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Abstract

We develop new tests of clustered equal predictive ability (C-EPA) in panels where the clusters

are unknown and estimated by a Panel Kmeans algorithm. This algorithm differs from the standard

Kmeans algorithm by employing the time series variation of the panel rather than relying merely

on time averages of observations. To address the challenge of testing hypotheses that depend on

data-driven cluster estimates, we adopt a selective conditional inference framework. Specifically,

we derive a Wald-type test statistic for pairwise equality and show that the limiting distribution

of its square root conditional on the estimated cluster structure is that of a truncated χ random

variable. We characterize the associated truncation set as a polyhedron in the data space. As a test

of the C-EPA hypothesis, we propose a p-value combination method which aggregates the evidence

against the pairwise equality and overall EPA null hypotheses. In addition, we prove that using

an information criterion to select the unknown number of clusters under the alternative hypothesis

prior to testing does not require further conditioning to obtain a valid test. Monte Carlo simulations

confirm the excellent finite sample performance of the proposed tests. An empirical application to

forecasting exchange rates using traditional time series models as well as machine learning methods

illustrates the practical importance of our procedure.
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1. Introduction

Despite the large and ever-growing literature1 on testing equal predictive ability (EPA) using time

series data, testing EPA with panels has attracted attention among econometricians only recently. To

the best of our knowledge, the only contributions are those of Akgun, Pirotte, Urga and Yang (2024,

APUY hereafter) and Qu, Timmermann and Zhu (2024, QTZ hereafter). Both papers focus on two

EPA hypotheses: the overall EPA (O-EPA) hypothesis and the clustered EPA (C-EPA) hypothesis,

where overall refers to the equivalence of two forecasts for a given loss function on average over all

time periods and all panel units, whereas clustered refers to equivalence of K ≥ 2 clusters of units.

In many applied forecasting contexts, the predictive performances of different forecasting models

or agents vary across units, such as countries or firms. For example, Dreher et al. (2008) show that

IMF forecasts significantly differ in quality depending on whether countries received IMF assistance

or were aligned with major donors in international forums. Similarly, forecasting accuracy may differ

systematically across units grouped by income level, geography, political alignments, or development

status. This suggests that forecasting accuracy is heterogeneous across clusters, often in ways that are

not directly observable to the researcher. In such cases, testing for EPA must accommodate clustered

heterogeneity, often without knowing the clusters in advance.

The primary contribution of this paper is the development of novel conditional C-EPA tests for

panel data where the cluster structure is unknown. Our framework advances beyond the recent papers

by APUY and QTZ in several important directions. First, inspired by Giacomini and White (2006),

we consider a general setting with conditioning variables, which provides a very flexible environment

for practitioners. Although it may be considered trivial, this is an important extension that has not yet

been considered in the panel data literature on EPA testing. Second and most importantly, we allow the

clusters to be learned from the data using the Panel Kmeans algorithm which generalizes the classical

Kmeans algorithm to panel settings. Unlike clustering on time averages of observations, our method

fully exploits the time variation in the data. Third, to ensure valid inference after cluster estimation,

we develop a selective conditional inference framework based on the polyhedral method (see, e.g., Lee

et al., 2016). We develop a Wald-type test of a homogeneity on the centers of a pair of clusters and

show that its asymptotic distribution is equivalent to that of a truncated χ-variate after conditioning

on the estimated clusters. We derive the analytical characterization of the truncation region under the

1See Giacomini (2011), Clark and McCracken (2013), and Rossi (2021) for reviews of the early and more recent
contributions to the area.
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Panel Kmeans algorithm. This is nontrivial because changes on the clustering algorithm changes the

selection region, necessitating new derivations. Fourth, we prove that using an information criterion to

select the number of clusters pre-testing does not invalidate our proposed procedure. Furthermore, we

demonstrate through Monte Carlo experiments that using multiple random initializations also results

in valid inference without additional conditioning. This fills in a gap in the literature as previous

studies did not address two well known shortcomings of the Kmeans-type algorithms: the difficulty in

selecting the number of clusters and the possibility of converging to local minima. Last, rather than

relying on a Wald test for the joint C-EPA hypothesis, we propose a p-value combination approach

that aggregates np = K(K−1)/2 pairwise equality tests and an O-EPA test. Although Wald tests for

linear hypotheses post-clustering are easy to generalize to our setting, they tend to be anti-conservative

when the number of constraints is large, which is the case in our specific problem of C-EPA testing

(see Yun and He, 2024; Akgun and Okui, 2025, for an overall homogeneity test for Kmeans and for

tests of general linear hypotheses in panels with latent clusters, respectively). Our p-value combination

strategy avoids this complication and maintains proper control of the Type I error.

Developing tests on the cluster centers which successfully control the Type I error rate following the

estimation of the unknown clusters constitutes the main theoretical contribution of this paper. Several

well-known clustering methods exist, such as hierarchical clustering, sequential binary segmentation,

and Kmeans.2 In this paper, we focus on the Panel Kmeans estimator which is arguably the most com-

monly used method in econometrics (see Lin and Ng, 2012; Bonhomme and Manresa, 2015; Sarafidis

and Weber, 2015; Bonhomme et al., 2022; Patton and Weller, 2023, among others). If the predictive

abilities of two forecasters differ so that, while they are equally good (or bad) within clusters, they

differ between clusters, Panel Kmeans can detect these clusters under general conditions. That is, the

Panel Kmeans estimator of the cluster centers is consistent if the clusters are well separated. However,

under the C-EPA hypothesis, this assumption does not hold, which implies that all units effectively

belong to a single cluster. Although it remains potentially consistent, the asymptotic distribution is

generally unknown. This leads to the problem of double dipping (see Kriegeskorte et al., 2009), where

the same data are used for both model selection (via clustering, in our context) and inference.

A straightforward way to deal with the problem of double dipping is sample splitting. In a cross-

sectional setting, Gao et al. (2024) show that sample splitting does not provide a valid way to test

hypotheses on cluster centers. However, the time dimension of a panel provides a solution to this, as in

2See Ikotun et al. (2023) for a recent review of the Kmeans clustering algorithms.
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Patton and Weller (2023) where a Split Sample test is proposed to test the homogeneity of the mean

of a panel process among clusters chosen by Panel Kmeans. Despite its theoretical and computational

simplicity, sample splitting has its drawbacks. First, Split Sample tests rely on the selection of two

sub-samples. One sample, called training sample, is used for the estimation of the clusters and another,

called test sample, for inference on the centers of these estimated clusters. However, this selection

can be arbitrary in practice and there is no guidance on how to split the sample.3 Second, structural

breaks in the time period under consideration may completely invalidate the sample splitting method.

In standard validation and cross-validation methods, samples are often divided randomly. In panel

setting however, sample is divided at a given date which may exactly or approximately correspond to

the date of breaks which can grossly affect the results of the tests. Third, the validity of the Split

Sample method is not guaranteed for dependent data (Kuchibhotla et al., 2022). Lunde (2019) shows

that the Split Sample approach is valid under weak-dependence conditions but their framework covers

variable selection in a regression model and it is not necessarily valid for clustering. Patton and Weller

(2023) propose a solution to the case where general time series dependence of l ≥ 1 lags are allowed

but impose independence beyond l lags. They show that, in this case, sample splitting continues to

be valid if l periods between the two sub-samples are discarded. This validates the use of the Split

Sample tests for this particular type of dependence but may result in loss of power.

In this paper, we develop an alternative selective conditional inference framework which uses the

full sample of observations for both estimating the unknown clusters and making inference on their

centers. In particular, we follow the recently developing literature on polyhedral method for inference

after selection (Lee et al., 2016; Gao et al., 2024; Chen and Witten, 2023). Our main motivation source

is the papers by Gao et al. (2024) and Chen and Witten (2023) who propose calculating selective p-

values to test the equality of two cluster means post-clustering in a cross-sectional framework. The

generalization of the methods followed in these papers to our context requires solving several non-trivial

problems. These papers focus on the equality of a pair of cluster centers whereas we are interested

in the joint null which states that all clusters have a zero mean. A recent attempt to generalize the

framework to the joint equality of all cluster means has been made by by Yun and He (2024). Although

it would not be too complicated to depart from this paper for testing our null, this would potentially

lead to very poor performance in small samples due to the large number of constraints to be tested.

The methodology that we follow to overcome these difficulties can be summarized as follows.

3For an attempt to answering this question in a related but different context, see Hansen and Timmermann (2012).
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First, we use a panel data version of the Lloyd’s Kmeans algorithm (Lloyd, 1982) inspired by the

influential work of Bonhomme and Manresa (2015). This algorithm is called Panel Kmeans as it

differs substantially from the classical Kmeans which is developed for single indexed variables. Using

this algorithm, we estimate the cluster membership variables as well as the cluster centers which

measure the average predictive ability differences between competing forecasts for a given cluster.

Second, based on the square root of a Wald statistic, we construct a test statistic measuring the

difference in forecast loss differentials between estimated clusters. The usual critical values for a χ-

variate are not valid for the problem in hand, as described above. Instead, after conditioning on

the estimated clusters, we show that the test statistic follows a truncated χ distribution where the

truncation sets are polygons in the data space. We derive the analytical formulae for the calculation

of the truncation set. Third, we observe that the null hypothesis of C-EPA can be decomposed into np

unique pairwise equality hypothesis and an O-EPA hypothesis which states that the overall mean of

the panel is zero. Based on this simple observation, we apply a p-value combination method following

the recent advances in the literature (Vovk and Wang, 2020; Vovk et al., 2022; Gasparin et al., 2025)

using the p-values of the pairwise equality tests together with that of the O-EPA test.

Most of the literature on selective inference, and in particular Gao et al. (2024) and Chen and

Witten (2023), are based on strong assumptions on the data generating process such as normality,

homoskedasticity and independent observations. This is, of course, a very important constraint for our

purpose. We derive the limiting theory of the proposed test statistics for potentially heteroskedastic,

dependent and non-Gaussian panel data. To deal with the dependencies in the time series dimension,

a heteroskedasticity and autocorrelation robust variance estimator is employed following Sun (2013,

2014). This estimator is then applied to the cross-sectional averages of the loss differentials which

in turn provides a test statistic robust to arbitrary form and strength of cross-sectional dependence

(CD) (see Driscoll and Kraay, 1998). We show that the tests are correctly sized, and consistent under

general alternatives even in the presence of arbitrary weak time series correlation and strong CD. In

order to establish the asymptotic power of the tests, we prove that the Panel Kmeans estimator of the

cluster centers remain consistent under strong CD contrary to the weak dependence assumptions in

Bonhomme and Manresa (2015) and Patton and Weller (2023) which is, to the best of our knowledge,

a result which has not previously appeared in the literature.

The small sample properties of the proposed tests are assessed via an extensive Monte Carlo

simulation, and are compared with a set of Split Sample test statistics. The results show that our
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test statistics have optimal properties even in samples which can be considered very small in potential

applications. In particular, our tests have negligible size distortions in very small samples and have

considerable power even under weak deviations from the C-EPA null.

We illustrate the empirical relevance of our methodology through an application to exchange

rate forecasting, comparing the performance of traditional time series models with that of modern

machine learning approaches. Drawing on a large dataset of bilateral exchange rates against the U.S.

dollar, we evaluate the predictive ability of each method relative to a benchmark AR(1) model. Our

results reveal substantial heterogeneity across exchange rate clusters and show that nonlinear models

that incorporate macroeconomic fundamentals significantly outperforming conventional benchmarks.

These findings complement recent evidence by Spreng and Urga (2023), who highlight the importance

of powerful multivariate forecast comparison methods, and by Hillebrand et al. (2023), who emphasize

the forecasting gains from utilizing macroeconomic fundamentals to forecast exchange rates.

All testing procedures developed in this paper are implemented in two dedicated R packages. The

clusteredEPA package provides tools for testing EPA in the presence of latent clusters, including

Selective Inference and Split Sample procedures. The companion package PanelKmeansInference

focuses on post-clustering inference for coefficient homogeneity across clusters estimated via Panel

Kmeans. Both packages and the replication material of the paper can be downloaded on https:

//github.com/akoguzhan/.

Organization of the paper. Section 2 presents the null and the alternative hypotheses of

interest, three motivating examples, a generalized test of C-EPA with predetermined clusters, and the

Panel Kmeans estimator of the unknown clusters. Section 3 discusses basic regularity conditions for

our new tests and presents two useful lemmas. Section 4 introduces the tests of C-EPA with unknown

clusters and presents their asymptotic properties. Section 5 presents essential Monte Carlo results.

An empirical illustration is reported in Section 6. Section 7 concludes. Appendices A-D contain the

proofs of the theoretical result and the description of the Split Sample tests.

Notation. Random variables are denoted by upper-case letters and their realizations by the

corresponding lower-case letters, e.g., w(·) denotes a realization of the test statistic W (·). ∥ · ∥ denotes

Euclidean norm, 1{·} is indicator function, diag(·) forms a diagonal matrix by given elements, tr(·)

is the trace of a square matrix, [ · ] returns an integer by rounding, | · | denotes its cardinality when

applied to a set, ⌊ · ⌋ returns the closest integer smaller than its argument, ⊗ denotes Kronecker

product.

5

https://github.com/akoguzhan/
https://github.com/akoguzhan/


2. Setup and Preliminaries

In this section, we introduce the testing framework, the C-EPA null and alternative hypotheses.

Then we present three motivating examples, and introduce a conditional C-EPA test with prede-

termined clusters that generalize APUY. Finally, we present the Panel Kmeans estimator and the

associated algorithm which will serve as a tool to select the clusters based on which we will conduct

the C-EPA tests with unknown clusters.

2.1. Testing framework and hypotheses

Let Ŷa,it be the τ -steps ahead, τ ≥ 1, forecast of agents a = 1, 2 for the target variable Yit made

at time t − τ , t = 1, 2, . . . , T , for unit i = 1, 2, . . . , N . Here, a represents a forecasting agent such

as IMF, OECD as in APUY and QTZ, or a forecasting model. To the best of our knowledge, there

are no papers focusing on the theoretical comparison of out-of-sample forecasts of panel data models

but the corresponding time series literature is rich (see Clark and McCracken, 2001, 2013, 2014, 2015;

Giacomini and White, 2006, among others). A generic loss function is denoted by L(·, ·). This can be

a quadratic loss, an absolute loss or a loss function, which is not necessarily in the forecast error form.

Define the loss differentials of the two forecasts as ∆Lit = L(Ŷ1,it, Yit)−L(Ŷ2,it, Yit) which are defined

on a complete probability space (Ω , E ,P).

The null hypothesis of interest is the generalized C-EPA hypothesis. By “generalized” we mean

that it allows conditioning variables, contrary to the unconditional null hypotheses considered in recent

papers by APUY and QTZ. This null hypothesis is stated as

H0 :
1

|Ck|
∑
i∈Ck

E(∆Lit | Ft−τ ) = 0, a.s., for all k = 1, 2, . . . ,K (1)

where Ft ⊆ E is a conditioning set (see the description below), and Ck, k = 1, . . . ,K, are the sets

of panel unit indexes. More concretely, Ck = {i : ki = k} where ki ∈ {1, 2, . . . ,K} is the cluster

membership indicator of unit i. These sets are mutually exclusive and exhaustive, that is, Ck
⋂
Cg = ∅

for all k ̸= g, and
⋃K

k=1 Ck = {1, . . . , N}. The alternative hypothesis is

H1 :
1

|Ck|
∑
i∈Ck

E(∆Lit | Ft−τ ) ̸= 0, for at least one k = 1, 2, . . . ,K. (2)

In the formulation of the hypotheses, it is implicitly assumed that the conditional expectation of

interest is time invariant almost surely. With a more complicated notation, we could also focus on
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the averages of these expectations over time. However, this requires different ways of estimating the

variance or clustering (see Harvey et al., 2024, and Remark 3 below).

Two cases covered in the null hypothesis (1) and the corresponding alternative hypothesis are

important. The first null is the unconditional C-EPA hypothesis which is obtained when Ft = {∅,Ω}.

For predetermined clusters, the tests for this null hypothesis were developed by APUY and QTZ

under different assumptions on the autocorrelation and CD properties of the loss differentials. The

second null hypothesis that we consider is the conditional C-EPA hypothesis. Two sub-cases of the

conditional null are particularly useful. First, consider the σ-field σ({Wis}Ni=1, s ≤ t) generated by the

present and the past of the measurable-E random variables Wit = (Yit, X
′
it)

′ with Xit being a vector

of external predictors used to make the predictions Ŷa,it. Then an interesting null hypothesis of the

form (1) is obtained when Ft = σ({Wis}Ni=1, s ≤ t). Second, a researcher may be interested in the

conditional EPA with respect to the realization of a vector of measurable-E common factors Ft. In this

case, we let Ft = σ(Fs, s ≤ t). Some common factors can be particularly useful to model via dummy

variables indicating, for example, the global financial crises, the COVID-19 period, etc. Through a

careful choice of these dummies, our framework makes it possible to focus on local differences in the

predictive abilities of the two forecasters.

Remark 1. The two conditional schemes described above, namely conditioning on observed covariates

vs. common factors need not be mutually exclusive. In practice, one may estimate forecast errors from

alternative panel data models that include both external predictors and observed or estimated common

factors, and whose errors also exhibit spatial or network dependence. These general forecasting models

nest both strong cross-sectional dependence via common factors and weak cross-sectional dependence

via spatial interactions (see Chudik et al., 2011, for different types of cross-sectional dependence).

In turn, one would expect the resulting loss differentials to contain different types of cross-sectional

dependence via differences in alternative models. While our current theoretical framework accom-

modates general forms of cross-sectional dependence, formal treatment of parametric structures of

cross-dependence in loss differentials could lead to more powerful inference (see APUY for further

insights on the distinction of weak vs. strong cross-sectional dependence in EPA testing).

Remark 2. In some cases, one may want to compare a large number of forecasts made for a given unit

with a base forecast. For example, in comparing the inflation forecasts of the survey of professional

forecasters with that of the IMF for the Euro area, the framework remains similar but the meaning

of the indexes change. This case can be described as follows. Yt denotes the Euro area inflation. Ŷ1,it
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is the forecast of the i-th forecaster for period t and Ŷ2,t is the IMF forecast for period t. The loss

differentials are then ∆Lit = L(Ŷ1,it, Yt) − L(Ŷ2,t, Yt) which still depend on the two indexes i and t.

As far as its assumptions on the loss differentials are satisfied, our framework is applicable in these

situations. In the following section, we give further examples in detail which justify the practical

importance of testing the C-EPA null with unknown clusters.

The null hypothesis H0 implies that |Ck|−1
∑

i∈Ck E(H̃i,t−τ∆Lit) = 0, for any measurable-E vector

of random variables H̃it (Giacomini and White, 2006). Here, by taking expectations with respect to

the vector of measurable-E vector H̃i,t−τ , we obtain an unconditional moment condition. Let Hit be

such a P × 1 vector, called a “testing function” by Giacomini and White (2006) and Zit = Hi,t−τ∆Lit

with µ0i = E(Zit). Define also θ0k(C) = |Ck|−1
∑

i∈Ck µ
0
i where C = {C1, . . . , CK}. Then, H0 implies

H′
0 : θ

0
k(C) = 0, for all k = 1, 2, . . . ,K. (3)

This transformation from a conditional to an unconditional moment is standard in forecast evaluation

and GMM-type testing frameworks. It enables tractable estimation and inference without explicitly

modeling the conditioning σ-field Ft−τ . While this approach does not retain all the information

contained in the full conditional distribution of ∆Lit, it preserves enough structure for hypothesis

testing provided that the specified test function is sufficiently informative. In practice, the choice of

Hi,t−τ , for instance lagged loss differentials, regressors, or cluster-specific moments, alters the power

properties and interpretation of the resulting test.

2.2. Examples

The usefulness of testing the conditional EPA hypothesis has been widely documented in the

literature starting with Giacomini and White (2006) (see also the excellent review by Clark and

McCracken, 2013). We now present examples highlighting the importance of accounting for unknown

clusters when testing the C-EPA hypothesis.

Example 1: Time series forecasting. In time series forecasting, it is common to compare the

predictive accuracy of a benchmark model, such as an AR(1), against alternative specifications with

additional flexibility. For example, Marcellino et al. (2006) compare direct and iterated autoregressive

forecasts across a wide set of macroeconomic variables.

Suppose we observe N bivariate time series {Yit, Xit}Tt=0. The true data-generating process (DGP)

8



of the series belongs to one of two latent clusters:

Yit =


αi + βiXi,t−1 + Uit, i ∈ C1,

βiXi,t−1 + Uit, i ∈ C2,

where Uit ∼ iid(0, σ2) and assume that the predictor is fixed and Xi,T is observed.

Two forecasters have imperfect knowledge of the DGP and make the following forecasts:

Forecaster 1: Ŷ
(1)
i,T+1 = α̂i + β̂iXi,T ,

Forecaster 2: Ŷ
(2)
i,T+1 = β̃iXi,T .

The least squares estimators α̂i, β̂i, and β̃i are computed from a fixed estimation window and are

therefore subject to sampling variability.

Each forecaster performs well on one cluster and poorly on the other. Specifically, for units in

C1, Forecaster 1 correctly specifies the model by including an intercept, while Forecaster 2 omits this

term and incurs bias. In contrast, for units in C2, the true DGP has no intercept, and Forecaster 2 is

correctly specified, while Forecaster 1 overfits by including a superfluous constant term.

This setup yields systematic differences in forecast accuracy across clusters. In Appendix A we

derive the expected loss differential between the two forecasters, conditional on the true cluster mem-

bership, which is given by

1

|Ck|
∑
i∈Ck

{E[(Ŷ (1)
i,T+1−Yi,T+1)

2]−E[(Ŷ (2)
i,T+1−Yi,T+1)

2]} =


1

|C1|
∑
i∈C1

[V(α̂i) + B(α̂i)
2 − α2

i +∆i],

1

|C2|
∑
i∈C2

[V(α̂i) + B(α̂i)
2 +∆i],

(4)

where ∆i := [V(β̂i) − V(β̃i) + B(β̂i)2 − B(β̃i)2]X2
i,T + 2Xi,TCov(α̂i, β̂i) with B(·) denoting the bias of

an estimator.

This decomposition illustrates how heterogeneity in model specification and estimation precision

across clusters induce systematic differences in forecast performance. These loss differentials moti-

vate the C-EPA hypothesis as a natural testable implication of latent cluster structure in predictive

performance.

Example 2: Panel data forecasting. Latent group structures became popular in panel data

analysis in the last decade (see Bonhomme and Manresa, 2015; Su et al., 2016; Ando and Bai, 2017;

Lumsdaine et al., 2023). Suppose that two forecasters are interested in a variable Yit whose DGP is
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given by

Yit = β′kiXi,t−1 + Uit, Uit ∼ iid(0, σ2), ki ∈ {1, . . . ,K}.

We assume that the vector of predictors Xi,t−1 is known and fixed, and that the forecast errors Uit

are independent of all regressors and estimators.

Two forecasters make the following two forecasts:

Forecaster 1: Ŷ pooled
i,T+1 = β̂′Xi,T ,

Forecaster 2: Ŷ het
i,T+1 = β̂′iXi,T .

While the pooled estimator β̂ suffers from misspecification bias if βki ̸= β, the individual estimator β̂i

is unbiased but suffers from increased variance due to limited time series observations.

Under standard regularity conditions, the cluster-level expected loss differential is

1

|Ck|
∑
i∈Ck

{E[(Ŷ pooled
i,T+1 − Yi,T+1)

2]− E[(Ŷ het
i,T+1 − Yi,T+1)

2]}

= [E(β̂)− βk]′ΣX [E(β̂)− βk] + tr{[V(β̂)− V(β̂i)]ΣX},
(5)

where ΣX = |Ck|−1
∑

i∈Ck Xi,TX
′
i,T is the empirical second moment matrix of the regressors in cluster

Ck, and V(β̂i) = |Ck|−1
∑

i∈Ck V(β̂i) is the average variance of the unit-specific estimators. The proof of

this expression is given in Appendix A. This highlights how clusters with large group-level heterogeneity

induce systematic differences in forecast performance across units.

Example 3: Forecasting with machine learning methods. Machine learning methods are be-

coming increasingly popular in economic applications (see, for instance, Athey (2018) for a discussion

and Haghighi et al. (2025) for the recent special issue of the Journal of Econometrics). In high di-

mensional forecasting tasks, researchers often compare linear methods such as Lasso with nonlinear

alternatives like random forests. For instance, Goulet Coulombe et al. (2022) compared a large set

of data-rich and data-poor models. The authors found that the main advantage of machine learn-

ing methods for macroeconomic forecasting is their ability to capture nonlinearities associated with

macroeconomic uncertainty, financial stress and housing bubbles. Two methods are trained and eval-

uated using validation MSE:

• Method 1: linear forecast (e.g., Lasso),

• Method 2: nonlinear forecast (e.g., random forests).

If some units display nonlinear patterns while others do not, the average MSE over the panel units may
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be misleading. Then, to check the relative performance of two different machine learning methods,

one might need to apply a second machine learning method, namely clustering, because clustering

forecast loss differentials and testing the C-EPA null allows for identification of cluster-level model

dominance. If it was not reserved for another econometric method, we would call the application our

testing framework to this case “double machine learning.”

2.3. Generalized clustered EPA tests with predetermined clusters

The tests for the unconditional C-EPA hypothesis have been developed by APUY and QTZ for

predetermined clusters. When Ft = {∅,Ω}, the C-EPA null reduces to |Ck|−1
∑

i∈Ck E(∆Lit) = 0 for

all k = 1, 2, . . . ,K and we obtain the unconditional C-EPA hypothesis. APUY suggested several test

statistics under different assumptions on the dependence structure of the loss differentials. Here, we

generalize their methodology to the case of Ft ̸= {∅,Ω} together with a small sample adjustment.

Consider the following test statistic for (3):

W (C) = B −KP + 1

KPB
T θ̂′(C)Ω̂−1(C)θ̂(C), (6)

where θ̂(C) = [θ̂′1(C), . . . , θ̂′K(C)]′ with θ̂k(C) = (|Ck|T )−1
∑

i∈Ck
∑T

t=1 Zit and Ω̂(C) is an orthonormal

series (OS) variance-covariance estimator defined as follows

Ω̂(C) = 1

B

B∑
j=1

Λ̂j(C)Λ̂′
j(C),

Λ̂j(C) =
√

2

T

T∑
t=1

[Z̄t(C)− θ̂(C)] cos
[
πj

(
t− 1/2

T

)]
,

(7)

with Z̄t(C) = [Z̄ ′
1,t(C), . . . , Z̄ ′

K,t(C)]′, Z̄k,t(C) = |Ck|−1
∑

i∈Ck Zit, and B is the number of orthonormal

basis functions used in its estimation. The first factor in (6), (B −KP + 1)/KPB, is a small sample

correction obtained through the connection between Hotelling’s T 2 distribution and the F -distribution,

and using the asymptotic property of the proposed variance estimator.

The general class of OS estimators of a long-run variance (LRV) was first proposed by Phillips

(2005). Different OS were then used to construct estimators by Müller (2007), Sun (2011, 2013,

2014), among others. Under the results of Lemma 1 and following Sun (2013), it is easy to show that

W (C) d−→ FKP,B−KP+1 under the null, where Fv1,v2 denotes the F -distribution with numerator and

denominator degrees of freedom of v1 and v2, respectively. When B −→ ∞, a generalization of the

usual results of APUY hold such that W (C) d−→ χ2
KP . The results of Sun (2013) show that when B is
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not too large, using the FKP,B−KP+1 critical values instead of (scaled) χ2
KP critical values results in

better size properties. We leave the formal discussion of the theoretical and numerical results to next

sections.

With some abuse of notation, let p[w(C)] = PH0 [FKP,B−KP+1 ≥ w(C) ] be the p-value associated

with w(C). Here, as in the rest of the paper, we do not show the dependency of p[ · ] to the reference

distribution for the sake of simplicity. Moreover, we simply write PH0 [ · ] to mean the null hypothesis

of interest even if different statistics may test different nulls. These will be clear from the context as

we establish the asymptotic distribution of each test, and the respective p-values are defined by this

asymptotic distribution, under the respective null. Using this p-value, a level-α test rejects the null

hypothesis if p[w(C)] ≤ α where α ∈ (0, 1) is the predetermined Type I error rate.

2.4. Panel Kmeans estimator

If there is no a priori information on the clusters Ck, k = {1, . . . ,K}, one may use the Panel

Kmeans estimator applied to the stacked panel Z = (Z ′
11, Z

′
12 . . . , Z

′
NT )

′, denoted C(Z), to learn these

clusters from the data. For a given K, the Panel Kmeans estimators of the cluster membership sets

and cluster centers are defined respectively as:

(Ĉ1, . . . , ĈK) = argmin
(C1,...,CK)

N∑
i=1

T∑
t=1

∥∥∥∥∥∥Zit −
1

|Ck|T
∑
j∈Ck

T∑
s=1

Zjs

∥∥∥∥∥∥
2

,

θ̂k(Ĉ) =
1

|Ĉk|T

∑
i∈Ĉk

T∑
t=1

Zit.

(8)

The optimization problem in (8) is typically solved by an iterative algorithm, similar to those proposed

by Lloyd (1982) or Hartigan (1975). The Panel Kmeans estimates of the cluster membership variables

and the cluster centers can be calculated using Algorithm 1 which is a generalization of that of Lloyd’s.

Algorithm 1 is a generalization of Lloyd’s classical Kmeans clustering algorithm in several respects.

Moreover, this generalization has important consequences in our framework. First, Lloyd’s algorithm

clusters the observations by minimizing within-cluster Euclidean distances to static centroids whereas

the Panel Kmeans algorithm clusters units based on their entire time series profile. Specifically, it

minimizes the total within-cluster sum of squared deviations over time, thereby extending the cluster-

ing criterion to sequences rather than points. This introduces a temporal structure absent in classical

Kmeans, while preserving the iterative structure of centroid updating and cluster reassignment. Sec-

ond, like classical Kmeans, the Panel Kmeans algorithm solves a non-convex minimization problem.
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Algorithm 1: Panel Kmeans

Input: Data matrix Z = (Z ′
11, Z

′
12 . . . , Z

′)′, number of clusters K
Output: Cluster assignments ki, cluster centers θk

1 Initialize θ
(0)
k for k = 1, . . . ,K; set m← 0;

2 repeat
3 for i← 1 to N do

4 k
(m+1)
i ← arg min

k∈{1,...,K}

∑T
t=1∥Zit − θ(m)

k ∥2;

5 for k ← 1 to K do

6 Update cluster C(m+1)
k ← {i : k(m+1)

i = k};

7 θ
(m+1)
k ← 1

|C(m+1)
k |T

∑
i∈C(m+1)

k

T∑
t=1

Zit;

8 m← m+ 1;

9 until k
(m)
i = k

(m−1)
i for all i = 1, . . . , N ;

The objective function is piecewise quadratic and discontinuous in the assignment variables, leading

to the possibility of converging to local minima. This motivates the use of multiple random initializa-

tions. Third, the key challenge in the generalization of the selective inference framework for classical

Kmeans developed by Chen and Witten (2023) to the Panel Kmeans lies in the dependency structure

of the data. Observations for a given unit are temporally dependent and potentially cross-sectionally

correlated, making standard theoretical arguments more delicate.

Different initialization methods for Algorithm 1 exist. Chen and Witten (2023) initializes the

Kmeans algorithm by choosing K random cluster centers from data. Then they condition on the

initial assignments based on these centers as well as each cluster assignment in the Kmeans iterations.

In our setting, we first assign each unit randomly to a cluster and then calculate the corresponding

cluster centers. Hence, first cluster centers are not chosen to minimize a distance metric. This is

a subtle but important difference. The method of Chen and Witten (2023) results in two sets of

analytical formulae: one for the initialization and one for the canonical assignments. In our method,

we rely only on the second because the initialization does not use a distance metric. Hence, truncation

set calculations we provide in Appendix D are simpler than those of Chen and Witten (2023).

Remark 3. Our selective inference framework can, in principle, be extended to models with group

fixed effects (GFE) varying over time. Specifically, suppose each unit’s outcome is a P × 1 vector

Zit, and follows the model Zit = µki,t + Vit, where µk,t is a time-varying grouped fixed effect and

Vit is the innovation. The testing problem then concerns the C-EPA null hypothesis defined by
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H0 : T−1
∑T

t=1 µk,t = 0 for all k. This is an important extension because it allows instabilities in

relative forecast superiority over time while focusing still on the average equivalence. In a time series

setting, Harvey et al. (2024) handled this problem by nonparametric local demeaning to estimate the

LRV whereas this GFE modeling strategy may simplify obtaining a consistent variance estimator by

assuming that the heterogeneity of the instability is fixed and low dimensional with respect to N .

In this case, a multidimensional GFE generalization of the Panel Kmeans clustering algorithm

continues to yield a polyhedral selection region in RNTP . This generalization preserves the logic of the

polyhedral approach but potentially introduces new computational burdens as the truncation region

grows in complexity and evaluating exact p-values requires new techniques. Developing efficient and

scalable inference methods in this multivariate GFE setting is an important direction for future work.

3. Assumptions and Two Useful Lemmas

In this section, we present the assumptions and two preliminary results that will be instrumental

in developing the asymptotic theory for the proposed testing procedures. The formulation of these

assumptions requires some additional notation. Throughout this paper, we use C to denote a generic

positive constant, and we write (T,N) → ∞ to indicate the joint divergence of both dimensions.

Asymptotic results under (T,N)→∞ are understood to hold for any sequence N = N(T ) such that

N(T ) is increasing in T and diverges as T → ∞. We also define Vit = Zit − µ0i , where Vp,it, for

p = 1, . . . , P , denotes the pth element of the vector Vit.

The following assumptions will be referred to throughout the paper. They are grouped into two:

first three are the generic assumptions, labeled as G#, which are required for both size and power

properties of the tests, and the other three are specific assumptions, labeled as S#, required only for

the power properties of the test under the alternative hypothesis H1.

Assumption G1. (a) ∥E(µ0i )∥ <∞, (b) E∥Vit∥4 ≤ C, (c) T−1
∑T

t,s=1 E∥VitV ′
is∥ ≤ C.

Assumption G2. |Ck|/N −→ πk ∈ (0, 1) for each k = 1, . . . ,K as N −→∞.

Assumption G3. Vit is weakly stationary for all i = 1, . . . , N with Ωi =
∑∞

j=−∞ E[VitV ′
i,t−j ] being

positive definite and either of the following two holds:

(a) E(|Vp,i1|ζ) <∞ for all p = 1, . . . , P and for ζ ≥ 2, Vit is φ-mixing with
∑∞

l=1 φ
1−1/ζ
l <∞,

(b) E(|Vp,i1|ζ) <∞ for all p = 1, . . . , P and for ζ > 2, Vit is α-mixing with
∑∞

l=1 α
1−2/ζ
l <∞.
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Assumption S1. µ0i = θ0k for all i ∈ C0k and k = 1, . . . ,K0, where θ0k is the true cluster center of the

kth cluster and C0k is the set of units belonging to the true kth cluster.

Assumption S2. Let K0 ≥ 2. Then for all k, g ∈ {1, . . . ,K0}, k ̸= g, there exists Ck,g > 0 such that

∥θ0k − θ0g∥2 ≥ Ck,g.

Assumption S3. There exist constants a1 > 0 and b1 > 0 such that, for each i = 1, . . . , N , Vit is

α-mixing with mixing coefficients α[t] ≤ e−a1tb1 . Moreover, there exist constants a2 > 0 and b2 > 0

such that P(|Vp,it| > C) ≤ e1−(C/a2)b2 for all p, i, t and C > 0.

Assumptions G1(a) and G1(b) are standard conditions which ensure that the cluster centers are well

defined and all moments up to the fourth of the innovation process Vit exist so that the cluster centers

as well as their variances are finite and can be estimated consistently with further regularity conditions.

Assumption G1(c) limits the time-series dependence in the sense that
∑

t̸=s E∥VitV ′
is∥ = O(T ). We do

not place any restriction on the CD characteristics of the panel and allow for both strong and weak

CD (see the discussion following Lemma 1 below).

Assumption G2 controls the asymptotic number of units per cluster. It is standard in the economet-

rics literature of clustering (see, for instance Assumption 2(a) of Bonhomme and Manresa (2015) and

Assumption A1(vii) of Su et al. (2016)). It states that each cluster has a non-negligible contribution

to the population. This assumption can be relaxed at the expense of more complicated notation.

Assumption G3 states standard mixing conditions. Here, Ωi is positive definite which is a well-

known condition for the validity of EPA testing using Diebold and Mariano (1995) type tests (West,

1996). This assumption means that the forecasts are made by either non-nested models or they satisfy

the conditions of Giacomini and White (2006) for nested models. In particular, if two models are

nested, they need to be made using rolling window or fixed estimation sample forecasting schemes.

An expanding window scheme is ruled out in the case of nested model comparisons (see McCracken,

2020; Zhu and Timmermann, 2022, for counter arguments for the validity of fixed estimation sample

scheme). For general nested model comparisons, we refer to the recent paper by Clark and McCracken

(2015) and the references therein.

Assumption S1 states that the centers of panel units are homogeneous within clusters but heteroge-

neous between them. Assumption S2 complements the previous assumption by putting a lower bound

to the differences between cluster centers. It formalizes implicitly the situation where H0 fails because

there are clusters in the population which differ in terms of their expectations. It simply states that
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the true cluster centers are well separated. Although it implies that the C-EPA null hypothesis fails,

this cluster separation assumption is not necessary (but sufficient) for our tests to have power. As

documented in the next section, even if K0 = 1, that is, there is only one cluster in the population,

our proposed tests have power if the population overall mean is different from zero.

Assumption S3 places additional constraints on the dependence properties and tail probabilities

of the process Vit over Assumptions G1 and G3. These conditions are imposed for the consistent

estimation of cluster membership and the asymptotic equivalence of the cluster center estimators

based on Panel Kmeans to the one based on true clusters.

Now we state two useful lemmas which will serve for our theoretical analysis of the test statistics

which we will develop. This requires newly introduced notation. Let θ0k(C) = |Ck|−1
∑

i∈Ck µ
0
i be the

true center of the k-th cluster implied by the partition C. Define the KP × 1 vector of true cluster

centers: θ0(C) = [θ0′1 (C), . . . , θ0′K(C)]′, Ω(C) ∈ RKP×KP denote the variance-covariance matrix of the

vector θ̂(C) after scaling, that is, Ω(C) = V{
√
T [θ̂(C)−θ0(C)]}, and let N (C) = diag(|C1|, . . . , |CK |)⊗IP .

The following result summarizes the usual properties of the sample mean for a fixed C. It will prove

useful for our theory even though we focus on estimated clusters because of the fact that we will

condition on the estimated cluster for valid C-EPA testing.

Lemma 1. Let C be a fixed set of cluster memberships and ϵ a fixed real such that ϵ ∈ [1/2, 1]. Under

Assumptions G1–G3, the following results hold as (T,N)→∞:

(a) θ̂(C)− θ0(C) = op(1),

(b) Ω̃(C)−1/2N (C)1−ϵT 1/2[θ̂(C)− θ0(C)] d−→ N (0, IKP ), where Ω̃(C) = N (C)2(1−ϵ)Ω(C).

Part (a) is a law of large numbers which shows that Assumptions G1-G3 are sufficient for the

consistency of the sample means for the cluster centers defined by a given C. Part (b) is the corre-

sponding central limit theorem. The real scalar ϵ ∈ [1/2, 1] measures the degree of CD in Vit. The case

of ϵ = 1 corresponds to the case of strong CD of the loss differentials as in the factor models; the case

of ϵ ∈ [1/2, 1) corresponding to the case of weak CD as in the spatial models, or independence across

the cross-sections. We refer to Chudik et al. (2011) for examples of panel models satisfying different

cases of CD and Bailey et al. (2016) for the estimation of the parameter ϵ when ϵ = (1/2, 1].

Remark 4. This general formulation using the parameter ϵ encompasses both strong and weak CD

and aligns with models of loss differentials incorporating common factors and spatial interactions as
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discussed above. The result concerns with the case of a fixed C and does not necessarily hold with

estimated cluster memberships. Below, we will make use of this result in a conditional framework to

obtain the asymptotic properties of our proposed tests with estimated clusters.

Lemma 2. Under Assumptions G1-S2 and if K = K0, as (T,N)→∞,

(a) θ̂(Ĉ)− θ0 = op(1).

(b) If Assumption S3 also holds, for all ξ > 0, P(supi∈{1,...,N}|k̂i − k0i | > 0) = o(1) + o(NT−ξ),

(c) θ̂(Ĉ)− θ̂(C0) = op(T
−ξ).

(d) If also N/T ξ → 0, Ω̃(C0)−1/2N (C0)1−ϵT 1/2[θ̂(Ĉ)− θ0] d−→ N(0, IKP ).

Based on this result, a naive attempt to test the null hypothesis of C-EPA would be to estimate

the unknown clusters using the Panel Kmeans estimator and then to use these estimates to construct

a Wald test statistic. Let W (Ĉ) be the usual Wald test statistic calculated using the Panel Kmeans

estimates obtained using the above algorithm. Consider the test which rejects the associated null if

p[w(Ĉ)] ≤ α for some α ∈ (0, 1). The problem with this approach is that the clusters are estimated

from the data which are then used to test the null hypothesis of C-EPA. It is now well known in

the literature that testing the null hypothesis of homogeneity (that is, no clusters exist), following a

clustering method such as Kmeans or hierarchical clustering, leads to extremely anti-conservative test

statistics, as shown by Gao et al. (2024), Patton and Weller (2023), and Chen and Witten (2023). This

occurs because the selection of clusters is a data-dependent procedure that implicitly favors detecting

heterogeneity, even under the null. When clustering is applied under the null, the algorithm will

typically partition the data to minimize within-cluster loss, resulting in estimated cluster means that

are artificially separated. This induces a form of selection bias in the test statistic, leading to severe

inflation in Type I error rates if this selection is not accounted for. As explained in Section 4 below,

the null hypothesis of these studies is a sub-hypothesis of the null in our paper, hence, the naive tests

of EPA suffer from the same problem. We demonstrate the consequences of this naive approach with

simulations in Section 5.

4. Tests of Generalized C-EPA with Unknown Clusters

In this section, we develop a valid test for the C-EPA null hypothesis when clusters are estimated

via the Panel Kmeans algorithm. As it is mentioned in the previous section, using the estimated
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clusters for testing in a naive manner results in over rejection of the null hypothesis. Here, a selective

conditional inference approach will be employed to control for the Type I error rate by conditioning

on the estimated clusters. We consider an approach based on sample splitting in Appendix B.

To begin, we first break down the C-EPA hypothesis into its sub-hypotheses of homogeneity and

O-EPA. Namely, the implication (3) of the null hypothesis of interest (1) can be written as H′
0 :

Hhomo
0

⋂
Hoepa

0 , with

Hhomo
0 : {θ0k(C) = θ0g(C)} for all k, g ∈ {1, . . . ,K}, k ̸= g, (9)

being the homogeneity hypothesis and

Hoepa
0 :

1

N

K∑
k=1

|Ck|θ0k(C) = 0, (10)

the O-EPA hypothesis, as named by APUY where the overall predictive performance is represented as

a weighted average of cluster means. We note that the parameter of interest in the O-EPA hypothesis

is invariant to the clusters chosen.

Both Hhomo
0 and Hoepa

0 are of particular empirical relevance. The tests of the unconditional O-EPA

hypothesis are studied by APUY under different assumptions on the dependence structure of the loss

differentials under known clusters. The empirical importance of testing the homogeneity hypothesis

Hhomo
0 goes beyond EPA testing (see, in particular, the applications of Patton and Weller, 2023, and

the discussion therein).

In Section 4.1, we first develop a selective conditional inference framework to test the homogeneity

of a pair of clusters selected by Panel Kmeans. Then, we propose a p-value combination test of Hhomo
0 .

In Section 4.2, an O-EPA test and the main test statistic of H0 are presented. Finally, in Section 4.3,

we cover the case of an unknown number of clusters and develop a method for its estimation.

4.1. Testing the null of homogeneity

We develop a test for (9). First, tests for each pairwise equality sub-hypothesis is developed

and their theoretical properties are presented. Then a homogeneity test is developed via a p-value

combination method.

Testing pairwise equality. The homogeneity null Hhomo
0 is the intersection of np = K(K − 1)/2

unique pairwise equality hypotheses. For each of these pairwise equality nulls, we define the test
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statistic Dk,g(Ĉ) as the square root of the associated Wald test statistic. That is,

D2
k,g(Ĉ) = T [θ̂k(Ĉ)− θ̂g(Ĉ)]′Σ̂−1

k,g(Ĉ)[θ̂k(Ĉ)− θ̂g(Ĉ)], (11)

where

Σ̂k,g(Ĉ) = ω̂k,k(Ĉ) + ω̂g,g(Ĉ)− 2ω̂k,g(Ĉ),

with ω̂k,g(Ĉ) being the {k, g}th P×P block of Ω̂(Ĉ). It is easily seen that, under appropriate conditions,

Dk,g(C)
d−→ χP as T −→∞, where χP is a random variable distributed as a χ variate with P degrees

of freedom. However, as discussed in the previous section, the associated critical values lose their

validity when used with estimated clusters. We define the following asymptotic selective Type I error

rate which will be the basis for valid C-EPA testing with unknown clusters.

Definition 1. For a pair of clusters k, g ∈ {1, . . . ,K}, k ̸= g a test of Hk,g
0 : {θ0k(C) = θ0g(C)} controls

the selective Type I error rate asymptotically as (T,N)→∞ at level α ∈ (0, 1) if

lim
(T,N)→∞

PH0

[
Reject H0 at level α

∣∣∣∣∣
N⋂
i=1

{k̂i(Z) = k̂i(z)}

]
≤ α, (12)

where k̂i(Z), i = 1, . . . , N is the output of Algorithm 1 and k̂i(z) is its sample counterpart associated

with the realization z of Z.

The definition states that a valid test of the pairwise equality hypothesis Hk,g
0 is the one that

controls the selective Type I error rate α given the clusters estimated by the Panel Kmeans algorithm.

More specifically, the conditioning event in (12) implies that Hk,g
0 should be rejected if the probability

of obtaining a test statistic as large as the one in hand does not exceed α among all realizations of Z

which result in the same clustering as the one obtained using the realization z.

As stated by Chen and Witten (2023), characterizing this condition is not trivial but we can instead

condition on the clusters estimated at all m = 1, . . . ,M steps of the algorithm. Two more terms to

be conditioned on will be easily seen through a decomposition of the random matrix Z into a term

associated with the test statistic Dk,g(C) and a term which is orthogonal to this one. We have the

following expression:

Z = Πk,gZ +Dk,g(C)
νk,g√

T∥νk,g∥2
{dir[Σ̂−1/2

k,g (C)Z ′νk,g]}′Σ̂
1/2
k,g (C) (13)

where

Πk,g = I −
ν̂k,gν̂

′
k,g

∥ν̂k,g∥2
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is the orthogonal projection matrix onto the subspace orthogonal to ν̂k,g = (ν̂ ′k,g,1, . . . , ν̂
′
k,g,N )′, ν̂k,g,i =

ιT δ̂k,g,i, ιT being a T × 1 vector of ones and δ̂k,g,i = 1{k̂i = k}/|Ĉk| − 1{k̂i = g}/|Ĉg|. This equality

is derived in Equation (32) of Appendix C. The derivation of the conditional distribution of Dk,g(Ĉ)

given Ĉ will be based on this expression. Now we define the following asymptotic p-value

p∞[dk,g(Ĉ)] = lim
(T,N)→∞

PH0

[
Dk,g(Ĉ) ≥ dk,g(Ĉ)

∣∣∣ A] , (14)

for k, g ∈ {1, . . . ,K}, where

A =

{
M⋂

m=1

N⋂
i=1

{k(m)
i (Z) = k

(m)
i (z)},Πk,gZ = Πk,gz,dir[Σ̂

−1/2
k,g (Ĉ)Z ′ν̂k,g] = dir[Ŝ

−1/2
k,g (Ĉ)z′ν̂k,g]

}
(15)

with Ŝk,g(C) being a realization of Σ̂k,g(Ĉ) associated with the realization z of Z.

Some remarks follow. The first condition in (15) is the most crucial to the selective conditional

inference framework. It states that the cluster to which each panel unit i is assigned in every iteration

m of the Panel Kmeans algorithm using the realization z, namely k
(m)
i (z), corresponds to the cluster

obtained using Z, that is k
(m)
i (Z). In other words, as required by Definition 1, we focus on the

realization of the random matrix Z resulting in the same clustering as the one results from the

application of the Panel Kmeans algorithm applied to the particular realization z in hand. The next

two conditions allow us to remove the nuisance parameters Πk,gZ and dir[Σ̂
−1/2
k,g (Ĉ)Z ′ν̂k,g] which appear

in (13). Otherwise the conditional distribution of Dk,g(Ĉ) given Ĉ is not tractable. These are standard

conditions in selective conditional inference literature (see Fithian et al., 2017; Gao et al., 2024; Chen

and Witten, 2023).

The asymptotic p-value p∞[dk,g(Ĉ)] is based on the selective conditional inference methodology

of Chen and Witten (2023) but it generalizes it in several ways. First of all, here, we have double

indexed random variables Zit, i = 1, . . . , N , t = 1, . . . , T . Second, their study does not allow for

dependencies between Zit and Zjs, for either i ̸= j or t ̸= s, but only across different variables of the

same observation, i.e. between Zp,it and Zc,it, the p-th and the c-th elements of Zit. Whereas, we

allow for arbitrary autocorrelation and CD as well as dependencies between different elements of Zit.

Third, their method depends crucially on the normality of the data generating process, whereas we

make use of the CLT in Lemma 1 by exploiting the time series dimension of the data.

The following lemma shows how to calculate a p-value in observed samples following this definition.

Lemma 3. Let k ∈ {2, . . . ,K} with K ≥ 2 given, and B → ∞ as (T,N) → ∞ such that B/T →

0. Under Assumptions G1-G3 and Hk,g
0 , a p-value following the asymptotic principle (14) can be
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calculated using

p[dk,g(Ĉ)] = 1− FχP [ dk,g(Ĉ); T ], (16)

where FχP ( · ; T ) denotes the cumulative distribution function of a χP random variable truncated to

the set T with

T =

{
ϕ ∈ R≥0 :

M⋂
m=1

N⋂
i=1

{k(m)
i [z(ϕ)] = k

(m)
i (z)}

}
, (17)

and

z(ϕ) = Πk,gz + ϕ
ν̂k,g√

T∥ν̂k,g∥2
{dir[Ŝ−1/2

k,g (Ĉ)z′ν̂k,g]}′Ŝ
1/2
k,g (Ĉ). (18)

The equation in (18) defines a perturbation z(ϕ) of the original data matrix z. Depending on ϕ,

z(ϕ) is a version of z such that the two clusters k and g are either pushed towards each other or pulled

further apart in the direction of Ŝ
−1/2
k,g (Ĉ)z′ν̂k,g. If ϕ = dk,g(Ĉ) then z(ϕ) = z. If ϕ > dk,g(Ĉ) then

the two clusters are pulled apart. If instead ϕ < dk,g(Ĉ), the two clusters are pushed towards each

other and in the extreme case of ϕ = 0, their centers correspond to each other. Hence, the variable

ϕ measures the degree of perturbation (see, Figure 2 of Chen and Witten, 2023). The change in the

clustering algorithm from Kmeans to Panel Kmeans leads to substantial differences in the geometry

of the selection region, requiring us to derive new formulae for the truncation sets. We document the

steps of the calculation of this p-value in Appendix D through a characterization of the truncation set

T in our case of Panel Kmeans. The following result establishes the asymptotic validity of p[dk,g(Ĉ)]

for the pairwise null hypothesis Hk,g
0 defined in Definition 1.

Proposition 1. Let k ∈ {2, . . . ,K}, K = K0 ≥ 2 given, and B → ∞ as (T,N) → ∞ such that

B/T → 0.

(a) Under Assumptions G1-G3, and Hk,g
0 ,

lim
(T,N)→∞

P{ p[Dk,g(Ĉ)] ≤ α } = α, ∀.

(b) Suppose now that K = K0 ≥ 2, and N/T ξ → 0 for some ξ > 0. Under Assumptions G1-S3, and

if Hk,g
0 fails,

lim
(T,N)→∞

P{ p[Dk,g(Ĉ)] ≤ α } = 1, ∀α ∈ (0, 1).

Part (a) of the proposition states that the random variable p[Dk,g(Ĉ)] satisfies the definition of a

p-variable of Vovk and Wang (2020) asymptotically, under the null of pairwise cluster equality. The
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p-value p[dk,g(Ĉ)] is a realization of this p-variable. Following the common practice, hereafter we refer

to both of these quantities as p-values. In Part (b), it is shown that Dk,g(Ĉ) is consistent whenever

Hk,g
0 fails. Here, it is required that the number of clusters K is correctly chosen to be equal to K0.

We relax this assumption in Section 4.3 by proposing an information criterion to estimate K0.

Remark 5. The framework described here can be modified to test the null of significance of each

cluster center. Namely, to test Hk
0 : θ0k(C) = 0 for k ∈ {1, . . . ,K}, one can consider D2

k(Ĉ) =

T θ̂k(Ĉ)′ω̂k,k(Ĉ)−1θ̂k(Ĉ) and set Πk = I − ν̂kν̂ ′k/∥ν̂k∥2 where ν̂k = (ν̂ ′k,1, . . . , ν̂
′
k,N )′, ν̂k,i = ιT δ̂k,i and

δ̂k,i = 1{k̂i = k}/|Ĉk|. The results concerning the statistical properties of the test statistic, in partic-

ular the asymptotic truncated distribution, remain seemingly unchanged.

Testing homogeneity. We construct a p-value combination test for the homogeneity null (9) by

aggregating the np selective p-values p[Dk,g(Ĉ)] from all unique pairwise equality tests. Following the

recent studies of Vovk and Wang (2020) and Vovk et al. (2022) on the M-family of merging functions,

our proposed test is based on the generalized mean of order r ∈ R \ 0 defined as:

Fr = br,np


1

np

∑
k,g∈{1,...,K}

k ̸=g

{p[Dk,g(Ĉ)]}r


1/r

∧ 1

where br,np is a calibration constant chosen to ensure that Fr,np is a valid p-value under arbitrary

dependence among the p-values.

M-family nests classical combination rules as special cases. In particular, the cases of r = 1,

r → 0 and r = −1 correspond to arithmetic mean, geometric mean and harmonic mean, respectively.

Furthermore, the Bonferroni p-merging function is obtained as r → −∞ (Vovk and Wang, 2020).

However, not all of these preserve the merging or precision properties under arbitrary dependence,

especially for small numbers of p-values. In our selective inference framework where the p-values

are dependent due to overlapping clustering and shared data, we choose a value of r within the

admissible range r ∈ [−∞,−1) to ensure that the resulting M-mean is a valid p-merging function

under dependence. With simulation exercises, we found out that this choice provides the best finite-

sample accuracy among a large number of other choices considered by Vovk and Wang (2020) and

Vovk et al. (2022). Following Proposition 5 of Vovk and Wang (2020), we set br,np = [r/(r+1)]n
1+1/r
p
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for this choice of the interval of r. The resulting homogeneity test statistic is given by:

Fhomo,r =
r

r + 1
n1+1/r
p


1

np

∑
k,g∈{1,...,K}

k ̸=g

{p[Dk,g(Ĉ)]}r


1/r

∧ 1 (19)

with r ∈ [−∞,−1).

This test statistic belongs to the class of precise merging functions, satisfying both monotonicity

and sharpness properties under arbitrary dependence of the input p-values. The normalization factor

[r/(r + 1)]n
1+1/r
p guarantees that the statistic in (19) defines a valid p-value under the global null

hypothesis. This is shown in Theorem 2 of Vovk and Wang (2020) and generalized in Theorem 3

of Vovk et al. (2022), where they establish the admissibility and optimality of such M-family-based

merging functions. In particular, the proposed Fhomo,r controls the family-wise Type I error under

any form of dependence between the constituent p-values.

Remark 6. Unlike Fisher’s method (Fisher, 1925), which assumes independence, or Bonferroni’s p-

merging function, which is conservative, this choice of merging function maintains optimal Type I

control under general dependence structures.

Remark 7. A similar p-merging function was recently used by Spreng and Urga (2023) in a multiple

forecast comparison setting. The difference between our proposal and that of the authors lies on the

choice of the calibration constant br,np . While Spreng and Urga (2023) sets br,np = r/(r + 1), we

follow exactly the constant suggested by Proposition 5 of of Vovk and Wang (2020), we set br,np =

[r/(r+1)]n
1+1/r
p which we found to be resulting in smaller size distortions in our particular framework

with a small number of p-values combined.

The asymptotic properties of the test statistic Fhomo,r are formally stated in the following result.

Theorem 1. Let K ≥ 2 be given, and B →∞ as (T,N)→∞ such that B/T → 0.

(a) Under Assumptions G1-G3, and Hhomo
0 ,

lim sup
(T,N)→∞

p(Fhomo,r) ≤ α, ∀α ∈ (0, 1).

(b) Suppose now that K = K0 ≥ 2 and N/T ξ → 0 for some ξ > 0. Under Assumptions G1-S3, and

if Hhomo
0 fails,

lim
(T,N)→∞

P[ p(Fhomo,r) ≤ α ] = 1, ∀α ∈ (0, 1).
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Although non-crucial for the development of our C-EPA test statistic with unknown clusters, the

test statistic Fhomo,r is of particular empirical importance as it is a strong alternative to the Split

Sample homogeneity test proposed by Patton and Weller (2023). Part (a) of the theorem shows that

the test statistic controls for the Type I error rate asymptotically whereas Part (b) shows that it is

consistent if at least one of the pairwise equality null hypothesis Hk,g
0 fails.

4.2. The overall EPA test and the main result

The second sub-hypothesis of the C-EPA hypothesis (1), namely the O-EPA hypothesisHoepa
0 states

that the two forecasts are equally good on average given past information. To test this sub-hypothesis,

consider the test statistic

Woepa =
B − P + 1

PB
TZ̄ ′

oΩ̂
−1
o Z̄o, (20)

where Z̄o = T−1
∑T

t=1 Z̄t, Z̄t = N−1
∑N

i=1 Zit, and Ω̂o is given by

Ω̂o =
1

B

B∑
j=1

Λ̂o,jΛ̂
′
o,j ,

Λ̂o,j =

√
2

T

T∑
t=1

[Z̄t − Z̄o] cos

[
πj

(
t− 1/2

T

)]
.

(21)

The asymptotic properties of this test statistic are summarized in the following proposition.

Proposition 2. Suppose that Assumptions G1 and G3 hold with C = (1, . . . , 1), that is K = 1. Then,

for B fixed as (T,N)→∞, the following results hold.

(a) Under Hoepa
0 , Woepa

d−→ FP,B−P+1.

(b) Suppose that Hoepa
0 fails. Then, for any C > 0, P[Woepa > C ]→ 1.

The test rejects the null of O-EPA if p(woepa) = PH0 [ FP,B−P+1 ≥ woepa ] ≤ α where α ∈ (0, 1) is

the predetermined Type I error rate. When B = T and P = 1, the test statistic becomes a Wald-type

statistic which is robust to arbitrary CD but does not control for autocorrelation. It becomes then a

special case of the S(3) test of APUY where the bandwidth parameter of the kernel function is chosen

to ignore potential autocorrelation.

We now turn to our main test statistic for the C-EPA null H0. As in the previous section, we

propose the following p-value combination statistic which uses the p-values associated with the np

24



pairwise equality tests and the O-EPA test:

FSI,r =
r

r + 1
(np + 1)1+1/r


1

np + 1

∑
k,g∈{1,...,K}

k ̸=g

{p[Dk,g(Ĉ)]}r +
1

np + 1
p(Woepa)

r


1/r

∧ 1 (22)

where r ∈ [−∞,−1).

The following main result of the paper summarizes the desired asymptotic properties of (22).

Theorem 2. Let K ≥ 2 be given, and B →∞ as (T,N)→∞ such that B/T → 0.

(a) Under Assumptions G1-G3, and H0,

lim sup
(T,N)→∞

p(FSI,r) ≤ α, ∀α ∈ (0, 1).

(b) Suppose now that K = K0 ≥ 2 and N/T ξ → 0 for some ξ > 0. Under Assumptions G1-S3, and

if either Hhomo
0 or Hoepa

0 fails, then,

lim
(T,N)→∞

P[ p(FSI,r) ≤ α ] = 1, ∀α ∈ (0, 1).

The asymptotic result shows that the proposed selective conditional inference test successfully

controls the Type I error rate and it is consistent as its power approaches one when either Hhomo
0 or

Hoepa
0 fails. The finite sample properties of the test statistic are investigated in Section 5 where the

simulation results confirm these theoretical expectations.

4.3. Estimating the number of clusters under the alternative

When the researcher wishes to learn the number of clusters under the alternative from data, the

sample in hand can be used to obtain an estimate of it. For this purpose, Patton and Weller (2023)

suggest to use a multiple testing procedure based on the Bonferroni correction. An adaptation of their

proposal would be calculating the p-value associated to the test statistic (22) for K = 2, . . . ,Kmax and

applying the usual Bonferroni correction to these p-values. The test rejectsH0 if the Bonferroni p-value

does not exceed the predetermined Type I error rate. As an alternative, we propose an information

criterion (IC) to estimate the number of clusters. Consider the following IC:

IC(K) = log

[
det

(
1

NT

N∑
i=1

T∑
t=1

V̂it(K)V̂ ′
it(K)

)]
+ (KP +N)

ς log(NT )

NT
,
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where V̂it(K) = Zit − θ̂K,k̂i
with θ̂K,k̂i

being the solution to (8) with K clusters, and ς is a tuning

constant. The IC estimate of the number of clusters is given by

K̂IC = argmin
K∈{2,...,Kmax}

IC(K). (23)

For the Split Sample test, this IC can be adapted by using only the training portion of the data.

Penalty functions other than the one used here can also be employed (see, for instance Bai and Ng,

2002, for different penalties for estimating the number of factors in factor models). Our IC is an

adaptation of the one used by Lumsdaine et al. (2023) to our multivariate framework. It is easy to see

that the K̂IC is consistent for K0 ≥ 2 under Assumptions G1-S2 if N and T diverge at the same rate.

In our simulations we found that the values satisfying ς = [1.5, 3] works well with smaller values

tending to over-estimate the number of clusters when the signal in the data is weak. The upper

bound ς = 3 is also suggested by the results of Lumsdaine et al. (2023). As in our particular setting

homogeneity testing is embedded in the framework, we set ς = 1.5 which sacrifices some precision by

over-estimating the true number.

The main advantage of using an information criterion instead of a Bonferroni p-value is its compu-

tational efficiency. Although the extra computational burden is negligible in the case of Split Sample

test statistics, it is quite important for the selective conditional inference tests. This is because the

computation of the conditioning set T is time consuming, and contrary to the Bonferroni p-value, an

information criterion requires only the Panel Kmeans estimates for different values of K and not T .

An alternative to IC approach is cross-validation (CV) (Li et al., 2025). CV works as follows. The

data is repeatedly split into training and validation sets, and for each possible number of clusters K,

the within-cluster prediction error on the validation set is evaluated using parameters estimated from

the training set. The number of clusters that minimizes the average out-of-sample prediction error

across folds is then the estimated number of clusters which we denote K̂CV . An attractive feature of

CV is that it is data-driven and does not require tuning parameters, unlike the IC (23). However, it

is computationally more intensive, especially when used in conjunction with procedures like Selective

Inference. For this reason, we employ CV only in our empirical application, while relying on the IC

estimates for our simulation exercises.

An important concern about using a data-dependent choice of the number clusters is that it might

invalidate the selective conditional inference procedure because one might need further conditioning on

the particular choice of the information criterion. For instance, while developing valid inference pro-
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cedures on Lasso, choosing the tuning parameter of the objective function requires extra conditioning

(Markovic et al., 2017). The following result shows that this is not the case in our framework.

Proposition 3. Let Ĉ be a clustering with K clusters and assume that Ĉ is the unique output of

Algorithm 1. The, inference procedures that condition on the clustering assignment Ĉ implicitly

condition on K̂IC as well. That is, for any test statistic T ,

P

[
Dk,g(Ĉ) ∈ T

∣∣∣∣∣
N⋂
i=1

{k̂i = ki}

]
= P

[
Dk,g(Ĉ) ∈ T

∣∣∣∣∣ K̂IC = K,
N⋂
i=1

{k̂i = ki}

]
,

where K̂IC is given by (23).

Remark 8. The important assumption of the proposition is that Ĉ is the unique output of Algorithm 1

for given K. As mentioned in the discussion following Algorithm 1, the iterative optimization method

does not guarantee the uniqueness of Ĉ. In practice, to converge to the global minimum one has to

use a large number of initializations to implement the optimization via Algorithm 1. This justifies the

use of the IC estimate K̂IC but raises another question: do we need further conditioning while using

multiple initializations to find the best fitting partition of the data? Intuitively this is not the case

because our selective conditional framework provides Type I error control in the sense of Definition 1

uniformly over the space of initial partitions. We leave the formal treatment of this question to future

work noting that our simulation study supports our conjecture.

5. Monte Carlo Study

We study the finite sample size and power properties of the test statistics. In Section 5.1 we

describe the Monte Carlo design and in Section 5.2 we report and comment on the results.

5.1. Design

To investigate the finite sample properties of the testing procedures, we generate observations from

a panel AR(1) process given by:

Yit = α(1− ρki) + ρkiYi,t−1 + Uit, Uit ∼ iidN(0, 1). (24)

This DGP, as well as our setup that we describe below, is similar to that of Hoga and Dimitriadis

(2023) except that their focus is on measurement errors in the target variable whereas ours is on

clustered heterogeneity.
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There are forecasters, indexed by a = 1, 2, who do not observe the true data-generating process

but aim to construct one-step-ahead forecasts of Yit. Forecaster 1 includes an intercept but also makes

noisy forecasts. Whereas Forecaster 2 omits the intercept altogether. Their forecasting models are

given by:

Forecaster 1: Ŷ1,it = α(1− ρki) + ρkiYi,t−1 + εit,

Forecaster 2: Ŷ2,it = ρkiYi,t−1,
(25)

for t = 1, . . . , T and i = 1, . . . , N , where ki ∈ {1, 2, 3} denotes the latent cluster membership of unit i.

For computational efficiency and following Hoga and Dimitriadis (2023), we assume that they use the

true slope parameter, and the true intercept, if included. This is justified with the noise term in the

first set of forecasts which might be due to over parametrization of heterogeneity in real applications,

and the omission of the intercept in the second set of forecasts.

The noise term εit is constructed to preserve zero mean and a cluster-specific forecast variance. It

evolves according to the following stationary process:

εit = ϕεi,t−1 + λFt +
√
σ2ε,ki(1− ϕ

2)− λ2 · ξit, ξit ∼ iidN(0, 1),

where Ft ∼ iidN(0, 1) is a common factor independent of ξit. The parameter ϕ ∈ (−1, 1) governs

the AR(1) persistence of εit whereas λ controls the strength of CD through the common factor Ft.

The variance of the noise of Forecaster 1 for cluster ki is given by σ2ε,ki = α2(1 − ρki)2 + ψki . This

construction ensures that the forecast noise incorporates both time dependence via ϕ, and CD via λ.

We implement both unconditional and conditional EPA tests. These are associated with the

choices Hi,t−1 = 1 and Hi,t−1 = (1, Yi,t−1)
′, respectively. Set ∆Lit = (Yit − Ŷ (1)

it )2 − (Yit − Ŷ (2)
it )2.

Straightforward calculations (see Appendix C of Hoga and Dimitriadis, 2023) show that the expected

quadratic loss differentials in these two cases are given by

E(Hi,t−1∆Lit) =

 ψki , if Hi,t−1 = 1,

(ψki , µ · ψki)
′, if Hi,t−1 = (1, Yi,t−1)

′.

This expression illustrates that the magnitude of the expected loss differential depends solely on the

noise variance in the case of unconditional EPA testing, and the noise variance and the unconditional

mean µ in the case of conditional EPA testing.

Parameter choices. In all experiments, we set µ = 1, ϕ = 0.2 and λ = 0.2. For the AR(1) dynamics

of the observed outcome Yit we assume that the panel units form three latent clusters of heterogeneous
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sizes which correspond to the clusters of the loss differentials. We set,

k0i =


1, if i ∈ {1, . . . , N/4},

2, if i ∈ {N/4 + 1, . . . , N/2},

3, if i ∈ {N/2 + 1, . . . , N},

(26)

and (ρ1, ρ2, ρ3) = (0.1, 0.2, 0.3). That is the size of the third cluster is twice the size of the first and

the second clusters. To investigate the empirical size of the tests, we set (ψ1, ψ2, ψ3) = (0, 0, 0). The

power is analyzed under two cases both with K0 = 3:

• Case 1– O-EPA hypothesis fails: (ψ1, ψ2, ψ3) = ψ/2 + ψ · (−1.2,−0.8, 1),

• Case 2– O-EPA hypothesis holds: (ψ1, ψ2, ψ3) = ψ · (−1.2,−0.8, 1).

The parameter ψ measures the deviation from the null hypotheses. We consider the values ψ ∈

{0.125, 0.25, 0.375, 0.5}.

We investigate the size of the tests for all possible pairs (T,N) such that N ∈ {80, 120, 160} and

T ∈ {20, 50, 100, 200}. As the testing procedures we propose are computationally costly, we analyze

the power for N = 80 and T ∈ {50, 200}. We note that the loss differentials carry strong CD, hence

the number of cross-sectional units do not have an effect on the power of the tests. For the same

efficiency reason, we set the number of replications as 1000.

Implementation of the tests. We implement four different types of tests. These are labeled

called Predetermined, Naive, Split Sample, and Selective Inference. For each of these we consider the

unconditional and conditional tests. The details of the implementation are as follows.

• Predetermined: As described in Section 2.3 by setting ki = k0i for all i = 1, . . . , N .

• Naive: As described in Section 2.3 by setting ki = k̂i for all i = 1, . . . , N where k̂i is the output

of Algorithm 1.

• Split Sample: As described in Appendix B by setting S1 = {1, . . . , 0.2 · T} and S2 = {0.2 ·

T + 1 + l, . . . , T} with l = ⌊
√
0.2 · T ⌋ to minimize the statistical dependence between the two

portions of the sample, and ki = k̂i with k̂i being estimated from S1 using Algorithm 1.

• Selective Inference: As described in Section 4 by setting ki = k̂i for all i = 1, . . . , N where k̂i

is the output of Algorithm 1.

All tests are robust to arbitrary autocorrelation and CD. The number of cosines in the OS es-

timator of the LRV is chosen as B = min(⌊PT 2/3⌋, T ) in the case of full sample tests and as
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B = min(⌊P |S2|2/3⌋, |S2|) for the Split Sample tests. As the latent nature of the clusters is cen-

tral to our framework, all tests except Predetermined are implemented using K̂IC given in (23). When

relevant, Algorithm 1 is run with 10 random initialization and maximum 100 iterations.

5.2. Results

We report the results in three parts. We comment on the size properties, the power properties and

the results of a robustness check to structural breaks in the process.

Size properties. Table 1 reports the rejection rates of four C-EPA testing procedures under the null

hypothesis, evaluated at the 5% nominal level. The results are presented separately for unconditional

and conditional tests.

The Naive test, which conducts inference as if cluster assignments were known and fixed, exhibits

dramatic size distortions across all configurations. Its rejection rate is exactly 1.00 in every design, both

in unconditional and conditional setups. This complete failure to control size reflects the well-known

danger of ignoring model selection when clusters are estimated from the data.

By contrast, the Predetermined test which uses exogenous, fixed clusters for testing delivers re-

jection rates close to the nominal level, ranging from 0.04 to 0.07. For instance, when N = 120

and T = 100, the rejection rate is 0.05 and 0.06 for the unconditional and conditional cases, respec-

tively. This method offers a reasonable benchmark, but its feasibility is limited by the requirement of

pre-specified cluster structure.

The Split Sample test shows relatively accurate size control as well, with rejection rates between

0.03 and 0.11. For example, when N = 160 and T = 20, the rejection rate is 0.07 unconditionally and

0.09 conditionally, slightly above the nominal level but still within acceptable range given the small

sample. Its reliance on data splitting reduces bias from re-using the same sample, though at the cost

of potential power loss due to reduced sample size for both estimation and testing.

Finally, the Selective Inference test, which corrects for the randomness introduced by cluster esti-

mation via truncation-based conditioning, consistently delivers accurate size control. Rejection rates

are always very close to the nominal level 0.05. For example, at N = 80 and T = 50, the selective test

rejects the null at a rate of 0.05 unconditionally and 0.06 conditionally. These results confirm that the

proposed selective procedure successfully accounts for the data-dependent nature of cluster formation,

without relying on sample splitting or external cluster information.

In summary, the simulations demonstrate that naive inference leads to massive over-rejection, while
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Table 1: Rejection rates of C-EPA tests under the null

N T Predetermined Naive Split Sample
Selective
Inference

Unconditional tests (Hi,t−1 = 1)

80 20 0.07 1.00 0.07 0.05
80 50 0.05 1.00 0.05 0.05
80 100 0.06 1.00 0.06 0.07
80 200 0.05 1.00 0.03 0.05

120 20 0.07 1.00 0.07 0.04
120 50 0.05 1.00 0.07 0.03
120 100 0.05 1.00 0.06 0.04
120 200 0.05 1.00 0.06 0.04

160 20 0.06 1.00 0.07 0.04
160 50 0.06 1.00 0.06 0.04
160 100 0.06 1.00 0.06 0.04
160 200 0.05 1.00 0.04 0.03

Conditional tests (Hi,t−1 = (1, Yi,t−1)
′)

80 20 0.05 1.00 0.11 0.05
80 50 0.04 1.00 0.06 0.06
80 100 0.06 1.00 0.06 0.05
80 200 0.05 1.00 0.05 0.05

120 20 0.06 1.00 0.10 0.03
120 50 0.06 1.00 0.07 0.04
120 100 0.06 1.00 0.07 0.04
120 200 0.05 1.00 0.06 0.05

160 20 0.06 1.00 0.09 0.04
160 50 0.06 1.00 0.07 0.04
160 100 0.05 1.00 0.06 0.02
160 200 0.05 1.00 0.04 0.03

Note: Rejection rates are calculated from 1000 Monte Carlo replications under the null hypothesis with
nominal size: α = 0.05. Predetermined tests are described in Section 2.3 and calculated with ki = k0i
given in Equation (26). Naive tests are similar except they use the estimated clusters. Split Sample tests
are described in Appendix B and Selective Inference tests in Section 4. All tests are robust to arbitrary
autocorrelation and CD. The number of clusters for Naive, Split Sample and Selective Inference tests
is determined using Equation (23).
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both sample splitting and selective approaches control size effectively. Among the feasible procedures,

the selective test offers the most robust and accurate size behavior across a wide range of panel

dimensions and test designs.

Power properties. Table 2 reports the rejection frequencies of the four C-EPA procedures under the

alternative hypothesis, in a setting where the O-EPA hypothesis fails. As expected, all tests exhibit

increasing power as ψ and T grow, but there are important differences in how quickly this increase

occurs.

The Naive test continues to reject 100% of the time, regardless of the strength of the alternative

or the sample size. The Predetermined test uses the true cluster assignments. It performs well overall

but is infeasible. Its performance is good especially for moderate to large deviations from the null. For

example, with T = 50 and ψ = 0.125, it achieves 87% rejection in the unconditional case and 74% in

the conditional one. With T = 200, power reaches 100% across all configurations. This performance

illustrates that when cluster assignments are correctly specified in advance, the test can reliably detect

violations of EPA even when they are small.

The Split Sample test shows lower power in small samples, particularly for weak signals. For

instance, when T = 50 and ψ = 0.125, rejection rates are just 20% (unconditional) and 15% (condi-

tional). However, its power improves substantially with longer time series and stronger alternatives:

for T = 200 and ψ = 0.25, rejection rates reach 100% in both cases. This highlights the trade-off

inherent in data splitting—robust size control comes at the cost of efficiency in small samples.

The Selective Inference test behaves similarly to the Split Sample test. With T = 50 and ψ = 0.125,

it rejects the null in only 19% of simulations (unconditional) and 16% (conditional), but power increases

rapidly with larger T and stronger violations. For example, with T = 200 and ψ = 0.25, the rejection

rate reaches 100%. In addition, we find that its power is consistently higher than that of the Split

Sample test in conditional testing. These confirm that while Selective Inference test is conservative in

small samples, it is capable of detecting meaningful deviations when sufficient information is available.

In summary, when the O-EPA assumption fails, both the Split Sample and Selective Inference

procedures deliver high power while preserving valid size. The predetermined test provides a useful

upper bound on power when cluster structure is known. The selective procedure offers a robust

alternative that adapts to increasing signal strength without inflating false positives.

Table 3 displays the rejection rates of the four C-EPA tests under the alternative hypothesis when

the overall EPA hypothesis holds. In this setting, the deviation from the null occurs within the
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Table 2: Rejection rates of C-EPA tests under the alternative: Case 1– O-EPA fails

T ψ Predetermined Naive Split Sample
Selective
Inference

Unconditional tests (Hi,t−1 = 1)

50 0.125 0.87 1.00 0.20 0.19
200 0.125 1.00 1.00 0.79 0.72

50 0.250 1.00 1.00 0.68 0.62
200 0.250 1.00 1.00 1.00 1.00

50 0.375 1.00 1.00 0.98 0.91
200 0.375 1.00 1.00 1.00 1.00

50 0.500 1.00 1.00 1.00 0.99
200 0.500 1.00 1.00 1.00 1.00

Conditional tests (Hi,t−1 = (1, Yi,t−1)
′)

50 0.125 0.76 1.00 0.15 0.16
200 0.125 1.00 1.00 0.68 0.71

50 0.250 1.00 1.00 0.50 0.58
200 0.250 1.00 1.00 1.00 1.00

50 0.375 1.00 1.00 0.88 0.91
200 0.375 1.00 1.00 1.00 1.00

50 0.500 1.00 1.00 0.99 0.99
200 0.500 1.00 1.00 1.00 1.00

Note: Rejection rates are calculated from 1000 Monte Carlo replications under the alternative hypoth-
esis for different values of ψ which measures the strength of the deviation from the null. Nominal size:
α = 0.05 and N = 80. See Table 1 notes.

cluster centers, but the global equality of predictive ability holds across clusters. This configuration

is particularly relevant for assessing whether inference procedures can detect heterogeneous predictive

content even when overall forecast performance is similar across clusters.

The Predetermined test, which assumes known cluster structure, provides an upper bound on feasi-

ble power. Its rejection rates are high across all scenarios, reaching 1.00 in nearly every case, including

small samples and weak deviations (e.g., T = 50, ψ = 0.125, the power equals 0.78 unconditionally,

0.65 conditionally). These values confirm that informative deviations are present and detectable with

idealized cluster knowledge.

As before, the Naive test rejects in all cases, with power equal to 1.00 even when the deviation is

weak. The Split Sample test performs notably well in this scenario. Although power is low for weak

deviations and small samples (e.g., T = 50, ψ = 0.125, power equals only 0.07 both unconditionally
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and conditionally), it rises rapidly with increasing signal strength. For instance, with T = 50 and

ψ = 0.375, the Split Sample test reaches 80% (unconditional) and 57% (conditional) power. When

T = 200, rejection rates exceed 95% for ψ ≥ 0.25 in both test types. This strong performance reflects

the fact that the test can leverage more power when overall EPA holds and cluster selection happens

to align well with the underlying structure.

By contrast, the Selective Inference test exhibits lower power in this setting. When deviations are

small, rejection rates remain near the nominal level (e.g., T = 50, ψ = 0.125, power equals 0.06). Even

with stronger deviations and longer panels, the increase in power is more gradual. For example, with

T = 200 and ψ = 0.375, the test rejects 31% (unconditionally) and 53% (conditionally); for ψ = 0.5,

power improves to 64% and 67% respectively. This pattern reflects some key features of the selective

procedure. First, by accounting for cluster estimation uncertainty, it sacrifices power in settings where

selection aligns with true structure but the null hypothesis is close to being true. Second, it relies on

additional conditions due to the nuisance parameters in the conditional distribution which result in

lower power than the Split Sample test in certain scenarios. Third, it uses O-EPA test as a component

in the p-value combination step. Since O-EPA holds in this case, the power of the resulting C-EPA

test is below ideal. However, as we discuss later in the section, it still is the only viable procedure of

C-EPA testing in most empirical settings. To conclude, while the test is robust to false positives, it

may under-reject in cases where the alternative is subtle and the overall structure is well behaved.

To sum up the findings of this experiment, the Split Sample approach dominates in terms of

power when the O-EPA assumption holds, especially for moderate to large deviations. The Selective

Inference test remains valid but conservative, offering protection against size distortions at the expense

of some power loss. This trade-off highlights a core message of our framework: inference that accounts

for model selection can be more reliable, but necessarily faces a trade-off between robustness and

sensitivity to weak signals.

Alternative DGPs and additional results. First, we conduct a robustness analysis to draw

attention to a situation which is quite realistic in practice where Selective Inference test stands out as

the only available method to test the C-EPA hypotheses with unknown clusters. This is when there

are breaks in the cluster centers such that even if the C-EPA hypothesis holds, the Split Sample tests

grossly over-reject the true null hypothesis. Second, we discuss the small sample properties of the

O-EPA and homogeneity tests which shed light on the finding on the power of the Selective Inference

tests when O-EPA holds.
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Table 3: Rejection rates of C-EPA tests under the alternative: Case 2– O-EPA holds

T ψ Predetermined Naive Split Sample
Selective
Inference

Unconditional tests (Hi,t−1 = 1)

50 0.125 0.78 1.00 0.07 0.06
200 0.125 1.00 1.00 0.32 0.07

50 0.250 1.00 1.00 0.30 0.07
200 0.250 1.00 1.00 1.00 0.18

50 0.375 1.00 1.00 0.80 0.10
200 0.375 1.00 1.00 1.00 0.31

50 0.500 1.00 1.00 0.99 0.14
200 0.500 1.00 1.00 1.00 0.64

Conditional tests (Hi,t−1 = (1, Yi,t−1)
′)

50 0.125 0.65 1.00 0.07 0.06
200 0.125 1.00 1.00 0.20 0.08

50 0.250 1.00 1.00 0.20 0.07
200 0.250 1.00 1.00 0.96 0.27

50 0.375 1.00 1.00 0.57 0.11
200 0.375 1.00 1.00 1.00 0.53

50 0.500 1.00 1.00 0.95 0.20
200 0.500 1.00 1.00 1.00 0.67

Note: Nominal size: α = 0.05 and N = 80. See Table 2 notes.

Figure 1 reports the empirical size of various C-EPA testing procedures under the null hypothesis

when the data-generating process includes structural breaks in the relative forecast performance across

clusters. The true O-EPA null as well as the C-EPA null hold on average over time period under

consideration. In particular, for t ∈ {1, . . . , T/2} we set (ψ1, ψ2, ψ3) = ψ/2 + ψ · (−1.2,−0.8, 1)

as in the main Monte Carlo design Case 1, and for t ∈ {T + 2 + 1, . . . , T} we set (ψ1, ψ2, ψ3) =

−ψ/2− ψ · (−1.2,−0.8, 1). That is, there is no global improvement in predictive ability.

The figure reveals a stark contrast in the behavior of the testing procedures. The Selective Inference

test maintains excellent size control across all sample sizes, with rejection rates consistently close to

the nominal 5% level in both unconditional and conditional settings. This confirms that the method

appropriately accounts for the randomness introduced by data-driven cluster estimation, even in the

presence of structural instability.

In contrast, the Split Sample test shows substantial over-rejection, with empirical size rising sharply
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(b) Conditional tests (Hi,t−1 = (1, Yi,t−1)
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Figure 1: Empirical size of C-EPA tests under the null hypothesis (α = 0.05) for different time
dimensions T . The tests are applied to simulated data with N = 80 and ψ = 0.25. Each line
corresponds to a different version of the test procedure.

with the time dimension T . In the unconditional test, its rejection rate increases from roughly 15% at

T = 20 to over 35% at T = 200. The conditional version follows a similar trajectory. This pronounced

size distortion reflects the inability of the split sample test to account for changes in the structure

of predictive accuracy. By separating the sample for estimation and testing, the procedure fails to

recognize time-varying cluster centers and exaggerates evidence against the null.

The Predetermined test, which assumes known clusters, also exhibits good size control, as expected,

but is not feasible in practice when clusters are unknown. The results thus highlight the danger of using

Split Sample approaches in the presence of temporal instability, and the value of selective inference

procedures that condition properly on the estimated cluster structure using the full sample.

In summary, when the null hypothesis holds but structural breaks induce heterogeneous forecast

patterns, the selective inference test is the only feasible method among those considered that maintains

reliable control over false positives.

Table 4 presents additional simulation results on the performance of the O-EPA test and the

homogeneity test. The results on the size of the tests confirm that all procedures maintain appropriate

size control, with rejection rates close to the nominal level of 5%. In the first power scenario, where

the O-EPA hypothesis fails, both tests exhibit increasing power with larger signal strength and time

dimensions, as expected. The final block reports results under a setting where the O-EPA null holds

but clusters are heterogeneous. Importantly, the conditional homogeneity test consistently rejects in
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Table 4: Rejection rates of O-EPA and Homogeneity tests

Unconditional Conditional

N Tobs ψ O-EPA Homogeneity O-EPA Homogeneity

Size

80 20 0 0.06 0.05 0.06 0.04
80 50 0 0.07 0.05 0.06 0.05
80 100 0 0.06 0.08 0.05 0.05
80 200 0 0.04 0.05 0.04 0.06

120 20 0 0.06 0.03 0.05 0.03
120 50 0 0.05 0.04 0.04 0.05
120 100 0 0.05 0.03 0.05 0.05
120 200 0 0.06 0.03 0.06 0.06

160 20 0 0.07 0.02 0.06 0.03
160 50 0 0.05 0.03 0.05 0.03
160 100 0 0.06 0.04 0.04 0.03
160 200 0 0.04 0.04 0.04 0.03

Power: Case 1– O-EPA hypothesis fails

80 50 0.125 0.33 0.27 0.06 0.05
80 200 0.125 0.87 0.81 0.07 0.11
80 50 0.250 0.83 0.73 0.07 0.10
80 200 0.250 1.00 1.00 0.18 0.28
80 50 0.375 0.98 0.97 0.08 0.11
80 200 0.375 1.00 1.00 0.27 0.52
80 50 0.500 1.00 1.00 0.12 0.19
80 200 0.500 1.00 1.00 0.44 0.67

Power: Case 2– O-EPA hypothesis holds

80 50 0.125 0.07 0.06 0.06 0.06
80 200 0.125 0.04 0.04 0.07 0.11
80 50 0.250 0.06 0.06 0.07 0.10
80 200 0.250 0.04 0.04 0.19 0.30
80 50 0.375 0.06 0.06 0.11 0.14
80 200 0.375 0.04 0.04 0.33 0.55
80 50 0.500 0.06 0.07 0.15 0.23
80 200 0.500 0.05 0.04 0.65 0.69

Note: O-EPA test is described in Section 4.2 and Homogeneity test is described in
Section 4.1. See Table 1-3 for the details on simulation design.
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this case, especially for large T , indicating that it remains powerful for detecting latent heterogeneity

even when O-EPA is valid. On the other hand, O-EPA test still provides correct Type I error control,

as expected. This sheds light on the relatively poor performance of the Selective Inference test of

C-EPA in this case: since it combines p-values of pairwise homogeneity tests as well as the O-EPA

test, it results in lower power because of this second component.

6. Empirical Application: Forecasting Exchange Rate Returns

This section applies a variety of forecasting methods to monthly exchange rate returns using

conventional time series models as well as more modern machine learning methods with and without

macroeconomic predictors from the FRED-MD database. The forecasting objective is to predict one-

month-ahead log returns of a panel of 131 bilateral exchange rates over dates from January 1999 to

December 2023.

6.1. Data preparation

We use monthly bilateral exchange rates from the IMF. The data set spans from January 1999 to

December 2023. Although the IMF Exchange Rates data set provides a longer history on some series,

we focus on this particular period to obtain a balanced panel. The starting date particularly reflects the

availability of Euro/Dollar exchange rate. Log returns are computed as first differences of the natural

logarithm of the exchange rate levels, multiplied by 100 to express them in percentage terms. Each

series is then standardized. As our objective is model comparison instead of making real forecasts,

we do not de-standardize the series before presenting the results. Series with missing observations or

near-zero standard deviation are excluded from the analysis. This results in 131 monthly bilateral

exchange rates against the US Dollar.

We obtain monthly macroeconomic indicators from the FRED-MD dataset. Variables are trans-

formed using the tw apc procedure with kmax= 8 of the fbi package (Chan et al., 2023), which uses the

Tall-Wide method to impute the missing values in a given panel data. To avoid look-ahead bias, each

predictor matrix is lagged appropriately within the recursive forecasting window. We remove exchange

rate variables that overlap with the dependent variables (EXSZUSx, EXJPUSx, EXUSUKx, EXCAUSx).

Forecasts are produced using a recursive window of length r = 60 months. For each forecast date

t = r + 1, . . . , T − 1, we re-estimate model parameters and predict the return in t + 1. The final
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sample of forecast errors covers the period from February 2004 to December 2023, that is T = 238

and N = 131 in our final sample of forecast comparison.

6.2. Forecasting methods

We compare the performance of five forecasting models that span linear and nonlinear approaches,

with and without macroeconomic predictors. All models are estimated separately for each exchange

rate series using a recursive forecasting design with a fixed window of r = 60 months and a one-

month-ahead forecast horizon. Forecast accuracy is evaluated via quadratic loss function. For EPA

tests, we use quadratic loss differentials relative to the AR(1) benchmark. All the other details on the

implementation of the tests correspond exactly to those of the Monte Carlo simulations.

We classify the five methods under consideration into two categories: data poor and data rich

methods. We now describe these methods.

Data poor methods. These methods are considered “data poor” in the sense that they rely solely

on the history of the dependent variable. The two models we consider are described in what follows.

• AR(p) selected by BIC: An autoregressive model with lag length p selected via the Bayesian

Information Criterion (BIC).

• Elastic Net: A linear penalized regression combining ℓ1 and ℓ2 penalties (Zou and Hastie,

2005), applied to the lags of the dependent variable. The method balances variable selection

and shrinkage, mitigating overfitting in high dimensional settings. The penalty parameters are

selected via 5-fold cross-validation, which is used to jointly determine both the overall regu-

larization strength and the mixing parameter governing the weight between LASSO and Ridge

penalties. The model is implemented using the glmnet package (Friedman et al., 2010).

• XGBoost: An ensemble of gradient-boosted decision trees applied to the the lags of the target

variable (Chen and Guestrin, 2016). XGBoost captures nonlinearities and interaction effects

by sequentially fitting trees to the residuals of prior iterations. Forecasts are generated using

the past 6 lags of the target variable as features. The model is trained for 50 boosting rounds

using default hyperparameters and the squared error loss. The model is implemented using the

xgboost package (Chen and Guestrin, 2016).

For all three models, we allow a maximum lag length of 6. The AR(p) selects the optimal lag

within this range using BIC while Elastic Net allows for a more general model structure such that all
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consecutive lags do not necessarily appear in the model. XGBoost further allows for nonlinearities

in the relationship of the target and its lags. These data poor approaches provide useful baselines to

assess the marginal value of more flexible, data-rich machine learning methods.

Data rich methods. These methods are considered “data rich” as they exploit high dimensional

information from a large set of macroeconomic predictors. Unlike the data poor models, which rely

primarily on univariate dynamics, these methods are designed explicitly to extract predictive signals

from complex interactions and nonlinearities in the covariate space. Their flexibility makes them

particularly well-suited in environments characterized by structural change, unknown functional forms,

or unstable predictor relevance.

• Support Vector Machine (SVM): A kernel-based machine learning method applied to

macroeconomic features. The SVM solves a regularized minimization problem that fits the

data within a margin of tolerance (Smola and Schölkopf, 2004). The implementation uses an

ε-insensitive regression formulation with a radial basis function (RBF) kernel. The design matrix

includes the first lag of the target variable and the contemporaneous values of the scaled macro

predictors. Hyperparameters are selected via cross-validation. We use the e1071 package to

implement the support vector regression with a radial basis function kernel (Meyer et al., 2024).

• Random Forest: A nonparametric ensemble method based on bagged decision trees (Breiman,

2001). The model is trained using the lagged target variable and standardized macro predictors as

features. Each tree is fit on a bootstrap sample of the training data with random feature selection

at each split. The implementation uses the randomForest package with default hyperparameters

and no tuning. Forecasts are based on the most recent observation of macroeconomic predictors.

The model is estimated using the randomForest package (Liaw and Wiener, 2002).

The use of default hyperparameters reflects a deliberate emphasis on simplicity and replicability.

While further tuning could improve the performance of certain methods, our approach is conservative

and avoids complication by applying standard practices such built-in bagging in Random Forests. The

resulting forecasts serve as a benchmark for the potential gains from machine learning with a large

sample of macroeconomic features. We note that we implemented several other methods such as the

factor augmented regressions following the targeted predictors methodology of Bai and Ng (2008) as

well as the macro-feature-augmented versions of Elastic Net and XGBoost which resulted in objectively

worse performance than the methods we report here. Hence, to save space, we ignore these methods.
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6.3. Results

6.3.1. Descriptive analysis

Figure 2 presents log-log scatterplots of forecast losses across a large panel of prediction tasks.

The horizontal axis in each panel shows the loss under the AR(1) benchmark, while the vertical axis

displays the loss under a competing method. Each point corresponds to a unique predictive task (e.g.,

variable-horizon-variable combination), allowing for a granular comparison of relative performance.

Panel (a) compares the AR(1) model with an AR(p) model selected via the Bayesian Information

Criterion (BIC). While the AR(p) model occasionally outperforms the benchmark, evidenced by points

below the 45-degree line, a substantial share of forecasts perform worse. This illustrates the tradeoff

between increased model flexibility and estimation uncertainty (Inoue and Kilian, 2006), especially

under limited sample sizes or structural instability.

Panel (b) reports results for the Elastic Net estimator (Zou and Hastie, 2005), applied to a broad

set of macroeconomic predictors. The majority of points lie below the 45-degree line, suggesting that

regularized linear models consistently outperform the benchmark. The relatively tight distribution

around the diagonal further indicates that the Elastic Net achieves a favorable bias-variance balance,

likely due to its dual shrinkage mechanism.

Panels (c) through (e) show results from nonlinear machine learning methods, namely XGBoost

(Chen and Guestrin, 2016), Support Vector Machines, and Random Forests. These models also achieve

superior performance in the majority of forecasting tasks, particularly in cases where the AR(1) model

yields high losses. However, the scatter of outcomes is more dispersed than under Elastic Net, reflecting

the higher variance typically associated with flexible, nonparametric learners (Athey and Imbens,

2019). Despite this, the lower-left clustering of many points suggests that machine learning models

excel particularly in regimes where linear benchmarks fail.

Collectively, the evidence underscores three key findings. First, the AR(1) model is difficult to

outperform uniformly but can be outperformed substantially in specific environments. Second, the

inclusion of macro predictors, when guided by regularization or adaptive learning, can materially

improve forecast accuracy. Third, while more flexible methods may incur higher variance, they exhibit

considerable upside, especially when benchmark models are misspecified or under-fit. These results

contribute to a growing literature that highlights the potential of machine learning in macroeconomic

and financial forecasting (Medeiros et al., 2021; Welch and Goyal, 2008).
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(a) AR(p) chosen by BIC
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(b) Elastic Net
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(c) XGBoost
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(d) SVM with Macro Predictors
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(e) Random Forest with Macro Predictors

Figure 2: Scatter plots of quadratic forecast losses of alternative forecasting models vs. the benchmark
AR(1) model. The 45-degree dashed line indicates equality in forecast performance.
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Table 5 presents summary statistics of forecast loss differentials relative to the AR(1) benchmark.

Negative values indicate improved forecast performance relative to AR(1). Among the methods con-

sidered, XGBoost shows the largest average improvement, with a mean loss differential of −0.54, and

a substantial left-skew in its distribution (first quartile = −0.52). This suggests that it often delivers

strong gains in cases where AR(1) performs poorly. AR(p) also yields a negative mean (−0.34), but

with very high variance (standard deviation = 19.98), indicating occasional large outliers likely due

to overfitting in small samples.

Table 5: Summary statistics of loss differentials of different methods with respect to AR(1)

Variable Mean Std. Dev. 1st Quartile Median 3rd Quartile

AR(p) -0.34 19.98 -0.08 0.00 0.05
Elastic Net 0.03 1.40 -0.06 0.00 0.09
XGBoost -0.54 3.93 -0.52 -0.03 0.08
SVM 0.00 1.47 -0.12 0.00 0.08
Random Forest -0.07 1.62 -0.18 0.00 0.09

Note: The results are based on 31178 observations (T = 238, N = 131) on loss differentials.
A negative mean signifies an overall improvement over AR(1) forecasts.

In contrast, the remaining methods, namely Elastic Net, SVM, and Random Forest, have mean

loss differentials close to zero, but all display modest left tails. For instance, Elastic Net has a first

quartile of −0.06 and third quartile of 0.09, indicating small but frequent gains over AR(1) with little

risk of large deterioration. Random Forest shows similar patterns. Taken together, these statistics

suggest that flexible methods like XGBoost can offer substantial upside at the cost of some variability,

while regularized linear models such as Elastic Net deliver more stable but smaller improvements.

6.3.2. Test results

Table 6 reports the p-values from a series of C-EPA tests applied to loss differentials between five

forecasting models and the AR(1) benchmark. The aim is to detect whether the models improve

predictive accuracy overall or within specific clusters of currency pairs.

We first look at the O-EPA test results. We see that for all models but SVM, the O-EPA hypothesis

is rejected at least at the 10% level in all settings. Recall that AR(p), XGBoost and Random Forest

perform better overall with respect to AR(1), whereas Elastic Net is worse, according to Table 5.

Hence, in an unconditional setting, the superiority of the first three methods and the inferiority of the

last, against AR(1), are confirmed by the O-EPA test results.
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Across all settings, SVM stands out as the only method consistently associated with very high

p-values in the O-EPA test (e.g., 0.90, 0.95, 0.97), indicating no statistically significant improvement

over AR(1) on average over all units and time periods. However, these high p-values do not imply poor

performance; rather, they reflect that gains are not homogeneous across all cross-sectional units. This

interpretation is supported by the rejection of the homogeneity test at the 10% level in the conditional

test with the lagged target and when the number of clusters is chosen by CV (p-value = 0.07). This

suggests that SVM’s performance is heterogeneous conditional on the past realization of the target

variable. Moreover, the selective inference C-EPA test is significant at the 10% level (p-value = 0.09).

More generally, the rejection of the homogeneity null in several cases justifies the use of our Selective

Inference C-EPA testing procedure. For example, when conditioning on the lagged target variable,

the homogeneity test rejects for SVM and XGBoost depending on the clustering method, and in many

cases selective C-EPA p-values very low (e.g., Random Forest yields a p-value of 0.00 in all settings.).

These results confirm that forecast gains may vary across clusters, making clustered tests essential to

discover such patterns.

We finally note an important implication of the empirical results. The choice of the method for

estimating the number of clusters plays a crucial role in test results. CV tends to yield more frequent

rejection of the homogeneity null and higher power in the selective C-EPA test compared to the IC

approach. This pattern is particularly evident for models like SVM, where the IC-based procedure

fails to detect group heterogeneity, but CV-based clustering leads to a borderline or significant result.

Hence, the findings underscore the importance of flexible and data-driven clustering in enhancing the

sensitivity of selective forecast evaluation procedures.

Overall, these results highlight that clustered inference can detect model improvements that are

missed by aggregate tests, and that conditioning and clustering are both essential tools in evaluating

forecast performance in panel settings with heterogeneous effects.

7. Conclusion

This paper developed a statistical framework for testing a linear hypothesis on the cluster centers

of a panel process after having estimated these clusters using the Panel Kmeans estimator. This

statistical framework was then applied to conditional C-EPA testing in order to compare the forecast

performance of agents or predictive models. In particular, we developed two distinct strategies to

deal with the problem of what is sometimes called “double dipping” in recent statistical literature.
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Table 6: p-values from C-EPA tests across models and conditioning variables

Test AR(p) Elastic Net XGBoost SVM Random Forest

Unconditional Tests

O-EPA 0.01 0.03 0.00 0.90 0.00

K = K̂CV Homogeneity 1.00 0.93 0.45 1.00 1.00
Naive 0.00 0.00 0.00 0.00 0.00
Split Sample 0.00 0.09 0.00 0.15 0.13
Selective Inference 0.03 0.11 0.00 1.00 0.00

K = K̂IC Homogeneity 0.45 0.01 0.91 0.99 0.67
Naive 0.00 0.01 0.00 0.14 0.00
Split Sample 0.00 0.11 0.00 0.17 0.00
Selective Inference 0.01 0.02 0.00 1.00 0.00

Conditional Tests - Lagged Target

O-EPA 0.01 0.09 0.00 0.95 0.00

K = K̂CV Homogeneity 0.00 1.00 1.00 0.07 0.21
Naive 0.00 0.02 0.00 0.51 0.02
Split Sample 0.00 0.02 0.00 0.13 0.01
Selective Inference 0.00 0.40 0.00 0.09 0.00

K = K̂IC Homogeneity 0.15 0.67 0.31 0.80 0.21
Naive 0.00 0.04 0.00 0.72 0.02
Split Sample 0.00 0.20 0.00 0.16 0.08
Selective Inference 0.03 0.20 0.00 1.00 0.00

Conditional Tests - Post Global Financial Crisis Dummy

O-EPA 0.00 0.09 0.00 0.97 0.00

K = K̂CV Homogeneity 0.23 1.00 0.35 0.19 0.93
Naive 0.00 0.03 0.00 0.00 0.01
Split Sample 0.00 0.08 0.00 0.11 0.10
Selective Inference 0.01 0.37 0.00 0.25 0.00

K = K̂IC Homogeneity 0.23 0.36 0.02 0.07 0.97
Naive 0.00 0.03 0.00 0.34 0.01
Split Sample 0.00 0.08 0.00 0.11 0.10
Selective Inference 0.01 0.18 0.00 0.14 0.00

Note: The results are based on 31178 observations (T = 238, N = 131) on loss differentials. All tests are

robust to arbitrary autocorrelation and CD. Panel Kmeans tests use 10000 initializations. K̂CV denotes the
10-fold cross-validated estimate of K. K̂CV = 2 in all cases. K̂IC uses Kmax = 5. Training portion for Split
Sample tests is γ = 0.1. O-EPA test is described in Section 4.2. See Table 1 for the detail on all other testing
procedure.
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Our proposed method is a conditional testing procedure based on recent developments in the area of

selective conditional inference. The main idea behind the methodology is to compute a p-value for

the C-EPA hypothesis which can be thought as the percentage of rejections of a true null among all

realizations of the panel process which result in the same clustering obtained using Panel Kmeans with

the realization in hand. The second strategy resulted in a set of more straightforward Split Sample

tests. The two methodologies were then compared theoretically as well as in Monte Carlo experiments.

Our simulation results show that both testing strategies work very well in small samples. They are

correctly sized even in very small samples and they have power against viable alternative hypotheses.

In particular, selective conditional inference tests perform very well and together with their theoretical

and practical advantages, they stand out as the preferred methodology.

Finally, to illustrate the empirical validity of our tests, we compared several a battery of time series

models as well as more modern machine learning methods with the AR(1) benchmark in terms of their

predictive ability, using a large data set of exchange rates. The results showed that taking the latent

clusters in the loss differentials between alternative methods and the AR(1) can help the practitioner

to improve their forecasts.

Appendices

A. Derivations of the Loss Differentials in Section 2.2

A.1. Proof of Equation (4)

We begin by showing (4). Let Xi,T be known and fixed at the time of forecasting. The true

data-generating process is given by

Yi,T+1 =


αi + βiXi,T + Ui,T+1, i ∈ C1,

βiXi,T + Ui,T+1, i ∈ C2,

where Ui,T+1 ∼ iid(0, σ2) and is independent of all other variables. The predictors α̂i, β̂i, and β̃i are

estimated from a fixed window of past observations and are thus random, while Xi,T is treated as

fixed. We analyze the two clusters separately.

Case 1: i ∈ C1 (True DGP with intercept). In this case, Forecaster 1 correctly includes both an

intercept and a slope, whereas Forecaster 2 omits the intercept and thus suffers from misspecification
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bias. The one-step-ahead forecast errors can be written as

Ŷ
(1)
i,T+1 − Yi,T+1 = (α̂i − αi) + (β̂i − βi)Xi,T + Ui,T+1,

Ŷ
(2)
i,T+1 − Yi,T+1 = −αi + (β̃i − βi)Xi,T + Ui,T+1.

The expectation of squared forecast error of Forecaster 1 is, by a bias–variance decomposition:

E[(Ŷ (1)
i,T+1 − Yi,T+1)

2] = E[(α̂i − αi)
2] +X2

i,TE[(β̂i − βi)2] + 2Xi,TE[(α̂i − αi)(β̂i − βi)] + E[U2
i,T+1]

= V(α̂i) + B(α̂i)
2 +X2

i,T [V(β̂i) + B(β̂i)2] + 2Xi,T Cov(α̂i, β̂i) + σ2.

Now, let us turn to Forecaster 2, which omits the intercept. This model is misspecified for units

in the cluster C1. Since β̃i is the OLS estimator from a regression without intercept, it absorbs some

of the variation of the omitted constant. The resulting forecast error has a fixed bias term −αi, in

addition to the slope estimation error and innovation. Taking the expectation of its square, we have

E[(Ŷ (2)
i,T+1 − Yi,T+1)

2] = α2
i +X2

i,T [V(β̃i) + B(β̃i)2] + σ2.

Subtracting these two expressions yields the expected forecast loss differential:

E[(Ŷ (1)
i,T+1 − Yi,T+1)

2]− E[(Ŷ (2)
i,T+1 − Yi,T+1)

2]

= V(α̂i) + B(α̂i)
2 − α2

i + [V(β̂i)− V(β̃i)]X2
i,T + [B(β̂i)2 − B(β̃i)2]X2

i,T + 2Xi,T Cov(α̂i, β̂i)

= V(α̂i) + B(α̂i)
2 − α2

i +∆i,

where ∆i := [V(β̂i)−V(β̃i)+B(β̂i)2−B(β̃i)2]X2
i,T +2Xi,T Cov(α̂i, β̂i). Averaging over i ∈ C1 establishes

the first line of (4).

Case 2: i ∈ C2 (True DGP without intercept). Here, Forecaster 2 correctly specifies the model

by excluding the intercept. Forecaster 1, on the contrary, includes an unnecessary intercept term,

which leads to overparameterization. The forecast errors are:

Ŷ
(1)
i,T+1 − Yi,T+1 = α̂i + (β̂i − βi)Xi,T + Ui,T+1,

Ŷ
(2)
i,T+1 − Yi,T+1 = (β̃i − βi)Xi,T + Ui,T+1.

Again, we compute the expected squared forecast errors under each model. For Forecaster 1, who

estimates both an intercept and slope, we have

E[(Ŷ (1)
i,T+1 − Yi,T+1)

2] = V(α̂i) + B(α̂i)
2 +X2

i,T [V(β̂i) + B(β̂i)2] + 2Xi,T Cov(α̂i, β̂i) + σ2.
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Now, we turn to Forecaster 2, which correctly omits the intercept. The expected forecast loss is:

E[(Ŷ (2)
i,T+1 − Yi,T+1)

2] = V(β̃i)X2
i,T + B(β̃i)2X2

i,T + σ2.

Subtracting the two, we obtain the loss differential:

E[(Ŷ (1)
i,T+1 − Yi,T+1)

2]− E[(Ŷ (2)
i,T+1 − Yi,T+1)

2] = V(α̂i) + B(α̂i)
2 +∆i,

where ∆i is the same as previously defined. Averaging over i ∈ C2 yields the second line of (4),

completing the derivation.

A.2. Proof of Equation (5)

The forecast error under pooled estimation is

Ŷ pooled
i,T+1 − Yi,T+1 = (β̂ − βki)

′Xi,T − Ui,T+1.

Squaring and taking expectation:

E[(Ŷ pooled
i,T+1 − Yi,T+1)

2] = E{[(β̂ − βki ]
′Xi,T )

2}+ E(U2
i,T+1)

= E[(β̂ − βki)
′Xi,TX

′
i,T (β̂ − βki)] + σ2.

Using the bias–variance decomposition:

E[(β̂ − βki)(β̂ − βki)
′] = V(β̂) + [E(β̂)− βki ][E(β̂)− βki ]

′,

we obtain

E[(Ŷ pooled
i,T+1 − Yi,T+1)

2] = [E(β̂)− βki ]
′Xi,TX

′
i,T [E(β̂)− βki ] + tr[V(β̂)Xi,TX

′
i,T ] + σ2.

For Forecaster 2, the forecast error is

Ŷ het
i,T+1 − Yi,T+1 = (β̂i − βki)

′Xi,T − Ui,T+1.

Assuming E(β̂i) = βki , the expected squared forecast error is

E[(Ŷ het
i,T+1 − Yi,T+1)

2] = tr[V(β̂i)Xi,TX
′
i,T ] + σ2.

Taking the difference yields

E[(Ŷ pooled
i,T+1 − Yi,T+1)

2]− E[(Ŷ het
i,T+1 − Yi,T+1)

2] = [E(β̂)− βki ]
′Xi,TX

′
i,T [E(β̂)− βki ]

+ tr{[V(β̂)− V(β̂i)]Xi,TX
′
i,T }.
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Letting ΣX = 1
|Ck|
∑

i∈Ck Xi,TX
′
i,T and V(β̂i) = 1

|Ck|
∑

i∈Ck V(β̂i), we have

1

|Ck|
∑
i∈Ck

{E[(Ŷ pooled
i,T+1 − Yi,T+1)

2]− E[(Ŷ het
i,T+1 − Yi,T+1)

2]}

= [E(β̂)− βk]′ΣX [E(β̂)− βk] + tr{[V(β̂)− V(β̂i)]ΣX},

noting that βki = βk for all i ∈ Ck, which establishes equation (5).

B. Split-sample Test Statistic

In the main text, the selective conditional inference approach was adopted to condition on the

estimated cluster memberships. An alternative and more straightforward method is sample splitting

in the time dimension. The current section develops a testing procedure similar to the homogeneity

tests developed by Patton and Weller (2023).

Let S1 and S2 be two mutually exclusive but not necessarily exhaustive subsets of S = {1, . . . , T}

given by S1 = {1, 2, . . . , ⌊γ ·T ⌋} and S2 = {⌊γ ·T ⌋+1+ l, ⌊γ ·T ⌋+2+ l, . . . , T} where l ≥ 1 is an integer

which ensures independence between the two subsets and γ ∈ (0, 1) is the proportion of the time series

observation in the training set. γ is typically chosen to satisfy γ < 0.5 because the Panel Kmeans

estimator of the cluster membership is super-consistent (Bonhomme and Manresa, 2015) whereas the

power of the test statistics crucially depend on a large number of time series observations in the test

set.

Let ĈS1 be the partition of the panel units obtained from the Panel Kmeans estimator given

in (8) using the sample of N cross-sectional units and the training set S1. We define θ̂S2(ĈS1) =

[θ̂′1,S2
(ĈS1), . . . , θ̂

′
K,S2

(ĈS1)], and θ̂k,S2(ĈS1) = |S2|−1
∑

t∈S2
Z̄k,t(ĈS1), Z̄k,t(ĈS1) = |Ĉk,S1 |−1

∑N
i∈Ĉk,S1

Zit.

A Split Sample test statistic for H0 is

WSS(ĈS1) =
B −KP + 1

KPB
|S2|θ̂′S2

(ĈS1)Ω̂
−1
S2

(ĈS1)θ̂S2(ĈS1), (27)

with Ω̂S2(ĈS1) =
1
B

∑B
j=1 Λ̂j(ĈS1)Λ̂

′
j(ĈS1), Λ̂j(ĈS1) =

√
2

|S2|
∑

t∈S2
[Z̄t(ĈS1)− θ̂S2(ĈS1)] cos

[
πj
(
t−1/2
P

)]
.

Let Et = σ({Vit}Ni=1, s ≤ t) be the σ-algebra generated by the past and present of Vit. The

asymptotic properties of the Split Sample test crucially depend on the following assumption.

Assumption G4. Vit is independent of all measurable-Et−l random variables for some l ≥ 1 and for

all t = 1, . . . , T , i = 1, . . . , N .

According to Assumption G4, time series dependence in the process Vit is limited such that Vit is
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independent of Vjs whenever |t − s| ≥ l for all i and j. This assumption is somewhat restrictive as

it rules out many mixing processes for Vit. We can now state the following result which is similar to

Theorem 6 of Patton and Weller (2023) with the differences we discuss in the remarks below.

Theorem 3. Suppose that Assumptions G1-G3 and G4 hold. Then, for B fixed, |S1|, |S2| → ∞ as

(T,N)→∞, the following results hold.

(a) Under H0, WSS(ĈS1)
d−→ FKP,B−KP+1.

(b) Suppose now that K = K0 ≥ 2. Under Assumptions G1-S2 and G4, and if H0 fails, then, for

any C > 0, P[WSS(ĈS1) > C]→ 1.

The result above leads us to the following remarks. First, the Split Sample test statistics rely

on the selection of the two sub-samples S1 and S2 which can be arbitrary in practice. Furthermore,

since inference is based on a reduced sample size, the associated test statistics may have low power.

However, we note that the selective conditional inference approach has extra conditioning due to the

nuisance parameters in the conditional distribution of interest. Hence, the comparative power of the

Split Sample statistics is an empirical question which we investigate with simulations. Second, here,

we apply a small sample correction contrary to the asymptotic tests of Patton and Weller (2023).

Third, our framework allows for strong CD which is ruled out by the authors. Finally, their testing

procedure focuses only on homogeneity of the panel whereas we test if each cluster has zero mean.

C. Proofs

C.1. Proof of Lemma 1

To prove Part (a), we show that each K × 1 component of θ̂(C) satisfies θ̂k(C) − θ0k(C) = op(1).

By definition, Zit = µ0i + Vit and E(Vit) = 0. Since θ̂k(C) = (|Ck|T )−1
∑

i∈Ck
∑T

t=1 Zit and noting that

θ0k(C) = |Ck|−1
∑

i∈Ck µ
0
i , we have

θ̂k(C)− θ0k(C) =
1

|Ck|T
∑
i∈Ck

T∑
t=1

Vit, (28)

50



which gives E[θ̂k(C)− θ0k(C)] = 0. Turning to the variance, we have

∥∥∥E{[θ̂k(C) − θ0k(C)][θ̂k(C)− θ0k(C)]′}
∥∥∥ =

∥∥∥∥∥∥ 1

(|Ck|T )2
∑

i,j∈Ck

T∑
t,s=1

E(VitV ′
js)

∥∥∥∥∥∥
≤ 1

|Ck|2T
∑

i,j∈Ck

 1

T

T∑
t,s=1

E∥VitV ′
js∥


≤ 1

|Ck|2T
∑

i,j∈Ck

 1

T

T∑
t,s=1

E∥VitV ′
js∥

 = O

(
1

π2kT

)
,

(29)

as (T,N) −→∞ where the summability of the double sum over t, s follows from the moment conditions

of Assumption G1 which ensure that T−1
∑T

t,s=1 E∥VitV ′
js∥ is uniformly bounded, and the result follows

since G2 ensures that πk ≥ π > 0 uniformly in N . This concludes Part (a).

For Part (b), we write

Ω̃(C)−1/2N 1−ϵ(C)T 1/2[θ̂(C)− θ0(C)] = Ω̃(C)−1/2N 1−ϵ(C)T−1/2
T∑
t=1

V̄t(C)

= Ω̃(C)−1/2T−1/2
T∑
t=1

N 1−ϵ(C)V̄t(C)

where V̄t(C) = [V̄1t(C), . . . , V̄Kt(C)]′ with V̄kt(C) = (|Ck|T )−1
∑

i∈Ck Vit. Since the mixing properties are

hereditary, N 1−ϵ(C)V̄t(C) satisfies the same mixing conditions satisfied by Vit by Assumption G3 (see,

for instance, Result 1 of Driscoll and Kraay, 1998). Hence, N 1−ϵ(C)V̄t(C) satisfies the conditions of

Corollary 2.2 of Phillips and Durlauf (1986) and a multivariate invariance principle holds. The CLT

of Part (b) follows directly from this result.

C.2. Proof of Lemma 2

Let

Q̂(θ, C) = (NT )−1
N∑
i=1

T∑
t=1

∥Zit − θki∥
2,

be the objective function of the Panel Kmeans estimator divided by NT where θk = |Ck|−1
∑

i∈Ck µi,

and

Q̃(θ, C) = N−1
N∑
i=1

∥θ0k0i − θki∥
2 + (NT )−1

N∑
i=1

T∑
t=1

∥Vit∥2,
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the auxiliary objective function where θ0k = |C0k |−1
∑

i∈Ck µ
0
i . We also define the Hausdorff distance

between θ̂(C) and θ0(C) as

dH [θ̂(C), θ0(C)] = max

{
max

k∈{1,...,K}
min

g∈{1,...,K}

∥∥∥θ̂k(C)− θ0g(C)∥∥∥2 ,
max

g∈{1,...,K}
min

k∈{1,...,K}

∥∥∥θ̂k(C)− θ0g(C)∥∥∥2
}
.

Our proof is based on the proof of Theorem 1 and Proposition S.4 of Bonhomme and Manresa (2015)

but it generalizes their results for the multivariate case with potentially strong CD. Part (a) of Lemma

2 is proved by the following lemma.

Lemma C.1. Under the assumptions of Lemma 2, we have

(a) Q̂(θ, C)− Q̃(θ, C) = op(1),

(b) Q̃[θ̂(Ĉ), Ĉ]− Q̃(θ0, C0) = op(1).

Proof. To prove (a), we write∣∣∣Q̂(θ, C)− Q̃(θ, C)∣∣∣ = ∣∣∣∣∣ 2

NT

N∑
i=1

T∑
t=1

V ′
it(θ

0
k0i
− θki)

∣∣∣∣∣ ≤ 2

(
1

N

N∑
i=1

∥∥∥θ0k0i − θki∥∥∥
∥∥∥∥∥ 1T

T∑
t=1

Vit

∥∥∥∥∥
)

= op(1),

which follows directly from Assumption G1(a)-(c). To show (b), we first note that Q̃(θ, C) is uniquely

minimized at true values. To see this, it suffices to write

Q̃(θ, C)− Q̃(θ0, C0) = 1

N

N∑
i=1

∥∥∥θ0k0i − θki∥∥∥2
=

1

N

N∑
i=1

K∑
k=1

K∑
g=1

1{k0i = k}1{ki = g}
∥∥θ0k − θg(C)∥∥2

≥
K∑
k=1

1

N

N∑
i=1

1{k0i = k} min
g∈{1,...,K}

∥∥θ0k − θg(C)∥∥2
=

K∑
k=1

|C0k |
N

min
g∈{1,...,K}

∥∥θ0k − θg(C)∥∥2 ,

(30)

where |C0k |/N −→ π0k ∈ (0, 1) by Assumption G2. Note that, by definition, Panel Kmeans estimator

satisfies Q̂[θ̂(Ĉ), Ĉ] ≤ Q̂(θ, C). Combining this with (a), we find Q̃[θ̂(Ĉ), Ĉ] + op(1) ≤ Q̃(θ, C) + op(1).

Hence, by (30), we have Q̃[θ̂(Ĉ), Ĉ]− Q̃(θ0, C0) = op(1) which ends the proof.

For Part (a), we will show the consistency of the Panel Kmeans estimator of the cluster centers with

respect to the Hausdorff distance, as in Proposition S.4 of Bonhomme and Manresa (2015). Namely,
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we will show that dH [θ̂(Ĉ), θ0] = op(1). Define the permutation υ : {1, . . . ,K} −→ {1, . . . ,K} as

υ(k) = argming∈{1,...,K}∥θ0k − θ̂g(Ĉ)∥2. Following steps similar to those in (30), it is easy to show that

∥θ0k − θ̂g(Ĉ)∥2 is bounded away from zero. It follows that υ(k) ̸= υ(g) for all k ̸= g, with probability

approaching to one. Thus, for all g ∈ {1, . . . ,K}, ming∈{1,...,K}∥θ0k − θ̂g(Ĉ)∥2 ≤ ∥θ0υ−1(g) − θ̂g(Ĉ)∥
2 =

ming̃∈{1,...,K}∥θ0υ−1(g) − θ̂g̃(Ĉ)∥
2 = op(1) where the last equality follows from (30) and Lemma C.1(b).

This in turn implies that

max
k∈{1,...,K}

min
g∈{1,...,K}

∥θ0k − θg∥2 = op(1).

Combining this with the definition of the Hausdorff distance, we find dH [θ̂(Ĉ), θ0] = op(1) which shows

that there exists a permutation υ(k) such that ∥θ0υ(k) − θ̂k(Ĉ)∥
2 = op(1) which ends the proof of Part

(a).

For Part (b), we define Θη as the set of parameters θ ∈ ΘKP that satisfy ∥θ − θ0∥2 < η for η > 0.

We state the following result which is similar to Lemma B.4 of Bonhomme and Manresa (2015).

Lemma C.2. For η > 0 small enough, we have, for all ξ > 0 and as (T,N)→∞,

sup
θ∈Θη

1

N

N∑
i=1

1{k̂i(Z) ̸= k0i } = op(T
−ξ).

Proof. As in the proof of Lemma B.4 of Bonhomme and Manresa (2015), we first note that, by

the definition of k̂i(Z) in (23), 1{k̂i(Z) = k} ≤ 1
{∑T

t=1∥Zit − θk∥2 ≤
∑T

t=1∥Zit − θk0i ∥
2
}
. Notice

also that we can write N−1
∑N

i=1 1{k̂i(Z) ̸= k0i } =
∑K

k=1N
−1
∑N

i=1 1{k0i ̸= k}1{k̂i(Z) = k}. Com-

bining these two gives N−1
∑N

i=1 1{k̂i(Z) ̸= k0i } ≤
∑K

k=1N
−1
∑N

i=1Qik(θ) where Qik(θ) = 1{k0i ̸=

k}1
{∑T

t=1∥Zit − θk∥2 ≤
∑T

t=1∥Zit − θk0i ∥
2
}
. We will bound Qik(θ). By the fact that Zit = θ0

k0i
+ Vit,

we have

Qik(θ) = 1{k0i ̸= k}1


T∑
t=1

P∑
p=1

[
2Vp,it(θp,k0i

− θp,k) + (θ0p,k0i
− θp,k)2 − (θ0p,k0i

− θp,k0i )
2
]
≤ 0


≤ max

k ̸=g
1


T∑
t=1

P∑
p=1

[
2Vp,it(θp,g − θp,k) + (θ0p,g(C0)− θp,k)2 − (θ0p,g(C0)− θp,g)2

]
≤ 0

 .

Define

A =

∣∣∣∣∣∣
T∑
t=1

P∑
p=1

[
2Vp,it(θp,g − θp,k) + (θ0p,g(C0)− θp,k)2 − (θ0p,g(C0)− θp,g)2

]

−
T∑
t=1

P∑
p=1

[
2Vp,it(θ

0
p,g(C0)− θ0p,k(C0)) + (θ0p,g(C0)− θ0p,k(C0))2

]∣∣∣∣∣∣ .
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Rearranging and using the triangular inequality, we find,

A ≤ |A1|+ |A2|+ |A3|+ |A4|,

where

A1 = 2

T∑
t=1

P∑
p=1

Vp,it(θp,g − θ0p,g(C0))

A2 = 2
T∑
t=1

P∑
p=1

Vp,it(θ
0
p,k(C0)− θp,k)

A3 = T
P∑

p=1

(θ0p,g(C0)− θp,g)2

and

A4 = T
P∑

p=1

[
(θ0p,g(C0)− θp,k)2 − (θ0p,g(C0)− θ0p,k(C0))2

]
= T

P∑
p=1

[
θ2p,k − θ0p,k(C0)2 − 2θ0p,g(C0)(θp,k − θ0p,k(C0))

]
= T

P∑
p=1

[
θ2p,k − θ0p,k(C0)2

]
− 2T

P∑
p=1

[
θ0p,g(C0)(θp,k − θ0p,k(C0))

]
.

For θ ∈ Θη, we find that

A ≤ TC1
√
η

 1

T

T∑
t=1

P∑
p=1

V 2
p,it

1/2

+ TC2η + TC3
√
η,

with C1, C2, C3 being constants independent of η and T which follows from the definition of Θη. We

find

Qik(θ) ≤ max
g ̸=k

1


T∑
t=1

P∑
p=1

[
2Vp,it(θ

0
p,g(C0)− θ0p,k(C0)) + (θ0p,g(C0)− θ0p,k(C0))2

]

≤ TC1
√
η

 1

T

T∑
t=1

P∑
p=1

V 2
p,it

1/2

+ TC2η + TC3
√
η

 .
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The right-hand side does not depend on θ, hence, supθ∈Θη
Qik(θ) ≤ Q̃ik with

Q̃ik ≤ max
g ̸=k

1


T∑
t=1

P∑
p=1

2Vp,it(θ
0
p,g(C0)− θ0p,k(C0))

≤ −T
P∑

p=1

(θ0p,g(C0)− θ0p,k(C0))2 + TC1
√
η

 1

T

T∑
t=1

P∑
p=1

V 2
p,it

1/2

+ TC2η + TC3
√
η

 .

This gives supθ∈Θη
N−1

∑N
i=1 1{k̂i(Z) ̸= k0i } ≤ N−1

∑N
i=1

∑K
k=1 Q̃ik. Now we have

P(Q̃ik = 1) ≤
∑
g ̸=k

P

 T∑
t=1

P∑
p=1

2Vp,it(θ
0
p,g(C0)− θ0p,k(C0))

≤ −T
P∑

p=1

(θ0p,g(C0)− θ0p,k(C0))2 + TC1
√
η

 1

T

T∑
t=1

P∑
p=1

V 2
p,it

1/2

+ TC2η + TC3
√
η


≤
∑
g ̸=k

P
 T∑

t=1

P∑
p=1

2Vp,it(θ
0
p,g(C0)− θ0p,k(C0)) ≤ −TCk,g + TC1

√
η
√
C + TC2η + TC3

√
η


+ P

 P∑
p=1

(θ0p,g(C0)− θ0p,k(C0))2 < Ck,g

+ P

 1

T

T∑
t=1

P∑
p=1

V 2
p,it > C

 .
By Assumption S2, the second term above is null, and by Lemma B.5 of Bonhomme and Manresa

(2015) and under Assumption S3, P
(
T−1

∑T
t=1

∑P
p=1 V

2
p,it > C

)
= o(T−ξ), for all ξ > 0. Furthermore,

by choosing η suitably, we find

P

 1

T

T∑
t=1

P∑
p=1

2Vp,it(θ
0
p,g(C0)− θ0p,k(C0)) ≤ −Ck,g + C1

√
η
√
C + C2η + C3

√
η


≤ P

 1

T

T∑
t=1

P∑
p=1

Vp,it(θ
0
p,g(C0)− θ0p,k(C0)) ≤ −

Ck,g

2

 = o(T−ξ)

where we obtain the last equality by applying Lemma B.5 of Bonhomme and Manresa (2015) with

zt = Vp,it(θ
0
p,g(C0)− θ0p,k(C0)) and z = Ck,g/2. This in turn implies that N−1

∑N
i=1

∑K
k=1 P(Q̃ik = 1) =

o(T−ξ). Finally we note that, for all ξ > 0 and ξ̃ > 0,

P

(
sup
θ∈Θη

1

N

N∑
i=1

1{k̂i(Z) ̸= k0i } > ξ̃T−ξ

)
≤ P

(
1

N

N∑
i=1

K∑
k=1

Q̃ik > ξ̃T−ξ

)

≤
E
(
N−1

∑N
i=1

∑K
k=1 Q̃ik

)
ξ̃T−ξ

= o(1).

which ends the proof.

55



We now prove the last three parts of Lemma 2. For Part (b), we refer to the proof of Bonhomme

and Manresa (2015), which is identical in our case. Part (c) also follows similar lines to the proof of

Theorem 2 and Corollary 1 of Bonhomme and Manresa (2015), with the difference that we have (31)

in place of their analogous condition.

First, as in the proof of Part (a), define Q∗(θ) = 1
NT

∑N
i=1

∑T
t=1∥Zit − θk̂i∥

2, the concentrated

version of Q̂(θ, C), and Q†(θ) = 1
NT

∑N
i=1

∑T
t=1∥Zit − θk0i ∥

2. By choosing η small enough, Lemma C.2

implies that

sup
θ∈Θη

∣∣∣Q∗(θ)−Q†(θ)
∣∣∣ = op(T

−ξ),

for all ξ > 0. Furthermore, by consistency of θ̂(Ĉ) and θ̂(C0), as (T,N) → ∞, Q∗[θ̂(Ĉ)] −Q†[θ̂(Ĉ)] =

op(T
−ξ) and Q∗[θ̂(C0)] − Q†[θ̂(C0)] = op(T

−ξ) which in turn gives Q†[θ̂(Ĉ)] − Q†[θ̂(C0)] = op(T
−ξ).

Now, as in (30),

Q†[θ̂(Ĉ)]−Q†[θ̂(C0)] = 1

N

N∑
i=1

∥∥∥θ̂k̂i − θ̂ki∥∥∥2
=

1

N

N∑
i=1

K∑
k=1

K∑
g=1

1{k̂i = k}1{ki = g}
∥∥∥θ̂k̂i − θ̂ki∥∥∥2

≥
K∑
k=1

1

N

N∑
i=1

1{k̂i = k} min
g∈{1,...,K}

∥∥∥θ̂k̂i − θ̂g∥∥∥2
=

K∑
k=1

|Ĉk|
N

min
g∈{1,...,K}

∥∥∥θ̂k̂i − θ̂g∥∥∥2 ,

(31)

where |Ĉk|/N −→ π0k ∈ (0, 1) by Assumption G2. We thus obtain θ̂k̂i − θ̂ki = op(T
−ξ) which ends the

proof of Part (c). Part (d) then follows from the consistency of the estimator and Assumption G3.

C.3. Proof of Lemma 3

Let C be a partition of the panel units with K ≥ 2, and νk,g the associated NT × 1 vector. For

convenience, we remind that, νk,g = (ν ′k,g,1, . . . , ν
′
k,g,N )′, νk,g,i = ιT δk,g,i, ιT being a T -vector of ones,

δk,g,i = 1{ki = k}/|Ck|−1{ki = g}/|Cg|. As in the main text, we also have Πk,g = I − νk,gνk,g/∥νk,g∥2.

The following lemmas will be referred to in the proof of our result.

Lemma C.3. Suppose that Assumptions G1-G3 hold. Then, as (T,N) → ∞ and B → ∞ with

B/T → 0, Ω̂(C)− Ω(C) = op(1).

Proof. See Sun (2013).
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Lemma C.4. Suppose that Assumptions G1-G3, and Hk,g
0 : θ0k(C) = θ0g(C) hold. Then, Dk,g(C)

d−→

χK for all k, g ∈ {2, . . . ,K}, k ̸= g, as B →∞, (T,N)→∞ such that B/T → 0.

Proof. For the result to hold, it suffices to show that D2
k

d−→ χ2
P under the assumptions. Let Rk,g be

the P ×KP selection matrix such that Rk,g θ̂(C) = θ̂k(C) − θ̂g(C). Namely, the matrix Rk,g contains

an identity matrix IP in the kth block, −IP in the gth block, and zeros elsewhere. Using Lemma 1,

we find Σ−1/2(C)T 1/2Rk,g[θ̂(C)− θ0(C)]
d−→ N(0, IP ) where Σ(C) = Rk,gΩ(C)R′

k,g. Under H
k,g
0 , this in

turn gives

T [θ̂k(C)− θ̂g(C)]′Σ−1
k,g(C)[θ̂k(C)− θ̂g(C)]

d−→ χ2
P ,

where Σk,g(C) = ωk,k(C)+ωg,g(C)−2ωk,g(C) with ωk,g(C) begin the {k, g}th P ×P block of Ω(C). But

by Lemma C.3, we have ω̂k,g(C)− ωk,g(C) = op(1) from which the result follows.

Lemma C.5. Suppose that Assumptions G1-G3, and Hk,g
0 : θ0k(C) = θ0g(C) hold. Then, as (T,N) →

∞, Πk,gZ, Dk,g(C) and dir[Σ̂
−1/2
k,g (C)Z ′νk,g] are asymptotically pairwise independent.

Proof. Notice first that we can write Dk,g(C) = ∥
√
T Σ̂

−1/2
k,g (C)Z ′νk,g∥ and under Assumptions G1-G3,

√
T Σ̂

−1/2
k,g (C)Z ′νk,g

d−→ N(0, IP ) if Hk,g
0 holds, as in Lemma C.4. It follows that Dk,g(C) is asymptoti-

cally independent of dir[Σ̂
−1/2
k,g (C)Z ′νk,g] since the length and direction of a standard normal random

vector are independent of each other.

To show that Dk,g(C) is asymptotically independent of Πk,gZ, we first note that Πk,gνk,g = 0. This

implies by the properties of the matrix normal distribution that Z ′νk,g is independent of Πk,gZ from

which the desired result follows immediately.

Our proof of Lemma 3 follows lines similar to the proof of Theorem 1 of Gao et al. (2024) and

Proposition 1 of Chen and Witten (2023). We first write

Z = Πk,gZ + (I −Πk,g)Z = Πk,gZ +
νk,gν

′
k,gZΣ̂

−1/2
k,g (C)Σ̂1/2

k,g (C)
∥νk,g∥2

= Πk,gZ +
∥Σ̂−1/2

k,g (C)Z ′νk,g∥
∥νk,g∥2

νk,g[dir[Σ̂
−1/2
k,g (C]Z ′νk,g)]

′Σ̂
1/2
k,g (C)

= Πk,gZ +Dk,g(C)
νk,g√

T∥νk,g∥2
[dir[Σ̂

−1/2
k,g (C]Z ′νk,g)]

′Σ̂
1/2
k,g (C).

(32)
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By placing this equation in (14), we find that

p∞[dk,g(C)] = lim
(T,N)→∞

PH0

[
Dk,g(C) ≥ dk,g(C)

∣∣∣∣∣
M⋂

m=1

N⋂
i=1

{
k
(m)
i

(
Πk,gZ +Dk,g(C)

νk,g√
T∥νk,g∥2

[dir[Σ̂
−1/2
k,g (C]Z ′νk,g)]

′Σ̂
1/2
k,g (C)

)
= k

(m)
i (z)

}
,

Πk,gZ = Πk,gz,dir[Σ̂
−1/2
k,g (C)Z ′νk,g] = dir[Σ̂

−1/2
k,g (C)z′νk,g]

]

= lim
(T,N)→∞

PH0

[
Dk,g(C) ≥ dk,g(C)

∣∣∣∣∣
M⋂

m=1

N⋂
i=1

{
k
(m)
i

(
Πk,gz +Dk,g(C)

νk,g√
T∥νk,g∥2

[dir[Σ̂
−1/2
k,g (C]z′νk,g)]′Σ̂

1/2
k,g (C)

)
= k

(m)
i (z)

}
,

Πk,gZ = Πk,gz,dir[Σ̂
−1/2
k,g (C)Z ′νk,g] = dir[Σ̂

−1/2
k,g (C)z′νk,g]

]
,

where we used the two conditions Πk,gZ = Πk,gz and dir[Σ̂
−1/2
k,g (C)Z ′νk,g] = dir[Σ̂

−1/2
k,g (C)z′νk,g] to

obtain the second equality. By Lemma C.5, this implies

p∞[dk,g(C)] = lim
(T,N)→∞

PH0

[
Dk,g(C) ≥ dk,g(C)

∣∣∣∣∣
M⋂

m=1

N⋂
i=1

{
k
(m)
i

(
Πk,gz +Dk,g(C)

νk,g√
T∥νk,g∥2

[dir[Σ̂
−1/2
k,g (C]z′νk,g)]′Σ̂

1/2
k,g (C)

)
= k

(m)
i (z)

}]
.

Next, by plugging the definition of Πk,g into the first term of (32), we have

z(ϕ) ≡ z −
∥z′νk,g∥
∥νk,g∥2

νk,g[dir(z
′νk,g)]

′ +Dk,g(C)
νk,g√

T∥νk,g∥2
[dir[Σ̂

−1/2
k,g (C]z′νk,g)]′Σ̂

1/2
k,g (C)

= z −
∥z′νk,g∥
∥νk,g∥2

νk,g[dir(z
′νk,g)]

′ +Dk,g(C)
νk,g√

T∥νk,g∥2
∥z′νk,g∥

∥Σ̂−1/2
k,g (C)z′νk,g∥

[dir(z′νk,g)]
′

= z −
∥z′νk,g∥
∥νk,g∥2

νk,g[dir(z
′νk,g)]

′ + ϕ
νk,g√

T∥νk,g∥2
∥z′νk,g∥

∥Σ̂−1/2
k,g (C)z′νk,g∥

[dir(z′νk,g)]
′.

(33)

with ϕ ∼ χq which follows from Lemma C.4 under H0. This in turn gives

p∞[dk,g(C)] = PH0

[
ϕ ≥ dk,g(C)

∣∣∣∣∣
M⋂

m=1

N⋂
i=1

{
k
(m)
i [z(ϕ)] = k

(m)
i (z)

}]
,

which shows that p∞(dk,g(C)) can be calculated as the survival function of a χq variable truncated

to the set T =
{
ϕ ∈ R≥0 :

⋂M
m=1

⋂N
i=1 k

(m)
i [z(ϕ)] = k

(m)
i (z)

}
, that is, p(dk,g) = 1− Fχq [dk,g; T ]. This

completes the proof.
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C.4. Proof of Proposition 1

Lemma C.6. Suppose that Assumptions G1-S3, and Hk,g
1 : θ0k(C) ̸= θ0g(C) hold. Then, Dk,g diverges

as B →∞, (T,N)→∞ such that B/T → 0.

Proof. We first note that by Assumption G3, Σk,g(C0) is positive definite, so its inverse square root

Σ
−1/2
k,g (C0) exists and is also positive definite. Moreover, by Assumption S2 ∥θ0k − θ0g∥ > 0, which

means that the difference θ0k − θ0g is a nonzero vector. Then, since Σ
−1/2
k,g (C0) is positive definite and

the argument is nonzero, we have

∥Σ−1/2
k,g (C0)[θ0k − θ0g ]∥2 = [θ0k − θ0g ]′Σ−1

k,g(C
0)[θ0k − θ0g ] > 0.

Taking square roots on both sides gives ∥Σ−1/2
k,g (C0)

[
θ0k − θ0g

]
∥ > 0.

Now note that T−1/2Dk,g = ∥Σ̂−1/2
k,g (Ĉ)[θ̂k(Ĉ)− θ̂g(Ĉ)]∥. Moreover, by Lemma 1(a), Lemma 2

∥Σ̂−1/2
k,g (Ĉ)[θ̂k(Ĉ)− θ̂g(Ĉ)]∥ − ∥Σ

−1/2
k,g (C0)[θ0k − θ0g ]∥ = op(1).

Then, it follows that

T−1/2Dk,g = ∥Σ̂−1/2
k,g (Ĉ)[θ̂k(Ĉ)− θ̂g(Ĉ)]∥

p−→ ∥Σ−1/2
k,g (C0)[θ0k − θ0g ]∥ > 0,

which implies that Dk,g →∞ as T →∞.

To prove the first part of the proposition, we write

lim sup
(T,N)→∞

P

[
p[Dk,g(C)] ≤ α

∣∣∣∣∣
M⋂

m=1

N⋂
i=1

{
k
(m)
i

(
Πk,gZ +Dk,g(C)

νk,g√
T∥νk,g∥2

{dir[Σ̂−1/2
k,g (C]Z ′νk,g)}′Σ̂

−1/2
k,g (C)

)
= k

(m)
i (z)

}
,

Πk,gZ = Πk,gz,dir(Σ̂
−1/2
k,g (C)Z ′νk,g) = dir(Σ̂

−1/2
k,g (C)z′νk,g)

]

= lim sup
(T,N)→∞

P

[
p[Dk,g(C)] ≤ α

∣∣∣∣∣
M⋂

m=1

N⋂
i=1

{
k
(m)
i (z[Dk,g(C)]) = k

(m)
i (z)

}]

= lim sup
(T,N)→∞

P

[
1− Fχq [Dk,g(C); T ] ≤ α

∣∣∣∣∣
M⋂

m=1

N⋂
i=1

{
k
(m)
i (z[Dk,g(C)]) = k

(m)
i (z)

}]
,

which follows lines similar to those above and the definition of Fχq [Dk,g(C); T ] as the cumulative
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distribution function of a χq variate truncated to the set T . It remains to show that

lim sup
(T,N)→∞

P

[
1− Fχq [Dk,g(C); T ] ≤ α

∣∣∣∣∣
M⋂

m=1

N⋂
i=1

{
k
(m)
i (z[Dk,g(C)]) = k

(m)
i (z)

}]
= α.

Note that, underH0, the conditional distribution ofDk,g(C) given
⋂M

m=1

⋂N
i=1

{
k
(m)
i (z[Dk,g(C)]) = k

(m)
i (z)

}
is Fχq(·, T ).

lim sup
(T,N)→∞

P

[
p[Dk,g(C)] ≤ α

∣∣∣∣∣
N⋂
i=1

{
k
(M)
i (Z) = k

(M)
i (z)

}]

= lim
(T,N)→∞

E

[
1 {p[Dk,g(C)] ≤ α}

∣∣∣∣∣
N⋂
i=1

{
k
(M)
i (Z) = k

(M)
i (z)

}]

= lim
(T,N)→∞

E

[
E

(
1 {p[Dk,g(C)] ≤ α}

∣∣∣∣∣
M⋂

m=1

N⋂
i=1

{
k
(m)
i (Z) = k

(m)
i (z)

}
,Πk,gZ = Πk,gz,

dir(Σ̂
−1/2
k,g (C)Z ′νk,g) = dir(Σ̂

−1/2
k,g (C)z′νk,g)

) ∣∣∣∣∣
N⋂
i=1

{
k
(M)
i (Z) = k

(M)
i (z)

}]

= lim
(T,N)→∞

E

[
α

∣∣∣∣∣
N⋂
i=1

{
k
(M)
i (Z) = k

(M)
i (z)

}]
= α,

which concludes the proof of Part (a).

Part (b) follows directly from Lemma C.6 which implies that Dk,g → ∞ under the alternative

hypothesis, hence, for any α ∈ (0, 1)

lim
(T,N)→∞

P{p[Dk,g(C)] ≤ α} = 1,

and noting that under Lemma 2(b), the conditioning event holds with probability 1.

C.5. Proof of Theorem 1

Lemma C.7. Let GNT = (G1,NT , . . . , Gn,NT )
′ be a random n-vector such that GNT

d−→ G as

(T,N)→∞. Define

f(x1, . . . , xn) =
r

r + 1
n1+1/r

(
1

n

n∑
i=1

xri

)1/r

where xi > 0 for all i = 1, . . . , n and r ∈ [−∞,−1). Then f(GNT )
d−→ f(G).

Lemma C.8. Let GNT = (G1,NT , . . . , Gn,NT )
′ be a random n-vector such that GNT

d−→ G as

(T,N)→∞. Define

Rα = {(x1, . . . , xn) ∈ [0, 1]n : F (x1, . . . , xn) ≤ α}
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for all α ∈ (0, 1), where F (x1, . . . , xn) = f(x1, . . . , xn)∧ 1 for some continuous function f : [0, 1]n → R

and r ∈ (1,∞). Then lim(T,N)→∞ P (GNT ∈ Rα) ≤ P (G ∈ Rα) .

Proof. Since f is continuous and bounded above by construction, the function F = f ∧ 1 is also

continuous. Then the set Rα = {x ∈ [0, 1]n : F (x) ≤ α} is closed. The result follows from the

Portmanteau Theorem (see, Section 3.4 of Gasparin et al., 2025).

Define p∗[Dk,g(Ĉ)] as the limit of the random variable p[Dk,g(Ĉ)] which satisfies p[Dk,g(Ĉ)]
d−→

p∗[Dk,g(Ĉ)] ∼ U[0, 1] as (T,N) → ∞ for all k, g ∈ {1, . . . ,K}, k ̸=, which holds by Proposition 1(a).

By Theorem 1 of Spreng and Urga (2023), we have

P

 r

r + 1
n1+1/r
p


1

np

∑
k,g∈{1,...,K}

k ̸=g

{p∗[Dk,g(Ĉ)]}r


1/r

≤ α

 ≤ α,
Then, part (a) is proved directly by Lemma C.8.

Part (b) now follows from Proposition 1(a) under which at least for one pair k, g ∈ {1, . . . ,K},

k ̸=, the p-value satisfies p(Dk,g)
p−→ 1.

C.6. Proof of Proposition 2

Part (a) follows directly from Theorem 3.1 of Sun (2013) under our Assumptions G1 and G3 by

setting C = (1, . . . , 1)′. Part (b) follows from Section 4.1 of Sun (2011) under the same assumptions.

C.7. Proof of Theorem 2

Part (a) follows the same lines as the proof of Theorem 1 and noting that the p-value associated

to the O-EPA test statistic is asymptotically uniform by Proposition 2. Similarly, Part (b) follows

from the fact that under the alternative hypothesis, either at least for one k, g ∈ {1, . . . ,K}, k ̸= g,

the p-value satisfies p(Dk,g)
p−→ 1 and the conditioning event holds w.p.a. 1 by Lemma 2(b), or the

O-EPA test statistic diverges.

C.8. Proof of Proposition 3

Consider the mapping Z 7→ Ĉ where Z is the input of Algorithm 1 and Ĉ is the partition of the panel

units which is the output of it. Notice that Z 7→ Ĉ is the composition of two deterministic procedures:

1. selection of the number of clusters K̂IC via the minimization of IC(K) in (23), and 2. estimation
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of the clustering assignment Ĉ by solving the Panel Kmeans problem (8) with K = K̂IC . Since both

steps are deterministic functions of the data, the composite map Z 7→ Ĉ is itself deterministic.

Now fix a particular realization C∗ of the clustering. The number of clusters in C∗ is fixed. Denote

this number by K∗. Then,

{Ĉ = C∗} ⊆ {K̂IC = K∗},

by the uniqueness of the output C∗ for a given K∗. Hence, conditioning on the event {Ĉ = C∗}

implicitly restricts us to the subset of the sample space where K̂IC = K∗. This yields

P
[
Dk,g(Ĉ) ∈ T

∣∣∣ Ĉ = C∗] = P
[
Dk,g(Ĉ) ∈ T

∣∣∣ K̂IC = K∗, Ĉ = C∗
]
,

as claimed.

C.9. Proof of Theorem 3

The proof begins algebraically similar to the proof of Lemma 1 except that we will establish a CLT

conditional on CS1 = σ({Zit}Ni=1, t ∈ S1). First, we will show that each P × 1 sub-vector of θ̂S2(ĈS1)

satisfies θ̂k,S2(ĈS1) = θ0k(ĈS1) + op(1). By Assumption G4, we have

E(θ̂k,S2(ĈS1)− θ0k(ĈS1) | CS1) = E

 1

|Ĉk||S2|

N∑
i=1

∑
t∈S2

Vit{k̂i,S1 = k}

∣∣∣∣∣∣ CS1


=

1

|Ĉk||S2|

N∑
i=1

∑
t∈S2

E(Vit | CS1){k̂i,S1 = k} = 0,

(34)

For the conditional variance, we find∥∥∥E [(θ̂k,S2(ĈS1) − θ0k(ĈS1)(θ̂k,S2(ĈS1)− θ0k(ĈS1)
′
∣∣∣ CS1

]∥∥∥
=

∥∥∥∥∥∥E
 1

(|Ĉk||S2|)2

N∑
i,j=1

∑
t,s∈S2

VitV
′
js1{k̂i,S1 = k}1{k̂j,S1 = k}

∣∣∣∣∣∣ CS1

∥∥∥∥∥∥
≤ 1

|Ĉk|2|S2|

N∑
i,j=1

∥∥∥∥∥∥ 1

|S2|
∑

t,s∈S2

E
(
VitV

′
js

∣∣ CS1

)∥∥∥∥∥∥1{k̂i,S1 = k}1{k̂j,S1 = k}

≤ 1

|Ĉk|2|S2|

N∑
i,j=1

∥∥∥∥∥∥ 1

|S2|
∑

t,s∈S2

E
(
VitV

′
js

∣∣ CS1

)∥∥∥∥∥∥ = Op

(
1

π2k|S2|

)
,

(35)

by Assumptions G1 and G2 from which it follows that θ̂k,S2(ĈS1) = θ0k(ĈS1)+ op(1). Now, by Assump-
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tion G3, conditional on CS1 and under H0, as |S1|, |S2| → ∞, (T,N)→∞ we have

ΩS2(ĈS1)
−1/2[θ̂k,S2(ĈS1)− θ0k(ĈS1)]

= ΩS2(ĈS1)
−1/2|S2|−1/2

∑
t∈S2

V̄t(ĈS1)
d−→ N(0, IK),

with ΩS2(ĈS1) = P−1
∑

t,s∈S2
E[V̄t(ĈS1)V̄

′
s (ĈS1)]. Part (a) then follows from Theorem 1 of Sun (2013)

noting that Ω̂S2(ĈS1)− Ω(ĈS1) = op(1), conditional on CS1 .

For Part (b), we first write

θ̂S2(ĈS1)− θ0 = [θ̂S2(ĈS1)− θ̂S1(ĈS1)] + [θ̂S1(ĈS1)− θ0]

= [θ̂S2(ĈS1)− θ̂S1(ĈS1)] + op(1),

as (R,N) −→ ∞, which follows from Lemma 2(a). We will show that the first term is also op(1). To

see this, we focus on the K × 1 subvectors of the term:

θ̂k,S2(ĈS1)− θ̂k,S1(ĈS1) =
1

|Ĉk||S2|

N∑
i=1

∑
t∈S2

Zit1{k̂i,S1 = k} − 1

|Ĉk||S1|

N∑
i=1

∑
t∈S1

Zit1{k̂i,S1 = k}

=
1

|Ĉk||S2|

N∑
i=1

∑
t∈S2

Vit1{k̂i,S1 = k} − 1

|Ĉk||S1|

N∑
i=1

∑
t∈S1

Vit1{k̂i,S1 = k}

=
1

|S2|
∑
t∈S2

V̄k,t −
1

S1

∑
t∈S1

V̄k,t

= Op

(
πϵ−1
k

N1−ϵ
√
|S2|

)
+Op

(
πϵ−1
k

N1−ϵ
√
|S1|

)
= op(1).

This in turn gives

θ̂′S2
(ĈS1)Ω̂

−1
S2

(ĈS1)θ̂S2(ĈS1)
p−→ θ0′Ω−1θ0 > 0,

by Assumptions G3 and S1 from which it follows that WSS(ĈS1) diverges w.p.a. 1 which completes

the proof.

D. Calculation of the Truncation Set T

For convenience, we restate the expression for the truncation set T :

T =

{
ϕ ∈ R≥0 :

M⋂
m=1

N⋂
i=1

k
(m)
i [z(ϕ)] = k

(m)
i (z)

}
.

According to the second step (assignment) of Algorithm 1, the equality inside the braces holds if and

only if the cluster center which is closest to zit in total over t, coincides with the cluster center of the
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previous iteration that is closest to [z(ϕ)]it in total over t, for all i = 1, . . . , N . Using Proposition 2 of

Chen and Witten (2023) we can then write:

T =

M⋂
m=1

N⋂
i=1

G⋂
g=1

{
ϕ ∈ R≥0 :

1

T

T∑
t=1

∥∥∥∥∥∥[z(ϕ)]it − 1

T

T∑
t=1

N∑
j=1

w
(m−1)
j [k

(m)
i (z)][z(ϕ)]jt

∥∥∥∥∥∥
2

≤
T∑
t=1

∥∥∥∥∥∥[z(ϕ)]it − 1

T

T∑
t=1

N∑
j=1

w
(m−1)
j (k)[z(ϕ)]jt

∥∥∥∥∥∥
2}

(36)

where w
(m)
i (k) = 1

{
k
(m)
i (z) = k

}
/
∑N

j=1 1
{
k
(m)
j (z) = k

}
. By (33), we see that

[z(ϕ)]it = zit − δ̂k,g,i
∥z′ν̂k,g∥
∥ν̂k,g∥2

dir(z′ν̂k,g) +

 ∥z′ν̂k,g∥
∥Σ̂−1/2

k,g (C)z′ν̂k,g∥
δ̂k,g,i√
T∥ν̂k,g∥2

ϕ

dir(z′ν̂k,g). (37)

Straightforward calculations similar to the proofs of Lemmas 15 of Chen and Witten (2023) give∥∥∥∥∥∥[z(ϕ)]it − 1

T

T∑
t=1

N∑
j=1

w
(m−1)
j (k)[z(ϕ)]jt

∥∥∥∥∥∥
2

= ãijϕ
2 + b̃ijtϕ+ c̃ijt,

where

ãij =

 ∥z′ν̂k,g∥
∥Σ̂−1/2

k,g (C)z′ν̂k,g∥

2(
δ̂k,g,i −

∑N
j=1w

(m−1)
j (k)δ̂k,g,j√

T∥ν̂k,g∥2

)2

,

b̃ijt = 2

 ∥z′ν̂k,g∥
∥Σ̂−1/2

k,g (C)z′ν̂k,g∥


×

 δ̂k,g,i −
∑N

j=1w
(m−1)
j (k)δ̂k,g,j√

T∥ν̂k,g∥2

〈
zit −

1

T

T∑
t=1

N∑
j=1

w
(m−1)
j (k)zjt, dir(z

′ν̂k,g)

〉

−
(δ̂k,g,i −

∑N
j=1w

(m−1)
j (k)δ̂k,g,j)

2

√
T∥ν̂k,g∥4

∥z′ν̂k,g∥

}
,

c̃ijt =

∥∥∥∥∥∥zit − 1

T

T∑
t=1

N∑
j=1

w
(m−1)
j (k)zjt −

δ̂k,g,i − N∑
j=1

w
(m−1)
j (k)δ̂k,g,j

 z′ν̂k,g
∥ν̂k,g∥2

∥∥∥∥∥∥
2

.

These in turn show that the truncation set T can be analytically calculated as the inequalities defined

in the two components of (36) are all quadratic in ϕ.
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