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Abstract

We consider the estimation and inference of fixed effects (FE) spatial dynamic panel

data (SDPD) models under small T and unknown heteroskedasticity by extending the

M-estimation strategy for homoskedastic FE-SDPD model of Yang (2018, Journal of

Econometrics). Unbiased estimating equations are obtained by adjusting the conditional

quasi-score functions given the initial observations, leading to M-estimators that are free

from the initial conditions and robust against unknown cross-sectional heteroskedastic-

ity. Consistency and asymptotic normality of the proposed M-estimator are established.

The standard errors are obtained by representing the estimating equations as sums of

martingale differences. Monte Carlo results show that the proposed M-estimators have

good finite sample performance. The practical importance and relevance of allowing for

heteroskedasticity in the model is illustrated using data on sovereign risk spillover.
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1. Introduction

The spatial dynamic panel data (SDPD) models have become over the years more and

more popular among the theoretical and applied researchers for being able to capture the

dynamic effects as well as the effects of spatial interactions. Much attention has been paid

to the SDPD models under large n and large T scenarios; see, e.g., Mutl (2006), Yang et al.
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(2006), Yu et al. (2008), Korniotis (2010), Lee and Yu (2014), Shi and Lee (2017), and Bai

and Li (2018). Relatively lesser attention has been paid to the SDPD models under large

n and small T setup: Elhorst (2010) considered the fixed effects (FE) SDPD model with

spatial lag; Su and Yang (2015) studied the quasi maximum likelihood (QML) estimation of

the SDPD model with spatial errors and fixed or random effects, where the initial observations

are modelled; Yang (2018) proposed a unified M-estimation method for the FE-SDPD model

with spatial lag, space-time lag as well as spatial error, which is free from the specification

of initial conditions; Kuersteiner and Prucha (2018) considered GMM estimation of a model

similar to that in Yang (2018), but allowing endogenous spatial weights, higher-order spatial

effects, weakly exogenous covariates, interactive fixed effects, and heteroskedastic errors.

All of these estimators of the SDPD models are obtained under the assumption that

the disturbances are homoskedastic, except the QML estimator of Bai and Li (2018) and

the GMM estimator of Kuersteiner and Prucha (2018). The former is under large n and

large T setup and the latter is under large n and small T setup and hence is most closely

related to the model we study in this paper under the alternative M-estimation approach.

As it is well known, the GMM method may face the issues of simplicity and efficiency; the

majority of empirical microeconometric research involves panel data with a large number

of cross-sectional units and a small number of time periods, called short panels; and in

spatial panels, the homoskedasticity assumption may not hold in many situations as spatial

units are often heterogeneous in important characteristics such as size, location, population,

number of neighbors, etc. Anselin (1988) identifies that heteroskedasticity can occur due

to the idiosyncrasies in the model specification that feeds to the disturbances. Different

aggregations of data or mixture of an aggregated and non-aggregated data may also cause

the errors to be heteroskedastic. Interactions between spatial units may further complicate

the variance structure of the aggregated data.1 It is therefore of great interest to develop a

set of methods that are able to address all these issues associated with the SDPD models.

This paper contributes to the literature by proposing estimation and inference methods for

the FE-SDPD model with spatial lag (SL), space-time lag (STL), and spatial error (SE) under

large n and small T setup, allowing for the existence of cross-sectional heteroskedasticity

(CH) of unknown form in the idiosyncratic errors. We extend the M-estimation strategy

for the homoskedastic FE-SDPD model of Yang (2018) to give an M-estimator that is not

only free from the specification of initial conditions, but also robust against the unknown

CH. For inferences, we adopt the outer-product-of-martingale-differences (OPMD) method

in Yang (2018) to give a consistent estimator of the variance covariance (VC) matrix of the

M-estimator that is also free from the initial conditions and robust against unknown CH.
1See Lin and Lee (2010), Kelejian and Prucha (2010), Liu and Yang (2015), Breitung and Wigger (2018),

and Taspınar et al. (2919) for more discussions on heteroskedasticity based on spatial cross-sectional models,
and Moscone and Tosetti (2011) based on static spatial panel data models.
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The likelihood-based estimation of an FE-SDPD model with short panels encounters

three sets of incidental parameters in the sense of Neyman and Scott (1948), arising from

the unobserved individual-specific FE, unspecified initial observations and unknown CH. The

individual FE alone causes the direct QML estimation to encounter the incidental parameters

bias of Neyman and Scott (1948) due to the fact that the number of parameters increases

with sample size. However, with a balanced panel, this problem can easily be dealt with by

first-differencing (as we do in this paper) or other transformations. The initial values problem

alone renders the QML estimation to be inconsistent when T is small or asymptotically biased

when T is large due to the fact that the conditional likelihood given the initial differences is

used and the information contained in the initial differences about the structural parameters

is thus ignored. In a dynamic panel, the distribution of the initial observations depends on

the unobservables, i.e., the process starting positions and the past values of the time-varying

variables, and hence is unspecified. Conditional on the initial differences is equivalent to

ignoring the information contained in them about the structural parameters. In the case

of a fixed T , the proportion of such ignorance is fixed, and hence consistency of parameter

estimation cannot be achieved. In this case, one may model the initial observations as in Hsiao

et al. (2002) and Su and Yang (2015) to give a full likelihood, but this approach depends on a

linear relation between response and regressors and hence does not apply to the SDPD models

with spatial lag terms as pointed out by Yang (2018). When T is large, a common practice

is to estimate the structural parameters based on the conditional quasi likelihood, and then

perform bias correction on the conditional QML estimators to eliminate the asymptotic bias

as in Hahn and Kuersteiner (2002) and Yu et al. (2008). The proposed M-estimation strategy,

however, works directly on the conditional quasi scores (CQS), making adjustments on the

CQS functions to give a set of unbiased and consistent estimating functions. As the root-cause

of inconsistency or asymptotic bias of the conditional QML estimators is the inconsistency or

asymptotic bias of the CQS functions, such adjustments would eliminate the inconsistency or

asymptotic bias of an estimator from its ‘root’. Finally, the QML estimation of a spatial model

is often based on the quasi Gaussian likelihood formulated under the assumption that the

errors are homoskedastic. The score components of the spatial parameters are typically linear-

quadratic in error vector, which are not robust against heteroskedasticity. As a result, the

estimation of the structural parameters cannot be consistent, even if the initial values problem

has been resolved as in Yang (2018). To take care of unknown CH on top of initial values

problem, the method of centering of Yang (2018) no longer applies, and we thus proposed an

entirely different way of adjusting the CQS functions to obtain a set of estimating functions

that are not only free from the initial values but also robust against unknown CH.

Consistency and asymptotic normality of the proposed M-estimator are established. The

consistency of the VC matrix estimator is also proved. Our M-estimation method for es-
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timating model parameters remains valid if T goes large with n, but the OPMD method

for VC matrix estimation does not. In this case, the usual plug-in method based on the

conditional variance of the adjusted quasi score functions, given the initial differences, can

be used. Our proposed M -estimation strategy is likelihood based, and hence is simpler and

potentially more efficient than the corresponding GMM method. Monte Carlo results show

that the proposed M-estimators have good finite sample performance, and that it is more

efficient than the GMM estimator of Kuersteiner and Prucha (2018).

The practical importance and relevance of allowing for heteroskedasticity are illustrated by

investigating sovereign risk spillovers among 51 countries over the periods 2007–2012. Based

on a fitted SDPD model with SL and STL, the CH-robust estimation shows a much larger

(positive) dynamic effect in sovereign risk than the regular M-estimation, with the estimated

dynamic parameter being about three times larger. The CH-robust estimation results show

positive and significant spillovers of the sovereign risk among countries through different

channels, but the regular M-estimates of the spatial parameters are smaller and insignificant

under certain risk transmission channels. Based on another fitted SDPD model with only SE,

we also find positive and significant dynamic and spatial effects of sovereign risk by allowing

for heteroskedasticity. However, we find that, under homoskedasticity assumption, neither

dynamic nor spatial effect is significant through any channel.2

The rest of paper is as follows. Section 2 introduces the FE-SDPD model with small T

and unknown heteroskedasticity and presents the conditional QML estimation of it. Section 3

introduces the heteroskedasticity robust M-estimation for the model, studies the asymptotic

properties of the proposed estimators, and presents the OPMD estimator of VC matrix.

Monte Carlo results are presented in Section 4. Section 5 empirically examines the sovereign

risk spillovers. Section 6 concludes the paper. Technical proofs are collected in Appendix.

2. Model and Conditional QML Estimation

Consider the following general spatial dynamic panel data (SDPD) model with SL, STL

and SE effects or in short STLE effects:

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + Zγ + µ+ αt1n + ut, (2.1)

ut = λ3W3ut + vt, t = 1, 2, . . . , T,

where yt = (y1t, y2t, . . . , ynt)′ is an n×1 vector of response variables, {Xt} are n×p matrices of

time-varying exogenous regressors, Z is an n×q matrix of time-invariant exogenous variables,

µ is an n× 1 vector of unobserved individual-specific effects, αt are time-specific effects with

1n being an n×1 vector of ones, and vt = (v1t, v2t, . . . , vnt)′ is an n×1 vector of idiosyncratic

errors with its elements {vit} being independent and identically distributed (iid) across t for
2Matlab codes for running these applications are available at http://www.mysmu.edu/faculty/zlyang/.
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each i, and independent but not necessarily identically distribute (inid) across i for each t

such that E(vit) = 0 and Var(vit) = σ2
vhn,i, i = 1, . . . , n, where hn,i > 0 and 1

n

∑n
i=1 hn,i = 1.

Note that σ2
v is the average of Var(vit), which can be consistently estimated along with the

other model parameters. The scalar parameter ρ characterizes the dynamic effect, λ1 the

spatial lag effect, λ2 the space-time effect, and λ3 the spatial error effect, β and γ are the

usual regression coefficients, Wr, r = 1, 2, 3, are the given n× n spatial weight matrices.3

When µ is considered as fixed effects in the sense that it can be correlated with the time-

varying regressors in an arbitrary manner, it is treated as a vector of parameters. As we

assume n is large and T is small and fixed, we eliminate µ by taking first-difference in (2.1)

to avoid the incidental parameters problem,

∆yt = ρ∆yt−1 + λ1W1∆yt + λ2W2∆yt−1 + ∆Xtβ + ∆αt1n + ∆ut, (2.2)

∆ut = λ3W3∆ut + ∆vt, t = 2, 3, . . . , T.

We note that the time-invariant variables Z is also differenced away. The parameters {αt}
or {∆αt} are also considered as fixed effects. However, as T is fixed, they can be consistently

estimated along with the other model parameters. Define Br ≡ Br(λr) = In− λrWr, r = 1, 3

and B2 ≡ B2(ρ, λ2) = ρIn + λ2W2. Model (2.2) has reduced form:

∆yt = B−1
1 B2∆yt−1 +B−1

1 (∆Xtβ + ∆αt1n) +B−1
1 B−1

3 ∆vt, t = 2, . . . , T, (2.3)

Let ∆Y = {∆y′2, . . . ,∆y′T }′, ∆Y−1 = {∆y′1, . . . ,∆y′T−1}′, and ∆X = {∆X ′
2, . . . ,∆X

′
T }′. De-

fine D = (IT−2⊗1′n, 0(T−2)0′n)
′ where 0m is an m×1 vector of zeros, ∆X = (1n(T−1), D,∆X),

∆v = {∆v′2, . . . ,∆v′T }′, ∆u = {∆u′2, . . . ,∆u′T }′, Wr = IT−1 ⊗Wr, and Br = IT−1 ⊗Br, r =

1, 2, 3, where ⊗ denotes the Kronecker product and Ik an k× k identity matrix. The reduced

form (2.3) can be written in matrix form:

∆Y = B−1
1 B2∆Y−1 + B−1

1 ∆Xβ + B−1
1 B−1

3 ∆v, (2.4)

where β = (α̌′, β′)′, and α̌ = (∆αT ,∆α2 −∆αT , . . . ,∆αT−1 −∆αT )′.

Let H = diag(hn,1, . . . , hn,n), where diag(·) forms a diagonal matrix based on the given

the elements or based on the diagonal elements of a given matrix. It is easy to see that

Var(∆u) = σ2
v [C ⊗ (B−1

3 HB′−1
3 )],

where C is a (T − 1)× (T − 1) constant matrix of the form,

C =


2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

 . (2.5)

3Spatial lags of time-varying regressors or spatial Durbin effects (Halleck Vega and Elhorst, 2015) can be
added in the model, which are simply treated as additional exogenous regressors without additional technical
complications. On the related parameter identification issue, see Elhorst (2012) and Lee and Yu (2016).
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Under homoskedasticity, H reduces to In and the variance-covariance (VC) matrix of ∆u be-

comes Var(∆u) = σ2
v [C ⊗ (B′

3B3)−1] ≡ σ2
vΩ. Denote ψ = (β′, σ2

v , ρ, λ
′)′ and λ = (λ1, λ2, λ3)′.

The conditional quasi-Gaussian loglikelihood of ψ in terms of ∆y2, . . . ,∆yT treating ∆y1 as

exogenous and vit as normally distributed and homoskedastic is, ignoring the constant term,

`STLE(ψ) = −n(T−1)
2 log(σ2

v)− 1
2 log |Ω|+ log |B1| − 1

2σ2
v
∆u(θ)′Ω−1∆u(θ), (2.6)

where θ = (β′, ρ, λ1, λ2)′, ∆u(θ) = B1∆Y −B2∆Y−1 −∆Xβ, and | · | denotes the determi-

nant of a square matrix. Maximizing `STLE(ψ) gives the conditional QML (CQML) estimator

ψ̂c of ψ. It is well known that the QML estimation of a dynamic panel data model with

short panels faces the initial values problem: ∆y1 is not exogenous but is treated so, and

therefore `STLE(ψ) cannot be a genuine loglikelihood function even if vit are homoskedastic

and normal. Treating ∆y1 as exogenous ignores useful information (about ψ) contained in

∆y1, when T is fixed the degree of such ignorance is unchanged as n goes large. Hence,

the CQML method cannot give a consistent estimate of ψ. When T is also large, ignoring

the information contained in ∆y1 is asymptotically negligible, and the CQML estimator can

be consistent. However, such consistency may not hold under unknown heteroskedasticity.

Assuming homoskedasticity, Yang (2018) proposed an initial-condition free approach to con-

sistently estimate the model by adjusting the quasi score function. In this paper, we extend

the idea of Yang (2018) to allow for cross-sectional heteroskedasticity of unknown forms.

3. M-estimation of FE-SDPD Model with Heteroskedasticity

3.1. The Robust M-estimator

Recall ψ = (β′, σ2
v , ρ, λ

′)′ where λ′ = (λ1, λ2, λ3). Consider the conditional quasi score

(CQS) function of ψ, SSTLE(ψ) = ∂
∂ψ `STLE(ψ), where `STLE(ψ) is given in (2.6),

SSTLE(ψ) =



1
σ2

v
∆X ′Ω−1∆u(θ),

1
2σ4

v
∆u(θ)′Ω−1∆u(θ)− n(T−1)

2σ2
v
,

1
σ2

v
∆u(θ)′Ω−1∆Y−1,

1
σ2

v
∆u(θ)′Ω−1W1∆Y − tr(B−1

1 W1),
1
σ2

v
∆u(θ)′Ω−1W2∆Y−1,

1
2σ2

v
∆u(θ)′(C−1 ⊗A)∆u(θ)− (T − 1)tr(W3B

−1
3 ),

(3.1)

where A = W ′
3B3 +B′

3W3, and tr(·) is the trace of a square matrix. A necessary condition for

an extremum estimator such as QMLE to be consistent is: plimn→∞
1
nT SSTLE(ψ0) = 0 at the

true parameter ψ0 (van der Vaart, 1998). This is always the case for the β and σ2
v components

of the score functions whether or not the errors are homoskedastic or the initial condition
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∆y1 is exogenous, but may not be the case for the ρ and λ components. We first derive the ρ

and λ components of E[SSTLE(ψ0)] under unknown heteroskedasticity H and show that their

limits (upon dividing by nT ) are generally not zero but free from the initial conditions. Then

based on these mean expressions, we find the adjustments to the quasi-score functions so that

the adjusted quasi score function S∗STLE(ψ0) has a mean zero and plimn→∞
1
nT S

∗
STLE(ψ0) = 0.

Denote a parametric quantity evaluated at the true parameter values, ψ0, by adding a

subscript 0, e.g., B10 ≡ B1, Ω0 ≡ Ω. The usual expectation, variance and covariance opera-

tors, ‘E’, ‘Var’ and ‘Cov’, correspond to the true parameter values. We do not differentiate

H in true and general values as inferences concern only ψ0. As in Yang (2018), we have the

following very minimum requirements on the process at and before time 0.

Assumption A: Under Model (2.1), (i) the processes started m periods before the start

of data collection, the 0th period, and (ii) if m ≥ 1, ∆y0 is independent of future errors

{vt, t ≥ 1}; if m = 0, y0 is independent of future errors {vt, t ≥ 1}.

Lemma 3.1. Suppose Assumption A holds. Assume further that, for i = 1, . . . , n and

t = 0, 1, . . . , T , (i) the idiosyncratic errors {vit} are iid across t and inid across i with mean

0 and variance σ2
v0hn,i, where hn,i > 0 and 1

n

∑n
i=1 hn,i = 1, (ii) the time-varying regressors

Xt are exogenous, and (iii) both B−1
10 and B−1

30 exist. We have,

E(∆Y−1∆v′) = −σ2
v0D−10B−1

30 H, (3.2)

E(∆Y∆v′) = −σ2
v0D0B−1

30 H, (3.3)

where H = (IT−1 ⊗H), and D−1 ≡ D−1(ρ, λ1, λ2) and D ≡ D(ρ, λ1, λ2) defined as:

D−1 =


In, 0, . . . 0, 0
B − 2In, In, . . . 0, 0
...

...
. . .

...
...

DT−4, DT−5, . . . B − 2In, In

B−1
1 ,

D =


B − 2In, In, . . . 0
D0, B − 2In, . . . 0
...

...
. . .

...
DT−3, DT−4, . . . B − 2In

B−1
1 ,

where Dt = Bt(In − B)2, B = B−1
1 B2, and both D−1 and D are n(T − 1)× n(T − 1).

Lemma 3.1 presents very useful results, which is obtained by recursive backward substi-

tution on the reduced form (2.3). Using these results, we immediately obtain for (3.1):

E(∆u′Ω−1
0 ∆Y−1) = −σ2

v0tr(HCb0D−10B−1
30 ), (3.4)

E(∆u′Ω−1
0 W1∆Y ) = −σ2

v0tr(HCb0W1D0B−1
30 ), (3.5)

E(∆u′Ω−1
0 W2∆Y−1) = −σ2

v0tr(HCb0W2D−10B−1
30 ), (3.6)
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E
[
∆u′(C−1 ⊗A0)∆u

]
= 2σ2

v0tr(HW3B−1
30 ), (3.7)

where Cb = C−1 ⊗ B3, and the expression Ω = C ⊗ (B′
3B3)−1 defined below (2.5) has

been used. These results show that the ρ and λ components of plimn→∞
1
nT SSTLE(ψ0) are

not zero even under homoskedasticity, i.e., H = In, and hence the CQMLE cannot be

consistent even under homoskedasticity as shown by Yang (2018). Under homoskedastic-

ity, the results in (3.4)-(3.7) reduce to functions of common parameters ψ0 only and hence

can directly be used to adjust SSTLE(ψ0) to give a set of unbiased estimating functions,

S�STLE(ψ0) = SSTLE(ψ0) − E[SSTLE(ψ0)|H = In], leading to the M-estimator of Yang (2018).

This M-estimator is consistent under homoskedasticity, but not under unknown heteroskedas-

ticity since the ρ and λ components of plimn→∞
1
nT S

�
STLE(ψ0) are not zero in general as shown

by the results in (3.4)-(3.7) (see the end of Sec. 3.1 for some formal arguments).

The problem caused by the unknown H is that the results in (3.4)-(3.7) cannot be directly

used to adjust SSTLE(ψ0). Instead of directly subtracting the expectation, we find quadratic

terms (in ∆u) with expectations being identical to (3.4)-(3.7) (except the sign):

E(∆u′Ω−1
0 C−1D−10∆u) = σ2

v0tr(HCb0D−10B−1
30 ), (3.8)

E(∆u′Ω−1
0 C−1W1D0∆u) = σ2

v0tr(HCb0W1D0B−1
30 ), (3.9)

E(∆u′Ω−1
0 C−1W2D−10∆u) = σ2

v0tr(HCb0W2D−10B−1
30 ), (3.10)

E
[
2∆u′

(
C−1 ⊗B′

30diag(W3B
−1
30 )G30

)
∆u

]
= 2σ2

v0tr(HW3B−1
30 ), (3.11)

where C−1 = C−1⊗ In and G3 = diag(B−1
3 )−1. Combining the terms inside the expectations

in (3.4)-(3.7) with the corresponding terms inside the expectations in (3.8)-(3.11), we obtain

a set of adjusted quasi score (AQS) functions for (ρ, λ), having zero expectations at ψ0

even if the errors are heteroskedastic. The β and σ2
v components of 1

nT SSTLE(ψ0) have zero

expectation and zero probability limit under H, and hence do not need to be further adjusted.

We have a set of unbiased and robust estimating functions for ψ = (β′, σ2
v , ρ, λ

′)′:

S∗STLE(ψ) =



1
σ2

v
∆X ′Ω−1∆u(θ),

1
2σ4

v
∆u(θ)′Ω−1∆u(θ)− n(T−1)

2σ2
v
,

1
σ2

v
∆u(θ)′Ω−1∆Y−1 + 1

σ2
v
∆u(θ)′Eρ∆u(θ),

1
σ2

v
∆u(θ)′Ω−1W1∆Y + 1

σ2
v
∆u(θ)′Eλ1∆u(θ),

1
σ2

v
∆u(θ)′Ω−1W2∆Y−1 + 1

σ2
v
∆u(θ)′Eλ2∆u(θ),

1
2σ2

v
∆u(θ)′

[
C−1 ⊗ (A−Eλ3)

]
∆u(θ),

(3.12)

where (Eρ,Eλ1 ,Eλ2) = Ω−1C−1(D−1, W1D, W2D−1), and Eλ3 = 2B′
3diag(W3B

−1
3 )G3.

Solving the estimating equations, S∗STLE(ψ) = 0, gives the robust M-estimator ψ̂M. This

can be done by first solving the equations for β and σ2
v , given δ = (ρ, λ′)′, to give

β̂M(δ) = (∆X ′Ω−1∆X)−1∆X ′Ω−1(B1∆Y −B2∆Y−1), (3.13)
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σ̂2
v,M(δ) = 1

n(T−1)∆û(δ)′Ω−1∆û(δ), (3.14)

where ∆û(δ) = ∆u(β̂(δ), ρ, λ1, λ2). Then, substituting β̂M(δ) and σ̂2
v,M(δ) back into the last

four components of the AQS function in (3.12) gives the concentrated AQS functions:

S∗cSTLE(δ) =



1
σ̂2

v,M(δ)
∆û(δ)′Ω−1∆Y−1 + 1

σ̂2
v,M(δ)

∆û(δ)′Eρ∆û(δ),

1
σ̂2

v,M(δ)
∆û(δ)′Ω−1W1∆Y + 1

σ̂2
v,M(δ)

∆û(δ)′Eλ1∆û(δ),

1
σ̂2

v,M(δ)
∆û(δ)′Ω−1W2∆Y−1 + 1

σ̂2
v,M(δ)

∆û(δ)′Eλ2∆û(δ),

1
2σ̂2

v,M(δ)
∆û(δ)′

[
C−1 ⊗ (A−Eλ3)

]
∆û(δ).

(3.15)

Note that σ̂2
v,M(δ) can be dropped from the expression for S∗cSTLE(δ). Solving the resulted

concentrated estimating equations, S∗cSTLE(δ) = 0, we obtain the robust M-estimator δ̂M of δ,

which give the robust M-estimators of β and σ2
v as β̂M ≡ β̂M(δ̂M) and σ̂2

v,M ≡ σ̂2
v,M(δ̂M). Thus,

ψ̂M = (β̂′
M, σ̂

2
v,M, ρ̂M, λ̂

′
M)
′.4 Many submodels can be easily obtained from Model (2.1) by setting

one or two spatial parameters to zero. For example, setting λ1 and λ2 to zero, Model (2.1)

reduces to an SDPD model with SE only, setting λ2 and λ3 to zero, Model (2.1) becomes an

SDPD model with SL only, and setting λ3 to zero, Model (2.1) reduces to an SDPD model with

SL and STL. Estimation of these submodels proceeds simply by setting the specific parameters

to zeros and excluding the corresponding components in the AQS functions.

An alternative way of adjusting the CQS functions is as follows. The (ρ, λ1, λ2) compo-

nents in the expected CQS functions given by (3.4)-(3.6) at ψ0 can be rewritten as:

E(∆u′Ω−1
0 ∆Y−1) = −σ2

v0tr
(
diag(Gρ0)H

)
, (3.16)

E(∆u′Ω−1
0 W1∆Y ) = −σ2

v0tr
(
diag(Gλ10)H

)
, (3.17)

E(∆u′Ω−1
0 W2∆Y ) = −σ2

v0tr
(
diag(Gλ20)H

)
, (3.18)

where Gρ = CbD−1B−1
3 , Gλ1 = CbW1DB−1

3 , and Gλ2 = CbW2D−1B−1
3 . LetGc = diag−1(Cb),

the expectations of the following quadratic terms are the negative of the expectations of the

(ρ, λ1, λ2) components of the CQS functions at true parameter values,

E
[
∆u′

(
B′

30diag(Gρ0)Gc0
)
∆u

]
= σ2

v0tr (diag(Gρ0)H) , (3.19)

E
[
∆u′

(
B′

30diag(Gλ10)Gc0
)
∆u

]
= σ2

v0tr
(
diag(Gλ10)H

)
, (3.20)

E
[
∆u′

(
B′

30diag(Gλ20)Gc0
)
∆u

]
= σ2

v0tr
(
diag(Gλ20)H

)
. (3.21)

4It is well known that when a linear regression model Y = Xβ + ε is estimated under homoskedasticity,
the OLS estimator β̂ is consistent whether ε is homoskedastic or heteroskedastic. The heteroskedasticity only
alters the variance of β̂. This is because β̂ solves linear equations. In our model, it is still that, if δ0 is given,
β̂(δ0) defined in (3.13) solves a set of linear equations, and hence is consistent under unknown H. However,
the ultimate estimate of β is β̂ ≡ β̂(δ̂), of which consistency depends crucially on the consistency of δ̂. Take
a simpler model where λ3 term is dropped for illustration. We have δ = (ρ, λ1, λ2)

′ and Ω = C. From (3.13),
β̂(δ̂) = β̂(δ0)−(∆X ′C−1∆X)−1∆X ′C−1[W1∆Y, ∆Y−1, W2∆Y−1](δ̂−δ0) = β0−O(1)(δ̂−δ0)+op(1). If δ̂ is
the CQMLE or the M-estimator of Yang (2018), then plimn→∞δ̂ 6= δ0 underH, and therefore, plimn→∞β̂ 6= β0.
The inconsistency of δ̂ spills over to the estimation of β, making β̂(δ̂) inconsistent as well.
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Therefore we obtain an alternative set of AQS functions which take similar forms as (3.12)

with Eρ = B′
3diag(Gρ)Gc, Eλ1 = B′

3diag(Gλ1)Gc, Eλ2 = B′
3diag(Gλ2)Gc, and Eλ3 remains.

The subsequent developments and the proofs of the results are based on the first set of

AQS functions. However, the results and proofs can be easily modified to fit the second set

of AQS functions. Monte Carlo experiments are conducted using both sets of modifications

and the results show that their performances are almost the same.

Inconsistency of M-estimator. Before moving into the formal study of the asymptotic

properties of the proposed robust M-estimator, a final note is given to the M-estimator of

Yang (2018) – it is generally not robust against unknown heteroskedasticity. To see this,

we further let Gλ3 = W3B−1
3 . Let g$,t = diag(G$,t), for $ = ρ0, λ10, λ20, λ30, where G$,t

is the tth diagonal block of G$. Let h = (h10, . . . , hn0)′. For the M-estimator to be con-

sistent under unknown heteroskedasticity, it is necessary that plimn→∞
1

n(T−1)S
�
STLE(ψ0) = 0,

where S�STLE(ψ0) is defined below (3.7). Under mild conditions, we have 1
n(T−1)S

�
STLE(ψ0) =

1
n(T−1)E[S�STLE(ψ0)] + op(1). Under unknown H, it is easy to see from (3.16)-(3.18) that the

$-component of 1
n(T−1)S

�
STLE(ψ0) can be written as

1
n(T−1)S

�
STLE,$(ψ0) = 1

n(T−1)tr(HG$0 − G$0) + op(1) = 1
T−1

∑T−1
t=1 Cov(g$,t, h) + op(1),

for $ = ρ0, λ10, λ20, λ30, where Cov(g$,t, h) is the sample covariance between the two vectors.

Therefore, the necessary conditions for the M-estimator to be consistent are

limn→∞ Cov(g$,t, h) = 0, for $ = ρ0, λ10, λ20, λ30; t = 1, . . . , T − 1.

Obviously, under a general unknown H these cannot be true for all terms in general, and

therefore the M-estimator of Yang (2018) cannot be consistent in general.5

3.2. Asymptotic Properties of Robust M-estimators

In this section, we study the consistency and asymptotic normality of the proposed M-

estimator for the FE-SDPD model with the general spatial dependence structure and un-

known heteroskedasticity. Some general notations are followed: ‖ · ‖ denotes the Frobenius

norm, γmin(·) and γmax(·) denote, respectively, the minimum and maximum eigenvalues of a

real symmetric matrix, besides the notations used earlier: | · | for determinant, tr(·) for trace,

and diag(·) for forming a diagonal matrix. The following assumptions are adapted from Yang

(2018), allowing for cross-sectional heteroskedasticity of unknown form.

Assumption B: The innovations vit are (i) inid across i = 1, . . . , n and iid across

5In fact, this condition may not hold even for the simplest term related to Gλ3 = IT−1 ⊗ (W3B
−1
3 ). Note

that W3B
−1
3 = W3+λ3W

2
3 +λ2

3W
3
3 + . . ., if ‖λ3W3‖ < 1. According to Anselin (2003), the diagonal elements of

W r
3 , r ≥ 2, are inversely related to the elements kni of kn, the vector of number of neighbours for each unit. If

hi0 ∝ k−1
ni and Var(kn) = O(1), then 1

T−1

PT−1
t=1 Cov(gλ3 , h) = Cov(gλ3 , h) = O(1). The case of non-vanishing

Var(kn) can occur in group interaction schemes where sizes of groups are of ‘fixed’ magnitude but number of
groups increases with n. See Yang (2010) and Liu and Yang (2015) for more discussions on this issue.
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t = 0, 1, . . . , T with E(vit) = 0 and Var(vit) = σ2
vhn,i, 0 < hn,i ≤ c <∞ and 1

n

∑n
i=1 hn,i = 1;

(ii) E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption C: The space parameter space ∆ for δ is compact, and the true parameter

δ0 lies in its interior.

Assumption D: The time-varying regressors {Xt, t = 0, 1, . . . , T} are exogenous, their

values are uniformly bounded, and limn→∞
1
nT ∆X ′∆X exists and is nonsingular.

Assumption E: (i) For r = 1, 2, 3, the elements wr,ij of Wr are at most of order ι−1
n ,

uniformly in all i and j, and wr,ii = 0 for all i; (ii) ιn/n→ 0 as n→∞; (iii) {Wr, r = 1, 2, 3}
and {B−1

r0 , r = 1, 3} are uniformly bounded in both row and column sums; (iv) For r = 1, 3,

{B−1
r } are uniformly bounded in either row or column sums, uniformly in λr in a compact

parameter space Λr, and 0 < cr ≤ infλr∈Λr γmin(B′
rBr) ≤ supλr∈Λr

γmax(B′
rBr) ≤ c̄r <∞.

Assumption F: For an n×n matrix Φ uniformly bounded in either row or column sums,

with elements of uniform order ι−1
n , and an n × 1 vector φ with elements of uniform order

ι
−1/2
n , (i) ιn

n ∆y′1Φ∆y1 = Op(1) and ιn
n ∆y′1Φ∆v2 = Op(1); (ii) ιn

n [∆y1 − E(∆y1)]′φ = op(1);

(iii) ιn
n [∆y′1Φ∆y1 − E(∆y′1Φ∆y1)] = op(1), and (iv) ιn

n [∆y′1Φ∆v2 − E(∆y′1Φ∆v2)] = op(1).

To establish the consistency of δ̂M, and hence the consistency of β̂M and σ̂2
v,M, define the

population AQS function: S̄∗STLE(ψ) = E[S∗STLE(ψ)]. Given δ, S̄∗STLE(ψ) = 0 is solved at

β̄M(δ) = (∆X ′Ω−1∆X)−1∆X ′Ω−1(B1E∆Y −B2E∆Y−1), (3.22)

σ̄2
v,M(δ) = 1

n(T−1)E[∆ū(δ)′Ω−1∆ū(δ)], (3.23)

where ∆ū(δ) = ∆u(θ)|β=β̄(δ) = B1∆Y −B2∆Y−1−∆Xβ̄(δ). Substituting β̄M(δ) and σ̄2
v,M(δ)

back into the δ-component of S̄∗STLE(ψ), we obtain

S̄∗cSTLE(δ) =



1
σ̄2

v,M(δ)
E[∆ū(δ)′Ω−1∆Y−1] + 1

σ̄2
v(δ)

E[∆ū′(δ)Eρ∆ū(δ)],

1
σ̄2

v,M(δ)
E[∆ū(δ)′Ω−1W1∆Y ] + 1

σ̄2
v,M(δ)

E[∆ū(δ)′Eλ1∆ū(δ)],

1
σ̄2

v,M(δ)
E[∆ū(δ)′Ω−1W2∆Y−1] + 1

σ̄2
v,M(δ)

E[∆ū(δ)′Eλ2∆ū(δ)],

1
2σ̄2

v,M(δ)
E[∆ū(δ)′

[
C−1 ⊗ (A−Eλ3)

]
∆ū(δ)],

(3.24)

which gives the population counter part of the concentrated AQS function given in (3.15).

The M-estimator δ̂M of δ0 is a zero of S∗cSTLE(δ) and δ0 is a zero of S̄∗cSTLE(δ) (as β̄(δ0) = β0

and σ̄2
v(δ0) = σ2

v0). Thus, by Theorem 5.9 of van der Vaart (1998), δ̂M will be consistent for δ0
if supδ∈∆

1
n(T−1)

∥∥S∗cSTLE(δ)− S̄∗cSTLE(δ)∥∥ p−→ 0, and the following identification condition holds.

Assumption G: infδ: d(δ,δ0)≥ε
∥∥S̄∗cSTLE(δ)∥∥ > 0 for every ε > 0, where d(δ, δ0) is a measure

of distance between δ0 and δ.

Theorem 3.1. Suppose Assumptions A-G hold. Assume further that (i) γmax[Var(∆Y )]

and γmax[Var(∆Y−1)] are bounded, and (ii) infδ∈∆ γmin

(
Var(B1∆Y − B2∆Y−1)

)
≥ cy > 0.

We have, as n→∞, ψ̂M
p−→ ψ0.
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To establish the asymptotic normality of ψ̂M, by backward substitutions on the reduced

form (2.3) we represent ∆Y and ∆Y−1 in terms of ∆y1 = 1T−1 ⊗∆y1 and ∆v:

∆Y = R ∆y1 + η + S∆v, (3.25)

∆Y−1 = R−1∆y1 + η−1 + S−1∆v, (3.26)

where R = blkdiag(B0,B2
0, . . . ,B

T−1
0 ), R−1 = blkdiag(In,B0, . . . ,BT−2

0 ), η = BB−1
10 ∆Xβ0,

η−1 = B−1B−1
10 ∆Xβ0, S = BB−1

10 B−1
30 , S−1 = B−1B−1

10 B−1
30 ,

B =


In 0 . . . 0 0

B0 In . . . 0 0
...

...
. . .

...
...

BT−2
0 BT−3

0 . . . B0 In

 , and B−1 =


0 0 . . . 0 0

In 0 . . . 0 0
...

...
. . .

...
...

BT−3
0 BT−4

0 . . . In 0

 .

By representations (3.25) and (3.26), the AQS function at ψ0 can be written as

S∗STLE(ψ0) =



Π′
1∆v,

∆v′Φ1∆v − n(T−1)
2σ2

v0
,

∆v′Ψ1∆y1 + Π′
2∆v + ∆v′Φ2∆v,

∆v′Ψ2∆y1 + Π′
3∆v + ∆v′Φ3∆v,

∆v′Ψ3∆y1 + Π′
4∆v + ∆v′Φ4∆v,

∆v′Φ5∆v,

(3.27)

where Π1= 1
σ2

v0
Cb0∆X, Π2= 1

σ2
v0

Cb0η−1, Π3= 1
σ2

v0
Cb0W1η, Π4= 1

σ2
v0

Cb0W2η−1,

Φ1= 1
2σ4

v0
C−1, Φ2= 1

σ2
v0

(Cb0S−1 + B−1′
30 Eρ0B−1

30 ), Φ3= 1
σ2

v0
(Cb0W1S + B−1′

30 Eλ10B
−1
30 ),

Φ4= 1
σ2

v0
(Cb0W2S−1 + B−1′

30 Eλ20B
−1
30 ), Φ5= 1

2σ2
v0

[
C−1 ⊗

(
B−1′

30 (A0 −Eλ30)B
−1
30

)]
,

Ψ1= 1
σ2

v0
Cb0R−1, Ψ2= 1

σ2
v0

Cb0W1R, and Ψ3= 1
σ2

v0
Cb0W2R−1.

Theorem 3.2. Assume Assumptions A-G hold. We have, as n→∞,√
n(T − 1)

(
ψ̂M − ψ0

) D−→ N
[
0, lim
n→∞

Σ∗−1
STLE(ψ0)Γ∗STLE(ψ0)Σ∗−1

STLE(ψ0)
]
,

where Σ∗
STLE(ψ0) = − 1

n(T−1)E[ ∂
∂ψ′S

∗
STLE(ψ0)] and Γ∗STLE(ψ0) = 1

n(T−1)Var[S∗STLE(ψ0)], both as-

sumed to exist and Σ∗
STLE(ψ0) to be positive definite, for sufficiently large n.

3.3. Robust Estimation of VC Matrix

As Σ∗
STLE(ψ0) is the expected negative Hessian, it can be consistently estimated by its

observed counter part, Σ̂∗
STLE = − 1

n(T−1)
∂
∂ψ′S

∗
STLE(ψ)

∣∣
ψ=ψ̂M

, with the detailed expression and

the proof of consistency being given in the proof of Theorem 3.3 in Appendix B.

However, the traditional methods of estimating Γ∗STLE(ψ0) are not applicable as (i) the

initial differences ∆y1 need to be ‘specified’ or modelled when T is fixed and small, of which

a valid modelling strategy is unknown for the general FE-SDPD model, and (ii) the analytical
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expression of Γ∗STLE(ψ0), if it is available, cannot be used as it contains unobservables. We

follow the idea of Yang (2018) to decompose the AQS function into a sum of vector martingale

difference (MD) sequences so that the average of the outer products of the MDs (OPMD)

gives a consistent estimate of the VC matrix of the AQS function.

From (3.27) we see that the AQS function S∗STLE(ψ0) contains three types of elements:

Π′∆v, ∆v′Φ∆v, and ∆v′Ψ∆y1,

where Π,Φ and Ψ are nonstochastic matrices (depending on ψ0) with Π being n(T − 1)× p

or n(T − 1)× 1, and Φ and Ψ being n(T − 1)× n(T − 1).

As our asymptotics depend only on n and the transformed errors remain independent

across i, the above linear, quadratic and bilinear terms can be written as sums of n uncor-

related terms, so that their variance can be estimated by the averages of the outer products

of the summands. For a square matrix A, let Au, Al and Ad be, respectively, its upper-

triangular, lower-triangular, and diagonal matrix such that A = Au+Al+Ad. Denote by Πt,

Φts and Ψts the submatrices of Π, Φ and Ψ partitioned according to t, s = 2, . . . , T . Let {Gn,i}
be the increasing sequence of σ-fields generated by (vj1, . . . , vjT , j = 1, . . . , i), i = 1, . . . , n,

n ≥ 1. Let Fn,0 be the σ-field generated by (v0,∆y0), and define Fn,i = Fn,0 ⊗ Gn,i. Clearly,

Fn,i−1 ⊆ Fn,i, i.e., {Fn,i}ni=1 is an increasing sequence of σ-fields, for each n ≥ 1.

First, for the terms linear in ∆v, we have,

Π′∆v =
∑T

t=2 Π′
t∆vt =

∑T
t=2

∑n
i=1 Π′

it∆vit =
∑n

i=1

∑T
t=2 Π′

it∆vit ≡
∑n

i=1 gΠ,i. (3.28)

Clearly, {gΠ,i} are independent with mean zero, and thus form a vector M.D. sequence.

Second, the terms quadratic in ∆v are decomposed as follows,

∆v′Φ∆v =
∑T

t=2

∑T
s=2 ∆v′tΦts∆vs

=
∑T

t=2

∑T
s=2 ∆v′t(Φ

u
ts + Φl

ts + Φd
ts)∆vs

=
∑T

t=2

∑T
s=2

(
∆v′sΦ

u′
ts∆vt + ∆v′tΦ

l
ts∆vs + ∆v′tΦ

d
ts∆vs

)
=

∑T
t=2

∑T
s=2

(
∆v′sΦ

u′
ts∆vt + ∆v′sΦ

l
ts∆vt + ∆v′tΦ

d
ts∆vs

)
=

∑T
t=2

∑T
s=2

[
∆v′t(Φ

u′
st + Φl

ts)∆vs + ∆v′tΦ
d
ts∆vs

]
=

∑T
t=2 ∆v′t∆ξt +

∑T
t=2 ∆v′t∆v

∗
t

=
∑n

i=1

∑T
t=2

(
∆vit∆ξit + ∆vit∆v∗it

)
,

where ∆ξt =
∑T

s=2(Φ
u′
st + Φl

ts)∆vs and ∆v∗t =
∑T

s=2 Φd
ts∆vs.

Letting {cts} = C and {Φii,ts} = diag(Φts), we have

E(∆v′Φ∆v) = σ2
v0tr[(C ⊗H)Φ]

= σ2
v0

∑T
t=2

∑T
s=2 tr(ctsΦstH)

=
∑n

i=1 σ
2
v0hn,i

∑T
s=2

∑T
s=2(ctsΦii,st)

≡
∑n

i=1

∑T
t=2 dΦ,it.
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Thus, ∆v′Φ∆v − E(∆v′Φ∆v) =
∑n

i=1 gΦ,i, where,

gΦ,i =
∑T

t=2(∆vit∆ξit + ∆vit∆v∗it − dΦ,it), (3.29)

{gΦ,i,Gn,i} form an M.D. sequence as ∆ξit is Gn,i−1-measurable,and E(gΦ,i|Gn,i−1) = 0.

Finally, we decompose the terms bilinear in ∆v and ∆y1. First, we transform ∆y1 into

∆y◦1 = B30B10∆y1 = B30B20∆y0 +B30∆X1β0 + ∆v1.

Letting Ψt+ =
∑T

s=2 Ψts, t = 2, . . . , T , Θ = Ψ2+(B30B10)−1 and {Θii} = diag(Θ) we have,

∆v′Ψ∆y1 =
∑T

t=2

∑T
s=2 ∆v′tΨts∆y1

=
∑T

t=2 ∆v′t
( ∑T

s=2 Ψts

)
∆y1

=
∑T

t=2 ∆v′tΨt+∆y1

= ∆v′2Θ∆y◦1 +
∑T

t=3 ∆v′t∆y
∗
1t

= ∆v′2(Θ
u + Θl + Θd)∆y◦1 +

∑T
t=3 ∆v′t∆y

∗
1t

= ∆v′2(Θ
u + Θl)∆y◦1 + ∆v′2Θ

d∆y◦1 +
∑T

t=3 ∆v′t∆y
∗
1t

=
∑n

i=1 ∆v2i∆ζi +
∑n

i=1 Θii∆v2i∆y◦1i +
∑n

i=1

∑T
t=3 ∆v′it∆y

∗
1it,

where ∆y∗1t = Ψt+∆y1 and {∆ζi} = ∆ζ = (Θu + Θl)∆y◦1. It can be easily seen that

E(∆v2i∆ζi|Fn,i−1) = 0, therefore the first term is the sum of an M.D. sequence. The third

term is the sum of n uncorrelated terms of mean zero as ∆y1 is independent of ∆vt, t ≥ 3.

By Assumption A, ∆y0 is independent of vt, t ≥ 1, so we have E(∆v′2Θ
d∆y◦1) = −σ2

v0tr(ΘH).

Therefore, ∆v′Ψy1 − E(∆v′Ψy1) =
∑n

i=1 gΨ,i where,

gΨ,i = ∆v2i∆ζi + Θii(∆v2i∆y◦1i + σ2
v0hn,i) +

∑T
t=3 ∆vit∆y∗1it. (3.30)

E(gΨ,i|Fn,i−1) = 0 and hence {g3i,Fn,i} form an M.D. sequence. It is then easy to see that

{(g′Π,i, gΦ,i, gΨ,i)′,Fn,i} form a vector M.D. sequence.

Using (3.28)-(3.30), S∗STLE(ψ0) can be written as a sum of vector M.D.s. For each Πr, r =

1, 2, 3, 4, in (3.27), define gΠr,i according to (3.28); for each Φr, r = 1, . . . , 5, define gΦr,i

according to (3.29); and for each Ψr, r = 1, 2, 3, define gΨr,i according to (3.30). Define

gi = (g′Π1i, gΦ1i, gΨ1i + gΠ2i + gΦ2i, gΨ2i + gΠ3i + gΦ3i, gΨ3i + gΠ4i + gΦ4i, gΦ5i)′.

Then, S∗STLE(ψ0) =
∑n

i=1 gi, and {gi,Fn,i} form a vector M.D. sequence and Var[S∗STLE(ψ0)] =∑n
i=1 E(gig′i). Therefore the OPMD estimator of Γ∗STLE is given as:

Γ̂∗STLE = 1
n(T−1)

∑n
i=1 ĝiĝ

′
i, (3.31)

where ĝi is obtained by replacing ψ0, ∆v, and hn,i in gi by ψ̂M, ∆̂v, and ĥn,i, noting that

∆y1 is observed. Finally, to estimate {hn,i}, using the expression for Var(∆u) given below

(2.4), we can write H = 1
σ2

v
CbE(∆u∆u′)B′

3, of which a natural estimator would be Ĥ =

σ̂−2
v,MĈb∆̂u∆̂u′B̂′

3 in line with the idea of White (1980), where ∆̂u is the residual vector from
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the robust M-estimation. Alternatively, hn,i can be simply estimated as follows. Noting that

E[(∆vit)2] = 2σ2
vhn,i, for t = 2, . . . , T , averaging over t gives ĥn,i = 1

2(T−1) σ̂
−2
v,M

∑T
t=2(∆v̂it)

2.

Theorem 3.3. Under the assumptions of Theorem (3.1), we have, as n→∞,

Γ̂∗STLE − Γ∗STLE(ψ0) = 1
n(T−1)

∑n
i=1

[
ĝiĝ

′
i − E(gig′i)

] p−→ 0,

and hence, Σ̂∗−1
STLEΓ̂

∗
STLEΣ̂

∗−1
STLE − Σ∗−1

STLE(ψ0)Γ∗STLE(ψ0)Σ∗−1
STLE(ψ0)

p−→ 0.

4. Monte Carlo Study

Monte Carlo experiments are carried out to investigate the finite sample performance of

the proposed M-estimator of the FE-SDPD model with unknown heteroskedasticity and the

finite sample performance of the corresponding VC matrix estimator. Further, the proposed

robust M-estimator is compared with the M-estimator of Yang (2018) under homoskedastic-

ity for efficiency purpose. It is also compared with the robust optimal GMM estimator of

Kuersteiner and Prucha (2018). Finally, an investigation is given for a model with spatial

Durbin terms. We use the following three data generating processes (DGPs):

DGP1: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + Zγ + µ+ ut,

DGP2: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ +WdXtβd + Zγ + µ+ ut,

DGP3: yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + Zγ + µ+ vt,

where ut = λ3W3ut+vt for DGP1 and DGP2, µ is the vector of fixed effects and vt the vector

of idiosyncratic errors.

The elements of Xt are generated in a similar fashion as in Hsiao et al. (2002),6 and

the elements of Z are randomly generated from Bernoulli (0.5). The spatial weight matrices

are generated according to group interaction schemes where group sizes change across the

groups but not with respect to the sample size.7 The idiosyncratic errors are generated as

vt = σ2
vHet. Similar to Lin and Lee (2010), the heteroskedasticity H is generated in two

different ways: H-I, for each i, if the number of neighbors is smaller than the average number

of neighbors, then hn,i equals to the number of its neighbors, otherwise it is the square of

the inverse of the number of its neighbors; and H-II, for each i, if the number of neighbors is

larger than the average number of neighbor, then hn,i equals to the number of its neighbors,

otherwise it is the square of the inverse of the number of its neighbors. The variance structure

is nonlinear in the number of neighbors. In the first case, the error variance increases and

then decreases with the number of neighbors, and in the second case, the variance decreases

and then increases with the number of neighbors. The hn,i’s are normalized to have mean
6The detail is: Xt = µx +gt1n +ζt, (1−φ1L)ζt = εt +φ2εt−1, εt ∼ N(0, σ2

1In), µx = e+ 1
T+m+1

PT
t=−m εt,

and e ∼ N(0, σ2
2In). Let θx = (g, φ1, φ2, σ1, σ2). Thus, σ1/σv represents the signal-to-noise ratio (SNR).

7It can be generated as follows, first generate a vector of possible group sizes randomly (m1, . . . ,mk) such
that

Pk
j=1mj = n1. Then replicate the groups r times such that rn1 = n.
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one. The distribution of et can be (i) normal, (ii) normal mixture with 10% of the values

generated from N(0, 4) and 90% from N(0, 1), or (iii) chi-squared with degree of freedom

of 3. In both (ii) and (iii), the generated errors are standardized to have mean zero and

variance 1. We choose β = 1, βd = 0.2 and σ2
v = 1. We use a set of values for ρ ranging

from −0.9 to 0.9, a set of values for (λ1, λ2, λ3) in the similar range, m = 10, T = 3 or 7, and

N = 50, 100, 200 or 400. Each set of Monte Carlo results, corresponding to a combination of

the values of (n, T,m, ρ, λ1, λ2, λ3) is based on 2000 samples.

Monte Carlo (empirical) means and standard deviations (sds) are reported for the CQML

estimators (CQMLEs), the M-estimators, and the robust M-estimators. Empirical averages

of the robust standard errors (rses) based on the VC matrix estimate Σ̂∗−1
SDPDΓ̂

∗
SDPDΣ̂

∗−1
SDPD are

also reported for the robust M-estimators, which should be compared with the corresponding

empirical sds. The ses of the M-estimator based only on Σ̂∗
SDPD or Γ̂∗SDPD are also computed,

and the results (unreported to conserve space) show that they are not robust. These results,

together with additional unreported Monte Carlo results are available upon request.

Tables 1-3 present the results based on DGP1, the FE-SDPD model with all three types

of spatial effects. Tables 1a and 1b present the results when H is generated by H-I and T = 3,

with SNR being 1 and 3 (see Footnote 6), respectively. The results show that the proposed

robust M-estimators perform quite well. The inconsistency of CQMLEs and M-estimators is

shown clearly in Table 1a. The CQMLEs and M-estimators for ρ, λ1, λ2 and λ3 are severely

biased, and they do not show a sign of convergence as n increases. Meanwhile, the robust

M-estimators perform much better and show a clear sign of convergence. The rses are close to

the corresponding Monte Carlo sds in general, showing the robustness and good finite sample

performance of the proposed OPMD estimate of VC matrix. The rses of λ3 is slightly biased.

However, this bias is reduced when SNR is larger. The results presented in Table 1b show

clearly the biases of CQMLEs and M-estimators are reduced but still persistent, especially

for the case of λ3. The robust M-estimators still perform very well, and the bias encountered

in rses of λ3 reduced. When T is set to 7, the results (unreported for brevity) show that

the bias of the CQMLEs and M-estimators are reduced, but the pattern of inconsistency still

remains, whereas the robust M-estimators and rses are nearly unbiased.

Tables 2a and 2b present the results when H is generated by H-II and T = 3, with SNR

being 1 and 3, respectively. In this case, both the M-estimators and the robust M-estimators

of ρ, λ1 and λ2 perform quite well, but the M-estimator of λ3 has a larger bias. Comparing

with the results in Table 1a and 1b we see that when sample size is not large, the CQMLEs

and the M-estimators can be very sensitive to the way heteroskedasticity is generated and

to the magnitude of SNR. The rses under H-II perform better than those under H-I and are

generally quite close to the corresponding Monte Carlo sds, except that there is some bias in

rses of σ̂2
M,v when error terms are not normally distributed.
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Table 3 presents the results when the idiosyncratic errors are homoskedastic (H = In).

In this case, both the M-estimation of Yang (2018) and the proposed robust M-estimator

are consistent. As expected, the results show that the proposed robust M-estimator is less

efficient than the M-estimator of Yang (2018). However, this efficiency loss is quite marginal.

Table 4 presents the results based on DGP2, the FE-SDPD model with all three types of

spatial effects and a spatial Durbin term, where H = H-I, T = 3 and SNR = 3. As discussed

earlier, the spatial Durbin terms can simply be included in the model as additional exogenous

regressors, and the proposed set of estimation and inference methods perform well.8

Table 5 presents the results based on DGP3, the FE-SDPD model with SL and STL, where

H = H-I, T = 3 and SNR = 3. As the main focus of this set of Monte Carlo experiments

is to compare the proposed robust M-estimator with the GMM estimator of Kuersteiner and

Prucha (2018), we only report the empirical means and sds for these two estimators.9 The

results show clear convergence patterns of both estimators: as sample size grows both estima-

tors become less biased and less variable. The robust M-estimator has a smaller bias than the

GMM estimator for all sample sizes and all three different error distributions. The empirical

sds show that the robust M-estimator is much more efficient than the GMM estimator.

5. Empirical Application: Sovereign Risk Spillover

This section presents an empirical application of the proposed M-estimator for the FE-

SDPD model under small T and unknown heteroskedasticity. We investigate international

spillover of the sovereign bond spreads of 51 countries from 2007 to 2012, and we find that it

is important to allow for heteroskedasticity in the estimation.

The increasing economic and financial integration worldwide has led to a continuous

discussion of global transmission of risk in the past two decades, especially after the European

sovereign debt crisis from 2010 to 2012. Many studies have applied the spatial econometrics

frameworks to analyse risk spillovers. Sald́ıas (2013) uses a spatial error model to identify

sector risk determinants. Favero (2013) uses a GVAR approach that incorporates the space-

time lag to model the government bond spreads in the Euro area. Keiler and Eder (2015) use

a spatial lag model to model the credit default swap (CDS) spreads of financial institutions,

whereas Tonzer (2015) uses a spatial lag model to analyse the banking sector risk. Blasques

et al. (2016) model sovereign CDS spreads using spatial Durbin panel data model with time-

varying spatial dependence parameter. Debarsy et al. (2018) use a spatial dynamic panel data

model to measure sovereign risk spillover considering different channels of risk transmission.
8Halleck Vega and Elhorst (2015) advocate spatial Durbin models. There can be issues of identification

and overfitting with Durbin models, especially when all spatial terms are included in the model and the same
spatial weight matrix is used for all. See Elhorst (2012) and Lee and Yu (2016) for more details.

9To implement the GMM in Kuersteiner and Prucha (2018) we use the code provided by the authors at:
http://econweb.umd.edu/%7Ekuersteiner/research_UMD.html
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All of these works are under the assumption that disturbances are homoskedastic. However,

as different financial sectors vary greatly in size and depth, different countries vary greatly in

so many aspects such as population, location, completeness of financial market, bureaucratic

quality, government stability, openness to trade, and other social-economical characteristics,

it is natural to think that we should allow the innovations to be heteroskedastic.

Our data covers 51 countries, including both advanced and emerging markets over six

years from 2007 to 2012. The list of countries included in our analysis is presented in Ta-

ble E1. Bond yield spread, credit default swap and credit ratings are three commonly used

measures of sovereign risk in the literature. We follow the main body of the literature to

measure the sovereign risk by sovereign bond yields spreads. For advanced economies, the

spread is computed as the difference between the 10-year bond yields on the secondary market

and the 10-year US treasury bond yield. We obtain the data from Datastream. For emerg-

ing markets, we use Emerging Market Bond Index Global (EMBIG) obtained from Global

Economic Monitor of the World Bank database to measure the spreads in order to have a

consistent measure for both advanced and emerging economies as in Beirne and Frazscher

(2013) and Debarsy et al. (2018). In line with the literature, the set of exogenous explanatory

variables we use contains debt-to-GDP ratio, deficit-to-GDP ratio, current account balance

(CA) to GDP ratio, real GDP growth rate, inflation (CPI), real effective exchange rate and

the volatility index (VIX). The first five variables control the macroeconomic and financial

fundamentals of each country and the last variable controls the general market conditions.

The data for these variables are collected from IMF World Economic Outlook (WEO). We

use yearly data because it is the original frequency for most of the variables we consider.

The original frequencies are daily for VIX and the bond yield spread, and monthly for real

effective exchange rate. We use the average values over a year for those variables.

Table E1. List of Countries

Argentina Australia Austria Belgium Brazil Bulgaria Canada

Chile China Colombia Czech Republic Denmark Ecuador Egypt

Finland France Germany Ghana Greece Hungary Indonesia

Ireland Italy Jamaica Japan Kazakhstan Korea Malaysia

Mexico Netherlands New Zealand Norway Pakistan Panama Peru

Philippines Poland Portugal Russia Singapore South Africa Spain

Sweden Switzerland Tunisia Turkey Ukraine United Kingdom Uruguay

Venezuela Vietnam

We fit the data to the general model (2.1) and several sub-models, and report the results

corresponding to the following two models that best fit the data: the SDPD model with SL

and STL: yt = ρyt−1 + λ1Wyt + λ2Wyt−1 +Xtβ +Zγ + µ+ vt, and the SDPD model with SE

only: yt = ρyt−1 +Xtβ + Zγ + µ+ ut, ut = λ3W3ut + vt.

Both specifications are in fact widely used in empirical studies. In both models, yt is

an n × 1 vector of government bond yields spreads, Xt is an n × k matrix containing the
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observed time varying exogenous variables, Z is an n × kz matrix containing the observed

time invariant variables, µ is an n× 1 vector of unobserved country-specific fixed effects, and

the elements {vit} of vt are assumed to be iid across time but inid across country with mean

zero and variance σ2
vhi. We consider three different weight matrices to investigate three risk

transmission channels. The first weight matrix, Wtrade, represents the real linkage between

economies, and it is constructed using bilateral trade flow to measure the connectivity between

countries. The (i, j) element of Wtrade,t is Wijt = Mijt+Xijt

GDPit+GDPjt
, where Mijt is the total import

of country i from country j in year t represented in US Dollars, Xijt is the total export of

country i to country j in year t, GDPit is the nominal gross domestic product for country

i in year t and Wtrade is the time average of Wtrade,t. The data for bilateral trade volume

is collected from the World Integrated Trade Solution (WITS) database, and the data for

GDP is available in the WEO database. The second and third weight matrices, Wdeficit and

Wdebt, represent the information linkage between economies, and they are constructed using

similarities in debt or deficit level to measure the connectivity of government risk. Elements

of these two weight matrices are the time average of Wijt = 1
|Ait−Ajt|+1 , where Ait is debt-to-

GDP ratio or deficit-to-GDP ratio of country i at time t. See Favero (2013) and Debarsy et

al. (2018) for more discussions on the transmission channels.

Table E2. Estimation Results of SDPD Model with SL and STL

Wtrade Wdeficit Wdebt

Variables M-Est RM-Est M-Est RM-Est M-Est RM-Est

debt/GDP .1190(.060) .0782(.029) .1181(.059) .0671(.034) .1179(.057) .0675(.031)

deficit/GDP -.0536(.089) -.1756(.126) -.0878(.098) -.1637(.155) -.0512(.097) -.2118(.173)

CA/GDP .0130(.040) -.0266(.022) .0247(.035) -.0312(.025) .0271(.031) -.0110(.010)

CPI .1519(.034) .1765(.088) .1627(.038) .2518(.119) .1751(.034) .2177(.109)

GPD growth -.1867(.103) -.1411(.071) -.1494(.113) -.0317(.087) -.1589(.089) -.0770(.071)

VIX .0443(.034) .0204(.009) .0466(.077) .0849(.036) .0707(.045) .0393(.017)

Reer .0267(.021) .0340(.017) .0202(.020) .0309(.013) .0277(.021) .0381(.016)

Yt−1 .1417(.059) .5490(.108) .2126(.046) .6739(.112) .1392(.061) .6207(.114)

WYt .1815(.266) .4955(.241) .3668(.432) .3441(.200) .0831(.399) .5767(.289)

WYt−1 -.5713(.291) -.5951(.194) -.6918(.347) -.4193(.176) -.4008(.165) -.8803(.422)

Table E2 shows the estimation results when the data is fit to SL-STL model. We compare

the results from the M-estimation of Yang (2018) and the proposed robust M-estimation in

this paper under all three weight matrices. Under the robust M-estimation, the signs for

all parameters are as expected and the parameter estimates for debt/GDP, CPI, VIX and

real effective exchange rate are significant regardless of which weight matrix is used. The

results are in line with the previous studies. Under the M-estimation, the sign of parameter

estimate for CA/GDP is not as expected although insignificant, and only the parameters of

debt/GDP and CPI are significant. The parameter of time-lag variable is estimated to be

positive and significant under both methods but the magnitudes are much larger for robust M-
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estimates. Under the robust M-estimation, the parameter of spatial-lag variable is estimated

to be positive and significant when Wtrade and Wdebt are used and insignificant when Wdeficit

is used. Under the M-estimation, the parameter estimates for spatial-lag variable are positive

but insignificant under all three weight matrices and the magnitudes are smaller than those

of the robust M-estimates. Parameter estimates for space-time lag variable are negative and

significant for all weight matrices under the robust M-estimation, whereas it is insignificant

when Wdeficit is used under the M-estimation.

Table E3 shows the estimation results when the data is fit to SE model. First, we observe

that the signs of parameter estimates for all variables stay the same and the magnitudes

remain similar for both methods. The parameter estimate of debt/GDP becomes insignificant

whereas the parameter estimate of deficit/GDP becomes significant under the robust M-

estimation for all weight matrices. Under the M-estimation, both debt/GDP and deficit/GDP

are insignificant in this model. The results for other variables are similar to those from STL

model. The spatial error parameter and the dynamic parameter are estimated to be positive

and significant by the robust M-estimation, but insignificant under the M-estimation.

Table E3. Estimation Results of SDPD Model with SE

Wtrade Wdeficit Wdebt

Variables M-Est RM-Est M-Est RM-Est M-Est RM-Est

debt/GDP .1189(.191) .0731(.073) .1073(.760) .0687(.076) .1205(.376) .0681(.077)

deficit/GDP -.0503(.057) -.1828(.093) -.0744(.361) -.2107(.085) -.0264(.026) -.1807(.091)

CA/GDP .0182(.178) -.0170(.060) -.0047(.012) -.0339(.056) .0169(.035) -.0284(.055)

CPI .1407(.071) .1859(.034) .1674(.083) .2149(.037) .1703(.085) .2187(.045)

GPD growth -.1953(.784) -.1033(.132) -.1700(.234) -.0725(.150) -.1564(.651) -.0731(.136)

VIX .1025(.049) .1356(.055) .0960(.047) .1739(.112) .0997(.047) .1323(.056)

Reer .0248(.012) .0350(.018) .0157(.008) .0206(.019) .0264(.012) .0349(.018)

Yt−1 .1249(.179) .5906(.257) .1678(.269) .6806(.277) .1142(.056) .6183(.284)

W3ut .4727(.561) .5666(.124) .5693(.568) .7804(.164) .2588(.129) .4958(.194)

6. Conclusion and Discussion

This paper considers the M-estimation and inference methods for the SDPD models with

fixed effects and unknown heteroskedasticity, based on short panels. The estimation method

extends the idea of Yang (2018) to allow for unknown heteroskedasticity by using modifi-

cation terms that are quadratic in disturbances. The modified quasi-score function gives

unbiased estimating equations. The statistical inferences are based on the outer-product-of-

martingale-differences (OPMD) method proposed by Yang (2018). The asymptotic properties

of the M-estimators and the estimators of VC matrix are studied. Monte Carlo experiments

show that both the robust M-estimators and the estimators of standard errors perform very

well and that ignoring the heteroskedasticity would cause significant bias. We apply our
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methods to investigate the international government risk spillover through both real linkage

and information channels. The results show that allowing for heteroskedastic disturbances

can be important. The proposed methods, therefore, provide a useful set of econometrics

tools for applied researchers.

We have studied the case where the disturbances are heteroskedastic across individuals.

It would be interesting to further extend our method to allow for heteroskedasticity in both

individual and time, and for serial correlation. It would also be interesting to extend our

method to allow for endogenous regressors, interactive fixed effects, time varying weight

matrices and time varying spatial parameters. These models would be more challenging and

are beyond the scope of this paper, and will be studied in future works.
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Appendix A: Some Basic Lemmas

The following lemmas are essential for the proofs of the main results in this paper, where

Lemmas A.4 and A.5 extend those of Yang(2018) by allowing vit to be inid across i.

Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two se-

quences of n× n matrices that are uniformly bounded in both row and column sums. Let Cn
be a sequence of conformable matrices whose elements are uniformly O(ι−1

n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly O(ι−1
n ).

Lemma A.2. (Lee, 2004, p.1918): For W1 and B1 defined in Section 2, if ‖W1‖ and

‖B−1
10 ‖ are uniformly bounded, where ‖ ·‖ is a matrix norm, then ‖B−1

1 ‖ is uniformly bounded

in a neighborhood of λ10.

Lemma A.3. (Lee, 2004, p.1918): Let Xn be an n × p matrix. If the elements Xn are

uniformly bounded and limn→∞
1
nX

′
nXn exists and is nonsingular, then Pn = Xn(X ′

nXn)−1X ′
n

and Mn = In − Pn are uniformly bounded in both row and column sums.

Lemma A.4. (Yang, 2018) Let {An} be a sequence of n×n matrices that are uniformly

bounded in either row or column sums. Suppose that the elements an,ij of An are O(ι−1)

uniformly in all i and j. Let vn be a random n-vector of inid elements satisfying Assumption

B, and bn a constant n-vector of elements of uniform order O(ι−1/2). Then

(i) E(v′nAnvn) = O( nιn ), (ii) Var(v′nAnvn) = O( nιn ),

(iii) Var(v′nAnvn + b′nvn) = O( nιn ), (iv) v′nAnvn = Op( nιn ),

(v) v′nAnvn − E(v′nAnvn) = Op(( nιn )
1
2 ), (vi) v′nAnbn = Op(( nιn )

1
2 ),

and (vii), the results (iii) and (vi) remain valid if bn is a random n-vector independent of vn
such that {E(b2ni)} are of uniform order O(ι−1

n ).

Lemma A.5. (Yang, 2018, Central Limit Theorem for bilinear quadratic forms): Let

{Φn} be a sequence of n × n matrices with row and column sums uniformly bounded, and

elements of uniform order O(ι−1
n ). Let vn be a random n-vector satisfying Assumption B.

Let bn = {bni} be an n × 1 random vector, independent of vn, such that (i) {E(b2ni)} are of

uniform order O(ι−1
n ), (ii) supiE|bni|2+ε0 <∞, (iii) ιn

n

∑n
i=1[φn,ii(bni−Ebni)] = op(1) where

{φn,ii} are the diagonal elements of Φn, and (iv) ιn
n

∑n
i=1[b

2
ni − E(b2ni)] = op(1). Let Hn=

diag(hn1, . . . , hnn). Define the bilinear-quadratic form:

Qn = b′nvn + v′nΦnvn − σ2
vtr(ΦnHn),

and let σ2
Qn

be the variance of Qn. If limn→∞ ι
1+2/ε0
n /n = 0 and { ιnn σ

2
Qn
} are bounded away

from zero, then Qn/σQn

d−→ N(0, 1).
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Appendix B: Proofs of Theoretical Results

Proof of Lemma 3.1: By (2.3), ∆yt = B0∆yt−1 +B−1
10 ∆Xt+B−1

10 B
−1
30 ∆vt, t = 2, . . . , T ,

backward substitution leads to E(∆yt∆v′t) = −σ2
v0(B0−2In)B−1

10 B
−1
30 H, t = 2, . . . , T , E(∆yt∆v′t+1) =

−σ2
v0B

−1
10 B

−1
30 H, t = 1, . . . , T − 1, and E(∆yt∆v′s) = 0 if s ≥ t+ 2; and

E(∆yt∆v′s) = B0E(∆yt−1∆v′s) = B2
0E(∆yt−2∆v′s) = · · ·

= Bt−s0 E(∆ys∆v′s) + Bt−s−1
0 B−1

10 B
−1
30 E(∆vs+1∆v′s)

= Bt−s+1
0 E(∆ys−1∆v′s) + Bt−s0 B−1

10 B
−1
30 E(∆vs∆v′s) + Bt−s−1

0 B−1
10 B

−1
30 E(∆vs+1∆v′s)

= Bt−s+1
0 B−1

10 B
−1
30 E(∆vs−1∆v′s) + Bt−s0 B−1

10 B
−1
30 E(∆vs∆v′s) + Bt−s−1

0 B−1
10 B

−1
30 E(∆vs+1∆v′s)

= −Bt−s+1
0 B−1

10 B
−1
30 σ

2
v0H+ 2Bt−s0 B−1

10 B
−1
30 σ

2
v0H− Bt−s−1

0 B−1
10 B

−1
30 σ

2
v0H

= −σ2
v0B

t−s−1
0 (B0 − In)2B−1

10 B
−1
30 H,

if s ≤ t− 1. Summarizing above, we obtain the results of Lemma (3.1). �

Proofs of the theorems need the following matrix results: (i) the eigenvalues of a projection

matrix are either 0 or 1; (ii) the eigenvalues of a positive definite (p.d.) matrix are strictly

positive; (iii) γmin(A)tr(B) ≤ tr(AB) ≤ γmax(A)tr(B) for symmetric matrix A and positive

semidefinite (p.s.d.) matrix B; (iv) γmax(A+B) ≤ γmax(A)+γmax(B) for symmetric matrices

A and B; and (v) γmax(AB) ≤ γmax(A)γmax(B) for p.s.d. matrices A and B (Bernstein, 2009).

Proof of Theorem 3.1: Use ∆û(δ) defined below (2.6) and ∆ū(δ) defined below (3.23).

Let B∗
r = Ω− 1

2 Br, where Ω
1
2 is the square-root matrix of Ω. We can write ∆û∗(δ) =

Ω− 1
2 ∆û(δ) = M(B∗

1∆Y − B∗
2∆Y−1) and ∆ū∗(δ) = Ω− 1

2 ∆ū(δ) = M(B∗
1∆Y − B∗

2∆Y−1) +

P[B∗
1(∆Y −E(∆Y ))−B∗

2(∆Y−1−E(∆Y−1))], where P = Ω− 1
2 ∆X(∆X ′Ω−1∆X)−1∆X ′Ω− 1

2 ,

and M = In(T−1) −P. By (3.14) and (3.23), we have

σ̂2
v,M(δ) = 1

n(T−1)(B
∗
1∆Y −B∗

2∆Y−1)′M(B∗
1∆Y −B∗

2∆Y−1),

σ̄2
v,M(δ) = 1

n(T−1)tr[Var(B∗
1∆Y −B∗

2∆Y−1)]

+ 1
n(T−1)(B

∗
1E∆Y −B∗

2E∆Y−1)′M(B∗
1E∆Y −B∗

2E∆Y−1).

The second term in σ̄2
v,M(δ) is nonnegative uniformly in δ ∈ ∆ as M is p.s.d. For the first term,

by the definition of the matrix C, Assumption E(iv) and the assumption (ii) given in the
theorem, 1

n(T−1)tr[Ω
−1Var(B1∆Y −B2∆Y−1)] ≥ 1

n(T−1)γmin(C−1)γmin(B′
3B3)tr[Var(B1∆Y −

B2∆Y−1)] > c > 0, uniformly in δ ∈ ∆, implying infδ∈∆σ̄
2
v,M(δ) > c > 0. It is easy to show

that supδ∈∆ |σ̂2
v,M(δ) − σ̄2

v,M(δ)| = op(1). Therefore, we can drop σ̂2
v,M(δ) in the concentrated

AQS function (3.15) and σ̄2
v,M(δ) in its population counter part (3.24) and write:

S∗c
STLE(δ)− S̄∗c

STLE(δ) =
∆û(δ)′Ω−1∆Y−1 − E[∆ū(δ)′Ω−1∆Y−1] + ∆û′(δ)Eρ∆û(δ)− E[∆ū′(δ)Eρ∆ū(δ)],
∆û(δ)′Ω−1W1∆Y − E[∆ū(δ)′Ω−1W1∆Y ] + ∆û(δ)′Eλ1∆û(δ)− E[∆ū(δ)′Eλ1∆ū(δ)],
∆û(δ)′Ω−1W2∆Y−1 − E[∆ū(δ)′Ω−1W2∆Y−1] + ∆û(δ)′Eλ2∆û(δ)− E[∆ū(δ)′Eλ2∆ū(δ)]
∆û(δ)′Υ∆û(δ)− E[∆ū(δ)′Υ∆ū(δ)],
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where Υ = 1
2 [C−1 ⊗ (A−Eλ3)]. With Assumption G, consistency of δ̂M follows from:

(a) supδ∈∆
1

n(T−1)

∣∣∆û(δ)′Ω−1∆Y−1 − E[∆ū(δ)′Ω−1∆Y−1]
∣∣ = op(1),

(b) supδ∈∆
1

n(T−1)

∣∣∆û(δ)′Ω−1W1∆Y − E[∆ū(δ)′Ω−1W1∆Y ]
∣∣ = op(1),

(c) supδ∈∆
1

n(T−1)

∣∣∆û(δ)′Ω−1W2∆Y−1 − E[∆ū(δ)′Ω−1W2∆Y−1]
∣∣ = op(1),

(d) supδ∈∆
1

n(T−1)

∣∣∆û′(δ)Eρ∆û(δ)− E[∆ū′(δ)Eρ∆ū(δ)]
∣∣ = op(1),

(e) supδ∈∆
1

n(T−1)

∣∣∆û′(δ)Eλ1∆û(δ)− E[∆ū′(δ)Eλ1∆ū(δ)]
∣∣ = op(1),

(f) supδ∈∆
1

n(T−1)

∣∣∆û′(δ)Eλ2∆û(δ)− E[∆ū′(δ)Eλ2∆ū(δ)]
∣∣ = op(1),

(g) supδ∈∆
1

n(T−1)

∣∣∆û(δ)′Υ∆û(δ)− E[∆ū(δ)′Υ∆ū(δ)]
∣∣ = op(1).

Proof of (a). By the expressions of ∆û∗(δ) and ∆ū∗(δ) given above, we can write

1
n(T−1){∆û(δ)′Ω−1∆Y−1−E[∆ū(δ)′Ω−1∆Y−1]} = (Q1−EQ1)+(Q2−EQ2)−Q3−Q4, (C.1)

where Q1 = 1
n(T−1)∆Y

′B∗′
1 MΩ− 1

2 W1∆Y , Q2 = 1
n(T−1)∆Y

′
−1B

∗′
2 MΩ− 1

2 W1∆Y ,

Q3 = 1
n(T−1)tr[B

∗′
1 PΩ− 1

2 W1Var(∆Y )], Q4 = 1
n(T−1)tr[B

∗′
2 PΩ− 1

2 W1Cov(∆Y,∆Y ′
−1)].

Let M∗ = Ω− 1
2 MΩ− 1

2 . Using (3.25), Q1 can be decomposed into:

Q1 = 1
n(T−1) [∆y′1R′B′

1M
∗W1R∆y1 + 2∆y′1R′B′

1M
∗W1η + 2∆y′1R′B′

1M
∗W1S∆v

+η′B′
1M

∗W1η + 2η′B′
1M

∗W1S∆v + ∆v′S′B′
1M

∗W1S∆v
]
≡

∑6
`=1Q1,`,

and further using (3.26), Q2 can be decomposed into:

Q2 = 1
n(T−1) [∆y′1R′

1B
′
2M

∗W1R∆y1 + ∆y′1R′
1B

′
2M

∗W1η + ∆y′1R′
1B

′
2M

∗W1S∆v

+η′1B
′
2M

∗W1R∆y1 + η′1B
′
2M

∗W1η + η′1B
′
2M

∗W1S∆v + ∆v′S′1B′
2M

∗W1R∆y1

+∆v′S′1B′
2M

∗W1η + ∆v′S′1B′
2M

∗W1S∆v
]
≡

∑9
`=1Q2,`.

Thus, both Q1 and Q2 are sums of terms of the forms: 1
n(T−1)∆y′1Ξ∆y1, 1

n(T−1)∆v′Φ∆v,
1

n(T−1)∆y′1Ψ∆v, 1
n(T−1)∆y′1ϕ, and 1

n(T−1)∆v′φ, where the matrices Ξ, Φ and Ψ, and the

vectors φ and ϕ are multiplicative in terms of R, R−1, S, S−1, η, η−1, B1, B2, M∗. Note that

R, R−1, S, S−1, η and η−1 depend on true parameter values, and they are uniformly bounded

in both row and column sums by Assumption E (iii), Lemma A.1 and Lemma A.3. B1

depends on λ1, B2 depends on ρ and λ2, and M depends on λ3. They are uniformly bounded

in either row or column sums for each δ ∈ ∆ by Assumption E (iv), Lemma A.1 and Lemma

A.3. Therefore, by Lemma A.1, we have for each δ ∈ ∆, Ξ, Φ and Ψ are uniformly bounded

in either row or column sums, and the elements of φ and ϕ are of uniform order O(ι−
1
2 ).

Note that Ξ, Φ, Ψ, φ and ϕ depend on δ in general. Partition them according to t, s =

2, . . . , T , and denote the partitioned matrices/vectors by Ξts, Φts, Ψts, φt and ϕt. First, for the

terms quadratic in ∆y1, they can be written as 1
n∆y′1Ξ++∆y1, where Ξ++ = 1

T−1

∑
t

∑
s Ξt,s.

As Ξ is uniformly bounded in either row or column sums, we have Ξ++ is uniformly bounded

in either row or column sums for any δ ∈ ∆. The pointwise convergence of 1
n [∆y′1Ξ++(δ)∆y1−
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E(∆y′1Ξ++∆y1)] thus follows from Assumption F(iii). Second, the terms quadratic in ∆v can

be written as 1
n

∑
t,s v

′
tΠtsvs. The pointwise convergence of 1

n [v′tΠtsvs − E(v′tΠtsvs)] follows

from Lemma A.4 for each t, s = 1, . . . , T . Third, the pointwise convergence of bilinear

terms 1
n [∆y′1Ψ∆v−E(∆y′1Ψ∆v)] follows by writing ∆y′1Ψ∆v =

∑
s ∆y′1Ψ+svs and applying

Lemma A.4 (v), Lemma A.4 (vi), and Assumption F (iv). Finally, the pointwise convergence

of 1
n(T−1) [∆y′1ϕ − E(∆y′1ϕ)] follows from Assumption F(ii), and that of 1

n(T−1)∆v′φ from

Chebyshev inequality. Thus, Qk,` − E(Qk,`)
p−→ 0, for each δ ∈ ∆, and all k and `.

Now, use notation Qk,`(δ) and let δ1 and δ2 be in ∆. We have by the mean value theorem:

Qk,`(δ2)−Qk,`(δ1) = ∂
∂δ′Qk,`(δ̄)(δ2 − δ1), k = 1, 2, and all corresponding `,

where δ̄ lies between δ1 and δ2 elementwise. It is easy to verify that supδ∈∆ | ∂∂ωQk,`(δ)| =

Op(1) for ω = ρ, λ1, λ2 as Qk,`(δ) is linear or quadratic in ρ, λ1 and λ2, and thus the cor-

responding partial derivatives take simple forms. Only the matrix M∗ involves λ3 and its

derivative is d
dλ3

M∗ = M∗Ω(C−1⊗A)ΩM∗. Take Q1,1 for example, noting that γmax(M) = 1,

we have by definition of matrix C, Assumption E(iii) and Assumption F(i),

supδ∈∆ | ∂∂λ3
Q1,1(δ)| = supδ∈∆

1
n(T−1) |∆y′1R′B′

1M
∗Ω(C−1 ⊗A)ΩM∗W1R∆y1|

≤ supδ∈∆
1

n(T−1) |∆y′1R′B′
1(C

−1 ⊗A)W1R∆y1|
≤ γ−1

min(C)γmax(A)γmax(B1) 1
n(T−1) |∆y′1R′W1R∆y1|

= O(1)×O(1)×O(1)×Op(1).

The results supδ∈∆ | ∂∂λ3
Qk,`(δ)| = Op(1) can be proved similarly for all other cases.

It follows thatQk,`(δ) are stochastic equicontinuous, and by Theorem 1 of Andrews (1992),

Qk,`(δ) − EQk,`(δ)
p−→ 0, uniformly in δ ∈ ∆. Thus, Qk(δ) − EQk(δ)

p−→ 0, uniformly in

δ ∈ ∆, k = 1, 2. It left to show that Qk(δ) → 0, k = 3, 4, uniformly in δ ∈ ∆. We have,

Q3 = 1
n(T−1)tr[B

′
1Ω

−1∆X(∆X ′Ω−1∆X)−1∆X ′Ω−1W1Var(∆Y )]

≤ 1
n(T−1)γmax(Ω−2)γmax(B1)γmax(W1)γ−1

min(∆X
′Ω−1∆X) tr[∆X ′Var(∆Y )∆X]

≤ 1
n(T−1)γ

2
max(Ω

−1)γmax(B1)γmax(W1)γmax(Var(∆Y ))γ−1
min

(
∆X′Ω−1∆X
n(T−1)

) tr[∆X′∆X]
n(T−1) .

Recall Ω−1 = C−1 ⊗ B′
3B3. By Assumption E(iv), we have, 0 < cw ≤ infλ3∈Λ3 γmin(Ω−1) ≤

supλ3∈Λ3
γmax(Ω−1) ≤ c̄w <∞. By Assumption D, 0 < cx ≤ infλ3∈Λ3 γmin(Ω−1)γmin

(
∆X′∆X
n(T−1)

)
≤ γmin

(
∆X′Ω−1∆X
n(T−1)

)
≤ γmax

(
∆X′Ω−1∆X
n(T−1)

)
≤ supλ3∈Λ3

γmax(Ω−1)γmax

(
∆X′∆X
n(T−1)

)
≤ c̄x <∞.

It follows that by the assumptions in Theorem 3.1 and Assumption D,

Q3 ≤ 1
n(T−1) c̄

2
wcxc̄y c̄b1 c̄w1

1
n(T−1)tr[∆X

′∆X] = O(n−1).

The convergence of Q4 can be proved similarly. Therefore,

1
n(T−1){∆û(δ)′Ω−1∆Y−1 − E[∆ū(δ)′Ω−1∆Y−1]}

p−→ 0, uniformly in δ ∈ ∆,

completing the proof of (a).
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Proofs of (b)-(g). Using the expressions of ∆û(δ) and ∆ū(δ) given earlier, all the

quantities inside | · | can be expressed in forms similar to (C.1). Then, using the expressions

of ∆Y , and ∆Y1, all the quantities can be further decomposed into sums of terms linear,

quadratic or bilinear in ∆v and ∆y1. The proofs of (b) to (g) thus follow that of (a). �

Proof of Theorem 3.2: We have by the mean value theorem,

0 = 1√
n(T−1)

S∗STLE(ψ̂STLE) = 1√
n(T−1)

S∗STLE(ψ0) +
[

1
n(T−1)

∂
∂ψ′S

∗
STLE(ψ̄)

]√
n(T − 1)(ψ̂M − ψ0),

where ψ̄ lies elementwise between ψ̂M and ψ0. The result of the theorem follows if

(a) 1√
n(T−1)

S∗STLE(ψ0)
D−→ N

[
0, limn→∞ Γ∗STLE(ψ0)

]
,

(b) 1
n(T−1)

[
∂
∂ψ′S

∗
STLE(ψ̄)− ∂

∂ψ′S
∗
STLE(ψ0)

] p−→ 0, and

(c) 1
n(T−1)

[
∂
∂ψ′S

∗
STLE(ψ0)− E

(
∂
∂ψ′S

∗
STLE(ψ0)

)] p−→ 0.

Proof of (a). From (3.27), we see that S∗STLE(ψ0) consists of three types of elements:

Π′∆v, ∆v′Φ∆v and ∆v′Ψ∆y1, which can be written as

Π′∆v =
∑T

t=1 Π∗′
t vt, ∆vΦ∆v =

∑T
t=1

∑T
s=1 v

′
tΦ

∗
tsvs, and ∆v′Ψ∆y1 =

∑T
t=1 v

′
tΨ

∗
t∆y1,

where Π∗
t , Φ∗

ts and Ψ∗
t are formed by the elements of the partitioned Π, Φ and Ψ, respectively.

By (2.1), y1 = B−1
10 B20y0 + η1 + B−1

10 B
−1
30 v1, leading to

∑T
t=1 v

′
tΨ

∗
t∆y1 =

∑T
t=1 v

′
tΨ

∗∗
t y0 +∑T

t=1 v
′
tΨ

∗+
t v1, for suitably defined non-stochastic quantities η1, Ψ∗∗

t and Ψ∗+
t . These show

that, for every non-zero (p+ 5)× 1 vector of constants c, c′S∗STLE(ψ0) can be expressed as

c′S∗STLE(ψ0) =
T∑
t=1

T∑
s=1

v′tAtsvs +
T∑
t=1

v′tBtv1 +
T∑
t=1

v′tg(y0),

for suitably defined non-stochastic matrices Ats and Bt, and the function g(y0) linear in y0.

As, {y0, v1, . . . , vT } are independent, the asymptotic normality of 1√
n(T−1)

c′S∗STLE(ψ0) follows

from Lemma A.5. Finally, the Cramér-Wold devise leads to the joint asymptotic normality.

Proof of (b). The Hessian matrix, H∗
STLE(ψ) = ∂

∂ψ′S
∗
STLE(ψ), has the elements:

H∗
ββ = − 1

σ2
v
∆X ′Ω−1∆X, H∗

βσ2
v

= − 1
σ4

v
∆X ′Ω−1∆u(θ), H∗

βρ = − 1
σ2

v
∆X ′Ω−1∆Y−1,

H∗
βλ1

= − 1
σ2

v
∆X ′Ω−1W1∆Y, H∗

βλ2
= − 1

σ2
v
∆X ′Ω−1W2∆Y−1, H∗

βλ3
= 1

σ2
v
∆X ′Ω̇−1∆u(θ),

H∗
σ2

vλ3
= 1

2σ4
v
∆u(θ)′Ω̇−1∆u(θ), H∗

σ2
vρ = − 1

σ4
v
∆Y ′

−1Ω
−1∆u(θ), H∗

σ2
vλ1

= − 1
σ4

v
∆Y ′W′

1Ω
−1∆u(θ),

H∗
σ2

vλ2
= − 1

σ4
v
∆Y ′

−1W
′
2Ω

−1∆u(θ), H∗
σ2

vσ2
v

= − 1
σ6

v
∆u(θ)′Ω−1∆u(θ) + n(T−1)

2σ4
v
,

H∗
ρλ3

= 1
σ2

v
∆Y ′

−1Ω̇
−1∆u(θ) + 1

σ2
v
∆u′(θ)Ėρλ3∆u(θ),

H∗
λ1λ3

= 1
σ2

v
∆Y ′W′

1Ω̇
−1∆u(θ) + 1

σ2
v
∆u′(θ)Ėλ1λ3∆u(θ),

H∗
λ2λ3

= 1
σ2

v
∆Y ′

−1W
′
2Ω̇

−1∆u(θ) + 1
σ2

v
∆u′(θ)Ėλ2λ3∆u(θ),

H∗
λ3λ3

= − 1
2σ2

v
∆u(θ)′[C−1 ⊗ (2W ′

3W3 + Ėλ3λ3)]∆u(θ),
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H∗
ρρ = − 1

σ2
v
∆Y ′

−1Ω
−1∆Y−1 + 1

σ2
v
[∆u′(θ)Ėρρ∆u(θ)−∆Y ′

−1(Eρ + E′
ρ)∆u(θ)],

H∗
ρλ1

= − 1
σ2

v
∆Y ′

−1Ω
−1W1∆Y + 1

σ2
v
[∆u′(θ)Ėρλ1∆u(θ)−∆Y ′W′

1(Eρ + E′
ρ)∆u(θ)],

H∗
ρλ2

= − 1
σ2

v
∆Y ′

−1Ω
−1W2∆Y−1 + 1

σ2
v
[∆u′(θ)Ėρλ2∆u(θ)−∆Y ′

−1W
′
2(Eρ + E′

ρ)∆u(θ)],

H∗
λ1λ1

= − 1
σ2

v
∆Y ′W′

1Ω
−1W1∆Y + 1

σ2
v
[∆u′(θ)Ėλ1λ1∆u(θ)−∆Y ′W′

1(Eλ1 + E′
λ1

)∆u(θ)],

H∗
λ1λ2

= − 1
σ2

v
∆Y ′W′

1Ω
−1W2∆Y−1 + 1

σ2
v
[∆u′(θ)Ėλ1λ2∆u(θ)−∆Y ′

−1W
′
2(Eλ1 + E′

λ1
)∆u(θ)],

H∗
λ2λ2

= − 1
σ2

v
∆Y ′

−1W
′
2Ω

−1W2∆Y−1 + 1
σ2

v
[∆u′(θ)Ėλ2λ2∆u(θ)−∆Y ′

−1W
′
2(Eλ2 + E′

λ2
)∆u(θ)],

where Ω̇−1 = ∂
∂λ3

Ω−1, Ėr,v = ∂
∂vEr, r, v = ρ, λ1, λ2, λ3, and

Ėρρ = Ω−1C−1Ḋ−1,ρ, Ėρλ1 = Ω−1C−1Ḋ−1,λ1 , Ėρλ2 = Ω−1C−1Ḋ−1,λ2

Ėρλ3 = Ω̇−1C−1D−1, Ėλ1λ1 = Ω−1C−1W1Ḋλ1 , Ėλ1λ2 = Ω−1C−1W1Ḋλ2 ,

Ėλ1λ3 = Ω̇−1C−1W1D, Ėλ2λ2 = Ω−1C−1W2Ḋ−1,λ2 , Ėλ2λ3 = Ω̇−1C−1W2D−1,

Ėλ3λ3 = 2[B
′

3diag(W3B
−1
3 W3B

−1
3 )−W ′

3diag(W3B
−1
3 )]diag−1(B−1

3 ) + 2B
′

3diag(W3B
−1
3 )d3λ3 ,

d3λ3 = d
dλ3

diag−1(B−1
3 ) = −diag−1(B−1

3 )diag(B−1
3 W3B

−1
3 )diag−1(B−1

3 ).

Noting that σrv, r = 2, 4, 6 appears in H∗
STLE(ψ) multiplicatively, we have 1

n(T−1)H
∗
STLE(ψ̄) =

1
n(T−1)H

∗
STLE(β̄, σ

2
v0, ρ̄, λ̄) + op(1), as σ̄2

v
p−→ σ2

v0, σ̄
−r
v = σ−rv0 + op(1). Therefore the proof of

(b) is thus equivalent to the proof of

1
n(T−1)

[
H∗

STLE(β̄, σ
2
v0, ρ̄, λ̄)−H∗

STLE(ψ0)
] p−→ 0.

Writing ∆u(θ) = ∆u−(λ1−λ10)W1∆Y −(ρ−ρ0)∆Y−1−(λ2−λ20)W2∆Y−1−∆X(β−β0),

and ∆u = B−1
30 Fv, where F is the first-difference matrix. By expressions (3.26) and (3.25),

we can represent all the random elements of H∗
STLE(φ) as linear combinations of terms

quadratic in v : ($ −$0)j(ω − ω0)kv′AG(δ)Bv,

quadratic in ∆y1 : ($ −$0)j(ω − ω0)k∆y′1AG(δ)B∆y1,

linear in v : ($ −$0)jv′AG(δ)BZ,
linear in ∆y1 : ($ −$0)j∆y′1AG(δ)BZ,
bylinear in v and ∆y1 : ($ −$0)j(ω − ω0)kv′AG(δ)B∆y1,

for j, k = 0, 1, $,ω = ρ, λ1, λ2, where A and B denote n(T − 1) × n(T − 1) nonstochastic

matrices, and Z n(T − 1) × k nonstochastic vector or matrices, free from parameters; and

G(δ) can be Ω−1, Ω̇−1, D, D1, Ḋλ1 , Ḋλ2 , Ḋ−1ρ, Ḋ−1,λ1 , Ḋ−1,λ2 , and Ėλ3,λ3 .

Take a quadratic term of v for example. We have by MVT,

1
nT [v′AG(ρ̄, λ̄′)Bv − v′AG(ρ0, λ

′
0)Bv]

= ρ̄−ρ0
nT v′AĠρ∗Bv + λ̄1−λ10

nT v′AĠλ∗1
Bv + λ̄2−λ20

nT v′AĠλ∗2
Bv + λ̄3−λ30

nT v′AĠλ∗3
Bv,

where Ġρ and Ġλr are the partial derivatives of G evaluated at δ∗, which lies between

δ̄ and δ0. From the expression of the Hessian matrix given earlier, we see that G is the

multiplications and linear combinations of matrices Br, B−1
r and Wr, r = 1, 2, 3. Therefore,

its partial derivatives evaluated at δ are the multiplications and linear combinations of Br,

B−1
r and Wr, r = 1, 2, 3, and hence are uniformly bounded in both row and column sums for
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δ in a neighbourhood of δ0, by Assumption E(iv) and Lemma A.2. By applying Lemma

A.4 (i) and using the consistency of ψ̂M, we have 1
nT [v′AG(δ̄)Bv − v′AG(δ0)Bv]

p−→ 0. The

convergence of all other terms can be shown similarly by using Lemma A.4, Assumption F,

and the consistency of ψ̂M.

Proof of (c). First, for the terms involving only ∆u (linear or quadratic), the results

follows Lemma A.4(v)-(vi). Second, by the representations (3.25) and (3.26) all the terms

involving ∆Y and ∆Y−1 can be written as sums of the terms linear in ∆y, quadratic in ∆y,

bilinear in ∆y and ∆v, or quadratic in ∆v. Thus, the results follow by repeatedly applying

Lemma A.1, Lemma A.4, and Assumption F. �

Proof of Theorem 3.3: First, the result Σ∗
STLE(ψ̂M) − Σ∗

STLE(ψ0)
p−→ 0 is implied by

the result (b) in the proof of Theorem 3.2. The result 1
n(T−1)

∑n
i=1[ĝiĝ

′
i − E(gig′i)]

p−→ 0

follows from 1
n(T−1)

∑n
i=1[ĝiĝ

′
i − gig

′
i]

p−→ 0 and 1
n(T−1)

∑n
i=1[gig

′
i − E(gig′i)]

p−→ 0. The

proof of the former is straightforward by applying MVT. We focus on the proof of the latter

result. As the elements of S∗STLE(ψ0) are mixtures of terms of the forms Π′∆v =
∑n

i=1 gΠi,

∆v′Φ∆v =
∑n

i=1 gΦi and ∆v′Ψ∆y1 =
∑n

i=1 gΨi, it suffices to show that

1
n(T−1)

∑n
i=1[gωig

′
$i − E(gωig′$i)] = op(1), ω,$ = Π,Φ,Ψ.

For each i, let ∆vi· and ∆ξi· be vectors that pick the elements of {∆vit} and {∆ξit}
for t = 2, . . . , T , and ∆vi− and ∆y∗1i− be vectors that pick the elements of {∆vit} and

{∆y∗1it} for t = 3, . . . , T . Then (3.28), (3.29) and (3.30) can be written as gΠi = Π′
i·∆vi·,

gΦi = ∆v′i·∆ξi·+∆v′i·∆v
∗
i·−1′T−1di·, and gΨi = ∆v2i∆ζi+Θii(∆v2i∆y◦1i+σ

2
v0hn,i)+∆v′i−∆y∗1i−.

Without loss of generality, assume Πit is a scalar, then 1
n(T−1)

∑n
i=1[gΠig

′
Πi − E(gΠig′Πi)]

can be written as 1
n(T−1)

∑n
i=1 Π′

i·(∆vi·∆v
′
i· − σ2

v0hn,iC)Πi· ≡ 1
n(T−1)

∑n
i=1 Un,i, where C is

defined in (2.5). The Un,i’s are independent across i as ∆vi·’s are. It is easy to verify that

Var(Un,i) ≤ Ku <∞. Then we have 1
n(T−1)

∑n
i=1 Un,i

p−→ 0 by Chebyshev’s WLLN.

For gΦi , we can write 1
n(T−1)

∑n
i=1[g

2
Φi − E(g2

Φi)] ≡
∑5

r=1Hr, where

H1 = 1
n(T−1)

∑n
i=1

{
(∆v′i·∆ξi·)

2 − E[(∆v′i·∆ξi·)
2]

}
, H2 = 2

n(T−1)

∑n
i=1(∆v

′
i·∆ξi·)(∆v

′
i·∆v

∗
i·),

H3 = 1
n(T−1)

∑n
i=1

{
(∆v′i·∆v

∗
i·)

2 − E[(∆v′i·∆v
∗
i·)

2]
}
, H4 = − 2

n(T−1)

∑n
i=1(1

′
T−1di·)(∆v

′
i·∆ξi·),

H5 = − 2
n(T−1)

∑n
i=1

{
(1′T−1di·)[∆v

′
i·∆v

∗
i· − E(∆v′i·∆v

∗
i·)]

}
.

The first term can be written as:

H1 = 1
n(T−1)

∑n
i=1[∆ξ

′
i·(∆vi·∆v

′
i·−σ2

v0hn,iC)∆ξi·]+
σ2

v0
n(T−1)

∑n
i=1[∆ξ

′
i·Chn,i∆ξi·−E(∆ξ′i·Chn,i∆ξi·)].

Let Vn,i = ∆ξ′i·(∆vi·∆v
′
i· − σ2

v0hn,iC)∆ξi·. We have E(Vn,i|Gn,i−1) = 0 as ∆ξi· is Gn,i−1-

measurable. So, {Vn,i,Gn,i} form an M.D. array. It is easy to see that E|V 1+ε
n,i | ≤ Kv < ∞,

for some ε > 0. Thus, {Vn,i} is uniformly integrable. The other two conditions of the WLLN

for M.D. arrays of Davidson are satisfied. Therefore, 1
n(T−1)

∑n
i=1 Vn,i

p−→ 0.
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For the second term of H1, we can write ∆ξ′i·Chn,i∆ξi· =
∑

s

∑
t ∆ξ

2
itCtshn,i where Cts is

the (t, s) element of C. Recall that ∆ξt =
∑T

s=2(Φ
u′
st + Φl

ts)∆vs, so we have,

∆ξit =
∑T

s=2

∑i−1
j=1(Φjs,it + Φit,js)∆vjs =

∑i−1
j=1

∑T
s=2(Φjs,it + Φit,js)∆vjs =

∑i−1
j=1 φ

′
ijt∆vj·,

where φijt = (Φj·,it + Φit,j·) and Φit,j· is the (T − 1)× 1 subvector that picks up the element

from the it th row corresponding to s = 2, . . . , T . Thus we can write,

1
n(T−1)

∑n
i=1{(∆ξit)2 − E[(∆ξit)2]} = 1

n(T−1)

∑n
i=1

∑i−1
j=1[φ

′
ijt(∆vj·∆v

′
j· − σ2

v0hn,iC)φijt]

+2 1
n(T−1)

∑n−1
j=1 ∆v′j·

{ ∑n
i=j+1

∑j−1
k=1 φijtφ

′
ikt∆vk·

}
.

The first term is the ‘average’ of n − 1 independent terms.
{ ∑n

i=j+1

∑j−1
k=1 φijtφ

′
ikt∆vk·

}
is

Gn,j−1-measurable so the second term is the ‘average’ of an M.D. array. Conditions of Theo-

rem 19.7 of Davidson (1994) are easily verified, and hence 1
n(T−1)

∑n
i=1{(∆ξit)2−E[(∆ξit)2]} =

op(1). Similarly, it can be shown that 1
n(T−1)

∑n
i=1{∆ξit∆ξis − E[(∆ξit∆ξis)]} = op(1) for

s 6= t. By the definition of C and Assumption B(i), Cts and hn,i are uniformly bounded.

Thus, σ2
v0

n(T−1)

∑n
i=1[∆ξ

′
i·hn,iC∆ξi· − E(∆ξ′i·hn,iC∆ξi·)] = op(1), and H1 = op(1). The proofs

for H2 to H5 can be done in a similar manner as the proof for H1.

Finally, for gΨi, we have,
1

n(T−1)

∑n
i=1[g

2
Ψi − E(g2

Ψi)]

= 1
n(T−1)

∑n
i=1[(∆v

2
2i − 2σ2

v0hn,i)∆ζ
2
i ] + 2σ2

v0
n(T−1)

∑n
i=1 hn,iΘii∆v2i∆ζi

+ 2σ2
v0

n(T−1)

∑n
i=1 hn,iΘ

2
ii[∆v2i∆y

◦
1i − E(∆v2i∆y◦1i)]

+ 1
n(T−1)

∑n
i=1 Θ2

ii[(∆v2i∆y
◦
1i)

2 − E((∆v2i∆y◦1i)
2)]

+ 2
n(T−1)

∑n
i=1 Θii[∆v2

2i∆ζi∆y
◦
1i − E(∆v2

2i∆ζi∆y
◦
1i)] + 2σ2

v0
n(T−1)

∑n
i=1 hn,i[∆ζ

2
i − E(∆ζ2

i )]

+ 1
n(T−1)

∑n
i=1[(∆v

′
i−∆y∗1i−)2 − E((∆v′i−∆y∗1i−)2)]

+ 2σ2
v0

n(T−1)

∑n
i=1 hn,iΘii[∆v′i−∆y∗1i− − E(∆v′i−∆y∗1i−)]

+ 2
n(T−1)

∑n
i=1[∆v2i∆ζi(∆v

′
i−∆y∗1i−)− E(∆v2i∆ζi(∆v′i−∆y∗1i−))]

+ 2
n(T−1)

∑n
i=1 Θii[(∆v2i∆y◦1i)(∆v

′
i−∆y∗1i−)− E((∆v2i∆y◦1i)(∆v

′
i−∆y∗1i−))]≡

∑10
r=1Qr.

As {∆v2i∆ζi,Fn,i−1} form an M.D sequence, the convergence of Q1 and Q2 immediately

follow from WLLN for M.D. arrays. The convergence of Q3, Q4 and Q5 can be proved by

using the expression ∆y◦1 = B30B10∆y0 + B30∆x1β0 + ∆v1, and Lemma A.4. Recall that

∆ζ = (Θu + Θl)∆y◦1 = (Θu + Θl)B30B10∆y1. Then we can write Q6 = 2σ2
v0

n(T−1) [∆y
′
1A∆y1 −

E(∆y′1A∆y1)] , where A = [(Θu + Θl)B30B10]′H[(Θu + Θl)B30B10]. By Assumption E and

Lemma 3.1, A is uniformly bounded in both row and column sums. Therefore we have

Q6 = op(1) by Assumption F. The results for Q7 and Q8 are proved by the independence

between ∆v′i− and ∆y∗1i− and Assumption F. Finally, the results for Q9 and Q10 can be proved

by further writing ∆y∗1t = Φt+∆y1 = Φt+(B30B10)−1∆y◦1 ≡ q(∆y0, v0) + Φt+(B30B10)−1v1

and using Assumption F and Lemma A.4.

Subsequently, the cross-product terms: 1
n(T−1)

∑n
i=1[gΠigΦi − E(gΠigΦi)],
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1
n(T−1)

∑n
i=1[gΠigΨi−E(gΠigΨi)], and 1

n(T−1)

∑n
i=1[gΦigΨi−E(gΦigΨi)], can all be decomposed

in a similar manner, and the convergence of each of the decomposed terms can be proved in

a similar way. �
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Table 1a. Empirical Mean(sd)[rse]∗ of CQMLE, M-estimator, and Robust M-estimator, DGP1, T = 3, m = 10, H=H-I, SNR=1 ;

Normal Error Normal Mixture Chi-Square

n ψ CQMLE M-Est RM-Est CQMLE M-Est RM-Est CQMLE M-Est RM-Est

50 1 .9631(.081) .9482(.076) .9876(.053)[.090] .9658(.084) .9507(.080) .9849(.058)[.159] .9634(.084) .9491(.079) .9844(.061)[.085]

1 .7363(.239) .7630(.249) .8747(.261)[.422] .7199(.388) .7488(.417) .8754(.546)[1.281] .7229(.304) .7520(.324) .8670(.397)[.625]

.3 .2489(.066) .3305(.073) .3193(.078)[.151] .2535(.072) .3330(.080) .3249(.108)[.388] .2540(.075) .3344(.086) .3237(.109)[.191]

.2 -.1749(.669) -.1536(.639) .1180(.317)[.540] -.1544(.663) -.1374(.635) .1001(.350)[.934] -.1650(.664) -.1393(.632) .1011(.346)[.496]

.2 .3671(.413) .4330(.524) .3003(.398)[.625] .3618(.405) .4289(.523) .3116(.427)[1.199] .3767(.427) .4407(.542) .3223(.423)[.615]

.2 .1244(.611) .1123(.633) .0856(.446)[.328] .1325(.584) .1229(.607) .0983(.437)[.478] .1034(.608) .0897(.629) .0728(.442)[.360]

100 1 .9415(.079) .9303(.076) .9911(.041)[.047] .9423(.082) .9312(.079) .9901(.045)[.058] .9417(.079) .9305(.076) .9932(.042)[.045]

1 .7881(.181) .8110(.187) .9361(.188)[.211] .7814(.302) .8066(.319) .9493(.384)[.392] .7790(.246) .8026(.257) .9379(.297)[.257]

.3 .2474(.040) .3229(.043) .3036(.047)[.055] .2498(.045) .3247(.046) .3084(.069)[.101] .2497(.040) .3249(.041) .3058(.055)[.063]

.2 -.2755(.599) -.2416(.602) .1567(.222)[.243] -.2683(.617) -.2325(.620) .1520(.247)[.293] -.2865(.613) -.2529(.615) .1519(.241)[.221]

.2 .4208(.287) .4464(.368) .2272(.171)[.174] .4149(.293) .4388(.376) .2261(.197)[.217] .4215(.291) .4484(.373) .2273(.190)[.172]

.2 .3309(.475) .2954(.508) .1471(.275)[.162] .3310(.467) .2948(.501) .1499(.273)[.161] .3378(.475) .3024(.510) .1459(.276)[.160]

200 1 .9606(.062) .9479(.063) .9992(.030)[.029] .9609(.067) .9485(.069) .9985(.030)[.030] .9614(.064) .9490(.066) .9987(.029)[.032]

1 .8614(.150) .8845(.159) .9806(.138)[.145] .8517(.236) .8756(.251) .9854(.284)[.226] .8490(.189) .8720(.200) .9712(.205)[.189]

.3 .2437(.028) .3186(.033) .3023(.033)[.036] .2441(.032) .3180(.037) .3044(.049)[.053] .2434(.030) .3169(.035) .3025(.039)[.049]

.2 -.1878(.453) -.1597(.478) .1915(.098)[.092] -.1759(.482) -.1469(.503) .1961(.113)[.100] -.1829(.461) -.1548(.484) .1877(.105)[.113]

.2 .3342(.189) .3862(.278) .2090(.094)[.091] .3289(.197) .3790(.289) .2071(.104)[.094] .3316(.190) .3822(.278) .2086(.101)[.115]

.2 .4064(.318) .3785(.351) .1816(.148)[.112] .3910(.325) .3625(.358) .1777(.159)[.109] .4041(.318) .3770(.351) .1871(.156)[.110]

400 1 .9914(.035) .9853(.035) .9996(.017)[.017] .9871(.042) .9820(.041) .9994(.017)[.016] .9893(.039) .9839(.038) 1.0002(.017)[.017]

1 .9321(.106) .9563(.111) .9894(.095)[.103] .9162(.182) .9419(.191) .9845(.195)[.161] .9198(.143) .9448(.150) .9843(.146)[.130]

.3 .2345(.020) .3073(.024) .2999(.021)[.024] .2377(.024) .3097(.028) .3006(.033)[.037] .2372(.022) .3096(.026) .3024(.027)[.030]

.2 .0709(.262) .0735(.265) .1970(.051)[.052] .0463(.317) .0548(.310) .1964(.054)[.052] .0542(.294) .0599(.291) .1978(.054)[.052]

.2 .2450(.138) .2852(.202) .2042(.072)[.072] .2548(.163) .2945(.228) .2047(.077)[.072] .2520(.152) .2944(.218) .2064(.077)[.072]

.2 .2912(.215) .2957(.230) .1875(.105)[.081] .3000(.228) .3013(.239) .1882(.104)[.078] .3044(.221) .3081(.233) .1927(.102)[.078]

Note: 1. ψ = (β, σ2
v, ρ, λ1, λ2, λ3)

′; 2. Variances increase and then decrease with group size; 3. W is generated according to fixed group scheme;

4. Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 1, 1). ∗ [rse]: empirical average of rses, only for robust M-estimator.
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Table 1b. Empirical Mean(sd)[rse]∗ of CQMLE, M-estimator, and Robust M-estimator, DGP1, T = 3, m = 10, H=H-I, SNR=3 ;

Normal Error Normal Mixture Chi-Square

n ψ CQMLE M-Est RM-Est CQMLE M-Est RM-Est CQMLE M-Est RM-Est

50 1 .9890(.048) .9804(.047) .9960(.034)[.034] .9828(.053) .9747(.051) .9912(.036)[.048] .9866(.052) .9784(.050) .9938(.038)[.083]

1 .8246(.240) .8373(.245) .8873(.252)[.260] .8195(.430) .8360(.447) .9071(.506)[.412] .8178(.338) .8323(.350) .8883(.380)[.456]

.3 .2721(.044) .3123(.047) .3068(.047)[.050] .2763(.047) .3169(.050) .3119(.057)[.080] .2742(.048) .3141(.052) .3086(.060)[.102]

.2 .0567(.377) .0572(.364) .1707(.171)[.148] .0249(.432) .0297(.414) .1513(.215)[.252] .0456(.402) .0488(.389) .1600(.202)[.514]

.2 .2703(.263) .2987(.309) .2361(.218)[.201] .2959(.293) .3262(.348) .2613(.258)[.337] .2819(.277) .3094(.325) .2518(.233)[.398]

.2 .0916(.493) .0932(.507) .0660(.372)[.240] .1106(.485) .1108(.498) .0820(.371)[.254] .0996(.477) .0997(.490) .0743(.361)[.352]

100 1 .9854(.040) .9800(.039) .9962(.027)[.027] .9828(.045) .9774(.045) .9963(.028)[.028] .9845(.043) .9790(.043) .9975(.027)[.027]

1 .8959(.176) .9095(.181) .9471(.181)[.183] .8788(.330) .8929(.341) .9454(.371)[.267] .8919(.262) .9059(.270) .9520(.288)[.224]

.3 .2705(.025) .3068(.026) .3022(.028)[.028] .2712(.028) .3071(.028) .3018(.037)[.036] .2706(.026) .3071(.026) .3014(.029)[.030]

.2 .0472(.302) .0673(.301) .1795(.135)[.121] .0305(.339) .0488(.338) .1796(.140)[.130] .0355(.328) .0546(.327) .1807(.142)[.128]

.2 .2794(.156) .2727(.181) .2116(.095)[.087] .2855(.174) .2830(.205) .2102(.096)[.092] .2809(.169) .2779(.199) .2072(.101)[.091]

.2 .2302(.345) .2091(.355) .1348(.225)[.159] .2503(.346) .2312(.357) .1478(.225)[.171] .2396(.352) .2196(.363) .1406(.230)[.154]

200 1 .9988(.023) .9937(.023) .9993(.019)[.019] .9991(.025) .9940(.026) .9997(.020)[.019] .9990(.023) .9939(.024) .9995(.019)[.019]

1 .9499(.131) .9635(.135) .9789(.135)[.135] .9485(.257) .9627(.265) .9815(.272)[.202] .9372(.185) .9507(.190) .9665(.194)[.164]

.3 .2676(.017) .3021(.017) .3005(.019)[.019] .2675(.019) .3018(.019) .3008(.025)[.025] .2683(.018) .3022(.018) .3008(.021)[.022]

.2 .1288(.137) .1493(.140) .1949(.060)[.057] .1325(.153) .1533(.156) .1997(.059)[.057] .1314(.142) .1518(.144) .1964(.059)[.056]

.2 .2249(.070) .2251(.088) .2044(.054)[.053] .2235(.076) .2226(.096) .2009(.052)[.052] .2221(.071) .2212(.089) .2018(.052)[.051]

.2 .2619(.196) .2435(.203) .1824(.135)[.112] .2519(.195) .2324(.202) .1729(.132)[.107] .2520(.195) .2333(.202) .1740(.133)[.119]

400 1 1.0012(.011) .9987(.011) .9993(.011)[.011] 1.0014(.011) .9989(.011) .9997(.011)[.011] 1.0014(.012) .9989(.012) .9997(.011)[.011]

1 .9702(.092) .9832(.094) .9892(.094)[.096] .9663(.186) .9795(.191) .9865(.193)[.178] .9724(.144) .9855(.148) .9927(.149)[.123]

.3 .2663(.011) .3005(.011) .3001(.012)[.013] .2664(.013) .3004(.012) .2997(.017)[.018] .2665(.012) .3007(.012) .3005(.015)[.015]

.2 .1800(.045) .1858(.046) .1988(.034)[.034] .1796(.050) .1851(.052) .1995(.034)[.034] .1784(.053) .1841(.054) .1987(.034)[.034]

.2 .2010(.041) .2077(.047) .2003(.043)[.043] .2032(.043) .2104(.052) .2012(.042)[.042] .2017(.043) .2087(.051) .2011(.042)[.042]

.2 .2331(.114) .2317(.119) .1886(.091)[.080] .2322(.120) .2311(.125) .1860(.094)[.079] .2354(.115) .2339(.119) .1893(.089)[.080]

Note: 1. ψ = (β, σ2
v, ρ, λ1, λ2, λ3)

′; 2. Variances increase and then decrease with group size; 3. W is generated according to fixed group scheme;

4. Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 3, 1). ∗ [rse]: empirical average of rses, only for robust M-estimator.
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Table 2a. Empirical Mean(sd)[rse]∗ of CQMLE, M-estimator, and Robust M-estimator, DGP1, T = 3, m = 10, H=H-II, SNR=1 ;

Normal Error Normal Mixture Chi-Square

n ψ CQMLE M-Est RM-Est CQMLE M-Est RM-Est CQMLE M-Est RM-Est

50 1 1.0037(.019) 1.0003(.019) 1.0000(.020)[.019] 1.0032(.020) .9997(.020) .9995(.021)[.018] 1.0028(.020) .9993(.020) .9990(.020)[.019]

1 .9336(.167) .9391(.169) .9349(.170)[.161] .9455(.339) .9517(.344) .9480(.343)[.230] .9512(.252) .9571(.255) .9529(.256)[.195]

.3 .2851(.019) .2998(.019) .3000(.020)[.019] .2850(.020) .2999(.020) .3000(.022)[.021] .2848(.019) .2998(.019) .3001(.020)[.019]

.2 .1969(.055) .1974(.056) .1976(.057)[.048] .1935(.057) .1939(.058) .1938(.059)[.047] .1954(.055) .1958(.055) .1960(.057)[.048]

.2 .2020(.031) .2015(.030) .2000(.031)[.032] .1996(.032) .1992(.031) .1984(.032)[.033] .2010(.032) .2007(.032) .1993(.033)[.033]

.2 .0169(.228) .0179(.229) .0940(.338)[.263] .0235(.231) .0245(.232) .0280(.341)[.253] .0151(.237) .0160(.238) .0165(.366)[.265]

100 1 1.0031(.016) 1.0005(.016) 1.0003(.016)[.016] 1.0026(.015) 1.0001(.016) .9999(.016)[.015] 1.0026(.016) 1.0001(.016) .9999(.016)[.016]

1 .9716(.121) .9767(.122) .9747(.122)[.120] .9745(.250) .9799(.253) .9783(.253)[.181] .9809(.184) .9862(.186) .9844(.186)[.150]

.3 .2858(.014) .2995(.014) .2998(.014)[.014] .2862(.014) .3000(.014) .3001(.015)[.015] .2863(.013) .3002(.013) .3004(.014)[.014]

.2 .1954(.029) .2008(.029) .1998(.030)[.030] .1941(.028) .1994(.028) .1985(.030)[.030] .1947(.029) .2001(.029) .1991(.030)[.030]

.2 .2076(.023) .2002(.023) .2004(.024)[.024] .2081(.023) .2005(.023) .2008(.024)[.024] .2075(.023) .1999(.023) .2000(.024)[.024]

.2 .1145(.153) .1104(.153) .1271(.200)[.169] .1099(.149) .1058(.149) .1218(.193)[.163] .1117(.150) .1075(.149) .1239(.193)[.165]

200 1 1.0026(.011) 1.0004(.011) 1.0003(.011)[.010] 1.0025(.011) 1.0003(.011) 1.0002(.011)[.010] 1.0023(.010) 1.0001(.010) .9999(.010)[.010]

1 .9840(.086) .9889(.087) .9873(.087)[.086] .9887(.176) .9938(.178) .9923(.177)[.135] .9884(.130) .9934(.131) .9918(.131)[.109]

.3 .2866(.009) .2995(.009) .2996(.009)[.010] .2873(.010) .3003(.010) .3003(.010)[.010] .2872(.009) .3002(.009) .3002(.010)[.010]

.2 .1943(.023) .2004(.023) .1996(.024)[.024] .1943(.024) .2004(.024) .1995(.025)[.023] .1935(.024) .1997(.024) .1988(.024)[.024]

.2 .2045(.022) .2004(.022) .2002(.022)[.022] .2056(.022) .2014(.022) .2013(.023)[.022] .2049(.022) .2007(.022) .2005(.023)[.022]

.2 .1337(.104) .1293(.104) .1563(.127)[.116] .1327(.105) .1283(.105) .1550(.129)[.115] .1339(.102) .1295(.102) .1565(.126)[.116]

400 1 1.0011(.007) 1.0001(.007) 1.0000(.007)[.007] 1.0010(.007) 1.0000(.007) 1.0000(.007)[.007] 1.0010(.007) 1.0000(.007) 1.0000(.007)[.007]

1 .9886(.062) .9935(.062) .9918(.062)[.061] .9846(.128) .9895(.130) .9878(.129)[.096] .9910(.093) .9960(.094) .9943(.094)[.078]

.3 .2871(.006) .2999(.007) .3000(.007)[.007] .2871(.007) .2999(.007) .2999(.007)[.008] .2871(.007) .3000(.007) .3001(.007)[.007]

.2 .1976(.014) .1999(.014) .1992(.014)[.014] .1978(.014) .2001(.014) .1994(.014)[.014] .1980(.014) .2004(.014) .1996(.014)[.014]

.2 .2012(.014) .2008(.014) .2005(.014)[.014] .2007(.014) .2004(.014) .2002(.014)[.014] .2005(.014) .2002(.014) .1999(.014)[.014]

.2 .1493(.072) .1482(.072) .1810(.086)[.082] .1528(.071) .1517(.071) .1852(.085)[.080] .1527(.070) .1516(.070) .1852(.083)[.081]

Note: 1. ψ = (β, σ2
v, ρ, λ1, λ2, λ3)

′; 2. Variances decrease and then increase with group size; 3. W is generated according to fixed group scheme;

4. Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 1, 1). ∗ [rse]: empirical average of rses, only for robust M-estimator.
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Table 2b. Empirical Mean(sd)[rse]∗ of CQMLE, M-estimator, and Robust M-estimator, DGP1, T = 3, m = 10, H=H-II, SNR=3 ;

Normal Error Normal Mixture Chi-Square

n ψ CQMLE M-Est RM-Est CQMLE M-Est RM-Est CQMLE M-Est RM-Est

50 1 1.0037(.019) 1.0003(.019) 1.0001(.020)[.019] 1.0033(.019) .9999(.020) .9996(.020)[.019] 1.0030(.020) .9995(.020) .9993(.020)[.019]

1 .9342(.167) .9397(.168) .9355(.169)[.161] .9417(.339) .9478(.344) .9443(.345)[.227] .9391(.261) .9450(.265) .9404(.265)[.193]

.3 .2851(.018) .2998(.019) .3000(.019)[.019] .2853(.019) .3001(.019) .3005(.022)[.021] .2848(.019) .2996(.019) .2999(.020)[.019]

.2 .1970(.055) .1975(.055) .1977(.057)[.048] .1963(.053) .1968(.054) .1971(.055)[.047] .1973(.055) .1977(.055) .1979(.057)[.047]

.2 .2019(.031) .2015(.030) .2000(.031)[.032] .2013(.031) .2006(.031) .1994(.032)[.032] .2015(.031) .2012(.031) .1999(.032)[.032]

.2 .0169(.229) .0179(.229) .095(.338)[.263] .0123(.235) .0132(.236) .0207(.353)[.255] .0139(.240) .0149(.240) .0178(.361)[.264]

100 1 1.0028(.016) 1.0003(.016) 1.0001(.016)[.015] 1.0026(.015) 1.0001(.015) .9999(.015)[.015] 1.0031(.016) 1.0005(.016) 1.0003(.016)[.015]

1 .9729(.120) .9780(.121) .9759(.121)[.120] .9647(.248) .9699(.251) .9681(.250)[.177] .9752(.187) .9804(.189) .9787(.190)[.150]

.3 .2857(.013) .2995(.014) .2996(.014)[.014] .2864(.014) .3000(.013) .3000(.015)[.015] .2863(.013) .3001(.013) .3004(.014)[.014]

.2 .1953(.029) .2007(.029) .1997(.030)[.030] .1953(.030) .2006(.030) .1995(.031)[.030] .1951(.028) .2005(.028) .1995(.029)[.030]

.2 .2086(.023) .2010(.023) .2013(.024)[.024] .2075(.023) .2001(.023) .2005(.024)[.024] .2072(.023) .1997(.023) .1999(.024)[.024]

.2 .1084(.156) .1044(.156) .1196(.202)[.171] .1138(.151) .1097(.151) .1265(.196)[.160] .1122(.153) .1081(.153) .1245(.198)[.165]

200 1 1.0018(.010) .9996(.010) .9994(.010)[.010] 1.0021(.011) .9999(.011) .9998(.011)[.010] 1.0024(.010) 1.0002(.011) 1.0001(.011)[.010]

1 .9835(.086) .9884(.087) .9868(.087)[.086] .9885(.175) .9936(.176) .9921(.176)[.135] .9859(.131) .9908(.132) .9893(.132)[.108]

.3 .2870(.009) .2999(.009) .3001(.009)[.010] .2871(.010) .3001(.009) .3002(.010)[.010] .2868(.009) .2998(.009) .2998(.009)[.010]

.2 .1942(.023) .2003(.024) .1993(.024)[.024] .1946(.024) .2008(.024) .1999(.024)[.023] .1936(.024) .1998(.024) .1988(.024)[.024]

.2 .2045(.022) .2004(.022) .2000(.022)[.022] .2046(.022) .2004(.022) .2002(.022)[.022] .2041(.022) .2000(.022) .1998(.023)[.022]

.2 .1325(.104) .1281(.104) .1549(.127)[.117] .1318(.104) .1273(.104) .1537(.128)[.114] .1336(.102) .1292(.102) .1562(.125)[.115]

400 1 1.0011(.008) 1.0001(.008) 1.0001(.008)[.007] 1.0009(.007) .9999(.007) .9999(.007)[.007] 1.0008(.007) .9998(.007) .9998(.007)[.007]

1 .9912(.061) .9962(.061) .9945(.061)[.050] .9916(.123) .9966(.124) .9950(.124)[.050] .9922(.095) .9972(.096) .9955(.096)[.050]

.3 .2873(.007) .3001(.007) .3002(.007)[.007] .2870(.007) .2999(.007) .2999(.007)[.007] .2871(.007) .3000(.007) .3000(.007)[.007]

.2 .1987(.013) .2011(.013) .2004(.014)[.017] .1980(.013) .2003(.013) .1996(.014)[.017] .1986(.014) .2009(.014) .2002(.014)[.017]

.2 .2006(.014) .2001(.014) .1998(.014)[.018] .2010(.014) .2006(.014) .2002(.014)[.018] .2003(.014) .1998(.014) .1996(.014)[.018]

.2 .1474(.072) .1463(.072) .1788(.087)[.070] .1470(.073) .1459(.073) .1781(.088)[.070] .1494(.070) .1483(.070) .1813(.083)[.070]

Note: 1. ψ = (β, σ2
v, ρ, λ1, λ2, λ3)

′; 2. Variances decrease and then increase with group size; 3. W is generated according to fixed group scheme;

4. Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 3, 1). ∗ [rse]: empirical average of rses, only for robust M-estimator.
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Table 3. Empirical Mean(sd)[rse]∗ of CQMLE, M-estimator, and Robust M-estimator, T = 3, m = 10, H = In, SNR=1 ;

Normal Error Normal Mixture Chi-Square

n ψ CQMLE M-Est RM-Est CQMLE M-Est RM-Est CQMLE M-Est RM-Est

50 1 1.0082(.031) .9991(.032) .9988(.034)[.033] 1.0056(.033) .9961(.033) .9963(.034)[.033] 1.0066(.032) .9974(.033) .9973(.035)[.032]

1 .9235(.135) .9375(.139) .9397(.148)[.150] .9310(.271) .9457(.280) .9512(.290)[.219] .9308(.201) .9451(.207) .9484(.213)[.177]

.3 .2616(.032) .3008(.034) .3020(.040)[.040] .2624(.034) .3022(.035) .3033(.047)[.050] .2626(.034) .3022(.035) .3032(.043)[.045]

.2 .1877(.109) .1869(.113) .1863(.120)[.105] .1803(.126) .1777(.112) .1813(.125)[.115] .1850(.114) .1836(.120) .1847(.124)[.112]

.2 .2016(.101) .2102(.114) .2115(.124)[.112] .2032(.111) .2143(.131) .2139(.139)[.127] .2025(.104) .2115(.119) .2121(.122)[.117]

.2 .1020(.215) .1055(.222) .1067(.231)[.189] .1051(.228) .1102(.237) .1074(.243)[.166] .0975(.223) .1011(.232) .1001(.242)[.170]

100 1 1.0066(.027) 1.0003(.027) 1.0002(.031)[.031] 1.0044(.027) .9981(.027) .9982(.035)[.034] 1.0046(.025) .9982(.026) .9982(.031)[.031]

1 .9559(.096) .9695(.099) .9704(.102)[.106] .9659(.198) .9803(.204) .9827(.211)[.165] .9589(.147) .9728(.152) .9745(.157)[.132]

.3 .2641(.022) .2999(.023) .3003(.029)[.030] .2645(.023) .3007(.024) .3012(.033)[.034] .2648(.022) .3008(.023) .3015(.029)[.030]

.2 .1768(.091) .1924(.090) .1925(.094)[.090] .1718(.098) .1877(.097) .1894(.096)[.087] .1774(.093) .1928(.092) .1940(.093)[.085]

.2 .2216(.062) .2050(.065) .2049(.071)[.069] .2221(.064) .2053(.069) .2044(.072)[.065] .2196(.062) .2028(.066) .2020(.072)[.066]

.2 .1505(.149) .1551(.151) .1560(.157)[.139] .1507(.156) .1552(.157) .1553(.161)[.149] .1447(.151) .1496(.153) .1495(.158)[.147]

200 1 1.0051(.018) .9996(.018) .9996(.023)[.023] 1.0052(.018) .9998(.018) .9998(.024)[.024] 1.0046(.017) .9991(.017) .9990(.024)[.024]

1 .9738(.069) .9871(.071) .9877(.075)[.076] .9715(.139) .9850(.143) .9858(.148)[.119] .9729(.104) .9863(.107) .9869(.112)[.098]

.3 .2656(.015) .2997(.016) .2999(.022)[.022] .2661(.015) .3002(.015) .3001(.024)[.025] .2657(.015) .2999(.016) .3000(.021)[.021]

.2 .1776(.052) .1953(.052) .1956(.058)[.055] .1803(.049) .1980(.049) .1982(.052)[.051] .1788(.051) .1966(.051) .1967(.057)[.055]

.2 .2102(.039) .2032(.042) .2035(.049)[.048] .2085(.038) .2013(.041) .2016(.046)[.045] .2093(.040) .2020(.042) .2018(.049)[.048]

.2 .1755(.093) .1817(.094) .1811(.099)[.094] .1725(.093) .1776(.095) .1785(.099)[.093] .1735(.095) .1787(.096) .1790(.101)[.095]

400 1 1.0024(.012) .9999(.012) .9999(.015)[.015] 1.0025(.012) .9999(.012) .9999(.015)[.015] 1.0020(.012) .9995(.012) .9995(.015)[.015]

1 .9811(.049) .9943(.051) .9946(.056)[.056] .9775(.098) .9907(.101) .9911(.106)[.100] .9792(.072) .9924(.074) .9928(.079)[.071]

.3 .2659(.011) .3000(.011) .3000(.018)[.018] .2660(.011) .3000(.011) .3000(.018)[.019] .2661(.011) .3001(.011) .3001(.017)[.017]

.2 .1939(.029) .2002(.029) .2002(.033)[.032] .1928(.029) .1991(.029) .1991(.034)[.033] .1928(.028) .1991(.028) .1992(.034)[.034]

.2 .1976(.028) .1997(.030) .1997(.037)[.037] .1988(.029) .2008(.031) .2009(.036)[.034] .1978(.028) .2000(.031) .2003(.036)[.036]

.2 .1807(.063) .1881(.064) .1882(.069)[.068] .1836(.062) .1906(.063) .1911(.069)[.067] .1834(.064) .1904(.065) .1911(.071)[.069]

Note: 1. ψ = (β, σ2
v, ρ, λ1, λ2, λ3)

′; 2. W is generated according to fixed group scheme; 3. vit is homoskedastic;

4. Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 3, 1). ∗ [rse]: empirical average of rses, only for robust M-estimator.
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Table 4. Empirical Mean(sd)[rse] of Robust M-estimator, DGP2 (Durbin), T = 3, m = 10, SNR=3

n = 100 n = 400

ψ Normal Error Normal Mixture Chi-Square Normal Error Normal Mixture Chi-Square

1 1.000(.012)[.012] 1.000(.012)[.012] 1.000(.012)[.011] 1.000(.007)[.007] 1.000(.007)[.007] 1.000(.007)[.007]

.2 .200(.040)[.039] .199(.040)[.038] .199(.040)[.038] .200(.018)[.017] .200(.017)[.017] .200(.017)[.017]

1 .947(.181)[.175] .952(.376)[.251] .953(.281)[.213] .985(.096)[.094] .979(.188)[.144] .981(.140)[.118]

.3 .300(.013)[.013] .301(.015)[.014] .300(.014)[.013] .300(.007)[.008] .300(.008)[.009] .300(.008)[.008]

.2 .197(.056)[.049] .197(.057)[.051] .196(.056)[.050] .199(.024)[.023] .198(.024)[.023] .200(.024)[.023]

.2 .201(.052)[.045] .202(.054)[.048] .204(.052)[.046] .201(.028)[.027] .201(.027)[.027] .201(.027)[.027]

.2 .128(.201)[.162] .141(.192)[.150] .138(.199)[.155] .189(.088)[.080] .187(.086)[.078] .186(.085)[.079]

Note: 1. ψ = (β, βd, σ
2
v, ρ, λ1, λ2, λ3)

′; 2. W is generated according to fixed group scheme;

3. Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 3, 1).

Table 5. Empirical Mean(sd) of Robust M-estimator and GMM-estimator

DGP3, T = 3, m = 10, H = H-I, SNR=3

Normal Error Normal Mixture Chi-Square

n ψ RM-Est GMM-Est RM-Est GMM-Est RM-Est GMM-Est

50 1 .9989(.021) 1.0038(.103) .9993(.022) 1.0038(.098) .9979(.022) .9994(.104)

.3 .3008(.019) .2620(.086) .3002(.021) .2646(.083) .3006(.020) .2611(.087)

.2 .1951(.084) .2279(.117) .1919(.086) .2268(.102) .1941(.083) .2294(.112)

.2 .2021(.063) .1976(.077) .2055(.065) .1969(.079) .2053(.062) .1988(.085)

100 1 .9998(.015) .9942(.069) 1.0000(.016) .9972(.066) .9997(.016) .9966(.072)

.3 .2995(.015) .2619(.088) .2991(.018) .2702(.078) .2998(.016) .2627(.081)

.2 .1968(.069) .2148(.115) .1920(.070) .2153(.102) .1955(.069) .2150(.106)

.2 .1995(.039) .1887(.086) .2017(.040) .1913(.082) .2010(.039) .1904(.081)

200 1 .9992(.010) .9949(.042) .9997(.010) .9951(.040) .9998(.010) .9953(.041)

.3 .3002(.010) .2858(.049) .3002(.012) .2866(.047) .2999(.010) .2851(.050)

.2 .1985(.026) .2027(.055) .1996(.027) .2034(.054) .1992(.027) .2048(.055)

.2 .2009(.029) .2035(.049) .2001(.029) .2013(.048) .1996(.029) .2007(.050)

400 1 1.0000(.007) 1.0021(.042) 1.0000(.008) 1.001(.042) 1.0003(.007) 1.0013(.042)

.3 .3002(.008) .2890(.032) .3002(.009) .2923(.033) .2999(.008) .2897(.032)

.2 .1998(.019) .2059(.061) .1998(.019) .2078(.061) .1988(.020) .2108(.059)

.2 .1999(.021) .1979(.049) .2000(.021) .1983(.046) .2006(.021) .1960(.045)

Note: 1. ψ = (β, ρ, λ1, λ2)
′; 2. W is generated according to fixed group scheme;

3. Xt values are generated with θx = (g, φ1, φ2, σ1, σ2) = (.01, .5, .5, 3, 1).
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