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Appendix A: Some Basic Lemmas

The proofs of the main results depend on the following lemmas. The results state explicitly

that the degree of spatial dependence may grow with the sample size. A way to formulate this

is to consider that the elements of Wrn, r = 1, 2, are of uniform order O(h−1
n ) where hn is such

that limn→∞(hn/n) = 0, see Lee (2004).

Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two se-

quences of n×n matrices that are uniformly bounded in both row and column sums in absolute

value. Let Cn be a sequence of conformable matrices whose elements are uniformly O(h−1
n ),

where {hn} is a sequence of constants bounded or divergent with n. Then,

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly O(h−1
n ).

Lemma A.2. (Lee, 2004, Appendix A): For Wrn and Brn(λr), r = 1, 2, defined for the

SLR model, if ‖Wrn‖ and ‖B−1
rn ‖ at true λr0 are uniformly bounded, where ‖ · ‖ is a matrix

norm, then ‖B−1
rn (λr)‖ is uniformly bounded for λr in a neighborhood of λr0.

Lemma A.3. (Lee, 2004, Appendix A): Let Xn be an n×p matrix. If the elements Xn are

uniformly bounded and limn→∞
1
nX

′
nXn exists and is nonsingular, then Pn = Xn(X ′

nXn)−1X ′
n

and Mn = In − Pn are uniformly bounded in both row and column sums.

Lemma A.4. (Lemma A.4, Yang, 2018a): Let {An} be a sequence of n×n matrices that

are uniformly bounded in either row or column sums. Suppose that the elements an,ij of An

are O(h−1
n ) uniformly in all i and j. Let vn be a random n-vector of iid elements with mean

zero, variance σ2 and finite 4th moment, and bn a constant n-vector of elements of uniform

order O(h−1/2
n ). Then

(i) E(v′nAnvn) = O( n
hn

), (ii) Var(v′nAnvn) = O( n
hn

),

(iii) Var(v′nAnvn + b′nvn) = O( n
hn

), (iv) v′nAnvn = Op( n
hn

),

(v) v′nAnvn − E(v′nAnvn) = Op(( n
hn

)
1
2 ), (vi) v′nAnbn = Op(( n

hn
)

1
2 ),

and (vii), the results (iii) and (vi) remain valid if bn is a random n-vector independent of vn

such that {E(b2ni)} are of uniform order O(h−1
n ).

Lemma A.5. (Lemma A.5, Yang, 2018a): Let {Φn} be a sequence of n × n matrices

with row and column sums uniformly bounded, and elements of uniform order O(h−1
n ). Let
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vn = (v1, · · · , vn)′ be a random vector of iid elements with mean zero, variance σ2
v, and finite

(4 + 2ε0)th moment for some ε0 > 0. Let bn = {bni} be an n× 1 random vector, independent

of vn, such that (i) {E(b2ni)} are of uniform order O(h−1
n ), (ii) supiE|bni|2+ε0 < ∞, (iii)

hn
n

∑n
i=1[φn,ii(bni − Ebni)] = op(1) where {φn,ii} are the diagonal elements of Φn, and (iv)

hn
n

∑n
i=1[b

2
ni − E(b2ni)] = op(1). Define the bilinear-quadratic form:

Qn = b′nvn + v′nΦnvn − σ2
vtr(Φn),

and let σ2
Qn

be the variance of Qn. If limn→∞h
1+2/ε0
n /n = 0 and {hnn σ

2
Qn
} are bounded away

from zero, then Qn/σQn
d−→ N(0, 1).15

Lemma A.6. Let Qn = (Qrn, r = 1, . . . ,m)′, where Qrn = b′rnVn + V ′
nΦrnVn with Vn, brn

and Φrn satisfying the conditions of Lemma A.5. Write Φrn = Φu
rn + Φl

rn + Φd
rn, the sum of

the upper triangular, lower triangular, and diagonal matrices of Φrn. Define

gr,ni = vniξr,ni + br,nivni + (v2
ni − σ2)φrn,ii, r = 1, . . . ,m,

where {ξr,ni} = ξrn = (Φu′
rn + Φl

rn)Vn. Let gni = (gr,ni, r = 1, . . . ,m)′. Then, {gni,Fn,i} form

a vector martingale difference sequence with respect to the increasing σ-fields Fn,i generated

by {b1n . . . , bmn; vn1, · · · , vni}, such that (i) Qn − E(Qn) =
∑n

i=1 gni,

(ii) Var(Qn) =
∑n

i=1 E(gnig′ni), and (iii) hn
n [

∑n
i=1 gnig′ni −Var(Qn)] = op(1).

Proof of Lemma A.6: We have for each Qjn, j = 1, · · · ,m,

Qrn − E(Qrn) = b′rnVn + V ′
nΦrnVn − σ2tr(Φrn)

= b′rnVn + V ′
n(Φ

u
rn + Φl

rn + Φd
rn)Vn − σ2tr(Φrn)

= V ′
n(Φ

u′
rn + Φl

rn)Vn + b′rnVn + V ′
nΦ

d
rnVn − σ2tr(Φrn)

= V ′
nξn + b′rnVn + V ′

nΦ
d
rnVn − σ2tr(Φrn)

=
∑n

i=1[vniξr,ni + br,nivni + (v2
ni − σ2)φrn,ii] =

∑n
i=1 gr,ni.

Thus, Qn − E(Qn) =
∑n

i=1 gni. As ξr,ni is Fn,i−1 measurable, E(gj,ni|Fn,i−1) = 0 for j =

1, · · · ,m. It follows that {gni,Fn,i} form a vector MD sequence with respect to Fn,i, and that

Var(Qn) =
∑n

i=1 E(gnig′ni), since martingale differences {gni} are uncorrelated.

It left to show (iii). It is easy to show that, for r, s = 1, · · · ,m, conditional on (brn, bsn),

Cov[(Qrn, Qsn)|(brn,bsn)] = 2σ4
∑n

i=1

∑n
j=1 φrn,ijφsn,ij + σ2

∑n
i=1 br,nibs,ni

+(µ(4) − 3)
∑n

i=1 φrn,iiφsn,ii + µ(3)
∑n

i=1(br,niφsn,ii + bs,niφrn,ii),

where µ(3) = E(v3
ni) and µ(4) = E(v4

ni). This gives, for r, s = 1, · · · ,m,

15 In a special case where {bn} is a sequence of constant vectors, it is assumed that the elements of bn are

uniformly bounded and are of uniform order h
−1/2
n . See Lee (2004, Appendix A).
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∑n
i=1 gr,nig

′
s,ni − Cov[(Qrn, Qsn)|(brn,bsn)]

=
∑n

i=1(v
2
niξr,niξs,ni − 2σ2

∑n
j=1,j 6=i φrn,ijφsn,ij) +

∑n
i=1[v

2
ni(ξr,nibs,ni + ξs,nibr,ni)]

+
∑n

i=1[(v
3
ni − σ2vni)(ξrn,iφsn,ii + ξsn,iφrn,ii)] +

∑n
i=1(v

2
ni − σ2)br,nibs,ni

+
∑n

i=1(v
3
ni − µ(3))(br,niφsn,ii + bsn,iφrn,ii) +

∑n
i=1[(v

3
ni − µ(3) − 2σ2(v2

ni − σ2))φrn,iiφsn,ii,

where each of the six terms can be shown to be the sum of one or several MD sequences.

Under Assumptions 2.1-2.4 and using Lemmas A.1-A.5, the conditions for the weak law of

large numbers (WLLN) for martingale difference arrays in Davidson (1994, p. 299) can be

verified, leading to hn
n {

∑n
i=1 grn,ig

′
sn,i −Cov[(Qrn, Qsn)|(brn,bsn)]} = op(1), for r, s = 1, · · · ,m.

It follows that hn
n [

∑n
i=1 gnig′ni − Var(Qn|(b1n,...,bmn))] = op(1). The unconditional version

follows from the conditions on brn given in Lemma A.5.16 �

Appendix B: Proofs for the Cross-Sectional SLR Model

Proof of Theorem 2.1: To show T r
SLR|H0

D−→ χ2
k, we first prove the following results:

(a) 1√
n
S◦SLR(θ0)

D−→ N(0k, limn→∞
1
nΩn), where Ωn = Var[S◦SLR(θ0)];

(b) 1
n

∑n
i=1 gnig′ni − 1

nΩn = op(1);

(c) 1
n

∑n
i=1(g̃nig̃

′
ni − gnig′ni) = op(1);

(d) 1
n(Σ̃n,αθ − Σn,αθ) = op(1) and 1

n(Σ̃n,θθ − Σn,θθ) = op(1).

To prove (a), we have the score function at the null S◦SLR(θ), obtained from SSLR(ψ) given

in (2.4) by setting α = 0, h(0) = 1, and dropping ḣ(0) as it is a constant being canceled out

in the final expression of the test statistic:

S◦SLR(θ) =



1
σ2X

′
n(λ2)Vn(β, λ),

1
2σ4V

′
n(β, λ)Vn(β, λ)− n

2σ2 ,

1
σ2V

′
n(β, λ)B2n(λ2)W1nYn − tr[G1n(λ1)],

1
σ2V

′
n(β, λ)G2n(λ2)Vn(β, λ)− tr[G2n(λ2)],

1
2σ2 ḣ(0)

∑n
i=1

[(
v2
ni(β, λ)− σ2

)
zni

]
.

(B.1)

At the true θ0, S◦SLR(θ0) reduces to that given in (2.5). The first component of (2.5) is a

vector of components linear in Vn, the middle three are either quadratic or linear-quadratic
16Details are lengthy and are available from the authors upon request. Under an additional condition that

the smallest eigenvalue of Var(Qn) is strictly positive, the joint asymptotic normality of the LQ vector, Qn,
can be established using Lemma A.5 and the Cramér-Wold device.
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(LQ) in Vn, and the last component can easily be written as a vector of quadratic forms in

Vn, i.e., V ′
nΦ3+rVn − E(V ′

nΦ3+rVn), r = 1, . . . , k, where Φ3+r = diag( 1
2σ2

0
zn1,r, . . . ,

1
2σ2

0
znn,r)

and zni,r is the rth heteroskedasticity variable. Under Assumptions 2.1-2.4, it is easy to show

by Lemma A.1 that the elements of Π1 and Π2 defined below (2.5) are uniformly bounded

and are of uniform order O(h−1/2
n ); and that Φr, r = 1, 2, 3, defined below (2.5) are uniformly

bounded in both row and column sums in absolute value. Obviously, the latter is also true

for Φ3+r, r = 1 . . . , k, just defined. Thus, the CLT for LQ form of Kelejian and Prucha (2001)

or its alternative version (under homoskedastic errors) given in Lemma A.5 is applicable to

give asymptotic normality for each of the components in (2.5), where the ‘bn’ vector is non-

stochastic (see Footnote 15). Clearly, c′S◦SLR(θ) is also an LQ form in Vn for any non-zero vector

c, which can be shown to be asymptotically normal by Lemma A.5 and under Assumptions

2.1-2.4. Therefore, Cramér-Wold device leads to the joint asymptotic normality of S◦SLR(θ0),

i.e., 1√
n
S◦SLR(θ0)

D−→ N(0k, limn→∞
1
nΩn).

To prove (b), consider a special case of Lemma A.6 where brn are nonstochastic. The

conditions of Lemma A.6 are easily verified under Assumptions 2.1-2.4, and the result follows.

To prove (c), note that the elements of S◦SLR(θ0) are mixtures of linear and quadratic

forms, ΠnVn and V ′
nΦnVn− tr(Φn), all having an MD form

∑n
i=1 gni. It suffices to show that

1
n

∑n
i=1(g̃k,nig̃r,ni − gk,nigr,ni) = op(1), k, r = 1, 2, . . . , 5 + k.

As they are similar, we pick a typical and complicate element, corresponding to λ1 in S◦SLR(θ0),

V ′
nΦ2Vn − tr(Φ2) =

∑n
i=1 g2,ni, to prove the result. Let g2n = (g2,n1, . . . , g2,nn)′. Write

g̃2n = g2n(θ̃n) and denote ġ2n(θ) = ∂
∂θ′g2n(θ). By the mean value theorem (MVT), we have

1
n

∑n
i=1(g̃

2
2,ni − g2

k,ni) = 1
n [g′2n(θ̃n)g2n(θ̃n)− g′2ng2n] = 2

ng
′
2n(θ̄n)ġ2n(θ̄n)(θ̃n − θ0),

where θ̄n lies elementwise between θ̃n and θ0. Referring to (2.6), we have

g2n(θ) = Vn(θ1)� ξ2n(θ1) + [Vn(θ1)� Vn(θ1)− σ21n]� φ2(λ),

where � denotes the Hadamard product, θ1 = (β′, λ′)′, and φ2(λ) is a vector of diagonal

elements of Φ2. Thus, ġ2n(θ) = V̇n(θ1)�ξ2n(θ1)+Vn(θ1)� ξ̇2n(θ1)+[2Vn(θ1)�V̇n(θ1)−Jn,σ2 ]�

φ2(λ) + [Vn(θ1)�Vn(θ1)− σ21n]� φ̇2(λ), where V̇n(θ1) = ∂
∂θ′Vn(θ1), ξ̇2n(θ1) = ∂

∂θ′ ξ2n(θ1), and

Jn,σ2 is an n× dim(θ) matrix with its σ2 column being 1n and the other columns being zero.

As Vn(θ1) = B2n(λ2)[B1n(λ1)Yn −Xnβ] from Model (2.1), we obtain

V̇n(θ1) = [−B2n(λ2)Xn, 0n, −B2n(λ2)W1nYn, −W2n(B1n(λ1)Yn −Xnβ)],
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and by ξ2n(θ1) = (Φu′
2 (λ) + Φl

2(λ))Vn(θ1), we obtain ξ̇2n(θ1). It is easy to see that

Vn(θ1) = Vn − Zn(θ1 − θ10) + (λ1 − λ10)(λ2 − λ20)W2nW1nYn + (λ2 − λ20)W2nXn(β − β0),

where Zn = [B2nXn, B2nW1nYn, G2nVn]. Further, Yn = B−1
1nXnβ0 + B−1

1n B
−1
2n Vn. Therefore,

2
ng

′
2n(θ̄n)ġ2n(θ̄n) can be written as sums of weighted averages of vrni, r = 1, 2, 3, 4, with weights

depending on the elements of matrices W1n, W2n and Φ2(λ̄n) and the elements of (θ̄n − θ0)

appearing in the ‘weights’ either multiplicatively except (λ̄n−λ0) which also appears in Φ2(λ̄n).

Clearly, Φ2(λ̄n) ∼ Φ2(λ0), where ‘ ∼′ denotes asymptotic equivalence. This implies that, e.g.,
1
ntr(Φ2(λ̄n) = 1

ntr(Φ2(λ0)+op(1), because θ̄n−θ0 = op(1) due to θ̃n−θ0 = op(1). With these,

Assumptions 2.1-2.4 and Lemmas A.1, A.2 and A.4, straightforward but very tedious process

leads to 2
ng

′
2n(θ̄n)ġ2n(θ̄n) = Op(1). Hence, the result (c) follows.

To prove (d), we choose the negative Hessian matrices evaluated at the null estimate,

θ̃n, to be the estimators of Σn,αθ and Σn,θθ, i.e., Σ̃n,αθ = H◦
n,αθ(θ̃n) and Σ̃n,θθ = H◦

n,θθ(θ̃n).

The expressions of H◦
n,αθ(θ) and H◦

n,θθ(θ) are given at the end of the proof of Theorem 2.1,

from which Σn,αθ and Σn,θθ are obtained. The result 1
n(Σ̃n,αθ − Σn,αθ) = op(1) follows if:

(i) 1
n

(
H◦
n,αθ(θ̃n)−H◦

n,αθ(θ0)
)

= op(1), and (ii) 1
n

(
H◦
n,αθ(θ0)− Σn,αθ

)
= op(1);

and similarly, the result 1
n(Σ̃n,θθ − Σn,θθ) = op(1) follows if

(iii) 1
n

(
H◦
n,θθ(θ̃n)−H◦

n,θθ(θ0)
)

= op(1), and (iv) 1
n

(
H◦
n,θθ(θ0)− Σn,θθ

)
= op(1).

The proofs of (i) and (iii) are straightforward applications of the MVT. We thus focus on the

proofs (ii) and (iv) by picking up a key term, 1
n(H◦

n,λ1λ1
−Σn,λ1λ1), to show the details. From

the H◦
n,θθ(θ), we have H◦

n,λ1λ1
= 1

σ2 ‖B2nW1nYn‖2 + tr(G2
1n). It follows that

1
n(H◦

n,λ1λ1
− Σn,λ1λ1) = 1

n [V ′
nB

′−1
2n G

′
1nG1nB

−1
2n Vn − σ2

0tr(B
′−1
2n G

′
1nG1nB

−1
2n )] + 1

nη
′
nG1nB

−1
2n Vn,

where ηn = G1nXnβ0. Hence, by Lemmas A.1 and A.4, 1
n(H◦

n,λ1λ1
− Σn,λ1λ1) = op(1).

Now, consider the θ- and α-components of S◦SLR(θ) evaluated at the null estimate θ̃n of θ,

S◦SLR,θ(θ̃n) =
∑n

i=1 g̃ni,θ and S◦SLR,α(θ̃n) =
∑n

i=1 g̃ni,α. We have by the mean value theorem:

0 = S◦SLR,θ(θ̃n) = S◦SLR,θ(θ0) + ∂
∂θ′S

◦
SLR,θ(θ̄n)(θ̃n − θ0), (B.2)

S◦SLR,α(θ̃n) = S◦SLR,α(θ0) + ∂
∂θ′S

◦
SLR,α(θ̄n)(θ̃n − θ0), (B.3)

where θ̄n lies elementwise between θ̃n and θ0. As θ̃n
p−→ θ0, θ̄n

p−→ θ0. Hence, by the results

in (d), − ∂
∂θ′S

◦
SLR,θ(θ̄n) = Σn,θθ+op(n) and − ∂

∂θ′S
◦
SLR,α(θ̄n) = Σαθ+op(n). It follows from (B.2)
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that,
√
n[θ̃n − θ0] = [nΣ−1

n,θθ]
1√
n
S◦SLR,θ(θ0) + op(1), and by substituting this into (B.3),

1√
n
S◦SLR,α(θ̃n) = 1√

n
S◦SLR,α(θ0)− 1√

n
ΣαθΣ−1

n,θθS
◦
SLR,θ(θ0) + op(1), (B.4)

which is the asymptotic representation given in (2.10). Clearly, if S◦SLR(θ0) has the MD de-

composition (2.7), then (B.4) or (2.10) reduces to the asymptotic MD decomposition:

1√
n
S◦SLR,α(θ̃n) = 1√

n

∑n
i=1(gni,α − Γngni,θ) + op(1)

given in (2.10). Therefore, the joint asymptotic normality of S◦SLR(θ0) given in (a) and the

asymptotic representation (B.4) or (2.10) show that

1√
n
S◦SLR,α(θ̃n) ∼ N(0k, limn→∞

1
nΥn), (B.5)

where Υn ≡ Var[S◦SLR,α(θ̃n)]. Furthermore, (B.4) immediately leads to

Υn = Ωn,αα − Ωn,αθΓ′n − ΓnΩn,θα + ΓnΩn,θθΓ′n + o(n), (B.6)

where Γn = Σn,αθΣ−1
n,θθ, and (Ωn,θθ,Ωn,θα; Ωn,αθ,Ωn,αα) = Ωn. When S◦SLR(θ0) has the MD

decomposition (2.7) so that Ωn has an OPMD form, then (B.6) can be written as

Υn =
∑n

i=1(gni,α − Γngni,θ)(gni,α − Γngni,θ)′ + o(n). (B.7)

Based on the approximation to Υn in (B.6), a consistent estimator would naturally be,

Υ̃n = Ω̃n,αα − Ω̃n,αθΓ′n − Γ̃nΩ̃n,θα + Γ̃nΩ̃n,θθΓ̃′n, (B.8)

which reduces to a consistent OPMD estimator based on the approximation to Υn in (B.7),

Υ̃n =
∑n

i=1(g̃ni,α − Γ̃ng̃ni,θ)(g̃ni,α − Γ̃ng̃ni,θ)′. (B.9)

With the results (b)-(d), and using (B.5) and (B.7), it is easy to show that 1
n(Υ̃n−Υn) = op(1).

Positive definiteness of 1
nΥn (for large enough n) follows from the positive definiteness of

1
nΣn,θθ and 1

nΩn stated in the theorem, which can be seen by the simpler form of (B.6):

Υn = (−Γn, Ik)Ωn(−Γn, Ik)′ + o(n), completing the proof of the result for the robust test.

If Vn is normally distributed, Σn,,αθ = Ωn,αθ and Σn,θθ = Ωn,θθ. Hence, Γn can be con-

sistently estimated by (
∑n

i=1 g̃ni,αg̃′ni,θ)(
∑n

i=1 g̃ni,θg̃′ni,θ)
−1, leading to the test TSLR and the

second part of the results in Theorem 2.1. �

Hessian Matrices. The negative Hessian matrix, H◦
n,αθ(θ) = − ∂

∂θ′S
◦
SLR,α(θ) required

for the estimation of Σn,αθ and the proof of (d), has elements: 1
σ2 [Vn(β, λ) � Zn]′Xn(λ2),
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1
2σ4Z

′
ndiag(Vn(β, λ)V ′

n(β, λ)), 1
σ2Z

′
n[(B2n(λ2)W1nYn)�Vn(β, λ)], and 1

σ2Z
′
n[(W1nB1n(λ1)Yn−

W1nXnβ)�Vn(β, λ)]; and the negative Hessian matrix, H◦
n,θθ(θ) = − ∂

∂θ′S
◦
SLR,θ(θ), required for

the estimation of Σn,θθ and the proof of (d) above equals:
Hn,ββ ,

1
σ4X

′
n(λ2)Vn(β, λ), 1

σ2X
′
n(λ2)B2n(λ2)W1nYn,

1
σ2X

′
nAn(λ2)Un(β, λ1)

∼, 1
σ6 ‖Vn(β, λ)‖2 − n

2σ4 ,
1

σ4V
′
n(β, λ)B2n(λ2)W1nYn,

1
σ4V

′
n(β, λ)G2n(λ2)Vn(β, λ)

∼, ∼, 1
σ2 ‖B2n(λ2)W1nYn‖2 + tr[G2

1n(λ1)], 1
σ2Y

′
nW

′
1nAn(λ2)Un(β, λ1)

∼, ∼, ∼, 1
σ2 ‖G2n(λ2)Vn(β, λ)‖2


where Hn,ββ = 1

σ2X
′
n(λ2)Xn(λ2), An(λ2) = W ′

2nB2n(λ2) + B′
2n(λ2)W2n and Un(β, λ1) =

B1n(λ1)Yn−Xnβ; ‖ · ‖ denotes the Euclidean norm, and recall that � denotes the Hadamard

product and that diag(·) forms a vector by the diagonal elements of a square matrix.

Proof of Theorem 2.2: Similar to the proof of Theorem 2.1. �

Hessian Matrices. To facilitate the derivations of the Hessian matrices required for

estimating Σ∗
n,αλ and Σ∗

n,λλ, write the first two components of (2.17) as

Y ′
n(λ)Φ1(λ)Yn(λ)− n

n−p σ̃
2
n(λ)tr[Φ1(λ)] = Y ′

nB
′
1n(λ1)M∗

n(λ2)W1nYn

− 1
n−ptr[G1n(λ1)−XnD

−1
n (λ2)X ′

nCn(λ2)G1n(λ1)]Y ′
nB

′
1n(λ1)M∗

n(λ2)B1n(λ1)Yn,

Y ′
n(λ)Φ2(λ)Yn(λ)− n

n−p σ̃
2
n(λ)tr[Φ2(λ)] = Y ′

nB
′
1n(λ1)M∗∗

n (λ2)B1n(λ1)Yn

− 1
n−ptr[G2n(λ2)−B′

2n(λ2)W2nXnD
−1
n (λ2)X ′

n]Y
′
nB

′
1n(λ1)M∗

n(λ2)B1n(λ1)Yn,

where Cn(λ2) = B′
2n(λ2)B2n(λ2), Dn = X ′

nCn(λ2)Xn, M∗
n(λ2) = B′

2n(λ2)Mn(λ2)B2n(λ2), and

M∗∗
n (λ2) = B′

2n(λ2)Mn(λ2)G2n(λ2)Mn(λ2)B2n(λ2).

To simplify the presentation, we write Brn ≡ Bn(λr), r = 1, 2, Grn ≡ Bn(λr), r = 1, 2,

Cn ≡ Cn(λ2), Dn ≡ Dn(λ2), Mn = Mn(λ2), M∗
n = M∗

n(λ2), and M∗∗
n = M∗∗

n (λ2). Let Ċn, Ṁ∗
n

and Ṁ∗∗
n be, respectively, the derivatives of Cn, M∗

n and M∗∗
n , and Ďn the derivative of D−1

n ,

with respect to λ2.17 The negative Hessian matrix, H∗
n,αλ(λ) = − ∂

∂λ′S
∗
SLR,α(λ), takes the form

H∗
n,αλ(λ) =


1
2Z

′
n

[ q∗1i
mi(λ2) + 1

n−p
(
Y ′
n(B1nM

∗
nW

′
1n +W1nM

∗
nB

′
1n)Yn

)]
(n×1)

,

1
2Z

′
n

[
q∗2i − 1

n−p
(
Y ′
nB

′
1nṀ

∗
nB1nYn

)]
(n×1)

,

where q∗1 = −2Ṽn(λ) � (B2nW1nYn), q∗2 =
[
− 2

mi(λ2)2
w1iṽ

2
ni(λ) + 1

mi(λ2)w2iṽni(λ)
]
(n×1)

, w1 =

(Mn�ϕ)ιn, ϕ = W2nXnD
−1
n X ′

nB
′
2n+B2nXnD

−1
n X ′

nW2n−B2nXnĎnX
′
nB

′
2n, w2 = −2Ṽn(λ)�

(W2nB1nYn −W2nXnβ), and {ṽni(λ)} = Ṽn(λ) = Vn(β̃n(λ), λ).

17We have Ċn = −(B′
2nW2n + W ′

2nB2n), Ďn = −D−1
n XnĊnX

′
nD

−1
n , Ṁ∗

n = Ċn − ĊnXnD
−1
n X ′

nCn +
CnXnD

−1
n X ′

nĊn + CnXnĎnX
′
nCn, and Ṁ∗∗

n can easily be expressed in terms of Ċn, Ďn, and Ṁ∗
n.
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The negative Hessian matrix, H∗
nλλ(λ) = − ∂

∂λ′S
∗
SLR,λ(λ) has the elements:

H∗
nλ1λ1

= Y ′
nW

′
1nM

∗
nW1nYn + 1

n−ptr(G
2
1n −XnD

−1
n X ′

nCnG
2
1n)Y

′
nB

′
1nM

∗
nB1nYn

− 1
n−ptr(G1n −XnD

−1
n X ′

nCnG1n)Y ′
n(B

′
1nM

∗
nW1n +W ′

1nM
∗
nB1n)Yn,

H∗
nλ1λ2

= −Y ′
nB

′
1nṀ

∗
nW1nYn + 1

n−ptr(G1n −XnD
−1
n X ′

nCnG1n)Y ′
nB

′
1nṀ

∗
nB1nYn

− 1
n−ptr(XnĎnX

′
nCnG1n +XnD

−1
n X ′

nĊnG1n)Y ′
nB

′
1nM

∗
nB1nYn,

H∗
nλ2λ1

= −Y ′
n(B

′
1nM

∗∗
n W1n +W ′

1nM
∗∗
n B1n)Yn

+ 1
n−p [tr(G2n −B′

2nW2nXnD
−1
n X ′

n)Y
′
n(B

′
1nM

∗
nW1n +W ′

1nM
∗
nB1n)Yn,

H∗
nλ2λ2

= Y ′
nB

′
1nṀ

∗∗
n B1nYn − 1

n−ptr(G2n −W ′
2nB2nXnD

−1
n X ′

n)Y
′
nB

′
1nṀ

∗
nB1nYn

− 1
n−ptr(G

2
2n +W ′

2nW2nXnD
−1
n X ′

n −W ′
2nB2nXnĎnX

′
n)Y

′
nB

′
1nM

∗
nB1nYn.

Appendix C: Proofs for the Panel FE-SPD Model

Proof of Theorem 3.1: To show TSPD|H0

D−→ χ2
k when the original errors {vit} are iid

normal, with the help of Lemmas A.1-A.6, using the fact that the elements {v∗j } of VN are

totally independent (iid normal), and referring to the increasing σ -fields FN,j generated by

(v∗1, · · · , v∗j ), one can easily show, in the same way as the proof of Theorem 2.1, the following:

(a) 1√
N
S◦SPD,α(θ̃N ) D−→ N(0k, limN→∞

1
NΥN ), where ΥN = Var[S◦SPD,α(θ̃N )].

(b) 1
N

∑N
j=1 gNj(θ0)g′Nj(θ0)−

1
NVar[S◦SPD(θ0)] = op(1);

(c) 1
N

∑N
j=1[g̃Nj g̃

′
Nj − gNj(θ0)g′Nj(θ0)] = op(1).

The result, TSPD|H0

D−→ χ2
k, thus follows when {vit} are iid normal.

The proof of T r
SPD|H0

D−→ χ2
k is much trickier when the original errors {vit} are allowed to

be nonnormal (though still iid), since in this case it is not guaranteed that {v∗j } will be again

totally independent. It amounts to show

(a) 1√
N
S◦SPD,α(θ̃N ) D−→ N(0k, limN→∞

1
NΥN ), where ΥN = Var[S◦SPD,α(θ̃N )].

(b) 1
N Ω̃r

N −
1
NVar[S◦SPD(θ0)] = op(1);

(c) 1
N

∑N
j=1(g̃Nj g̃

′
Nj − gNjg′Nj) = op(1) and 1

N

∑N
j=1(d̃Njd̃

◦′
Nj − dNjd◦′Nj) = op(1);

(d) 1
N (Σ̃N,αθ −ΣN,αθ) = op(1) and 1

N (Σ̃N,θθ −ΣN,θθ) = op(1).

To show (a), noting that VN = (F ′
T,T−1⊗ In)VnT , the components of the score function

S◦SPD(θ0) given in (3.7) can all be written as linear, or quadratic, or linear-quadratic forms of

VnT , a vector of iid elements. Lemma A.5 and Cramér-Wold device lead to the asymptotic
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normality of 1√
N
S◦SPD(θ0), and hence the asymptotic normality of 1√

N
S◦FE−SPD,α(θ̃N ).

To prove (b), note that S◦SPD(θ0) =
∑N

j=1 gNj(θ0) ≡
∑N

j=1 gNj , where

gNj =



Π1jv
∗
j ,

v∗j ξ1j + (v∗2j − σ2
0)φ1j ,

v∗j ξ2j + (v∗2j − σ2
0)φ2j + Π2jv

∗
j ,

v∗j ξ3j + (v∗2j − σ2
0)φ3j ,

1
2σ2

0
zj(v∗2j − σ2

0),

(C.1)

where {ξrj} = ξr = (Φu′
r + Φl

r)VN , and φrj are the diagonal elements of Φr, r = 1, 2, 3. All

quantities are defined in (3.7), and ḣ(0) in the last element of gNj is dropped as it is canceled

out in the final expression of the test statistic. We have,

Var[S◦SPD(θ0)] =
N∑
j=1

Var(gNj) +
N∑
j=1

N∑
` 6=j

Cov(gNj , gN`). (C.2)

Recall that� denotes the Hadamard product. A vector raised to rth power is operated elemen-

twise. Let fj be the jth column of FT,T−1⊗In and qrj be the jth column of (FT,T−1⊗In)(Φu
r +

Φl′
r ), for j = 1, . . . , N . We have v∗j = f ′jVnT and ξrj = q′rjVnT ; v∗j ξrj = V′

nT (fjq′rj)VnT ; and

v∗2j = V′
nT (fjf ′j)VnT . Using the following easily proved results:

Cov(c′NVnT ,V′
nTAVnT ) = µ

(3)
0 c′NaN , and

Cov(V′
nTANVnT ,V′

nTBNVnT ) = (µ(4)
0 − 3σ4

0)a
′
NbN + σ4

0tr[AN (BN +B′
N )],

for conformable matrices AN and BN and vector cN , with aN and bN being the vectors formed

by the diagonal elements of AN and BN , respectively, and µ
(3)
0 and µ

(4)
0 being, respectively,

the 3rd and 4th moments of vit, we have the key elements in Cov(gNj , gN`):

Cov(v∗j , v
∗
` ξr`) = µ

(3)
0 f ′j(f` � qr`),

Cov(v∗j , v
∗2
` ) = µ

(3)
0 f ′j(f` � f`),

Cov(v∗j ξrj , v
∗
` ξr`) = (µ(4)

0 − 3σ4
0)(fj � qrj)′(f` � qr`) + σ4

0tr[(fjq
′
rj)(f`q

′
r` + qr`f ′`)],

Cov(v∗2j , v
∗
` ξr`) = (µ(4)

0 − 3σ4
0)(fj � fj)′(f` � qr`) + σ4

0tr[(fjf
′
j)(f`q

′
r` + qr`f ′`)],

Cov(v∗2j , v
∗2
` ) = (µ(4)

0 − 3σ4
0)(fj � fj)′(f` � f`) + σ4

0tr[(fjf
′
j)(f`f

′
` + f`f ′`)],

r = 1, 2, 3. It is easy to see that (i) f ′jf` = 0 for all j 6= `, (ii) f ′jqr` = 0 for ` ≤ j, and

(iii) fj � qrj = 0.18 Thus, all terms vanish except f ′j(f` � f`) and (fj � fj)′(f` � f`), and

18The result (ii) is due to the fact that v∗j is uncorrelated with ξ` for ` ≤ j, and (iii) follows from (FT,T−1⊗
In)(Φu

r+Φl′
r ) = FT,T−1⊗(Φur+Φl′r ) and hence (FT,T−1⊗In)�[(FT,T−1⊗(Φur+Φl′r )] = 0, where Φr = IT−1⊗Φr.

9



subsequently all covariances vanish except,

Cov(v∗j , v
∗2
` ) = µ

(3)
0 f ′j(f` � f`) and Cov(v∗2j , v

∗2
` ) = (µ(4)

0 − 3σ4
0)(fj � fj)′(f` � f`). (C.3)

Note that (i) the vector fj has only (T − 1) nonzero elements, and (ii) for integers k ≥ 1 and

m ≥ 1, fkj � fm` 6= 0n only when the indices j = (i, t) and ` = (i, s), t 6= s. These show that,

N∑
j=1

N∑
` 6=j

Cov(gNj , gN`) =
n∑
i=1

T−1∑
t=1

( T−1∑
s( 6=t)=1

E(dN,itd′N,is)
)

=
n∑
i=1

T−1∑
t=1

E(dN,itd◦′N,it), (C.4)

where dN,it =
{
Π′

1,itv
∗
it, (v

∗2
it −σ2

0)φ1,it, (v∗2it −σ2
0)φ2,it+Π2,itv

∗
it, (v

∗2
it −σ2

0)φ3,it,
1

2σ2
0
z′ni(v

∗2
it −σ2

0)
}′,

and d◦N,it =
∑T−1

s( 6=t)=1 dN,is. Letting d̃N,it and d̃◦N,it be theestimates of dN,it and d◦N,it at the

null, one can show (details are available upon request from the authors) that

1
N

N∑
j=1

N∑
` 6=j

Cov(gNj , gN`)−
1
N

n∑
i=1

T−1∑
t=1

(d̃N,itd̃◦′N,it) = op(1). (C.5)

It left to prove 1
N

{ ∑N
j=1 gNjg′Nj−

∑N
j=1 E(gNjg′Nj)

}
= op(1), which can be done by referring

to the proof of Lemma A.6.

The proofs of (c) and (d) can be carried out by referencing to the proofs of (c) and (d) of

Theorem 2.1, with details being available upon request from the authors. �

Estimation of ΣN,αθ and ΣN,θθ. A pair of consistent estimators of ΣN,αθ and ΣN,θθ

are the negative Hessian matrices, H◦
N,αθ(λ) = − ∂

∂θ′S
◦
SPD,α(θ) and H◦

N,θθ(θ) = − ∂
∂θ′S

◦
SPD,λ(θ),

evaluated at the null estimate θ̃n, which take identical forms as these for the SLR model given

in the proof of Theorem 2.1, Appendix B, except that n is replaced by N and the relevant

quantities are replaced by the corresponding bold-faced quantities for the SPD model, and

hence are not repeated here. These matrices are also required in proving (a) and (d) above.

Proof of Theorem 3.2: Similar to the proof of Theorem 3.1. �

Estimation of Σ∗
N,αλ and Σ∗

N,λλ. A pair of consistent estimators of Σ∗
N,αλ and Σ∗

N,λλ

are the negative Hessian matrices, H∗
N,αλ(λ) = − ∂

∂λ′S
∗
SPD,α(λ) and H∗

N,λλ(λ) = − ∂
∂λ′S

∗
SPD,λ(λ),

evaluated at the null estimate λ̃N , which take identical forms as these for the SLR model given

in the proof of Theorem 2.2, Appendix B, except that n is replaced by N and the relevant

quantities are replaced by the corresponding bold-faced quantities for the SPD model, and

hence are not repeated here. These matrices are required in the proof of Theorem 3.2.
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Appendix D: Proofs for the Panel FE-DSPD Model

Proof of Theorem 4.1: To show T r
DSPD|H0

D−→ χ2
k, it suffices to show

(a) 1√
N
S◦DSPD,α(θ̃N ) D−→ N(0k, limN→∞

1
NΥN ), where ΥN = Var[S◦DSPD,α(θ̃N )];

(b) 1
N

∑n
i=1 gni(θ0)g′ni(θ0)− 1

NVar[S◦DSPD(θ0)] = op(1);

(c) 1
N

∑n
i=1[g̃nig̃

′
ni − gni(θ0)g′ni(θ0)] = op(1);

(d) 1
N (Σ̃N,αθ −ΣN,αθ) = op(1) and 1

N (Σ̃N,θθ −ΣN,θθ) = op(1).

To show (a), we first establish the joint asymptotic normality of S◦DSPD(θ0) given in (4.4).

While this can be done along the same line as that for S◦DSPD,θ(θ0) of the null model given in

Yang (2018a), it is useful to give some technical details in order for a better understanding

of our methodology in constructing the tests for homoskedasticity for FE-DSPD model. Note

that S◦DSPD(θ0) contains three types of terms: Π∆VN , ∆V′
NΦ∆VN and ∆V′

NΨ∆YN1. Let

VnT = (Vn1, . . . , VnT )′, the nT × 1 vector or the original iid errors. Then, ∆VN = FDVnT ,

where FD is the first-differencing transformation matrix. Therefore, we have,

Π∆VN = Π∗VnT =
∑T

t=1 Π∗
tVnt,

∆V′
NΦ∆VN = V′

nTΦ
∗VnT =

∑T
t=1

∑T
s=1 V

′
ntΦ

∗
tsVns,

∆V′
NΨ∆YN1 = V′

nTΨ
∗∆YN1 =

∑T
t=1 V

′
ntΨ

∗
t·∆Yn1,

for suitably defined ∗-quantities, where Ψ∗
t· =

∑T
s=1 Ψ∗

ts, and Π∗
t , Φ∗

ts and Ψ∗
ts are, respectively,

the sub-vectors or sub-matrices of Π∗, Φ∗ and Ψ, partitioned according to t, s = 1, . . . , T .

Now, based on the original model from which (2.3) is obtained, we have Yn1 = B−1
1n B2nYn0 +

ηn1 +B−1
1n B

−1
3n Vn1, where ηn1 collects all the other terms in the model. Thus,∑T
t=1 V

′
ntΨ

∗
t·∆Yn1 =

∑T
t=1 V

′
ntΨ

◦
t·Yn0 +

∑T
t=1 V

′
ntΨ

†
t·Vn1 +

∑T
t=1 V

′
ntΨ

∗
t·ηn1

as in Yang (2018a). Therefore, for every non-zero (p+k+5)× 1 vector c, c′S◦DSPD(θ0) is a sum

of liner, bilinear and quadratic forms in Yn0, Vt and Vs, t, s = 1, . . . , T , and the asymptotic

normality of c′S◦DSPD(θ0) can be proved under the assumptions stated in the theorem and using

Lemma A.5. Finally, Cramér-Wold devise leads to the joint asymptotic normality of S◦DSPD(θ0).

Next, similar to (2.11), an asymptotic expansion can be developed for S◦DSPD,α(θ̃N ):

S◦DSPD,α(θ̃N ) = S◦DSPD,α(θ0)− ΓNS◦DSPD,θ(θ0) + op(
√
N),

by applying MVT and the results in (d), where ΓN = ΣN,αθΣ−1
N,θθ, ΣN,αθ = −E[ ∂∂θ′S

◦
DSPD,α(θ0)],
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and ΣN,θθ = −E[ ∂∂θ′S
◦
DSPD,θ(θ0)]. This and the joint asymptotic normality of S◦DSPD(θ0) lead to

1√
N
S◦DSPD,α(θ̃N ) D−→ N(0, limn→∞

1
NΥN ),

where ΥN = ΩN,αα−ΓNΩN,θα−ΩN,αθΓ′N +ΓNΩN,θθΓ′N . Using the MD decompositions for

S◦DSPD,α(θ0) and S◦DSPD,θ(θ0), we have ΥN =
∑n

i=1 E[(gni,α − ΓNgni,θ)(gni,α − ΓNgni,θ)′].

The proof of (b) follows closely to the proof of Theorem 3.3 of Yang (2018a) using the

Hessian matrix given below. Proof of (c) can be carried out along the same line as that of the

proof of Theorem 2.1. The proof of the second part of (d) is given in the proof of Theorem

3.3 of Yang (2018a), and that of the first part can be done in a similar manner. �

Hessian Matrices. We now give the negative Hessian matrices H◦
N,αθ(θ) = − ∂

∂θ′S
◦
DSPD,α(θ)

and H◦
N,θθ(θ) = − ∂

∂θ′S
◦
DSPD,θ(θ) required for estimating ΣN,αθ and ΣN,θθ, and for proving (a)

and (d) above. Recall ∆VN (β, δ) = B3N (λ3)[B1N (λ1)∆YN −B2N (ρ, λ2)∆YN,−1 −∆XNβ].

Denote ∆U(θ1) = B−1
3N (λ3)∆VN (β, δ) = B1N (λ1)∆YN−B2N (ρ, λ2)∆YN,−1−∆XNβ, where

θ1 = (β′, δ′1)
′ and δ1 = (ρ, λ1, λ2)′. First, H◦

N,αθ(θ) has its jth row, j = 1, . . . , k:

− 1
σ2 ∆V′

N (β, δ)(C−1
T−1⊗Znj)

[
B3N (λ3)∆XN ,

1
2σ2 ∆VN (β, δ), B3N (λ3)∆ZN , W3N∆UN (β, δ1)

]
,

where ∆ZN = [∆YN,−1,W1N∆YN ,W2N∆YN,−1]. The expression for HN,θθ(θ) is available

from Yang (2018a, Appendix C). Here we give a simpler form to facilitate the numerical

implementation of our testing methods. Denote Ωu ≡ Ωu(λ3) = 1
σ2 Var(∆U) = CT−1 ⊗

(B′
3nB3n)−1. The AQS subvector S◦DSPD,θ(θ) defined in (4.2) can be rewritten as

S◦DSPD,θ(θ) =



1
σ2 ∆XNΩ−1

u ∆U(θ1),

1
2σ4 ∆U′(θ1)Ω−1

u ∆U(θ1)− N
2σ2 ,

1
σ2 ∆ZNΩ−1

u ∆U(θ1) + µ(δ1),

1
2σ2 ∆U′(θ1)(C−1

T−1 ⊗A(λ3))∆U(θ1),

where µ(δ1) = (tr(C−1
N DN,−1), tr(C−1

N DNW1N ), tr(C−1
N DN,−1W2N ))′ and A(λ3) = W ′

3nB3n(λ3) +

B′
3n(λ3)W3n. We have the rows of H◦

N,θθ(θ):

H◦
βθ = 1

σ2 ∆X′
N

[
Ω−1
u ∆XN ,

1
σ2

v
Ω−1
u ∆U(θ1), Ω−1

u ∆ZN , −Ω̇−
u ∆U(θ1)

]
,

H◦
σ2θ = 1

σ4

[
∆U′(θ1)Ω−1

u ∆XN ,
1

σ2
v
∆U′(θ1)Ω−1

u ∆U(θ1)− N
2 ,∆Z′Ω−1

u ∆U(θ1), − 1
2∆U′(θ1)Ω̇−

u ∆U(θ)
]
,

H◦
δ1θ = 1

σ2

[
∆Z′

NΩ−1
u ∆XN , ∆Z′

NΩ−1
u ∆U′(θ1), ∆Z′

NΩ−1
u ∆ZN − µ̇(δ1), −∆Z′

N Ω̇−
u ∆U′(θ1)

]
,

H◦
λ3θ = 1

σ2

[
∆U′(θ1)Ω̇−

u [∆XN , ∆U(θ1), ∆ZN ], ∆U′(θ1)W′
3NW3N∆U(θ1)− (T − 1)tr(G2

3n)
]
,

where Ω̇−
u = ∂

∂λ3
Ω−1
u , and µ̇(δ1) = ∂

∂δ′1
µ(δ1).
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Proof of Theorem 4.2: Similar to the proof of Theorem 4.1. �

Hessian Matrices. The negative Hessian matrices, H∗
N,αδ(δ) = − ∂

∂δ′S
∗
DSPD,α(δ) and

H∗
N,δδ(δ) = − ∂

∂δ′S
∗
DSPD,δ(δ), for the estimation of Σ∗

N,αδ and Σ∗
N,δδ and for the proof of Theorem

4.2 are given below. As in the regular AQS test, H∗
N,αδ(δ) has its jth row:

∆Ṽ′
N (δ)

(
C−1
T−1 ⊗Znj

)
∆ṼN,δ(δ)− µ∗αj ,δ(λ3)σ̃∗2N (δ) + µ∗αj (λ3)σ̃∗2N,δ(δ), j = 1, . . . , k,

where ∆ṼN,δ(δ) = ∂
∂δ′∆ṼN (δ), µ∗αj ,δ(λ3) = ∂

∂δ′µ
∗
αj (λ3) and σ̃∗2N,δ(δ) = ∂

∂δ′ σ̃
∗2
N (δ). Using the

relation ∆ṼN (δ) = C1/2
N MN (λ3)∆YN (δ), and the quantities ∆YN (δ) and σ̃∗2N (δ) defined in

Section 4.3, the δ1-components of these derivatives can easily be obtained. The derivatives

w.r.t. λ3 are more tedious as they involve the projection matrix MN (λ3) but are straightfor-

ward. Alternatively, numerical derivatives can be used.

Now, for H∗
N,δδ(δ), using the ∆Zn notation introduced above and denoting µ∗δ1(δ) =

(µ∗ρ(δ), µ
∗
λ1

(δ), µ∗λ2
(δ))′, S∗DSPD,δ(δ) can be written more compactly as:

S∗DSPDδ(δ) =

∆Z′NB′
3N (λ3)C−1

N ∆ṼN (δ)− µ∗δ1(δ)σ̃
∗2
N (δ),

∆Ṽ′
N (δ)

[
C−1
T−1 ⊗G3n(λ3)

]
∆ṼN (δ)− µ∗λ3

(λ3)σ̃∗2N (δ).

Therefore, we obtain the components of H∗
N,δδ(δ):

H∗
δ1δ1

= ∆Z′
NB′

3N (λ3)C−1
N ∆ṼN,δ1(δ)− µ∗δ1δ1

(δ)σ̃∗2N (δ)− µ∗δ1
(δ)σ̃∗2N,δ1

(δ),

H∗
δ1λ3

= ∆Z′
NB′

3N (λ3)C−1
N ∆ṼN,λ3(δ)−∆Z′

NW′
3NC−1

N ∆ṼN (δ)− µ∗δ1λ3
(δ)σ̃∗2N (δ)− µ∗δ1

(δ)σ̃∗2N,λ3
(δ),

H∗
λ3δ1

= 2∆Ṽ′
N (δ)

[
C−1

T−1 ⊗G3n(λ3)
]
∆ṼN,δ1(δ)− µ∗λ3

(λ3)σ̃∗2N,δ1
(δ),

H∗
λ3λ3

= 2∆Ṽ′
N (δ)

[
C−1

T−1 ⊗G3n(λ3)
]
∆ṼN,λ3(δ) + ∆Ṽ′

N (δ)
[
C−1

T−1 ⊗G2
3n(λ3)

]
∆ṼN (δ)

−µ∗λ3λ3
(λ3)σ̃∗2N (δ)− µ∗λ3

(λ3)σ̃∗2N,λ3
(δ),

where an quantity with an extra subscript indicates the partial derivative in row direction, e.g.,

∆ṼN,δ1(δ) = ∂
∂δ′1

∆ṼN (δ), and µ∗δ1δ1(δ) = ∂
∂δ′1
µ∗δ1(δ). The rest are straightforward, although

the derivatives w.r.t. λ3 are tedious. Again, numerical derivatives can be used in these cases.
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