111) .9967(.144)[.143] − .7660(.110) .9899(.142)[.141] −
β1 .9996(.019) .9996(.019)[.019] .9996(.019)[.019] .9987(.019) .9988(.019)[.019] .9990(.019)[.019]
λ .1947(.035) .1959(.035)[.044] .1996(.041)[.040] .1782(.035) .1851(.034)[.042] .1978(.036)[.037]
ρ .1290(.085) .1459(.081)[.084] .1787(.110)[.106] .1840(.070) .1984(.069)[.068] .1975(.068)[.068]
σ2

v .7646(.080) .9893(.104)[.106] − .7664(.081) .9905(.104)[.106] −
n = 400; error = 1, 2, 3, for the three panels below

β1 .9999(.014) .9999(.014)[.013] .9999(.014)[.014] 1.0000(.013) 1.0000(.013)[.013] 1.0000(.013)[.013]
λ .1966(.026) .1970(.026)[.031] .1998(.030)[.030] .1862(.024) .1894(.024)[.028] .2002(.025)[.026]
ρ .1491(.060) .1550(.058)[.058] .1892(.075)[.074] .1945(.047) .1990(.046)[.047] .1991(.046)[.047]
σ2

v .7849(.034) 1.0110(.044)[.052] − .7839(.034) 1.0096(.044)[.052] −
β1 .9998(.014) .9998(.014)[.013] .9998(.014)[.014] .9994(.013) .9994(.013)[.013] .9994(.013)[.013]
λ .1968(.027) .1972(.027)[.031] .1998(.031)[.030] .1835(.025) .1866(.025)[.028] .1973(.026)[.026]
ρ .1509(.061) .1568(.059)[.058] .1914(.075)[.074] .1959(.048) .2003(.047)[.047] .2004(.047)[.047]
σ2

v .7878(.079) 1.0148(.102)[.103] − .7842(.080) 1.0100(.103)[.103] −
β1 1.0000(.013) 1.0000(.013)[.013] 1.0000(.014)[.014] 1.0005(.014) 1.0005(.014)[.013] 1.0005(.014)[.013]
λ .1949(.027) .1953(.027)[.031] .1980(.031)[.030] .1861(.024) .1893(.024)[.028] .2001(.025)[.026]
ρ .1500(.059) .1559(.057)[.058] .1904(.073)[.074] .1955(.047) .1999(.046)[.047] .2001(.046)[.047]
σ2

v .7869(.059) 1.0136(.076)[.078] − .7854(.059) 1.0116(.076)[.078] −
Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 3b. Empirical mean(sd)[ŝd] of estimators for FE-SPD model with SL-SE effects
10% random missing, heteroskedasticity, (β1, λ, ρ, σ

2
v) = (1, 0.2, 0.2, 1), T=10.

W=M=Group-II W=Group-II, M=Queen
QMLE AQSE RAQSE QMLE AQSE RAQSE

n = 50; error = 1, 2, 3, for the three panels below
β1 1.0015(.025) 1.0012(.025)[.025] 1.0009(.025)[.024] 1.0024(.026) 1.0007(.026)[.026] .9999(.026)[.025]
λ .1899(.039) .1953(.038)[.054] .1987(.043)[.042] .1677(.036) .1880(.035)[.047] .1973(.037)[.037]
ρ .0447(.119) .1342(.106)[.117] .1660(.146)[.139] .1290(.092) .2001(.091)[.090] .1988(.091)[.089]
σ2

v .8647(.073) .9940(.083)[.093] − .8737(.074) 1.0030(.085)[.094] −
β1 .9997(.025) .9995(.025)[.025] .9992(.025)[.024] 1.0015(.025) .9998(.025)[.025] .9989(.025)[.025]
λ .1900(.039) .1954(.037)[.054] .1990(.042)[.042] .1686(.035) .1888(.034)[.047] .1981(.036)[.037]
ρ .0425(.118) .1324(.105)[.119] .1636(.145)[.137] .1284(.092) .1995(.090)[.090] .1980(.089)[.087]
σ2

v .8715(.175) 1.0019(.201)[.192] − .8744(.173) 1.0037(.198)[.193] −
β1 1.0011(.025) 1.0009(.025)[.025] 1.0006(.025)[.024] 1.0021(.025) 1.0004(.025)[.026] .9995(.025)[.025]
λ .1898(.039) .1952(.037)[.054] .1987(.042)[.042] .1677(.035) .1881(.035)[.047] .1974(.036)[.037]
ρ .0461(.115) .1355(.102)[.117] .1682(.139)[.138] .1280(.092) .1992(.090)[.090] .1981(.090)[.088]
σ2

v .8646(.125) .9940(.144)[.141] − .8751(.123) 1.0047(.141)[.144] −
n = 100; error = 1, 2, 3, for the three panels below

β1 .9994(.018) .9995(.018)[.018] .9996(.018)[.018] .9996(.018) .9994(.018)[.018] .9992(.018)[.018]
λ .1901(.034) .1936(.034)[.043] .1980(.040)[.038] .1760(.034) .1889(.033)[.038] .2000(.035)[.035]
ρ .1077(.082) .1470(.077)[.080] .1809(.106)[.101] .1627(.066) .1979(.065)[.064] .1979(.065)[.064]
σ2

v .8663(.053) .9860(.060)[.067] − .8717(.054) .9931(.062)[.067] −
β1 .9991(.018) .9992(.018)[.018] .9992(.018)[.018] 1.0003(.019) 1.0001(.019)[.018] .9999(.019)[.018]
λ .1902(.033) .1937(.032)[.043] .1978(.038)[.038] .1746(.034) .1875(.033)[.038] .1985(.035)[.035]
ρ .1106(.078) .1497(.073)[.080] .1848(.101)[.099] .1605(.066) .1957(.065)[.064] .1957(.065)[.063]
σ2

v .8659(.124) .9855(.141)[.139] − .8736(.125) .9953(.143)[.139] −
β1 .9999(.018) 1.0000(.018)[.018] 1.0000(.018)[.018] .9997(.019) .9995(.019)[.018] .9993(.019)[.018]
λ .1922(.033) .1957(.032)[.043] .2005(.037)[.038] .1738(.033) .1867(.033)[.038] .1977(.035)[.035]
ρ .1077(.079) .1470(.074)[.080] .1808(.102)[.100] .1607(.066) .1958(.065)[.064] .1958(.064)[.063]
σ2

v .8630(.088) .9822(.100)[.102] − .8760(.091) .9981(.104)[.103] −
n = 200; error = 1, 2, 3, for the three panels below

β1 .9999(.013) 1.0000(.013)[.013] 1.0000(.013)[.013] 1.0004(.013) 1.0001(.013)[.013] .9997(.013)[.013]
λ .1938(.026) .1951(.026)[.030] .1976(.030)[.029] .1833(.022) .1892(.022)[.026] .1997(.023)[.023]
ρ .1420(.057) .1601(.055)[.055] .1955(.071)[.069] .1830(.045) .1995(.044)[.044] .1999(.044)[.044]
σ2

v .8932(.038) 1.0097(.043)[.048] − .8922(.036) 1.0082(.041)[.048] −
β1 .9999(.013) 1.0000(.013)[.013] 1.0000(.013)[.013] 1.0007(.012) 1.0005(.012)[.013] 1.0000(.012)[.013]
λ .1958(.026) .1972(.025)[.030] .2000(.029)[.029] .1821(.022) .1880(.022)[.026] .1985(.023)[.023]
ρ .1399(.056) .1581(.054)[.055] .1926(.070)[.069] .1798(.045) .1964(.045)[.044] .1968(.045)[.044]
σ2

v .8939(.089) 1.0105(.101)[.101] − .8912(.090) 1.0070(.102)[.100] −
β1 .9993(.013) .9993(.013)[.013] .9993(.013)[.013] 1.0006(.013) 1.0003(.013)[.013] .9999(.013)[.013]
λ .1955(.026) .1969(.026)[.030] .1998(.029)[.029] .1830(.023) .1890(.023)[.026] .1996(.024)[.023]
ρ .1379(.057) .1561(.055)[.055] .1903(.071)[.070] .1784(.043) .1949(.043)[.044] .1953(.043)[.044]
σ2

v .8916(.063) 1.0080(.072)[.074] − .8956(.065) 1.0121(.074)[.074] −
n = 400; error = 1, 2, 3, for the three panels below

β1 1.0003(.009) 1.0009(.009)[.009] 1.0003(.009)[.009] .9997(.009) .9997(.009)[.009] .9994(.009)[.009]
λ .1974(.016) .2490(.018)[.019] .2010(.018)[.018] .1860(.016) .1888(.016)[.018] .1991(.016)[.017]
ρ .1533(.037) .1210(.028)[.037] .1959(.046)[.047] .1924(.032) .1995(.031)[.031] .2001(.031)[.032]
σ2

v .8923(.027) 1.0063(.030)[.034] − .8913(.028) 1.0049(.031)[.034] −
β1 .9995(.009) 1.0001(.009)[.009] .9995(.009)[.009] 1.0003(.009) 1.0003(.009)[.009] 1.0000(.009)[.009]
λ .1965(.017) .2493(.019)[.019] .1997(.019)[.018] .1871(.016) .1900(.016)[.018] .2004(.017)[.017]
ρ .1562(.038) .1232(.029)[.037] .1996(.048)[.047] .1914(.031) .1985(.030)[.031] .1991(.030)[.031]
σ2

v .8933(.061) 1.0075(.069)[.072] − .8923(.063) 1.0060(.071)[.071] −
β1 .9998(.009) 1.0004(.009)[.009] .9998(.009)[.009] 1.0003(.009) 1.0002(.009)[.009] 1.0000(.009)[.009]
λ .1968(.017) .2485(.018)[.019] .2003(.019)[.018] .1864(.016) .1892(.016)[.018] .1996(.016)[.017]
ρ .1531(.038) .1208(.029)[.037] .1958(.047)[.047] .1922(.031) .1993(.031)[.031] .1999(.031)[.032]
σ2

v .8960(.045) 1.0105(.051)[.053] − .8950(.047) 1.0090(.053)[.053] −
Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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Table 4. Empirical mean(sd)[ŝd] of estimators for FE-SPD model with SL-SD effects
10% random missing, heteroskedasticity, (β1, β2, λ, σ

2
v) = (1, 0.2, 0.2, 1), W=Group-II.

T=5 T=10
QMLE AQSE RAQSE QMLE AQSE RAQSE

n = 50; error = 1, 2, 3, for the three panels below
β1 1.0113(.045) 1.0054(.045)[.042] 1.0033(.045)[.044] 1.0134(.028) 1.0058(.028)[.027] 1.0024(.028)[.029]
β2 .7304(.237) .6103(.223)[.277] .5672(.256)[.269] .6962(.153) .5798(.143)[.172] .5278(.167)[.190]
λ .0569(.146) .1317(.137)[.152] .1583(.159)[.165] .0811(.089) .1517(.084)[.096] .1831(.099)[.114]
σ2

v .7704(.102) 1.0208(.135)[.148] − .8676(.074) .9945(.085)[.093] −
β1 1.0124(.045) 1.0065(.044)[.042] 1.0045(.045)[.043] 1.0130(.028) 1.0054(.028)[.027] 1.0021(.028)[.028]
β2 .7306(.230) .6121(.216)[.276] .5705(.247)[.261] .6972(.151) .5811(.141)[.172] .5302(.166)[.187]
λ .0572(.141) .1310(.132)[.151] .1566(.153)[.160] .0805(.089) .1508(.083)[.096] .1816(.099)[.112]
σ2

v .7664(.224) 1.0156(.297)[.273] − .8662(.171) .9930(.196)[.189] −
β1 1.0084(.044) 1.0025(.044)[.043] 1.0003(.044)[.043] 1.0127(.028) 1.0051(.028)[.027] 1.0017(.029)[.029]
β2 .7193(.232) .5998(.218)[.276] .5557(.249)[.266] .6969(.156) .5804(.146)[.172] .5285(.171)[.189]
λ .0627(.143) .1373(.134)[.152] .1645(.155)[.164] .0809(.092) .1514(.086)[.096] .1828(.102)[.113]
σ2

v .7771(.166) 1.0297(.219)[.211] − .8710(.122) .9984(.140)[.142] −
n = 100; error = 1, 2, 3, for the three panels below

β1 1.0090(.032) 1.0056(.032)[.030] 1.0028(.032)[.032] 1.0080(.020) 1.0045(.020)[.019] 1.0011(.020)[.021]
β2 .6379(.166) .5817(.161)[.185] .5351(.185)[.201] .6174(.106) .5644(.102)[.118] .5130(.120)[.125]
λ .1149(.095) .1497(.092)[.103] .1785(.109)[.119] .1250(.063) .1588(.061)[.066] .1914(.073)[.077]
σ2

v .7609(.070) .9942(.091)[.105] − .8659(.052) .9843(.060)[.067] −
β1 1.0081(.031) 1.0047(.031)[.029] 1.0019(.031)[.032] 1.0080(.020) 1.0045(.020)[.019] 1.0012(.020)[.021]
β2 .6336(.161) .5778(.156)[.185] .5313(.179)[.196] .6179(.104) .5650(.101)[.118] .5141(.118)[.124]
λ .1168(.092) .1513(.089)[.102] .1801(.105)[.116] .1247(.063) .1584(.061)[.067] .1907(.072)[.076]
σ2

v .7653(.160) .9998(.209)[.200] − .8667(.119) .9853(.136)[.138] −
β1 1.0081(.031) 1.0048(.031)[.030] 1.0020(.031)[.032] 1.0077(.020) 1.0042(.020)[.019] 1.0009(.021)[.021]
β2 .6370(.163) .5810(.158)[.185] .5348(.182)[.200] .6186(.106) .5656(.103)[.118] .5150(.121)[.124]
λ .1150(.095) .1497(.092)[.103] .1782(.108)[.118] .1238(.064) .1575(.062)[.067] .1897(.075)[.076]
σ2

v .7629(.115) .9968(.150)[.152] − .8691(.090) .9880(.102)[.102] −
n = 200; error = 1, 2, 3, for the three panels below

β1 1.0067(.021) 1.0050(.021)[.021] 1.0017(.022)[.023] 1.0053(.015) 1.0036(.015)[.014] 1.0005(.015)[.015]
β2 .5960(.117) .5690(.116)[.129] .5193(.133)[.146] .5831(.077) .5563(.076)[.082] .5074(.086)[.093]
λ .1412(.067) .1573(.066)[.068] .1869(.077)[.085] .1485(.044) .1651(.044)[.046] .1953(.051)[.055]
σ2

v .7670(.051) .9909(.066)[.073] − .8830(.039) .9979(.044)[.047] −
β1 1.0056(.021) 1.0038(.021)[.021] 1.0005(.022)[.023] 1.0051(.014) 1.0034(.014)[.014] 1.0003(.015)[.015]
β2 .5952(.113) .5683(.111)[.129] .5179(.127)[.144] .5807(.075) .5540(.073)[.083] .5048(.083)[.093]
λ .1438(.064) .1598(.063)[.068] .1898(.074)[.084] .1495(.043) .1660(.043)[.046] .1964(.050)[.055]
σ2

v .7684(.110) .9926(.143)[.141] − .8814(.088) .9962(.099)[.099] −
β1 1.0062(.022) 1.0044(.021)[.021] 1.0011(.022)[.023] 1.0049(.015) 1.0032(.015)[.014] 1.0001(.015)[.015]
β2 .5952(.116) .5682(.114)[.129] .5180(.131)[.145] .5839(.077) .5572(.076)[.083] .5081(.086)[.093]
λ .1434(.066) .1595(.065)[.068] .1893(.076)[.084] .1487(.044) .1652(.043)[.046] .1956(.051)[.055]
σ2

v .7646(.082) .9878(.105)[.106] − .8848(.063) 1.0000(.071)[.074] −
n = 400; error = 1, 2, 3, for the three panels below

β1 1.0049(.015) 1.0040(.015)[.014] 1.0006(.015)[.016] 1.0039(.010) 1.0030(.010)[.010] 1.0000(.010)[.011]
β2 .5716(.079) .5582(.078)[.086] .5083(.090)[.103] .5631(.051) .5498(.051)[.057] .5031(.057)[.065]
λ .1562(.046) .1643(.046)[.048] .1947(.054)[.062] .1616(.030) .1698(.030)[.032] .1987(.034)[.039]
σ2

v .7778(.036) .9995(.046)[.052] − .8933(.027) 1.0073(.031)[.034] −
β1 1.0048(.014) 1.0040(.014)[.014] 1.0006(.015)[.015] 1.0041(.010) 1.0032(.010)[.010] 1.0003(.010)[.010]
β2 .5695(.080) .5561(.079)[.086] .5057(.091)[.103] .5627(.051) .5495(.051)[.057] .5030(.057)[.065]
λ .1579(.047) .1660(.047)[.048] .1968(.055)[.061] .1609(.030) .1691(.029)[.032] .1979(.034)[.039]
σ2

v .7778(.078) .9995(.100)[.102] − .8948(.064) 1.0089(.072)[.072] −
β1 1.0047(.014) 1.0038(.014)[.014] 1.0005(.014)[.015] 1.0038(.010) 1.0030(.010)[.010] 1.0000(.010)[.010]
β2 .5714(.078) .5580(.077)[.086] .5084(.089)[.103] .5615(.050) .5483(.049)[.057] .5017(.056)[.065]
λ .1560(.046) .1641(.046)[.048] .1944(.054)[.062] .1620(.029) .1701(.029)[.032] .1990(.033)[.039]
σ2

v .7777(.057) .9993(.073)[.076] − .8905(.047) 1.0041(.053)[.053] −
Note: error = 1(normal), 2(normal mixture), 3(chi-square); Xt values are generated from N(0, 22).
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