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Abstract

Many empirical economic research involves panel data where the time dimension T is

small. Of immediate interest is to test whether dynamic and spatial effects are relevant,

but handy methods are unavailable. The usual LM or score tests based on the condi-

tional likelihood given the initial observations are inconsistent when T is fixed. In this

paper, simple tests, referred to as adjusted quasi score (AQS) tests, for dynamic and/or

spatial effects in fixed-effects panel data models are proposed. The AQS tests are free

from specifications of the initial conditions and are consistent when T is fixed. Standard-

ized AQS tests are also derived, which are shown to have much improved finite sample

properties. All the proposed tests are robust against nonnormality. Certain joint or con-

ditional tests are fully robust against cross-sectional heteroskedasticity; the others are

fairly robust against mild departures from homoskedasticity. Monte Carlo results show

excellent performance of the standardized AQS tests.

Key Words: Adjusted quasi scores; Dynamic effect; Fixed effects; Heteroskedas-
ticity; Initial conditions free; Nonnormality; Short panels; Tests; Spatial effects.

JEL classifications: C12, C18, C21, C23.

1. Introduction

Fixed-effects panel data (FE-PD) model has been an important tool for the applied eco-
nomics researchers over the past few decades. However, there have been growing concerns
on whether the panel models are dynamic in nature due to the impacts from the past and
current to the future ‘economic’ performance, and whether the models contain spatial depen-
dence caused by the interactions among economic agents or social actors (e.g., neighbourhood
effects, copy-catting, social network, and peer group effects). In other words, there have been
growing concerns from the applied researchers on whether a dynamic spatial panel data model
(SDPD) with fixed-effects is more appropriate than the regular FE-PD model, or the regular
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fixed effects dynamic panel data (FE-DPD) model, or the static fixed effects spatial panel
data (FE-SPD) model. Thus, it is highly desirable to device simple and reliable tests for the
applied researchers to determine whether to use the complicated general FE-SDPD model or
some simpler model, such as an FE-SDPD model with certain spatial effects dropped, or the
static FE-SPD model with all the dynamic effects dropped, or the FE-DPD model with all
spatial effects dropped, or the FE-PD model with both dynamic and spatial effects dropped.

In the dynamic panel data model literature, it is widely recognized that the (quasi) maxi-
mum likelihood (ML) type of estimation is more efficient than the GMM-type estimation (see,
e.g., Hsiao, et al., 2002; Hsiao, 2003; Binder et al. 2005; Bun and Carree 2005; Gouriéroux et
al. 2010; Kruiniger 2013). However, the ML-type estimation faces an important issue when
the panels are short (there is a large number of cross-sectional units n but a small number of
time periods T ): the initial observations need to be modeled to give an appropriate likelihood
function so that the (quasi) ML estimator can be consistent (see, e.g., Anderson and Hsiao,
1981, 1982; Bhargava and Sargan, 1983; Hsiao, et al., 2002; and Su and Yang, 2015). Ignoring
the initial conditions will result in estimators of the dynamic and spatial parameters that are
inconsistent when T is fixed, and have a bias of order O(T−1) when T grows with n pro-
portionally. Obviously, the inconsistency and bias in the parameter estimation will translate
into the inconsistency and bias in the corresponding tests in the forms of large sample size
distortion or finite sample size distortion of the tests.

While modelling the initial observations does lead to consistent and efficient ML of QML
estimators when the panels are short and dynamic effect exists, it has some drawbacks: when
the true model is static it may lead to estimators that have large bias and standard errors
when T is not so small relative to n, and when the model does not contain time-varying
regressors it may not perform well in general. This implies the tests of lack of dynamic effect
based on this estimation strategy may have a poor finite sample performance. The most
serious drawback may be that this approach may not work for models containing spatial lag
effects. Recently, Yang (2016) provided a unified framework for estimating a general spatial
dynamic panel data (SDPD) model with fixed effects, through adjusting the conditional quasi
scores (given the initial differences) associated with the dynamic and spatial parameters. He
showed that the estimation based on the adjusted quasi scores leads to consistent estimators
whether T is fixed or grows with n, and that it is free from the specification of the initial
conditions. Further, when T grows with n, he showed that the new estimation method
automatically corrects the bias of order O(T−1) caused by ignoring the initial observations,
and thus provides an alternative and handy method of bias correction for large panels.

However, testing problems, in particular, the joint tests for possible existence of dynamic
and/or spatial effects in a panel data model have not been considered. In fact, the literature
on statistical tests for the SDPD models is rather thin. This is in stark contrast with the
literature on statistical tests for spatial regression models, or static spatial panel data models.
See, among others, Anselin and Bera (1998), Anselin (2001), Kelejian and Prucha (2001),
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Yang (2010, 2015), Born and Breitung (2011), Baltagi and Yang (2013a,b), Robinson and
Rossi (2014, 2015a), and Jin and Lee (2015) for spatial regression models; Baltagi et al.
(2003), Baltagi et al. (2007), Debarsy and Ertur (2010), Baltagi and Yang (2013a,b), and
Robinson and Rossi (2015b) for static panel data models.

In this paper, we propose simple and reliable tests for dynamic and spatial effects in fixed-
effects panel data models with small T , which are shown to be free from the specifications
of the initial conditions. The spatial effect may appear in the model in the form of spatial
error (SE) dependence, spatial lag (SL) dependence, and/or space-time lag (STL) dependence.
The initial constructions of the tests are based on the unified M -estimation method of Yang
(2016): first adjusting the quasi score functions of the conditional quasi likelihood given
the initial differences to achieve consistency, and then developing a martingale difference
representation of the adjusted quasi score (AQS) function to give a consistent estimate of
the variance-covariance matrix of the AQS functions. The resulted tests, referred to as AQS
tests in this paper, are shown to have standard asymptotic null behavior. Further corrections
are obtained on the mean and variance of the concentrated AQS functions for dynamic and
spatial parameters, giving a set of standardized AQS (SAQS) tests having much better finite
sample properties. All the proposed AQS and SAQS tests are robust against nonnormality.
Certain joint or conditional tests are fully robust against cross-sectional heteroskedasticity;
the others are fairly robust against mild departures from homoskedasticity. Monte Carlo
results show excellent performance of the SAQS tests which dominate the AQS tests.

The rest of the paper is organized as follows. Section 2 introduces the general SDPD
models, discusses the tests of interest, and describes the unified M -estimation to facilitate
the construction of various tests. Section 3 presents the AQS tests and their asymptotic
properties. Section 4 presents the standardized AQS tests and their asymptotic properties.
Section 5 present Monte Carlo results. Section 6 concludes the paper.

2. Model, Tests and Unified M-Estimation

The spatial dynamic panel data (SDPD) model that our tests concern takes the form:

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 +Xtβ + Zγ + μ+ αt1n + ut, (2.1)

ut = λ3W3ut + vt, t = 1, 2, . . . , T,

where yt = (y1t, y2t, . . . , ynt)′ and vt = (v1t, v2t, . . . , vnt)′ are n × 1 vectors of response values
and idiosyncratic errors at time t, and {vit} are independent and identically distributed (iid)
across i and t with mean zero and variance σ2

v ;1 the scalar parameter ρ characterizes the
dynamic effect, λ1 the spatial lag (SL) effect, λ2 the space-time lag (STL) effect, and λ3 the
spatial error (SE) effect; {Xt} are n×p matrices containing values of p time-varying exogenous

1The iid assumption can be relaxed in certain cases to allow heteroskedasticity in vit across i.
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variables, Z is an n× q matrix containing the values of q time-invariant exogenous variables
that may include the constant term, dummy variables representing individuals’ gender, race,
etc.; β and γ are the usual regression coefficients; Wr, r = 1, 2, 3 are the given n × n spatial
weight matrices; and μ is an n × 1 vector of unobserved individual-specific effects, {αt} are
the time-specific effects, and 1n is an n× 1 vector of ones.

Model (2.1) is fairly general. It embeds several important submodels popular in the
literature. Yang (2016) presented a unified, initial conditions free, method of estimation and
inference for this general model, and showed that the method can easily be simplified to suit
each special model of interest to a particular applied problem. A question arises naturally:
in a practical application, do we really need such a general and complicated model, or does a
simpler model suffice as it gives easier interpretations of the results? This suggests that before
applying this general model, it is helpful to carry out some specification tests to identify a
suitable model based on the data. To be exact, the tests of interest concern the dynamic and
spatial parameters δ = (ρ, λ1, λ2, λ3)′. They may be the joint AQS tests (the null hypothesis
sets two or more elements of δ to zero, and the ‘remaining’ as free parameters), or the marginal
AQS tests (the null sets one element of δ to zero, and the remaining as free parameters), and
the conditional AQS tests, setting some element(s) of δ to zero. Denoting λ = (λ1, λ2, λ3)′,
the specific tests of interest are as follows.

Joint test HPD
0 : the regular panel data (PD) model suffices, that is, δ = 0.

When HPD
0 is not rejected, then one proceeds with the regular panel data model and the

decision is clear. However, when HPD
0 is rejected, i.e., at least one element of δ is not zero,

one does not know the exact cause of rejection and hence it would be necessary to carry out
some sub-joint or marginal tests to identify the cause of such a rejection.

Joint test HDPD
0 : the regular dynamic panel data (DPD) model suffices, i.e., λ = 0.

If HDPD
0 is not rejected, then the cause of rejecting HPD

0 is due to the fact that ρ �= 0;
otherwise, one needs to proceed with the following test.

Marginal test HSTPD
0 : ρ = 0, the time-space spatial panel data (STPD) model suffices.

Under HSTPD
0 , ρ = 0. Thus, if HSTPD

0 is not rejected, then the cause of rejecting HPD
0 is that

at least one element of λ is not zero. In this case, one may proceed further to identify which
element of λ is not zero by carrying out conditional tests on one or two elements of λ, given
ρ = 0. If HSTPD

0 is rejected after HDPD
0 has been rejected, it is clear that at least one element

of λ is non-zero when ρ is treated as a free parameter, and the marginal tests on λr should
be carried out, respectively, for r = 1, 2, 3:

Marginal test HSDPD1
0 : the SDPD model without λ1 suffices, i.e., HSDPD1

0 : λ1 = 0,

Marginal test HSDPD2
0 : the SDPD model without λ2 suffices, i.e., HSDPD2

0 : λ2 = 0,

Marginal test HSDPD3
0 : the SDPD model without λ3 suffices, i.e., HSDPD3

0 : λ3 = 0.
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Note that the marginal test HSDPD3
0 is quite interesting as the general model (2.1) reduces

to an SDPD model with SL and STL effects under the null, which is the model considered by
Lee and Yu (2008) under large n and large T set-up, allowing fixed individual and time effects.
As seen from the following section, our test results are valid for both the cases where T is fixed
and where T grows with n. The marginal test HSDPD2

0 may be even more interesting as the null
model becomes an SDPD model with both SL and SE (or SARAR: spatial autoregressive model
with autoregressive errors) effects, which is very popular in practical applications. Another
pair of joint tests of particular interest are,

Joint test HSDPD4
0 : the SDPD model with only SE effect suffices, i.e., λ1 = λ2 = 0.

Joint test HSDPD5
0 : the SDPD model with only SL effect suffices, i.e., λ2 = λ3 = 0.

When HSDPD4
0 is true, the general model given in (2.1) reduces to an SDPD model with

only the SE effect. This model is extensively studied by Su and Yang (2015) under large n
and small T set-up, with either random or fixed individual effects. However, specification
test from Model (2.1) to this reduced model has not been considered. When HSDPD5

0 is true,
the general model reduces to an SDPD model with only the SL effect. This is perhaps the
most popular SDPD model among the applied researchers. However, a test for its adequacy
in fitting the data is not available. The last test that we would like to highlight is:

Joint test HSDP
0 : the static spatial panel data (SPD) model suffices, i.e., ρ = λ2 = 0.

Under HSDP
0 , the model reduces to a static spatial panel data model with SL and SE (or

SARAR) effects. The SARAR panel data model with fixed effects has been studied by Lee and Yu
(2010) under the quasi maximum likelihood approach, LM tests for the spatial effects are given
by Debarsy and Ertur (2010), and LM-type tests robust against unknown heteroskedasticity
are given in Baltagi and Yang (2013b).

Besides the joint and marginal tests discussed above, some conditional tests might be of
interest as well. By conditional tests we mean tests for certain types of effects, give some
other effect(s) are removed from the model. For example, given that HSDPD2

0 is not rejected,
i.e., λ2 is set to zero, one might be interested in testing further whether ρ = 0, i.e., whether
the static SARAR model suffices; given that HSTPD

0 is not rejected, i.e., ρ = 0, one might be
interested in testing further whether λ2 = 0 and if so a static SARAR model suffices.

The M-estimation. The methodology we adopt in constructing tests statistics for
testing various hypotheses discussed above closely relates to the unified M -estimation and
inference methods presented in Yang (2016). Thus, it is necessary to outline this unified
M -estimation method. As the current paper focuses on the fixed effects model with small
T , the time specific effects can be absorbed into the time-varying regressors Xt, and the
individual-specific effects need to be eliminated to avoid the incidental parameters problem.
By taking the first-difference, Model (2.1) becomes,

Δyt = ρΔyt−1 + λ1W1Δyt + λ2W2Δyt−1 + ΔXtβ + Δut, Δut = λ3W3Δut + Δvt, (2.2)
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for t = 2, 3, · · · , T . The parameters left in Model (2.2) are ψ = {β′, σ2
v , ρ, λ

′}′. Note that Δy1
depends on both the initial observations y0 and the first period observations y1. Thus, even if
y0 is exogenous, y1 and thus Δy1 is not. The M -estimation strategy goes as follows: formulate
the conditional quasi likelihood function as if Δy1 is exogenous, then make corrections on
the relevant elements of the conditional quasi score vector, and then estimate the model
parameters by solving the estimating equations defined by the adjusted quasi score functions.

Let ΔY = {Δy′2, . . . ,Δy′T}′, ΔY−1 = {Δy′1, . . . ,Δy′T−1}′, ΔX = {ΔX ′
2, . . . ,ΔX

′
T}′, and

Δv = {Δv′2, . . . ,Δv′T}′. Denote by Im an m×m identity matrix. Let Wr = IT−1 ⊗Wr, r =
1, 2, 3. Let Br(λr) = In − λrWr, and Br(λr) = IT−1 ⊗ Br(λr), for r = 1 and 3, where ⊗
denotes the Kronecker product. Model (2.2) can be written as:

ΔY = ρΔY−1 + λ1W1ΔY + λ2W2ΔY−1 + ΔXβ + Δu, Δu = λ3W3Δu+ Δv. (2.3)

We have, Var(Δu) = σ2
vΩ(λ3), where Ω(λ3) = C ⊗ [B′

3(λ3)B3(λ3)]−1, and,

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(T−1)×(T−1)

.

Letting B2(ρ, λ2) = ρIN + λ2W2, the conditional quasi Gaussian loglikelihood of ψ in terms
of Δy2, . . . ,ΔyT as if Δy1 is exogenous has the form, ignoring the constant term:


(ψ) = −N
2 log(σ2

v) − 1
2 log |Ω(λ3)|+ log |B1(λ1)| − 1

2σ2
v
Δu(θ)′Ω(λ3)−1Δu(θ), (2.4)

where Δu(θ) = B1(λ1)ΔY −B2(ρ, λ2)ΔY−1 − ΔXβ, and θ = (β′, ρ, λ1, λ2)′.
Maximizing 
(ψ) gives the conditional QML estimator (CQMLE) of ψ. Under mild con-

ditions, maximizing the conditional loglikelihood 
(ψ) is equivalent to solving the estimating
equation S(ψ) = 0, where S(ψ) = ∂

∂ψ 
(ψ), the quasi score vector having the forms:

S(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2

v
ΔX ′Ω−1Δu(θ),

1
2σ4

v
Δu(θ)′Ω−1Δu(θ) − N

2σ2
v
,

1
σ2

v
Δu(θ)′Ω−1ΔY−1,

1
σ2

v
Δu(θ)′Ω−1W1ΔY − tr(B−1

1 W1),
1
σ2

v
Δu(θ)′Ω−1W2ΔY−1,

1
σ2

v
Δu(θ)′(C−1 ⊗ A3)Δu(θ)− (T − 1)tr(G3),

(2.5)

where A3 = 1
2(W ′

3B3 + B′
3W3) and G3 = W3B

−1
3 .

Clearly, 
(ψ) is a quasi Gaussian loglikelihood in both the traditional sense that {vit} are
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not exactly Gaussian and the sense that Δy1 is not exogenous but is treated as exogenous.
Consequently, it may not be true that limn→∞ 1

n(T−1)
S(ψ0)

p−→ 0, when T is fixed, where
ψ0 denotes the true value of the parameter vector ψ (see Yang (2016) for details). Hence
a necessary condition for the consistency of the CQMLEs may be violated. It is seen from
the below that even T increases with n, the CQMLEs may encounter asymptotic bias. Yang
(2016) introduce a method that not only gives a consistent estimator of the model parameters
when T is small, but also eliminates the asymptotic bias when T is large. The idea is to first
find E[S(ψ0)], and then adjust the quasi scores S(ψ) so that the adjusted quasi score (AQS)
S∗(ψ) is such that 1√

n(T−1)
S∗(ψ0) converges to a well defined distribution.

To facilitate the discussions, denote a parametric quantity (scalar, vector or matrix) by
dropping its arguments, e.g., B1 ≡ B1(λ1), B1 ≡ B1(λ1), Ω ≡ Ω(λ3), and denote the same
quantity evaluated at the true parameter value by adding a subscript ‘0’, e.g., B10 ≡ B1(λ10),
Ω0 ≡ Ω(λ30). Let C = C⊗In andN = n(T−1). Denote Δu ≡ Δu(θ0). The usual expectation
and variance operators correspond to the true parameter values.

The following ‘knowledge’ about the processes in the past is necessary.

Assumption A: Under Model (2.1), (i) the processes started m periods before the start
of data collection, the 0th period, and (ii) if m ≥ 1, Δy0 is independent of future errors
{vt, t ≥ 1}; if m = 0, y0 is independent of future errors {vt, t ≥ 1}.

Under Assumption A and the assumptions that (i) the errors {vit} are iid across i and
t, (ii) the regressors are exogenous, and (iii) both B−1

10 and B−1
30 exist, Yang (2016) shows

that E(ΔY−1Δv′) = −σ2
v0D−10B−1

30 and E(ΔYΔv′) = −σ2
v0D0B−1

30 (see also Lemma A.6,
Appendix A, for more general results), which lead immediately to the followings:

E(Δu′Ω−1
0 ΔY−1) = −σ2

v0tr(C
−1D−10), (2.6)

E(Δu′Ω−1
0 W1ΔY ) = −σ2

v0tr(C
−1D0W1), (2.7)

E(Δu′Ω−1
0 W2ΔY−1) = −σ2

v0tr(C
−1D−10W2), (2.8)

where D−1 ≡ D−1(ρ, λ1, λ2) and D ≡ D(ρ, λ1, λ2), having the following expressions,

D−1 =

⎛
⎜⎜⎜⎜⎝

In, 0, . . . 0, 0
B − 2In, In, . . . 0, 0
...

...
. . .

...
...

BT−4(In −B)2, BT−5(In − B)2, . . . B − 2In, In

⎞
⎟⎟⎟⎟⎠ B−1

1 ,

D =

⎛
⎜⎜⎜⎜⎝

B − 2In, In, . . . 0
(In − B)2, B − 2In, . . . 0
...

...
. . .

...
BT−3(In − B)2, BT−4(In −B)2, . . . B − 2In

⎞
⎟⎟⎟⎟⎠B−1

1 ,
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and B ≡ B(ρ, λ1, λ2) = B−1
1 (λ1)(ρIn + λ2W2).

The results (2.6)-(2.8) show that the (ρ, λ1, λ2) elements of E[S(ψ0)] are not zero. Hence,
plimn→∞

1
N

∂
∂ρ
STLE(ψ0), plimn→∞

1
N

∂
∂λ1


STLE(ψ0), and plimn→∞
1
N

∂
∂λ2


STLE(ψ0) are all non-
zero, suggesting that the tests based on S(ψ0) obtained by treating Δy1 as exogenous cannot
be consistent in general. Thus, it is necessary to adjust the quasi scores so as to give a set of
unbiased estimating functions. The adjusted quasi score (AQS) functions are:

S∗(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2

v
ΔX ′Ω−1Δu(θ),

1
2σ4

v
Δu(θ)′Ω−1Δu(θ) − N

2σ2
v
,

1
σ2

v
Δu(θ)′Ω−1ΔY−1 + tr(C−1D−1),

1
σ2

v
Δu(θ)′Ω−1W1ΔY + tr(C−1DW1),

1
σ2

v
Δu(θ)′Ω−1W2ΔY−1 + tr(C−1D−1W2),

1
σ2

v
Δu(θ)′(C−1 ⊗ A3)Δu(θ) − (T − 1)tr(G3).

(2.9)

Solving S∗(ψ) = 0 leads to the M -estimator ψ̂M of ψ. This root-finding process can be
simplified by first solving the equations for β and σ2

v , given δ = (ρ, λ′)′, resulting in the
constrained M -estimators of β and σ2

v as

β̂(δ) = (ΔX ′Ω−1ΔX)−1ΔX ′Ω−1(B1ΔY −B2ΔY−1), (2.10)

σ̂2
v(δ) = 1

NΔû(δ)′Ω−1Δû(δ), (2.11)

where Δû(δ) = Δu(β̂(δ), ρ, λ1, λ2). Substituting β̂(δ) and σ̂2
v(δ) into the last four components

of the AQS function in (2.9) gives the concentrated AQS functions:

S∗
c(δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
σ̂2

v(δ)Δû(δ)
′Ω−1ΔY−1 + tr(C−1D−1),

1
σ̂2

v(δ)
Δû(δ)′Ω−1W1ΔY + tr(C−1DW1),

1
σ̂2

v(δ)
Δû(δ)′Ω−1W2ΔY−1 + tr(C−1D−1W2),

1
σ̂2

v(δ)
Δû(δ)′(C−1 ⊗A3)Δû(δ) − (T − 1)tr(G3).

(2.12)

Solving the resulted concentrated estimating equations, S∗
c(δ) = 0, we obtain the uncon-

strained M -estimators δ̂M of δ. The unconstrained M -estimators of β and σ2
v are thus

β̂M ≡ β̂(δ̂M) and σ̂2
v,M ≡ σ̂2

v(δ̂M). Yang (2016) show that under regularity conditions the M -
estimator ψ̂M = (β̂′M, σ̂2

v,M, δ̂
′
M)

′ is
√
N -consistent and asymptotically normal. The M -estimators

under various constraints imposed by the various hypotheses postulated above will remain to
be

√
N -consistent and asymptotically normal. An asymptotic result that is of particular im-

portance to the construction of the AQS-based test statistics is that the ‘normalized’ S∗(ψ0)
is asymptotically normal with zero mean and finite variance. It is important to note that
the adjustments (2.6)-(2.8) are free from the initial conditions, and hence the resulted AQS
function and the M -estimators are free from the initial conditions.
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3. Adjusted Quasi Score Tests

The AQS functions given in (2.9) are the key elements in the construction of the AQS
tests. In this section, we first formulate the AQS test in a unified manner, and then present
details of the tests corresponding to the various joint, marginal and conditional AQS tests
specified in Section 2. All the proofs are given in Appendix B.

Some general notation and convention simplify the presentations: (i) δ denotes the vector
of parameters in the concentrated AQS function, and Δ the space from which δ takes values;
(ii) tr(·), | · | and ‖ · ‖ denote, respectively, the trace, determinant, and Frobenius norm of a
matrix; and (iii) diag(ak) forms a diagonal matrix using the elements {ak} and blkdiag(Ak)
forms a block-diagonal matrix using the matrices {Ak}. The subscript ‘n’ is often dropped
from an n-dependent quantity shall no confusion arise. 0k is a k × 1 vector of zeros.

3.1. General method

The construction of the joint and marginal AQS tests depends critically on the availabil-
ity of the variance covariance (VC) matrix of the AQS function S∗(ψ0) given in (2.9), i.e.,
Γ∗(ψ0) = 1

NVar[S∗(ψ0)]. The dynamic nature of Model (2.1) makes such an estimation very
difficult, as the derivation of the expression of Γ∗(ψ0) runs into a similar problems as the full
QML estimation of the model – initial differences need to be specified or modeled when T

is fixed and small. To overcome this difficulty, Yang (2016) propose a martingale difference
(M.D.) method, i.e., decompose the joint AQS function into a sum of M.D. sequences so that
the outer-product-of-martingale-differences (OPMD) gives a consistent estimate of Γ∗(ψ0).
As a result, the OPMD estimate of Γ∗(ψ0) is free from the specification of initial conditions.
This together with the fact that the AQS functions are free from the specification of initial
conditions lead to the AQS tests that are free from the initial conditions.

First, under Assumption A, Yang (2016) developed the following representations:

ΔY = R Δy1 + η + SΔv, (3.1)

ΔY−1 = R−1Δy1 + η−1 + S−1Δv, (3.2)

where R = blkdiag(B0,B2
0, . . . ,BT−1

0 ), R−1 = blkdiag(In,B0, . . . ,BT−2
0 ), η = BB−1

10 ΔXβ0,
η−1 = B−1B−1

10 ΔXβ0, S = BB−1
10 B−1

30 , S−1 = B−1B−1
10 B−1

30 ,

B =

⎛
⎜⎜⎜⎜⎝

In 0 . . . 0 0
B0 In . . . 0 0
...

...
. . .

...
...

BT−2
0 BT−3

0 . . . B0 In

⎞
⎟⎟⎟⎟⎠ , and B−1 =

⎛
⎜⎜⎜⎜⎝

0 0 . . . 0 0
In 0 . . . 0 0
...

...
. . .

...
...

BT−3
0 BT−4

0 . . . In 0

⎞
⎟⎟⎟⎟⎠ .

Using these representations and Δu = B−1
30 Δv, the AQS function at ψ0 is expressed as
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S∗(ψ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π′
1Δv,

Δv′Φ1Δv − N
2σ2

v0
,

Δv′Ψ1Δy1 + Δv′Π2 + Δv′Φ2Δv + tr(C−1D−10),
Δv′Ψ2Δy1 + Δv′Π3 + Δv′Φ3Δv + tr(C−1D0W1),
Δv′Ψ3Δy1 + Δv′Π4 + Δv′Φ4Δv + tr(C−1D−10W2),
Δv′Φ5Δv − (T − 1)tr(G30),

(3.3)

where Π1= 1
σ2

v0
CbΔX , Π2= 1

σ2
v0

Cbη−1, Π3= 1
σ2

v0
CbW1η, Π4= 1

σ2
v0

CbW2η−1, Φ1= 1
2σ4

v0
(C−1⊗In),

Φ2= 1
σ2

v0
CbS−1, Φ3= 1

σ2
v0

CbW1S, Φ4= 1
σ2

v0
CbW2S−1, Φ5= 1

2σ2
v0

[C−1⊗(G′
30+G30)], Ψ1= 1

σ2
v0

CbR−1,

Ψ2= 1
σ2

v0
CbW1R, Ψ3= 1

σ2
v0

CbW2R−1, and Cb=C−1 ⊗ B30.

The expression (3.3) is the key to the proof of the asymptotic normality of 1√
N
S∗(ψ0),

and to the development of the OPMD estimate of the VC matrix of S∗(ψ0), so that the an
AQS test can be constructed. Note that S∗(ψ0) contains three types of stochastic elements:

Π′Δv, Δv′ΦΔv, and Δv′ΨΔy1,

where Π,Φ and Ψ are nonstochastic matrices (depending on ψ0) with Π being N × p or
N × 1, and Φ and Ψ being N × N . As noted in Yang (2016), the closed form expressions
for variances of Π′Δv and Δv′ΦΔv, and their covariance can readily be derived, but the
closed-form expressions for the variance of Δv′ΨΔy1 and its covariances with Π′Δv and
Δv′ΦΔv depend on the knowledge of the distribution of Δy1, which is unavailable. Yang
(2016) went on to give a unified method of estimating the VC matrix of AQS function, the
OPMD estimate, which is summarized as follows.

For a square matrix A, let Au, Al and Ad be, respectively, its upper-triangular, lower-
triangular, and diagonal matrix such that A = Au +Al +Ad. Denote by Πt, Φts and Ψts the
submatrices of Π, Φ and Ψ partitioned according to t, s = 2, . . . , T . Define Ψt+ =

∑T
s=2 Ψts,

t = 2, . . . , T , Θ = Ψ2+(B30B10)−1, Δy◦1 = B30B10Δy1, and Δy∗1t = Ψt+Δy1. Define

g1i =
∑T

t=2 Π′
itΔvit, (3.4)

g2i =
∑T

t=2(ΔvitΔξit + ΔvitΔv∗it − σ2
v0dit), (3.5)

g3i = Δv2iΔζi + Θii(Δv2iΔy◦1i + σ2
v0) +

∑T
t=3 ΔvitΔy∗1it, (3.6)

where for (3.5), ξt =
∑T

s=2(Φ
u′
st + Φl

ts)Δvs, Δv∗t =
∑T

s=2 Φd
tsΔvs, and {dit} are the diagonal

elements of CΦ; for (3.6), {Δζi} = Δζ = (Θu + Θl)Δy◦1 , and diag{Θii} = Θd. Then,

Π′Δv =
∑n

i=1 g1i, (3.7)

Δv′ΦΔv − E(Δv′ΦΔv) =
∑n

i=1 g2i, (3.8)

Δv′ΨΔy1 − E(Δv′ΨΔy1) =
∑n

i=1 g3i, (3.9)

and {(g′1i, g2i, g3i)′,Fn,i}ni=1 form a vector martingale difference (M.D.) sequence, where
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Fn,i = Fn,0⊗Gn,i, {Gn,i} are the increasing sequence of σ-fields generated by (vj1, . . . , vjT , j =
1, . . . , i), i= 1, . . . , n, and Fn,0 is the σ-field generated by (v0,Δy0).

Now, following these results, for each Πr, r = 1, 2, 3, 4, defined in (3.3), define g1ri accord-
ing to (3.4); for each Φr, r = 1, . . . , 5, defined in (3.3), define g2ri according to (3.5); and for
each Ψr , r = 1, 2, 3, defined in (3.3), define g3ri according to (3.6). Define

gi = (g′11i, g21i, g31i + g12i + g22i, g32i + g13i + g23i, g33i + g14i + g24i, g25i)′. (3.10)

Then, S∗(ψ0) =
∑n

i=1 gi, and {gi,Fn,i} form a vector M.D. sequence. It follows that
Var[S∗(ψ0)] =

∑n
i=1 E(gig′

i). The ‘average’ of the outer products of the estimated gi, i.e.,

Γ̂∗ = 1
N

∑n
i=1 ĝiĝ′

i, (3.11)

thus gives a consistent estimator of the variance of Γ∗(ψ0), where ĝi is obtained by replacing
ψ0 in gi by ψ̂M and Δv in gi by its observed counterpart Δ̂v, noting that Δy1 is observed.

Note that the AQS functions for parameter estimation given in (2.9) and the OPMD
estimate of VC matrix given in (3.11) are developed based on the assumption that the errors
are iid. Lemmas A.5-A.9, Appendix A, give a set of results that allow the errors to be
heteroskedastic across the spatial units as in Assumption B below, which facilitate the proofs
that some tests are robust against unknown cross-sectional heteroskedasticity.2

Now, consider the general linear hypotheses:

H0 : C ′ψ0 = 0,

where C is (p+5)×k with k ≤ p+4, representing a set of linear contrasts of ψ0. Let g̃i be the
restricted estimate of gi, obtained by replacing ψ0 in gi by ψ̃M, the restricted M -estimator of
ψ0 (under H0), and vit by ṽit, the restricted estimates of the model errors. An AQS-based
test for testing the general linear hypothesis H0 : C ′ψ0 = 0 is thus,

TAQS = S∗(ψ̃)
( ∑n

i=1 g̃ig̃′
i

)−1
S∗(ψ̃), (3.12)

Obviously, the set-up of H0 above is fairly general and covers all the hypotheses postulated
in Section 2. For example, one can test H0 : λ1 = λ2 = λ3 by defining the two columns of
C as (0′p+2, 1,−1, 0)′ and (0′p+3, 1,−1)′. For testing HDP

0 : δ = 0, the four columns of C are,
respectively, (0′p+1, 1, 0

′
3)

′, (0′p+1, 0, 1, 0, 0)′, (0′p+1, 0, 0, 1, 0)′, and (0′p+1, 0
′
3, 1)′.

The asymptotic distribution of TAQS, i.e., χ2
k, can be proved under some additional regu-

larity conditions generic to all tests, and some additional regularity conditions specific for a
given test. The generic conditions are as follows.

Assumption B: The innovations vit are such that (i) {vit} are independent across i =
1, . . . , n and t = 0, 1, . . . , T with E(vit) = 0, (ii) Var(vit) = σ2

v0hni, where 0 < hni ≤ c < ∞
and 1

n

∑n
i=1 hni = 1, and (iii) E|vit|4+ε0 <∞ for some ε0 > 0.

2These results could potentially lead to all test statistics that are fully robust against unknown cross-
sectional heteroskedasticity. However, a detailed study on this is beyond the scope of this paper.
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Assumption C: The time-varying regressors {Xt, t = 0, 1, . . . , T} are exogenous, their
values are uniformly bounded, and limN→∞ 1

NΔX ′ΔX exists and is nonsingular.

Assumption D: (i) For r = 1, 2, 3, the elements wr,ij of Wr are at most of order ι−1
n ,

uniformly in all i and j, and wr,ii = 0 for all i; (ii) ιn/n→ 0 as n→ ∞; (iii) {Wr, r = 1, 2, 3}
are uniformly bounded in both row and column sums.

Assumption D allows the degree of spatial dependence, e.g., the number of neighbors
each spatial unit has, to grow with the sample size but in a lower speed. As a result, the
convergence rate of certain parameter estimators may need to be adjusted down to

√
N/ιn.3

For certain tests where the null model contains spatial effects, Assumption B needs to be
tightened by requiring hni = 1, i = 1, . . . , n. Lemmas A.5-A.9 in Appendix A present more
general results that could potentially lead to tests that are valid under Assumption B.

3.2. Joint, marginal and conditional AQS tests

To facilitate the practical applications of the AQS tests, we now present details for each of
the hypothesis postulated in Section 2 so that the practitioners can pick and apply a specific
test directly without going through the complicated general case. Certain tests, i.e., those
specifying ρ = 0 at the null, can be much simpler than the general one presented above. Let
SDPD(δ) denote the general model. An AQS test corresponds to a model reduction by setting
certain elements in δ to zero, i.e., STPD(λ) sets ρ to 0, DPD(ρ) sets λ to 0, PD sets δ to 0.

Denote a component or a subvector of the AQS vector S∗(ψ) by adding a relevant sub-
script, e.g., S∗

ρ(ψ) is the ρ-element and S∗
δ (ψ) is the δ-subvector of S∗(ψ). Denote a di-

agonal element or a diagonal block of
(∑n

i=1 g̃ig̃′
i

)−1 by adding a relevant subscript, e.g.,(∑n
i=1 g̃ig̃′

i

)−1

ρ
is the ρ-ρ element and

( ∑n
i=1 g̃ig̃′

i

)−1

δ
is the δ-δ block of

(∑n
i=1 g̃ig̃′

i

)−1.

Joint test HPD
0 : δ = 0. Under HPD

0 , the model SDPD(δ) is reduced to the simplest
PD model, and the estimation of the model at the null is simply the ordinary least squares
(OLS) estimation, i.e., β̃ = (ΔX ′C−1ΔX)−1ΔX ′C−1ΔY and σ̃2

v = 1
NΔṽ′C−1Δṽ, where

Δṽ = ΔY − ΔXβ̃, leading to ψ̃ = (β̃′, σ̃2
v, 0

′
4)

′. Under HPD
0 , B1 = B2 = In, and B3 = On

where On denotes an n×n matrix of zeros. It is easy to see that β̃ and σ̃2
v are robust against

unknown cross-sectional heteroskedasticity. Based on the fact that the β and σ2
v components

of the AQS vector are zero when evaluated at ψ̃, the AQS test statistics takes the form:

T PD
AQS = S∗′

δ (ψ̃)
(∑n

i=1 g̃ig̃′
i

)−1

δ
S∗′
δ (ψ̃) (3.13)

where {g̃i} are obtained by evaluating {gi} defined in (3.10) at ψ0 = ψ̃ and Δv = Δṽ.

Theorem 3.1. Under Assumptions A-D and HPD
0 , we have T PD

AQS
D−→ χ2

4. In particular,
the null distribution of T PD

AQS is robust against unknown heteroskedasticity {hni}.
3This typically occurs to the estimator of the spatial error parameter; see Lee (2004), Liu and Yang (2015),

Su and Yang (2015), and Yang (2016). However, to simplify the proofs the asymptotic properties of the
proposed tests, this feature is not explicitly reflected as the implementations of the tests do not require ι.
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The very attractive feature of this joint test is that it is robust against cross-sectional
heteroskedasticity of unknown form as specified in Assumption B, besides being robust against
nonnormality of the idiosyncratic errors vit. The same goes to the conditional tests where
under the null and given the ‘condition’ the model becomes pure panel model of which
estimation is simply the least squares.

Joint test HDPD
0 : λ = 0. Under HDPD

0 , B1 = B3 = In, and B2 = ρIn. The estimation
of the null model goes as follows. The constrained M-estimators of β and σ2

v , given ρ, are
β̃(ρ) = (ΔX ′C−1ΔX)−1ΔX ′C−1(ΔY − ρΔY−1) and σ̃2

v(ρ) = 1
NΔṽ′(ρ)C−1Δṽ(ρ), where

Δṽ(ρ) = ΔY − ρΔY−1 − ΔXβ̃(ρ). The constrained M -estimator of ρ under HDPD
0 is

ρ̃ = arg
{

1
σ̃2

v(ρ)
Δṽ′(ρ)C−1ΔY−1 + n

(
1

1−ρ − 1−ρT

T (1−ρ)2
)

= 0
}
, (3.14)

leading to the constrained M estimators of β and σ2
v as β̃ = β̃(ρ̃) and σ̃2

v = σ̃2
v(ρ̃). The

constrained M -estimator of ψ is thus ψ̃ = {β̃′, σ̃2
v , ρ̃, 0, 0, 0}′. The following lemma shows that

the restricted M -estimator ρ̃ defined in (3.14) is robust against unknown heteroskedasticity.4

Lemma 3.1. Under Assumptions A-D, if the parameter space Υ for ρ is compact and ρ0

is in the interior of it, the M -estimator ρ̃ for the DPD model is consistent, and so are the
M -estimators β̃ and σ̃2

v . Furthermore,
√
N [(β̃′, σ̃2

v , ρ̃)
′ − (β0, σ

2
v0, ρ0)′]

D−→ N (0,Γ).

With the (β, σ2
v , ρ)-components of the AQS vector being zero when evaluated at ψ̃, the

AQS test statistic becomes

T DPD
AQS = S∗′

λ (ψ̃)
(∑n

i=1 g̃ig̃′
i

)−1

λ
S∗′
λ (ψ̃), (3.15)

where {g̃i} are obtained by evaluating {gi} defined in (3.10) at ψ0 = ψ̃ and Δv = Δṽ(ρ̃).

Theorem 3.2. Under Assumptions A-D and HDPD
0 , we have T DPD

AQS
D−→ χ2

3. In particular,
the asymptotic null behavior of T DPD

AQS is robust against unknown heteroskedasticity {hni}.

Note that ρ̃ used in Theorem 3.2 needs not be the constrained M -estimator defined in
(3.14), and can be replaced by any

√
N-consistent and heteroskedasticity robust estimator.

Marginal test HSTPD
0 : ρ = 0. Under the null, B2 = λ2W2. The constrained M-estimator

λ̃ of λ solves the following estimating equations:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
σ̃2

v(λ)
Δũ(λ)′Ω−1W1ΔY + tr(C−1DW1) = 0,

1
σ̃2

v(λ)
Δũ(λ)′Ω−1W2ΔY−1 + tr(C−1D−1W2) = 0,

1
σ̃2

v(λ)
Δũ(λ)′(C−1 ⊗A3)Δũ(λ)− (T − 1)tr(G3) = 0,

4The concentrated AQS function for ρ contained in (3.14) clearly shows that the M -estimator is not only
consistent when T is fixed but also eliminates the bias of order O(T−1). In contrast, the estimator based on
the unadjusted score is inconsistent when T is fixed and has a bias of order O(T−1) when T grows with n. See
Hahn and Kuersteiner (2002), and Yang (2016) for more discussions and related works on the DPD model.
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where Δũ(λ) = B1ΔY −λ2W2ΔY−1−ΔXβ̃(λ), and β̃(λ) and σ̃2
v(λ) are obtained from (2.10)

and (2.11) by setting ρ = 0. Let β̃ = β̃(λ̃), σ̃2
v = σ̃2

v(λ̃), and ψ̃ = {β̃′, σ̃2
v, 0, λ̃

′}′. The AQS
test for HSTPD

0 has the form

T STPD
AQS = S∗

ρ(ψ̃)
[(∑n

i=1 g̃ig̃′
i

)−1

ρ

] 1
2 , (3.16)

where {g̃i} are obtained by evaluating {gi} defined in (3.10) at ψ0 = ψ̃ and Δv = B̃−1
3 ũ(λ̃).

Theorem 3.3. Under Assumptions A-D and HSTPD
0 , if further, (i) hni = 1, i = 1, . . . , n,

(ii) B−1
10 and B−1

30 are uniformly bounded in both row and column sums and (iii) λ̃ is
√
N-

consistent, then we have T STPD
AQS

D−→ N (0, 1).

The asymptotic normality of the test statistic T STPD
AQS at the null typically requires that

the constrained estimator λ̃ be
√
N -consistent. This is implied by the general result of Yang

(2015) under homoskedastic errors and hence is not discussed in this paper. Furthermore, λ̃
needs not be the constrained M -estimator discussed above, and any other estimator this is√
N-consistent can be used. See the proof of the theorem given in Appendix B. The result of

Theorem 3.3 shows that the asymptotic null behavior of the test statistic T STPD
AQS is not fully ro-

bust against unknown heteroskedasticity {hni}. Use of the results in Lemma A.9 may provide
a version of the variance estimator that is robust against unknown heteroskedasticity but it
is not clear how to make the AQS function and λ̃ also robust against unknown heteroskedas-
ticity. However, our Monte Carlo results show that this test and its improved version given
in Sec. 4 are quite robust against unknown heteroskedasticity. These discussions apply to all
the tests given below, as well as their improved versions presented in Sec. 4.

Marginal test HSDPDr
0 : λr = 0, where r can be 1, or 2 or 3, giving three marginal tests

corresponding one specific type of spatial effects. Among these three marginal tests, the test
of HSDPD2

0 : λ2 = 0 is the most interesting one as under HSDPD2
0 the model is reduced to the

popular SDPD model with SL and SE (or SARAR) effects. We consider only this case as the
others can be handled in the similar manner. Under HSDPD2

0 , B2 = ρIn. The constrained
M-estimators (ρ̃, λ̃1, λ̃3) of (ρ, λ1, λ3) solve the following estimating equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1
σ̃2

v(ρ,λ1,λ3)
Δũ(ρ, λ1, λ3)′Ω−1ΔY−1 + tr(C−1D−1) = 0,

1
σ̃2

v(ρ,λ1,λ3)
Δũ(ρ, λ1, λ3)′Ω−1W1ΔY + tr(C−1DW1) = 0,

1
σ̃2

v(ρ,λ1,λ3)
Δũ(ρ, λ1, λ3)′(C−1 ⊗ A3)Δũ(ρ, λ1, λ3) − (T − 1)tr(G3) = 0,

where Δũ(ρ, λ1, λ3) = B1ΔY −ρΔY−1−ΔXβ̃(ρ, λ1, λ3), and β̃(ρ, λ1, λ3) and σ̃2
v(ρ, λ1, λ3) are

obtained from (2.10) and (2.11) by setting λ2 = 0. Let β̃ = β̃(ρ̃, λ̃1, λ̃3), σ̃2
v = σ̃2

v(ρ̃, λ̃1, λ̃3),
and ψ̃ = {β̃′, σ̃2

v, ρ̃, λ̃1, 0, λ̃3}′. The AQS test for HSDPD2
0 has the form

T SPDD2
AQS = S∗

λ2
(ψ̃)

[(∑n
i=1 g̃ig̃′

i

)−1

λ2

] 1
2 , (3.17)

where {g̃i} are {gi} defined in (3.10), evaluated at ψ0 = ψ̃ and Δv = B̃−1
3 Δũ(ρ̃, λ̃1, λ̃3).
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Theorem 3.4. Under Assumptions A-D and HSDPD2
0 , if further, (i) hni = 1, i = 1, . . . , n,

(ii) B−1
10 and B−1

30 are uniformly bounded in both row and column sums and (iii) (ρ̃, λ̃1, λ̃3)
are

√
N -consistent, then we have T SDPD2

AQS
D−→ N (0, 1).

Joint test HSDPD4
0 : λ1 = λ2 = 0. This is an interesting joint test as under the null the

model reduces to a popular SDPD model with spatial error only, which was studied by Su
and Yang (2015) under fixed T and with initial observations modeled. Under HSDPD4

0 , B1 = In

and B2 = ρIn. The M -estimators ρ̃ and λ̃3 of ρ and λ3 solve the estimating equations:
⎧⎨
⎩

1
σ̃2

v(ρ,λ3)
Δũ(ρ, λ3)′Ω−1ΔY−1 + tr(C−1D−1) = 0,

1
σ̃2

v(ρ,λ3)
Δũ(ρ, λ3)′(C−1 ⊗ A3)Δũ(ρ, λ3) − (T − 1)tr(G3) = 0,

where Δũ(ρ, λ3) = ΔY − ρΔY−1 − ΔXβ̃(ρ, λ1, λ3), and β̃(ρ, λ3) and σ̃2
v(ρ, λ3) are obtained

from (2.10) and (2.11) by setting λ1 = λ2 = 0. Let β̃ = β̃(ρ̃, λ̃3), σ̃2
v = σ̃2

v(ρ̃, λ̃3), and
ψ̃ = {β̃′, σ̃2

v , ρ̃, 0, 0, λ̃3}′. The AQS test for HSDPD4
0 has the form:

T DPD
AQS = S∗′

ρ,λ3
(ψ̃)

(∑n
i=1 g̃ig̃′

i

)−1

ρ,λ3
S∗′
ρ,λ3

(ψ̃), (3.18)

where {g̃i} are {gi} defined in (3.10), evaluated at ψ0 = ψ̃ and Δv = B̃−1
3 Δũ(ρ̃, λ̃3).

Theorem 3.5. Under Assumptions A-D and HSDPD4
0 , if further, (i) hni = 1, i = 1, . . . , n,

(ii) B−1
30 is uniformly bounded in both row and column sums and (iii) ρ̃ and λ̃3 are

√
N-

consistent, then we have T SDPD4
AQS

D−→ χ2
2.

Joint test HSDPD5
0 : λ2 = λ3 = 0. Under the null hypothesis, the model reduces to another

popular model, the SDPD model with only the spatial lag effect. Under HSDPD5
0 , B2 = ρIn and

B3 = In. The constrained M -estimators ρ̃ and λ̃1 of ρ and λ1 solve the following equations:

⎧⎨
⎩

1
σ̃2

v(ρ,λ1)
Δṽ(ρ, λ1)′Ω−1ΔY−1 + tr(C−1D−1) = 0,

1
σ̃2

v(ρ,λ1)
Δṽ(ρ, λ1)′Ω−1W1ΔY + tr(C−1DW1) = 0,

where Δṽ(ρ, λ1) = B1ΔY − ρΔY−1 − ΔXβ̃(ρ, λ1), and β̃(ρ, λ1) and σ̃2
v(ρ, λ1 = λ3) are

obtained from (2.10) and (2.11) by setting λ2 = λ3 = 0. Let β̃ = β̃(ρ̃, λ̃1), σ̃2
v = σ̃2

v(ρ̃, λ̃1),
and ψ̃ = {β̃′, σ̃2

v, ρ̃, λ̃1, 0, 0}′. The AQS test for HSDPD5
0 has the form

T DPD
AQS = S∗′

ρ,λ1
(ψ̃)

(∑n
i=1 g̃ig̃′

i

)−1

ρ,λ1
S∗′
ρ,λ1

(ψ̃), (3.19)

where {g̃i} are {gi} defined in (3.10), evaluated at ψ0 = ψ̃ and Δv = Δṽ(ρ̃, λ̃1).

Theorem 3.6. Under Assumptions A-D and HSDPD5
0 , if further, (i) hni = 1, i = 1, . . . , n,

(ii) B−1
10 is uniformly bounded in both row and column sums and (iii) ρ̃ and λ̃1 are

√
N-

consistent, then we have T SDPD5
AQS

D−→ χ2
2.
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Joint test HSPD
0 : ρ = λ2 = 0. Under the null, B2 = 0 and D = −CB−1

1 . The model
becomes the static SARAR model. The constrained M-estimators λ̃1 and λ̃3 of λ1 and λ3 solve
the following estimating equations (see also Lee and Yu (2010)):

⎧⎨
⎩

1
σ̃2

v(λ1,λ3)
Δũ(λ1, λ3)′Ω−1W1ΔY − (T − 1)tr(B−1

1 W1) = 0,
1

σ̃2
v(λ1,λ3)

Δũ(λ1, λ3)′(C−1 ⊗ A3)Δũ(λ1, λ3) − (T − 1)tr(G3) = 0,

where Δũ(λ1, λ3) = B1ΔY − ΔXβ̃(λ1, λ3), and β̃(λ1, λ3) and σ̃2
v(λ1, λ3) are obtained from

(2.10) and (2.11) by setting ρ = λ2 = 0. Let β̃ = β̃(λ̃1, λ̃3), σ̃2
v = σ̃2

v(λ̃1, λ̃3), and ψ̃ =
{β̃′, σ̃2

v , 0, λ̃1, 0, λ̃3}′. The AQS test for HSPD
0 has the form

T SPD
AQS = S∗

ρ,λ2
(ψ̃)′

(∑n
i=1 g̃ig̃′

i

)−1

ρ,λ2
S∗
ρ,λ2

(ψ̃), (3.20)

where {g̃i} are {gi} defined in (3.10), but evaluated at ψ0 = ψ̃ and Δv = B̃−1
3 ũ(λ̃1, λ̃3).

Theorem 3.7. Under Assumptions A-D and HSPD
0 , if further, (i) hni = 1, i = 1, . . . , n,

(ii) B−1
10 and B−1

30 are uniformly bounded in both row and column sums and (iii) λ̃1 and λ̃3

are
√
N -consistent, then we have T SPD

AQS
D−→ χ2

2.

Conditional tests are those for testing whether the model can be further reduced, given
that it has already been reduced. For example, HPD1

c0 : λ1 = 0, given λ2 = λ3 = 0; HPD3
c0 :

λ3 = 0, given λ1 = λ2 = 0; HSTPD
c0 : ρ = 0, given λ2 = 0. The last conditional test says that

based on the model without λ2, we want to see if ρ = 0, i.e., if the model SDPD(ρ, λ1, λ3)
can be reduced to SPD(λ1, λ3), a static spatial panel data model. The conditional tests
conditional upon ρ = 0 are the tests of model reduction for the SDPD(λ) model, and the LM-
type of tests have been developed by, e.g., Debarsy and Erther (2010) and Baltagi and Yang
(2013a) for models with homoskedastic models, and Born and Breitung (2011) and Baltagi
and Yang (2013b) for models with heteroskedastic errors. All these conditional tests can be
easily developed based on the general methodology presented above. Some conditional tests
are robust against heteroskedasticity in light of Theorems 3.1 and 3.2, and some can be made
to be robust against heteroskedasticity in light of Baltagi and Yang (2013b) and Lemmas
A.8 and A.9. Given the fact that the OPMD estimator of the VC matrix of estimating
equations are robust against cross-sectional heteroskedasticity or can be made so in light of
Lemma A.9, any AQS or SAQS test can be made to be heteroskedasticity robust, provided
the AQS function is robust. However, it is not clear how to adjust the AQS functions so that
they are fully robust against heteroskedasticity due the presence of initial differences Δy1.
All the tests developed above can be implemented in a unified manner based on the general
expressions of the AQS function given in (2.9) or (3.3), and the general OPMD estimate of its
VC matrix given in (3.11). For each specific test, all it is necessary is to change the definitions
of the matrices Br , r = 1, 2, 3 according to the null hypothesis, and modify the user-supplied
function that does root-finding. Matlab codes are available from the author upon request.
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4. Finite Sample Improved AQS Tests

The joint and marginal AQS tests presented above are simple but may not be satisfactory
when n is not large enough. The reason is that the variability from the estimation of β
and σ2

v are not taken into account when constructing the test statistics. It is thus desirable
to find ways to improve the finite sample performance of these tests. Clearly, after β0 and
σ2
v being replaced by β̂(δ0) and σ̂v(δ0) in the last four elements of S∗(ψ0) given in (2.9),

the concentrated AQS functions no longer have mean zero, although they do asymptotically.
Furthermore, the variance of the concentrated AQS functions may also be affected. Thus,
re-adjustments on the mean and variance may help improving the finite sample performance
of the AQS tests (see Baltagi and Yang 2013a,b).

4.1. General method

Rewrite the concentrated AQS function given in (2.12) as

S∗
c(δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
σ̂2

v(δ)

[
Δû(δ)′Ω−1ΔY−1 + φ1Δû(δ)′Ω−1Δû(δ)

]
,

1
σ̂2

v(δ)

[
Δû(δ)′Ω−1W1ΔY + φ2Δû(δ)′Ω−1Δû(δ)

]
,

1
σ̂2

v(δ)

[
Δû(δ)′Ω−1W2ΔY−1 + φ3Δû(δ)′Ω−1Δû(δ)

]
,

1
σ̂2

v(δ)

[
Δû(δ)′(C−1 ⊗A3)Δû(δ) − φ4Δû(δ)′Ω−1Δû(δ)

]
,

(4.1)

where φ1 = 1
N tr(C−1D−1), φ2 = 1

N tr(C−1DW1), φ3 = 1
N tr(C−1D−1W2) and φ4 = 1

ntr(G3),
and consider the numerator S∗

c,N(δ) of S∗
c (δ), i.e., the vector without the scale multiplier 1

σ̂2
v(δ)

.
The ideas are: finding the mean of S∗

c,N(δ0) and recentering, and then finding the variance
estimate of the recentered S∗

c,N(δ0) and restandardizing.
Letting Ω

1
2 be the symmetric square root matrix of Ω, and ΔX∗ = Ω− 1

2 ΔX , we have

Ω− 1
2 Δû(δ) = MΩ− 1

2 (B1ΔY −B2ΔY−1),

where M = IN − ΔX∗(ΔX∗′ΔX∗)−1ΔX∗′ is a projection matrix. Noting that MΔX∗ = 0,

and that at the true parameter values Ω
− 1

2
0 (B10ΔY − B20ΔY−1) = ΔX∗β0 + Ω

− 1
2

0 B−1
30 Δv,

the numerator S∗
c,N(δ0) of the concentrated AQS functions can be further written as

S∗
c,N(δ0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δv′B′−1
30 M∗

0ΔY−1 + φ10Δv′M∗∗
0 Δv,

Δv′B′−1
30 M∗

0W1ΔY + φ20Δv′M∗∗
0 Δv,

Δv′B′−1
30 M∗

0W2ΔY−1 + φ30Δv′M∗∗
0 Δv,

Δv′M∗∗
0 (C ⊗G◦

30)M
∗∗
0 Δv − φ40Δv′M∗∗

0 Δv,

(4.2)

where G◦
3 = 1

2 (G′
3 +G3), M∗ = Ω− 1

2MΩ− 1
2 and M∗∗ = B′−1

3 M∗B−1
3 .5

5Noting that M∗ = Ω−1 −Ω−1ΔX(ΔX ′Ω−1ΔX)−1ΔX ′Ω−1, the calculations of Ω
1
2 and its inverse, which

can be computationally demanding when N is large, are avoided in real applications.
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By Lemma A.6, it is easy to see that E[S∗
c,N(δ0)] = (μρ0, μλ10, μλ20, μλ30)

′, where μρ0 =
σ2
v0tr[(B

′
30B30)−1M∗

0(φ10C − D−10)], μλ10 = σ2
v0tr[(B

′
30B30)−1M∗

0(φ20C − W1D0)], μλ20 =
σ2
v0tr[(B

′
30B30)−1M∗

0(φ30C−W2D−10)], and μλ30 = σ2
v0tr[M

∗∗
0 (C⊗G◦

30−φ40C)], giving the
recentered AQS function as:

S∗∗
c,N(δ0) = S∗

c,N(δ0) − (μρ0 , μλ10, μλ20, μλ30)
′. (4.3)

To develop an OPMD estimate of the VC matrix of S∗∗
c,N(δ0), we have by (3.1) and (3.2),

S∗∗
c,N(δ0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δv′Ψ1Δy1 + Δv′Π1 + Δv′Φ1Δv − μρ0 ,

Δv′Ψ2Δy1 + Δv′Π2 + Δv′Φ2Δv − μλ10,

Δv′Ψ3Δy1 + Δv′Π3 + Δv′Φ3Δv − μλ20,

Δv′Φ4Δv − μλ30 ,

(4.4)

where Π1 = B′−1
30 M∗

0η−1, Π2 = B′−1
30 M∗

0W1η, Π3 = B′−1
30 M∗

0W2η−1; Φ1 = B′−1
30 M∗

0S−1 +
φ10M∗∗

0 , Φ2 = B′−1
30 M∗

0W1S + φ20M∗∗
0 , Φ3 = B′−1

30 M∗
0W2S−1 + φ30M∗∗

0 , Φ4 = M∗∗
0 (C ⊗

G◦
30)M

∗∗
0 − φ40M∗∗

0 ; Ψ1 = B′−1
30 M∗

0R−1, Ψ2 = B′−1
30 M∗

0W1R, Ψ3 = B′−1
30 M∗

0W2R−1.
Similar to {gi} defined based on (3.3), we define {g◦

i } based on (4.4). Now, {g◦
i } are

functions of unknown parameters δ0 and the unobserved errors Δv. Replacing δ0 by δ̃ and
Δv by Δṽ(δ̃) in {g◦

i } to give {g̃◦
i }, one obtains an OPMD estimate of 1

NVar[S∗∗
c,N(δ0)] as

Γ̂∗∗ =
1
N

n∑
i=1

g̃◦
i g̃

◦′
i , (4.5)

and the standardized AQS (SAQS) test statistic for testing H0 : C ′δ0 = 0 as

TSAQS = S∗∗
c,N(δ̃)

(∑n
i=1 g̃◦

i g̃
◦′
i

)−1
S∗∗
c,N(δ̃), (4.6)

where C is 4 × k (k ≤ 4), and the limiting null distribution of TSAQS can be shown to be χ2
k.

Monte Carlo results presented in the following section show that the SAQS tests offer much
improvements over the AQS tests when n is not large.

4.2. Improved joint, marginal and conditional AQS tests

Again, to facilitate the practical applications of the standardized AQS tests, we present
details of the tests for each of the hypothesis postulated in Section 2. Clearly, all the stan-
dardized AQS tests can be expressed in a single form as in (4.6). However, each test has a
certain specific property and hence deserves a detailed study. Similarly, one can formulate
the tests in the same manner as the AQS tests presented above by using only the standard-
ized AQS component(s) of the parameter(s) that the test concerns, although the remaining
components evaluated at the restricted estimates of δ and Δv are no longer strictly zero
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(but negligible). Similarly, denote the component or subvector of S∗
c,N(δ), and the element or

block of
(∑n

i=1 g̃◦
i g̃

◦′
i

)−1 by adding a relevant subscript, e.g., S∗∗
c,N,λ(δ) is the λ-component of

S∗∗
c,N(δ), and

(∑n
i=1 g̃◦

i g̃
◦′
i

)−1

λ
is the λ-λ block of

(∑n
i=1 g̃◦

i g̃
◦′
i

)−1. The details for each tests
are as follows.

Joint test HPD
0 : δ = 0. Under HPD

0 , the model SDPD(δ) is reduced to the simplest PD
model, and the estimation of the model at the null is simply the ordinary least square (OLS)
estimation. The standardized AQS test for testing HPD

0 : δ = 0 is thus,

T PD
SAQS = S∗∗′

c,N(0)
(∑n

i=1 g̃◦
i g̃

◦′
i

)−1
S∗∗
c,N(0), (4.7)

where {g̃◦
i } are obtained by evaluating g◦

i at δ0 = 0 and Δv = ΔY − ΔXβ̃(0).

Corollary 4.1. Under the assumptions of Theorem 3.1 and HPD
0 , T PD

SAQS
D−→ χ2

4. Thus,
the asymptotic null behavior of T PD

SAQS is robust against unknown heteroskedasticity {hni}.

Joint test HDPD
0 : λ = 0. Let δ̃ = (ρ̃, 0, 0, 0)′ and Δṽ = ΔY − ρ̃ΔY−1 − ΔXβ̃(δ̃). The

standardized AQS test takes either the form of (4.6), or the following simpler form,

T DPD
SAQS = S∗∗′

c,N,λ(δ̃)
(∑n

i=1 g̃◦
i g̃

◦′
i

)−1

λ
S∗∗
c,N,λ(δ̃), (4.8)

where {g̃◦
i } are {g◦

i } with δ0 and Δv replaced by δ̃ and Δṽ.

Corollary 4.2. Under the assumptions of Theorem 3.2 and HDPD
0 , T DPD

SAQS
D−→ χ2

3. Thus,
the asymptotic null behavior of T DPD

SAQS is robust against unknown heteroskedasticity {hni}.
Strictly speaking, the test statistic defined in (4.8) is not identical to the corresponding one

obtained from (4.6). This is because the constrained M -estimator ρ̃ solves the concentrated
AQS function for ρ as in (3.14), and thus the ρ-element of S∗∗

c,N(δ̃) is not identically 0. However,
such a difference is negligible. The same issue applies to the tests given below.

Marginal test HSTPD
0 : ρ = 0. Let δ̃ = (0, λ̃′)′ and Δṽ = B̃−1

3 [B̃1ΔY − λ̃2W2Y−1 −
ΔXβ̃(δ̃)]. The standardized AQS test takes either the form of (4.6), or the simpler form,

T STPD
SAQS = S∗∗

c,N,ρ(δ̃)
[( ∑n

i=1 g̃◦
i g̃

◦′
i

)−1

ρ

] 1
2 , (4.9)

where {g̃◦
i } are {g◦

i } with δ0 and Δv replaced by δ̃ and Δṽ.

Corollary 4.3. Under the assumptions of Theorem 3.3 and HSTPD
0 , T STPD

SAQS
D−→ N (0, 1).

Marginal test HSDPD2
0 : λ2 = 0. Let δ̃ = (ρ̃, λ̃1, 0, λ̃3)′ and Δṽ = B̃−1

3 [B̃1ΔY − B2Y−1 −
ΔXβ̃(δ̃)]. The standardized AQS test takes either the form of (4.6), or the simpler form,

T SDPD2
SAQS = S∗∗

c,N,λ2
(δ̃)

[( ∑n
i=1 g̃◦

i g̃
◦′
i

)−1

λ2

] 1
2 , (4.10)

where {g̃◦
i } are {g◦

i } with δ0 and Δv replaced by δ̃ and Δṽ. Similarly, the test T ◦SDPD1
AQS
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for testing HSDPD1
0 : λ1 = 0, and the test T ◦SDPD3

AQS for testing HSDPD3
0 : λ3 = 0 are developed.

However, these tests are less interested and hence details are not given.

Corollary 4.4. Under the assumptions of Theorem 3.4 and HSDPD2
0 , T SDPD2

SAQS
D−→ N (0, 1).

Joint test HSDPD4
0 : λ1 = λ2 = 0. Let δ̃ = (ρ̃, 0, 0, λ̃3)′ and Δṽ = B̃−1

3 [ΔY − ρ̃ΔY−1 −
ΔXβ̃(δ̃)]. The SAQS test takes either the form of (4.6), or the following simpler form,

T SDPD4
SAQS = S∗∗′

c,N,λ1,λ3
(δ̃)

(∑n
i=1 g̃◦

i g̃
◦′
i

)−1

λ1,λ3
S∗∗
c,N,λ1,λ2

(δ̃), (4.11)

where {g̃◦
i } are {g◦

i } with δ0 and Δv replaced by δ̃ and Δṽ.

Corollary 4.5. Under the assumptions of Theorem 3.5 and HSDPD4
0 , T SDPD4

SAQS
D−→ χ2

2.

Joint test HSDPD5
0 : λ2 = λ3 = 0. Let δ̃ = (ρ̃, λ̃1, 0, 0)′ and Δṽ = ΔY −B2ΔY−1−ΔXβ̃(δ̃).

The SAQS test takes either the form of (4.6), or the following simpler form,

T SDPD5
SAQS = S∗∗′

c,N,λ2,λ3
(δ̃)

(∑n
i=1 g̃◦

i g̃
◦′
i

)−1

λ2,λ3
S∗∗
c,N,λ2,λ3

(δ̃), (4.12)

where {g̃◦
i } are {g◦

i } with δ0 and Δv replaced by δ̃ and Δṽ.

Corollary 4.6. Under the assumptions of Theorem 3.6 and HSDPD5
0 , T SDPD5

SAQS
D−→ χ2

2.

Joint test HSPD
0 : ρ = λ2 = 0. Let δ̃ = (0, λ̃1, 0, λ̃3)′ and Δṽ = B̃−1

3 [B̃1ΔY − ΔXβ̃(δ̃)].
The SAQS test takes either the form of (4.6), or the simpler form,

T SPD
SAQS = S∗∗

c,N,ρ,λ2
(δ̃)′

( ∑n
i=1 g̃◦

i g̃
◦′
i

)−1

ρ,λ2
S∗∗
c,N,ρ,λ2

(δ̃), (4.13)

where {g̃◦
i } are {g◦

i } with δ0 and Δv replaced by δ̃ and Δṽ.

Corollary 4.7. Under the assumptions of Theorem 3.7 and HSPD
0 , T SPD

SAQS
D−→ χ2

2.

All the conditional AQS tests discussed in Section 3 have their counterparts based on the
standardized AQS function. Similar to the case of the regular AQS tests presented in Sec.
3, the standardized AQS tests can also be implemented in a unified manner based on the
general expressions (4.3) or (4.4), and the VC matrix estimate defined in (4.5). Matalb codes
are available from the author upon request.

5. Monte Carlo Simulation

Extensive Monte Carlo experiments are carried out to investigate the finite sample perfor-
mance of the proposed AQS test and standardized AQS (SAQS) test, in terms of the size of
the tests, the means and standard deviations (sds) of the test statistics at the null hypothesis.
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The following data generating process (DGP) is followed:

yt = ρyt−1 + λ1W1yt + λ2W2yt−1 + β0ιn +Xtβ1 + Zγ + μ+ ut, ut = λ3W3ut + vt,

with certain parameter(s) being dropped corresponding to each specific test, for generating
observations at the null. The elements of Xt are generated as in Yang (2016), and the
elements of Z are randomly generated from Bernoulli(0.5). The spatial weight matrices are
generated according to Rook, Queen contiguity, or group interaction schemes.6 The values of
(β0, β1, γ, σμ, σv) are set to (5, 1, 1, 1, 1), T = 3 or 6, and n = (50, 100, 200, 500). Each set of
Monte Carlo results is based on 5000 samples. The error (vt) distributions can be (i) normal,
(ii) normal mixture (10% N (0, 4) and 90% N (0, 1)), or (iii) lognormal.7 The fixed effects
μ are generated according to either 1

T

∑T
t=1 Xt + e, where e ∼ (0, IN), resulting in the fixed

effects that are correlated with the regressors.
We only report results, in the form of empirical means, standard deviations (sds), and

the sizes at the nominal levels 10%, 5% and 1%, corresponding to the seven pairs of tests
described in details in Sections 3 and 4 with T = 3. The results for other tests lead to
similar conclusions and are available from the author upon request. Furthermore, Monte
Carlo experiments are repeated with T = 6 and the results (not reported for brevity but
available upon request) show similar patterns as the case of T = 3.

Table 1 presents results for testing HPD
0 : δ = 0. When n is not large, the AQS test can

be severely oversized, whereas the standardized AQS test can be slightly undersized. As n
increases, the mean, sd, and size of the SAQS test quickly approach to their nominal values
corresponding to the χ2

4 distribution, but even when n = 500, the AQS test shows a clear
departure from χ2

4 with its mean, sd and size significantly larger than the nominal values. As
shown in Theorem 3.1 and Corollary 4.1, these pair of tests are robust against cross-sectional
heteroskedasticity. The results given in the last panel of Table 1 confirm this. The results
further reveal that heteroskedasticity deteriorates the finite sample performance of AQS test,
but not the finite sample performance of the SAQS test.

Tables 2a and 2b presents results for testing HDPD
0 : λ = 0, allowing ρ to be present in the

model as a free parameter, with errors being homoskedastic or heteroskedastic, respectively.
The results show an excellent performance of the standardized AQS test with its empirical
means, sds and sizes being very close to their nominal values even when n = 50. In contrast,
the regular AQS test may have sever size distortions when n is not so large, which converges
to its nominal level in a significantly slower speed than that of the standardized AQS test.
The true value of ρ does not have a significant effect on both tests. As shown by Theorem 3.2
and Corollary 4.2, both AQS and SAQS tests are robust against unknown heteroskedasticity.

6The Rook and Queen schemes are standard. For group interaction, we first generate k =
√

n groups of
sizes ng ∼ U(.5n̄, 1.5n̄), g = 1, · · · , k and n̄ = n/k, and then adjust ng so that

Pk
g=1 ng = n. See Yang (2016)

for details in generating these spatial layouts.
7In both (ii) and (iii), the generated errors are standardized to have mean zero and variance σ2

v .
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The results reported in Table 2b confirm these theoretical results. From the results, we also
observe that the unknown heteroskedasticity seems affect the finite sample performance of
the AQS test more than that of the SAQS test.

Table 3 presents results for testing HSDPD4
0 : λ1 = λ2 = 0, allowing ρ and λ3 to be present

in the model as free parameters. The null model corresponds to an interesting model popular
in practical applications, showing the importance of such a test. The results again show an
excellent performance of the standardized AQS test, which significantly improves the regular
AQS tests. As n increases, the null distributions of both tests converge to χ2

2 quite fast.
Table 4 presents results for another interesting test HSDPD5

0 where the null specifies λ2 =
λ3 = 0, allowing ρ and λ1 to be present in the model as free parameters. The results again
show that the AQS test can be severely oversized, while the standardized AQS test exhibits
a moderate size distortion when n is not large which quickly disappears as n increases. In
this case, the true values of ρ and λ3 seem to have a noticeable effect on the performance of
both tests. Both tests are consistent in the sense that as n increases their null distributions
converge to the standard normal distribution.

Table 5 presents results for testing HSDPD2
0 : λ2 = 0, allowing ρ, λ1 and λ3 to be present

in the model as free parameters. The results again show that both tests are consistent in
the sense that their sizes, means, and sds at the null converge to the nominal values, but the
standardized AQS test significantly improves the regular AQS test in finite samples. It is
interesting to note that in this testing situation the error distribution plays a more significant
role on the finite sample performance of the tests with a skewed error distribution (DGP 3)
leading to a more severe sized distortion.

Table 6 presents results for another interesting test HSTPD
0 : ρ = 0, allowing λ to be present

in the model as free parameters. The results show again that the standardized AQS test
significantly improves regular the AQS test in terms of sizes, and means and sds of the test
statistics in finite samples, but both tests are consistent in the sense that as n increase, the
size, mean and sd of the test statistics at the null converge to their nominal values. The true
values of the λ′s do not seem to have a noticeable impact on the finite sample performance
of the tests. Finally, Table 7 presents results for testing HSPD

0 : ρ = λ2 = 0, treating λ1 and
λ3 as free parameters. The results exhibit similar patterns as the results for the other tests.

Some additional Monte Carlo experiments are run and the results are not reported for
brevity. The results for the conditional tests reveal similar patterns. The results under a
larger T = 6 show that the finite sample performance of both tests improve, but the gen-
eral observations remain. We have also run extensive Monte Carlo experiments to check the
robustness of those tests which in theory are not fully robust against unknown heteroskedas-
ticity. The results (not reported for brevity) show that these tests are quite robust against
mild departure from homoskedasticity of the errors. Considering the fact that the standard-
ized AQS tests are as simple to implement as the regular AQS tests, it is recommended the
standardized AQS tests be used in the practical applications, unless n is fairly large.

22



6. Conclusions and Discussions

General methods for constructing tests for the existence/nonexistence of dynamic and/or
spatial effects in the fixed effects panel data model are introduced, based on the adjust quasi
scores and their martingale difference representations. The methods for standardizing the
tests for improved finite sample performance are also introduced. The standardized versions
of the tests are shown to be as simple as the non-standardized versions but are more reliable in
finite samples, hence are recommended for the empirical applications. The results presented
in the paper show that the general methodology for constructing tests are promising. While
certain tests are fully robust against unknown cross-sectional heteroskedasticity, the others
are not although Monte Carlo simulation has demonstrated that they are also quite robust
against mild departure from homoskedasticity. It is interesting to develop tests that are
fully robust against unknown cross-sectional heteroskedasticity, and the general theoretical
results presented in Lemmas A.5-A.9, Appendix A, offer a possibility. However, there are two
difficulties: (i) these tests typically involve the estimation of submodels and the consistent
estimators of the model parameters under heteroskedasticity may not be available, and (ii)
the way to further adjust the AQS functions to be heteroskedasticity robust is not clear given
the presence of the initial differences in the AQS functions. Thus, a detailed study of this
issue is beyond the scope of this paper and will be carried out in a future research.
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Appendix A: Some Fundamental Results

The development and the proofs of theoretical results reported in this paper depend
critically on the following lemmas.

Lemma A.1. (Kelejian and Prucha, 1999; Lee, 2002). Let {An} and {Bn} be two se-
quences of n× n matrices that are uniformly bounded in both row and column sums. Let Cn
be a sequence of conformable matrices whose elements are uniformly O(ι−1

n ). Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,
(ii) the elements of An are uniformly bounded and tr(An) = O(n), and
(iii) the elements of AnCn and CnAn are uniformly O(ι−1

n ).

Lemma A.2. (Lee, 2004, p.1918). For Wr and Br, r = 1, 2, defined in Model (2.1),
if ‖Wr‖ and ‖B−1

r0 ‖ are uniformly bounded, where ‖ · ‖ is a matrix norm, then ‖B−1
r ‖ is

uniformly bounded in a neighborhood of λr0.

Lemma A.3. (Lee, 2004, p.1918). Let Xn be an n × p matrix. If the elements Xn are
uniformly bounded and limn→∞ 1

nX
′
nXn exists and is nonsingular, then Pn = Xn(X ′

nXn)−1X ′
n

and Mn = In − Pn are uniformly bounded in both row and column sums.

Lemma A.4. Let {An} be a sequence of n × n matrices that are uniformly bounded in
either row or column sums. Suppose that the elements an,ij of An are O(ι−1

n ) uniformly in
all i and j. Let vn be a random n-vector satisfying Assumption B, and bn a random n-vector
independent of vn such that {E(b2ni)} are of uniform order O(ι−1

n ). Then,

(i) E(v′nAnvn) = O( nιn ), (ii) Var(v′nAnvn) = O( nιn ),
(iii) Var(v′nAnvn + b′nvn) = O( nιn ), (iv) v′nAnvn = Op( nιn ),
(v) v′nAnvn − E(v′nAnvn) = Op(( nιn )

1
2 ), (vi) v′nAnbn = Op(( nιn )

1
2 ).

Proof of Lemma A.4. Simply modify the proof of Lemma A.5 of Yang (2016) by
allowing heteroskedasticity {hni} in vn. �

Lemma A.5. Let {Φn} be a sequence of n × n matrices with row and column sums
uniformly bounded, and elements φn,ij of uniform order O(ι−1

n ). Let vn be an n × 1 random
vector satisfying Assumption B. Let bn = {bni} be a sequence of n × 1 random vectors,
independent of vn, such that (i) {E(b2ni)} are of uniform order O(ι−1

n ), (ii) supiE|bni|2+ε0 <

∞, and (iii) ιn
n

∑n
i=1 hni(b

2
ni − Eb2ni) = op(1). Let Hn = diag{hni, i = 1, . . . , n} and define

the bilinear-quadratic form:

Qn = b′nvn + v′nΦnvn − σ2
vtr(ΦnHn),

and let σ2
Qn

be the variance of Qn. If limn→∞ι
1+2/ε0
n /n = 0 and { ιnn σ2

Qn
} are bounded away

from zero, then Qn/σQn

d−→ N (0, 1).
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Proof of Lemma A.5. This lemma extends Lemma A.5 of Yang (2016) by allowing
heteroskedasticity on {vi}, and thus the proof proceeds similarly. Assume (W.L.O.G.) Φn

is symmetric with elements φn,ij . Write Qn =
∑n

i=1[bnivi + viξni + φn,ii(v2
i − σ2

vhni)] ≡∑n
i=1 Yni, where ξni = 2

∑i−1
j=1 φn,ijvj. Let Gi = σ(v1, . . . , vi) be the σ-fields generated by

(v1, . . . , vi), i = 1, . . . , n, and Fn0 the σ-field generated by bn. By independence between
bn and vn, Fni = Fn0 × Gi is the σ-field generated by (bn, v1, . . . , vi). By construction,
Fn,i−1 ⊆ Fni. Clearly, Yni is Fni-measurable and ξni is Fn,i−1-measurable. It follows that
E(Yni|Fn,i−1) = bniE(vi)+E(vi)ξni+φn,iiE(v2

i −σ2
v0hni) = 0, and hence {Yni,Fni, 1 ≤ i ≤ n}

form a M.D. array, and σ2
Qn

=
∑n

i=1 E(Y 2
ni). Define Zni = Yni/σQn . Then, {Zni,Fni, 1 ≤ i ≤

n} also form a M.D. array. The proof of the lemma thus amounts to verify the conditions
for the central limit theorem (CLT) for M.D. arrays, e.g., the condition (A.1) or (A.3) and
condition (A.2) of Theorem A.1 in Kelejian and Prucha (2001):

(a)
∑n

i=1 E[E(|Zni|2+δ|Fn,i−1)] −→ 0, for some δ > 0;
(b)

∑n
i=1 E(Z2

ni|Fn,i−1)
p−→ 1.

The detail for the proof of (a) follows closely that of Theorem 1 of Kelejian and Prucha (2001),
where the quantities |bni|, b2ni, |bni|q are replaced by their expectations, and with reference to
the proof of Lemma A.13 of Lee (2004b) to take care of unbounded ιn.

To prove (b), we have
∑n

i=1 E[Z2
ni|Fn,i−1] − 1 = σ−2

Qn

∑n
i=1[E(Y2

ni|Fn,i−1) − E(Y2
ni)]. With

Yni = bnivi + viξni + φn,ii(v2
i − σ2

vhni), it is easy to see that

ιn
n

∑n
i=1[E(Y2

ni|Fn,i−1) − E(Y2
ni)] = σ2

v0
ιn
n

∑n
i=1 hni(b

2
ni − Eb2ni) + σ2

v0
ιn
n

∑n
i=1 hni(ξ

2
ni − τ2

ni)
+2σ2

v0
ιn
n

∑n
i=1 bniξni + 2 ιnn

∑n
i=1 φn,iiμ3iξni + 2 ιnn

∑n
i=1 φn,iiμ3i(bni − Ebni) ≡

∑5
r=1 Qr,

where τ2
ni = Var(ξni) = 4σ2

v0

∑i−1
j=1 φ

2
n,ijhnj and μ3i = E(v3

it). Thus, to show (b) it is sufficient
to show that Qr

p−→ 0, r = 1, . . . , 5.
First the result for Q1 follows from the assumption (iii) of Lemma A.5, and the result for

Q5 follows from the assumption (ii) of Lemma A.5 and Chebyshev inequality. Now,

Q2 = σ2
v0
ιn
n

∑n
i=1 hni(ξ

2
ni − τ2

ni) = 4σ2
v0
ιn
n

∑n−1
j=1 anj(v

2
j − σ2

v0hni) + 8σ2
v0
ιn
n

∑n−1
j=1 vjεnj.

where anj =
∑n

i=j+1 hniφ
2
n,ij, εnj =

∑j−1
k=1 cn,ikvk, and cn,ik =

∑n
i=j+1 hniφn,ijφn,ik. Clearly,

both {(v2
j − σ2

v0hni), Gi} and {vjεnj , Gi} are M.D. arrays, and hence their convergence in
probability to zero is proved by applying the weak law of large numbers (WLLN) for M.D.
arrays of Davidson (1994, p. 299). It follows that Q2

p−→ 0.
By applying Chebyshev inequality, we show that Q3

p−→ 0. Now, it is easy to see that
Q4 = 2 ιnn

∑n−1
j=1 dn,jvj where dn,j =

∑n
i=j+1 φn,iiμ3iφij. Thus, the convergence of Q4 is proved

by applying Chebyshev inequality, noting that both hni and φn,ii are uniformly bounded. �

Lemma A.6. Suppose Assumption A and Assumptions B(i)-(ii) hold for Model (2.1).
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Assume further that (i) the time-varying regressors Xt are exogenous, and (ii) both B−1
10 and

B−1
30 exist. Then, we have,

E(ΔY−1Δv′) = −σ2
v0D−10B−1

30 H, (A.1)

E(ΔYΔv′) = −σ2
v0D0B−1

30 H, (A.2)

where D−1 ≡ D−1(ρ, λ1, λ2) and D ≡ D(ρ, λ1, λ2) are given below (2.8), H = IT−1 ⊗ Hn,
and Hn = diag{hni, i = . . . , n}.

Proof of Lemma A.6. From (2.2), we have Δyt = B0Δyt−1+B−1
10 ΔXt+B−1

10 B
−1
30 Δvt, t =

2, . . . , T . Under Assumption A, if m ≥ 1, then

E(Δy1Δv′2) = B−1
10 B

−1
30 E(Δv1Δv′2) = −σ2

v0B
−1
10 B

−1
30 Hn;

if m = 0, then E(Δy1Δv′2) = B−1
10 B

−1
30 E(y1Δv′2) = B−1

10 B
−1
30 E(v1Δv′2) = −σ2

v0B
−1
10 B

−1
30 Hn.

The above result remains to be true for t ≥ 2, i.e.,

E(ΔytΔv′t+1) = B−1
10 B

−1
30 E(vtΔv′t+1) = −σ2

v0B
−1
10 B

−1
30 Hn.

It follows that, for t ≥ 2,

E(ΔytΔv′t) = B0E(Δyt−1Δv′t) +B−1
10 B

−1
30 E(ΔvtΔv′t)

= −σ2
v0B0B

−1
10 B

−1
30 Hn + 2σ2

v0B
−1
10 B

−1
30 Hn

= σ2
v0(2In − B0)B−1

10 B
−1
30 Hn;

E(Δyt+1Δv′t) = B0E(ΔytΔv′t) +B−1
10 B

−1
30 E(Δvt+1Δv′t)

= σ2
v0(2B0 − B2

0)B
−1
10 B

−1
30 Hn − σ2

v0B
−1
10 B

−1
30 Hn

= −σ2
v0(In −B0)2B−1

10 B
−1
30 Hn.

Finally, for t ≥ 3, we have, E(ΔytΔv′2) = −σ2
v0Bt−3

0 (In−B0)2B−1
10 B

−1
30 Hn, for t ≥ 4, we have,

E(ΔytΔv′3) = −σ2
v0Bt−4

0 (In−B0)2B−1
10 B

−1
30 Hn, and so forth. Summarize these, we obtain the

results of Lemma (A.6). �

Lemma A.7. Under the assumptions of Lemma A.6, we have

E[S∗(ψ0)] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0p+1,

tr(D−10C−1) − tr[D−10(C−1 ⊗ (B−1
30 HnB30))],

tr(W1D0C−1) − tr[W1D0(C−1 ⊗ (B−1
30 HnB30))],

tr(W2D−10C−1) − tr[W2D−10(C−1 ⊗ (B−1
30 HnB30))],

(T − 1)[tr(G30H) − tr(G30)].

Proof of Lemma A.7. It is immediate from the results of Lemma A.6. �

The following discussions and results extend those in Section 3.1 by allowing unknown
heteroskedasticity {hni} in vit across i. They may potentially lead to test statistics that are
fully robust against unknown heteroskedasticity. Let S◦(ψ0) be the centered version of S∗(ψ0)
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according to Lemma A.6, i.e.,

S◦(ψ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ2

v0
ΔX ′Ω−1

0 Δu(θ0),
1

2σ4
v0

Δu(θ0)′Ω−1
0 Δu(θ0) − N

2σ2
v0
,

1
σ2

v0
Δu(θ0)′Ω−1

0 ΔY−1 + tr[D−10(C−1 ⊗ (B−1
30 HnB30))],

1
σ2

v0
Δu(θ0)′Ω−1

0 W1ΔY + tr[W1D0(C−1 ⊗ (B−1
30 HnB30))],

1
σ2

v0
Δu(θ0)′Ω−1

0 W2ΔY−1 + tr[W2D−10(C−1 ⊗ (B−1
30 HnB30))],

1
σ2

v0
Δu(θ0)′(C−1 ⊗ A30)Δu(θ0)− (T − 1)tr(G30Hn),

which can be further written by (3.1) and (3.2) as

S◦(ψ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π′
1Δv,

Δv′Φ1Δv − N
2σ2

v0
,

Δv′Ψ1Δy1 + Δv′Π2 + Δv′Φ2Δv + tr[D−10(C−1 ⊗ (B−1
30 HnB30))],

Δv′Ψ2Δy1 + Δv′Π3 + Δv′Φ3Δv + tr[W1D0(C−1 ⊗ (B−1
30 HnB30))],

Δv′Ψ3Δy1 + Δv′Π4 + Δv′Φ4Δv + tr[W2D−10(C−1 ⊗ (B−1
30 HnB30))],

Δv′Φ5Δv − (T − 1)tr(G30Hn),

(A.3)

where all the quantities are defined in (3.3), except that Hn = diag{hni, i = . . . , n}.
Lemma A.8. Suppose Assumptions A-D hold for Model (2.1). If B−1

10 and B−1
30 are

uniformly bounded in both row and column sums, we have 1√
N
S◦(ψ0)

D−→ N (0,Γ◦).

Proof of Lemma A.8. First, under Assumptions C and D, the elements of all the Π
matrices are uniformly bounded.8 By Lemma A.1, all the Φ and Ψ matrices are uniformly
bounded in both row and column sums. From (A.3), we see that S◦(ψ0) consists of three
types of elements: Π′Δv, Δv′ΦΔv and Δv′ΨΔy1, which can be written as

Π′Δv =
∑T

t=1 Π∗′
t vt, ΔvΦΔv =

∑T
t=1

∑T
s=1 v

′
tΦ∗

tsvs, and Δv′ΨΔy1 =
∑T

t=1 v
′
tΨ∗

tΔy1,

where Π∗
t , Φ∗

ts and Ψ∗
t are formed by the elements of the partitioned Π, Φ and Ψ, respectively.

By (2.1), y1 = B−1
10 B20y0 + η1 + B−1

10 B
−1
30 v1, leading to

∑T
t=1 v

′
tΨ∗

tΔy1 =
∑T

t=1 v
′
tΨ∗∗

t y0 +∑T
t=1 v

′
tΨ

∗+
t v1, for suitably defined non-stochastic quantities η1, Ψ∗∗

t and Ψ∗+
t . These show

that, for every non-zero (p+ 5) × 1 vector of constants c, c′S◦(ψ0) can be expressed as

c′S◦(ψ0) =
∑T

t=1

∑T
s=1 v

′
tAtsvs +

∑T
t=1 v

′
tBtv1 +

∑T
t=1 v

′
tg(y0) + c′μ,

for suitably defined non-stochastic matrices Ats and Bt, the function g(y0) linear in y0, and
the non-stochastic vector μ. As {y0, v1, . . . , vT} are independent, the asymptotic normality
of 1√

N
c′S◦(ψ0) follows from Lemma A.5. Finally, the Cramér-Wold devise leads to the joint

asymptotic normality of 1√
N
S◦(ψ0). �

Recall: for a square matrixA, Au, Al and Ad are, respectively, its upper-triangular, lower-
triangular, and diagonal matrix such that A = Au+Al+Ad; Πt, Φts and Ψts the submatrices

8We omit the detailed discussions on the exact magnitude of the elements of Π related to the degree of
spatial dependence ιn as specified in Assumption D.
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of Π, Φ and Ψ partitioned according to t, s = 2, . . . , T ; Ψt+ =
∑T

s=2 Ψts, t = 2, . . . , T ,
Θ = Ψ2+(B30B10)−1, Δy◦1 = B30B10Δy1, and Δy∗1t = Ψt+Δy1; Fn,i = Fn,0⊗Gn,i, with {Gn,i}
being the increasing sequence of σ-fields generated by (vj1, . . . , vjT , j = 1, . . . , i), i= 1, . . . , n,
and Fn,0 being the σ-field generated by (v0,Δy0).

Lemma A.9. Suppose Assumptions A-D hold for Model (2.1). Consider the key quanti-
ties in S◦(ψ0): (Π′Δv, Δv′ΦΔv, Δv′ΨΔy1)′ ≡ Q(ψ0). Define

g1i =
∑T

t=2 Π′
itΔvit,

g2i =
∑T

t=2(ΔvitΔξit + ΔvitΔv∗it − σ2
v0dit),

g3i = Δv2iΔζi + Θii(Δv2iΔy◦1i + σ2
v0hni) +

∑T
t=3 ΔvitΔy∗1it,

where ξt =
∑T

s=2(Φ
u′
st + Φl

ts)Δvs, Δv∗t =
∑T

s=2 Φd
tsΔvs, and {dit} are the diagonal elements

of Φ(C ⊗Hn), {Δζi} = Δζ = (Θu + Θl)Δy◦1, and diag{Θii} = Θd. We have,

(i) Q(ψ0) − E[Q(ψ0)] =
∑n

i=1 gi, where gi = (g1i, g2i, g3i)′,
(ii) Var[Q(ψ0)] =

∑n
i=1 E(gig′

i), and
(iii) 1

N

∑n
i=1[gig

′
i − E(gig′

i)] = op(1).

Proof of Lemma A.9. Proof of (i) is trivial, and the result (ii) follows from the fact
that {gi,Fn,i} forms a vector M.D. sequence. We focus on the proof of (iii). To facilitate the
proof, the following dot notation is convenient: (a) for the N × 1 vector Δv with elements
{Δvit} double indexed by i = 1, . . . , n for each t = 2, . . . , T , Δv·t is the subvector that contains
all the elements with the same t, and Δvi· is the subvector that picks up the elements with
the same i; (b) for the N×N matrix Φ with elements {Φit,js, i, j = 1, . . . , n; t, s = 2, . . . , T},
where it is the double index for the rows and js the double index for the columns, Φ·t,·s is
the n×n submatrix corresponding to the (t, s) periods, Φi·,j· the (T −1)× (T −1) submatrix
corresponding to the (i, j) units, Φit,j· the (T − 1) × 1 subvector that picks up the element
from the itth row corresponding to s = 2, . . . , T .

With the vector dot notation, we have g1i = Π′
i·Δvi·, g2i = Δv′i·Δξi· + Δv′i·Δv

∗
i· − 1′T−1di·,

and g3i = Δv2iΔζi+Θii(Δv2iΔy◦1i+σ
2
v0hni)+Δv′i−Δy∗1i−, where dit are the diagonal elements

of Φ(C × H) and ‘−’ plays the same role as ‘·’ but corresponds to t = 3, . . . , T . Note that
under Assumptions D and E, one can easily see by Lemmas A.1-A.3 that the elements of all
the Π’s, Φ’s,, and Ψ’s are all uniformly bounded. The proofs proceed by applying the weak
law of large numbers (WLLN) for M.D. arrays, see, e.g., Davidson (1994, p. 299).

First, with g◦1i = Π′
i·Δvi·,

1
N

∑n
i=1 g1ig

′
1i−E(g1ig′1i)] = 1

N

∑n
i=1 Π′

i·(Δvi·Δv
′
i· − σ2

v0C)Πi· ≡
1
N

∑n
i=1 Un,i, where C is defined below (2.3). Without loss of generality, assume Uni is a

scalar, as if not we can work on each element of it. Clearly, {Un,i} are independent, thus form
a M.D. array. By Assumption B and using the fact that the elements of Πi· are uniformly
bounded, it is easy to show that E|Un,i|1+ε ≤ Ku <∞, for ε > 0. Thus, {Un,i} are uniformly
integrable. With the constant coefficients 1

N the other two conditions of WLLN for M.D.
arrays of Davidson are satisfied. Thus, 1

N

∑n
i=1 Un,i

p−→ 0.
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Second, with g2i = Δv′i·Δξi· + Δv′i·Δv
∗
i· − 1′T−1di·, we have,

1
N

∑n
i=1[g

2
2i − E(g2

2i)]
= 1

N

∑n
i=1[(Δv

′
i·Δξi·)

2 − E((Δv′i·Δξi·)
2)] + 1

N

∑n
i=1[(Δv

′
i·Δv

∗
i·)

2 − E((Δv′i·Δv
∗
i·)

2)]
+ 2
N

∑n
i=1(Δv

′
i·Δξi·)(Δv

′
i·Δv

∗
i·) − 2

N

∑n
i=1(1

′
T−1di·)(Δv

′
i·Δξi·)

− 2
N

∑n
i=1[(1

′
T−1di·)(Δv

′
i·Δv

∗
i· − E(Δv′i·Δv

∗
i·))] ≡ ∑5

r=1Hr.

Now, H1 = 1
N

∑n
i=1[Δξ

′
i·(Δvi·Δv

′
i· − σ2

voC)Δξi·] + σ2
v0
N

∑n
i=1[Δξ

′
i·CΔξi· − E(Δξ′i·CΔξi·)]. For

the first term, letting Vn,i = Δξ′i·(Δvi·Δv
′
i· − σ2

voC)Δξi·, we have E(Vn,i|Gn,i−1) = 0 due to
the fact that Δξi· is Gn,i−1-measurable. Thus, {Vn,i, Gn,i} form a M.D. array. It is easy to see
that E|V 1+ε

n,i | ≤ Kv <∞, for some ε > 0. Thus, {Vn,i} is uniformly integrable. The other two
conditions of the WLLN for M.D. arrays of Davidson are satisfied. Thus, 1

N

∑n
i=1 Vn,i

p−→ 0.
For the second term of H1, recall ξt =

∑T
s=2(Φ

u′
ts + Φ


ts)Δvs. We have,

Δξit =
∑T

s=2

∑i−1
j=1(Φjt,is + Φit,js)Δvjs =

∑i−1
j=1

∑T
s=2(Φjt,is + Φit,js)Δvjs =

∑i−1
j=1 φijtΔvj·,

where φijt = (Φji,t· +Φij,t·). Thus, (Δξit)2−E[(Δξit)2] =
∑i−1

j=1[φ
′
ijt·(Δvj·Δv

′
j·−σ2

v0C)φijt·]+
2

∑i−1
j=1

∑j−1
k=1 Δv′j·φijt·φ

′
ikt·Δvk·. It follows that

1
N

∑n
i=1{(Δξit)2 − E[(Δξit)2]}

= 1
N

∑n
i=1

∑i−1
j=1[φ

′
ijt·(Δvj·Δv

′
j· − σ2

v0C)φijt·] + 2 1
N

∑n
i=1

∑i−1
j=1

∑j−1
k=1 Δv′j·φijt·φ

′
ikt·Δvk·

= 1
N

∑n−1
j=1

{∑n
i=j+1[φ

′
ijt·(Δvj·Δv

′
j· − σ2

v0C)φijt·]
}

+2 1
N

∑n−1
j=1 Δv′j·

{∑n
i=j+1

∑j−1
k=1 φijt·φ

′
ikt·Δvk·

}
.

Clearly, the first term is the ‘average’ of n − 1 independent terms, and the second is the
‘average’ of a M.D. array as the term in the curling brackets is Gn,j−1-measurable. Condi-
tions of Theorem 19.7 of Davidson (1994) are easily verified, and hence 1

N

∑n
i=1{(Δξit)2 −

E[(Δξit)2]} = op(1). Similarly, one shows that 1
N

∑n
i=1{ΔξitΔξis−E[(ΔξitΔξis)]} = op(1) for

s �= t. Thus, σ2
v0
N

∑n
i=1[Δξ

′
i·CΔξi· − E(Δξ′i·CΔξi·)] = op(1), and H1 = op(1).

The proofs for H3 and H4 can be done in a similar manner as the proof for the second
term of H1. The proofs for H2 and H5 are similar to the proof of the first part of H1, as they
each involves a sum of n independent terms.

Third, with g3i = Δv2iΔζi + Θii(Δv2iΔy◦1i + σ2
v0hni) + Δv′i−Δy∗1i−, we obtain,

1
N

∑n
i=1[g

2
3i − E(g2

3i)] = 1
N

∑n
i=1[(Δv

2
2i − 2σ2

v0hni)Δζ
2
i ] + 2σ2

v0
N

∑n
i=1 hni[Δζ

2
i − E(Δζ2

i )]
+ 1
N

∑n
i=1 Θ2

ii[(Δv2iΔy
◦
1i)

2 − E((Δv2iΔy◦1i)
2)]

+2σ2
v0
N

∑n
i=1 Θ2

iihni[Δv2iΔy
◦
1i − E(Δv2iΔy◦1i)]

+ 1
N

∑n
i=1[(Δv

′
i−Δy∗1i−)2 − E((Δv′i−Δy∗1i−)2)]

+ 2
N

∑n
i=1 Θii[Δv2

2iΔζiΔy
◦
1i − E(Δv2

2iΔζiΔy
◦
1i)] +

2σ2
v0
N

∑n
i=1 ΘiihniΔv2iΔζi

+ 2
N

∑n
i=1[Δv2iΔζi(Δv

′
i−Δy∗1i−)− E(Δv2iΔζi(Δv′i−Δy∗1i−))]

+ 2
N

∑n
i=1 Θii[(Δv2iΔy◦1i)(Δv

′
i−Δy∗1i−) − E((Δv2iΔy◦1i)(Δv

′
i−Δy∗1i−))]

+2σ2
v0
N

∑n
i=1 Θiihni[Δv′i−Δy∗1i− − E(Δv′i−Δy∗1i−)] ≡ ∑10

r=1Qr.

As Δζ2
i is Fn,i−1-measurable, Q1 is the average of a M.D. array and its convergence to 0
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in probability follows from WLLN for M.D. array. For Q2, note that Δζ = (Θu + Θ
)Δy◦1 =
(Θu + Θ
)B30B10Δy1. It follows that Q2 = 2σ2

v0
N

∑n
i=1(Δy

′
1AΔy1 − E(Δy′1AΔy1)] = op(1)

by Assumption F, where A = ((Θu + Θ
)B30B10)′(Θu′ + Θ
)B30B10 is easily seen to be
uniformly bounded in both row and column sums. Writing Δy◦1 = B30B10Δy0 +B30Δx1β0 +
Δv1 ≡ g(y0, v0) + v1, the convergence of Q3, Q4 and Q6 can be easily proved though tedious.
The results for Q5 and Q10 are proved by the independence between Δv′i− and Δy∗1i− are
independent, Δy∗1t = Φt+Δy1, and Assumption F. The convergence of Q7 to 0 in probability
follows that of Q1. Finally, the results for Q8 and Q9 can be proved by further writing
Δy∗1t = Φt+Δy1 = Φt+(B30B10)−1Δy◦1 ≡ q(Δy0, v0) + Φt+(B30B10)−1v1.

Subsequently, for the cross-product terms, we have,
1
N

∑n
i=1[g1ig2i − E(g1ig2i)]

= 1
N

∑n
i=1[Π

′
i·(Δvi·Δv

′
i· − σ2

v0C)Δξi·] +
σ2

v0
N

∑n
i=1(Π

′
i·CΔξi·)

+ 1
N

∑n
i=1 Π′

i·[Δvi·Δv
′
i·Δv

∗
i· − E(Δvi·Δv′i·Δv

∗
i·)] + 1

N

∑n
i=1[(1

′
T−1di·)Π

′
i·Δvi·].

1
N

∑n
i=1[g1ig3i − E(g1ig3i)]

= 1
N

∑n
i=1 Π′

i·[Δvi·Δv2iΔζi − E(Δvi·Δv2iΔζi)]
+ 1
N

∑n
i=1 ΘiiΠ′

i·[Δvi·(Δv2iΔy
◦
1i + σ2

v0hni) − E(Δvi·(Δv2iΔy◦1i + σ2
v0hni))]

+ 1
N

∑n
i=1 Π′

i·[Δvi·Δv
′
i−Δy∗1i− − E(Δvi·Δv′i−Δy∗1i−)].

1
N

∑n
i=1[g2ig3i − E(g2ig3i)]

= 1
N

∑n
i=1[(Δv

′
i·Δξi)(Δv2iΔζi) − E((Δv′i·Δξi)(Δv2iΔζi))]

+ 1
N

∑n
i=1 Θii[(Δv′i·Δξi)(Δv2iΔy

◦
1i + σ2

v0hni) − E((Δv′i·Δξi)(Δv2iΔy
◦
1i + σ2

v0hni))]
+ 1
N

∑n
i=1[(Δv

′
i·Δξi)(Δv

′
i−Δy∗1i−) − E((Δv′i·Δξi)(Δv

′
i−Δy∗1i−))]

+ 1
N

∑n
i=1[(Δv

′
i·Δv

∗
i·)(Δv2iΔζi) − E((Δv′i·Δv

∗
i·)(Δv2iΔζi))]

+ 1
N

∑n
i=1[(Δv

′
i·Δv

∗
i·)(Δv2iΔy

◦
1i + σ2

v0hni) − E((Δv′i·Δv
∗
i·)(Δv2iΔy

◦
1i + σ2

v0hni))]
+ 1
N

∑n
i=1[(Δv

′
i·Δv

∗
i·)(Δv

′
i−Δy∗1i−) − E((Δv′i·Δv

∗
i·)(Δv

′
i−Δy∗1i−))]

+ 1
N

∑n
i=1[(1

′
T−1di·)Δv2iΔζi] +

1
N

∑n
i=1[(1

′
T−1di·)Θii(Δv2iΔy◦1i + σ2

v0hni)]
+ 1
N

∑n
i=1[(1

′
T−1di·)(Δv

′
i−Δy∗1i− − E(Δv′i−Δy∗1i−))]

The convergence of each of the terms above can be proved in a similarly manner as these
terms appear in similar forms as the terms appeared in the Hr and Qr. �
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Appendix B: Proofs of the Main Theoretical Results

Proof of Theorem 3.1. The quantities needed for evaluating the AQS function defined
in (3.3) become: Π1 = 1

σ2
v0

C−1ΔX , Π2 = 1
σ2

v0
C−1

B−1ΔXβ, Π3 = 1
σ2

v0
C−1W1ΔXβ, Π4 =

1
σ2

v0
C−1W2B−1ΔXβ, Φ1 = 1

2σ4
v0

C−1, Φ2= 1
σ2

v0
C−1

B−1, Φ3 = 1
σ2

v0
C−1W1, Φ4 = 1

σ2
v0

C−1W2B−1,

Φ5 = 1
2σ2

v0
[C−1 ⊗ (W ′

3 + W3)], Ψ1 = 1
σ2

v0
C−1R−1, Ψ2 = 0, Ψ3 = 1

σ2
v0

C−1W2R−1, R−1 =
blkdiag(In, 0, . . . , 0), B−1 = I∗T−1 ⊗ In, and I∗T−1 is a (T − 1)× (T − 1) matrix with elements
1 on the positions immediately below the diagonal elements, and zero elsewhere. Further,
B0 = 0n, and hence D0 = −C ⊗ In and D−10 = −C−1 ⊗ In, where

C−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 0 · · · 0 0 0
2 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 2 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

(T−1)×(T−1)

.

These show that with ψ0 = (β′0, σv0, 0, 0, 0, 0)′, all the Φ and Ψ matrices are either of the form
A⊗ In or of the form A×W for some (T −1)× (T −1) matrix A and a spatial weight matrix
W satisfying Assumption D. Thus, E[S∗(ψ0)] = 0 even when the errors are heteroskedastic
by Lemma A.7. Hence by Lemma A.8, we have 1√

N
S∗(ψ0)

D−→ N (0,Γ∗(ψ0)].

By the mean value theorem, one easily shows that 1√
N

[S∗
δ (ψ̃) − S∗

δ (ψ0)] = op(1), where

ψ̃ = (β̃′, σ̃2
v0, 0, 0, 0, 0)

′ and we note that the OLS estimators β̃ and σ̃2
v0 are robust against

unknown heteroskedasticity {hni}. Now, since by (3.11) S∗(ψ0) =
∑n

i=1 gi, where {gi,Fn,i}
form a vector M.D. sequence, we have 1

N

∑n
i=1[gig

′
i−E(gig′

i)] = op(1) by Lemma A.9. Finally,
by the mean value theorem and the consistency of β̃ and σ̃2

v0, one shows that 1
N

∑n
i=1(g̃ig̃

′
i−

gig′
i) = op(1) under heteroskedasticity. This completes the proof of Theorem 3.1. �

Proof of Lemma 3.1. Consider the AQS vector S∗(β, σ2
v, ρ) for the DPD model, and

the concentrated AQS function which defines ρ̃ under HDPD
0 :

S∗c
DPD(ρ) = 1

σ̃2
v(ρ)

Δṽ′(ρ)C−1ΔY−1 + n
(

1
1−ρ − 1−ρT

T (1−ρ)2
)
,

where β̃(ρ) = (ΔX ′C−1ΔX)−1ΔX ′C−1(ΔY − ρΔY−1) and σ̃2
v(ρ) = 1

NΔṽ′(ρ)C−1Δṽ(ρ),
where Δṽ(ρ) = ΔY − ρΔY−1 − ΔXβ̃(ρ).

Define S̄∗(β, σ2
v, ρ) = E[S∗(β, σ2

v, ρ)]. Given ρ, S̄∗(β, σ2
v, ρ) = 0 is partially solved at

β̄(ρ) = (ΔX ′C−1ΔX)−1ΔX ′C−1(EΔY − ρEΔY−1) and σ̄2
v(ρ) = 1

NE[Δv̄(ρ)′C−1Δv̄(ρ)],
where Δv̄(ρ) = ΔY − ρΔY−1 − ΔXβ̄(ρ). Substituting β̄(ρ) and σ̄2

v(ρ) back into S̄∗(β, σ2
v, ρ)

gives the population counter part of S∗c
DPD(ρ) as

S̄∗c
DPD(ρ) = 1

σ̄2
v(ρ)E[Δv̄′(ρ)C−1ΔY−1] + n

(
1

1−ρ − 1−ρT

T (1−ρ)2
)
.
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By Theorem 5.9 of van der Vaart (1998), ρ̃ will be consistent if (i) infρ:|ρ−ρ0|≥ε |S̄∗c
DPD(ρ)| > 0

for every ε > 0, and (ii) supρ∈Υ
1√
N
|S∗c

DPD(ρ)− S̄∗c
DPD(ρ)|

p−→ 0, which are straightforward. The
asymptotic normality can be proved using Lemma A.5. Details of the proof are available
from the author upon request. �

Proof of Theorem 3.2. First, with ψ0 = (β0, σ
2
v0, ρ0, 0′3)

′ it is easy to show that
E[S∗(ψ0)] = 0 under the general heteroskedasticity {hni}. Thus, under λ = 0, S◦(ψ0) de-
fined in (A.3) reduces to S∗(ψ0) defined in (3.3), and hence by Lemma A.8, one shows that

1√
N
S∗(ψ0)

D−→ N (0,Γ∗(ψ0)). By Lemma A.9, one shows that 1
N

∑n
i=1[gn,ig

′
n,i−E(gig′

i)]
p−→

0. By the mean value theorem, and
√
N consistency and robustness of β̃, σ̃2

v and ρ̃ against
unknown heteroskedasticity {hni} as shown in Lemma 3.1, we have 1√

N
[S∗
λ(ψ̃)−S∗

λ(ψ0)]
p−→ 0

where ψ̃ = (β̃′, σ̃2
v, ρ̃, 03)′, and 1

N

∑n
i=1(g̃n,ig̃

′
n,i−gig′

i)
p−→ 0. The result of Theorem 3.2 thus

follows. �

Proof of Theorem 3.3. Referring to the AQS vector S∗(ψ0) given in (3.3) setting ρ0 to
0, Lemma A.1 shows that all the Φ and Ψ matrices are uniformly bounded in both row and
column sums. Assumptions C and D, and the additional assumptions stated in the theorem
guarantee that the elements of all the Π quantities are uniformly bounded. Lemma A.5 and
hence Lemma A.8 are applicable under homoskedastic errors. Now, S◦(ψ0) defined in (A.3) re-
duces to S∗(ψ0) defined in (3.3), and hence Lemma A.8 leads to 1√

N
S∗(ψ0)

D−→ N (0,Γ∗(ψ0)).

With the
√
N -consistency of ψ̃ = (β̃′, σ̃2

v, 0, λ̃)
′, we have 1√

N
[S∗
ρ(ψ̃) − S∗

ρ(ψ0)]
p−→ 0 by the

mean value theorem and Lemma A.2. Now, by Lemma A.9 with hni = 1, i = 1, . . . , n, we
have 1

N

∑n
i=1[gn,ig

′
n,i − E(gig′

i)]
p−→ 0. By the mean value theorem,

√
N-consistency of ψ̃,

and Lemma A.2, we have 1
N

∑n
i=1(g̃n,ig̃

′
n,i − gig′

i)
p−→ 0. The result of the theorem thus

follows. �

Proof of Theorems 3.4-3.7. Similar to the proof of Theorem 3.3. The details are
available from the author upon request. �

Proof of Corollaries 4.1-4.7. Lemma A.3, Assumptions C and D, and the additional
assumptions (if any) stated in the corollaries guarantee that the matrices M∗

0 and M∗∗
0 ap-

peared in (4.2) and (4.4) are both uniformly bounded in both row and column sums. The
rest of the proofs of these corollaries parallel the proofs of Theorems 3.1-3.7. The details are
available from the author upon request. �

A final note for the proofs of all the theorems and corollaries, the exact order of the
key quantities in connection with the degree of spatial dependence represented by ιn as in
Assumption D can be learned through Lemma A.4 and Lemma A.5.
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Table 1 Empirical Mean, sd and Size of T PD
AQS for Testing δ = 0

AQS Test SAQS Test

n dgp mean sd 10% 5% 1% mean sd 10% 5% 1%
Group Interaction

50 1 4.80 3.20 .1590 .0908 .0206 4.15 2.62 .0990 .0378 .0054
2 6.01 4.11 .2712 .1742 .0638 4.13 2.45 .0880 .0330 .0024
3 5.35 3.56 .2156 .1270 .0352 4.14 2.49 .0874 .0356 .0024

100 1 4.55 3.19 .1448 .0816 .0192 4.17 2.79 .1096 .0552 .0098
2 5.24 3.67 .2084 .1240 .0364 4.07 2.56 .0928 .0386 .0040
3 4.90 3.45 .1792 .1018 .0288 4.17 2.72 .1072 .0494 .0078

200 1 4.29 2.95 .1258 .0606 .0142 4.10 2.76 .1058 .0478 .0082
2 4.79 3.43 .1646 .1008 .0264 4.11 2.71 .1002 .0484 .0070
3 4.46 3.21 .1396 .0756 .0214 4.06 2.76 .1014 .0490 .0082

500 1 4.15 2.99 .1128 .0624 .0136 4.07 2.90 .1038 .0572 .0104
2 4.33 3.13 .1282 .0672 .0182 4.04 2.80 .1018 .0498 .0076
3 4.23 3.01 .1218 .0656 .0150 4.05 2.82 .1030 .0522 .0102

Rook Contiguity

50 1 4.63 3.14 .1496 .0828 .0180 3.99 2.56 .0870 .0356 .0054
2 5.79 3.94 .2498 .1568 .0544 3.97 2.35 .0720 .0262 .0016
3 5.26 3.64 .2046 .1202 .0352 4.04 2.50 .0830 .0340 .0042

100 1 4.38 3.05 .1290 .0696 .0150 4.02 2.70 .0954 .0458 .0066
2 5.06 3.65 .1886 .1106 .0354 3.94 2.53 .0818 .0374 .0046
3 4.60 3.29 .1540 .0870 .0234 3.92 2.60 .0872 .0374 .0044

200 1 4.22 2.96 .1190 .0638 .0132 4.03 2.76 .1012 .0510 .0078
2 4.75 3.42 .1634 .0926 .0272 4.09 2.73 .1004 .0474 .0082
3 4.30 3.05 .1216 .0622 .0164 3.93 2.66 .0888 .0388 .0066

500 1 4.05 2.88 .1074 .0560 .0104 3.98 2.79 .1004 .0506 .0090
2 4.28 3.01 .1236 .0626 .0134 4.00 2.71 .0950 .0446 .0070
3 4.13 2.95 .1152 .0600 .0118 3.96 2.77 .1006 .0472 .0064

Group Interaction, Heteroskedastic Errors

50 1 5.60 3.71 .2348 .1376 .0430 4.22 2.48 .0922 .0336 .0034
2 7.16 4.93 .3618 .2608 .1136 4.18 2.35 .0770 .0284 .0026
3 6.31 4.30 .3030 .2048 .0764 4.19 2.45 .0886 .0316 .0018

100 1 4.83 3.38 .1652 .0954 .0278 4.15 2.69 .1006 .0464 .0060
2 5.73 4.18 .2446 .1580 .0542 4.08 2.49 .0886 .0356 .0016
3 5.17 3.65 .2030 .1196 .0336 4.10 2.57 .0910 .0376 .0048

200 1 4.45 3.11 .1404 .0734 .0164 4.10 2.75 .1030 .0462 .0074
2 5.09 3.74 .1920 .1156 .0372 4.07 2.65 .0926 .0418 .0054
3 4.68 3.35 .1582 .0834 .0216 4.06 2.69 .0908 .0428 .0082

500 1 4.24 3.03 .1180 .0612 .0154 4.06 2.83 .1024 .0512 .0118
2 4.62 3.37 .1592 .0848 .0220 4.09 2.80 .1068 .0488 .0082
3 4.41 3.17 .1352 .0734 .0190 4.07 2.80 .1044 .0490 .0080

Note: for dgp, 1=normal, 2=normal mixture, and 3=lognormal.
for the last panel, heteroskedasticity hni ∝ | 1

T−1

∑T
t=2 ΔXit|.
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Table 2a Empirical Mean, sd and Size of T DPD
AQS for Testing λ = 0, Homoskedastic Errors.

AQS Test SAQS Test

n dgp mean sd 10% 5% 1% mean sd 10% 5% 1%
Group Interaction, ρ = 0

50 1 3.72 2.90 .1624 .0902 .0236 3.26 2.42 .1116 .0554 .0092
2 4.60 3.64 .2590 .1576 .0566 3.35 2.36 .1158 .0520 .0086
3 4.10 3.11 .2064 .1214 .0356 3.29 2.32 .1094 .0470 .0060

100 1 3.45 2.79 .1398 .0774 .0184 3.19 2.49 .1118 .0548 .0116
2 3.94 3.27 .1944 .1148 .0374 3.20 2.41 .1072 .0526 .0076
3 3.76 3.12 .1700 .1012 .0306 3.27 2.53 .1200 .0590 .0122

200 1 3.20 2.65 .1222 .0642 .0128 3.07 2.49 .1088 .0546 .0090
2 3.59 2.88 .1556 .0862 .0218 3.17 2.40 .1052 .0520 .0084
3 3.38 2.72 .1372 .0704 .0178 3.13 2.42 .1060 .0506 .0102

500 1 3.04 2.50 .1018 .0530 .0108 2.99 2.43 .0940 .0474 .0100
2 3.20 2.67 .1188 .0632 .0136 3.02 2.42 .0982 .0506 .0082
3 3.15 2.54 .1132 .0606 .0104 3.04 2.41 .1034 .0496 .0074

Rook Contiguity, ρ = 0
50 1 3.56 2.84 .1504 .0802 .0230 3.11 2.36 .1022 .0462 .0068

2 4.45 3.53 .2406 .1556 .0498 3.22 2.28 .1034 .0444 .0048
3 3.98 3.16 .2000 .1178 .0328 3.16 2.29 .1048 .0442 .0046

100 1 3.26 2.67 .1212 .0644 .0156 3.03 2.38 .0980 .0486 .0076
2 3.77 3.04 .1708 .0988 .0272 3.07 2.27 .0910 .0416 .0064
3 3.49 2.83 .1460 .0810 .0214 3.05 2.33 .0996 .0420 .0074

200 1 3.09 2.55 .1050 .0534 .0148 2.97 2.41 .0946 .0464 .0096
2 3.40 2.78 .1362 .0828 .0172 3.01 2.34 .0986 .0460 .0068
3 3.28 2.75 .1252 .0714 .0186 3.04 2.45 .1032 .0508 .0094

500 1 3.01 2.43 .1024 .0490 .0096 2.96 2.37 .0970 .0458 .0084
2 3.19 2.61 .1176 .0610 .0144 3.02 2.39 .1004 .0478 .0092
3 3.18 2.55 .1142 .0586 .0134 3.07 2.42 .1010 .0500 .0100

Group Interaction, ρ = .5
50 1 3.78 2.91 .1756 .1022 .0232 3.30 2.40 .1240 .0578 .0068

2 4.66 3.65 .2678 .1692 .0566 3.40 2.37 .1238 .0542 .0056
3 4.19 3.27 .2174 .1324 .0408 3.38 2.44 .1278 .0606 .0078

100 1 3.47 2.79 .1458 .0822 .0192 3.21 2.48 .1182 .0546 .0106
2 4.09 3.29 .2066 .1226 .0386 3.28 2.40 .1162 .0536 .0074
3 3.68 3.04 .1612 .0944 .0276 3.20 2.45 .1104 .0550 .0092

200 1 3.26 2.66 .1240 .0652 .0156 3.13 2.50 .1110 .0548 .0114
2 3.61 2.93 .1592 .0928 .0234 3.19 2.42 .1144 .0564 .0068
3 3.44 2.81 .1382 .0756 .0196 3.19 2.51 .1144 .0542 .0104

500 1 3.10 2.53 .1092 .0578 .0118 3.05 2.47 .1042 .0526 .0102
2 3.22 2.65 .1222 .0650 .0150 3.04 2.42 .1052 .0520 .0080
3 3.15 2.57 .1136 .0570 .0116 3.04 2.43 .1036 .0496 .0100

Note: for dgp, 1=normal, 2=normal mixture, and 3=lognormal.
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Table 2b Empirical Mean, sd and Size of T DPD
AQS for Testing λ = 0, Heterokedastic Errors.

AQS Test SAQS Test

n dgp mean sd 10% 5% 1% mean sd 10% 5% 1%
Group Interaction, ρ = 0

50 1 4.43 3.49 .2418 .1550 .0534 3.41 2.41 .1256 .0550 .0070
2 5.49 4.35 .3282 .2340 .0986 3.56 2.38 .1306 .0570 .0076
3 4.84 3.78 .2830 .1934 .0692 3.42 2.36 .1244 .0556 .0048

100 1 3.80 3.11 .1676 .0966 .0306 3.26 2.46 .1120 .0546 .0114
2 4.56 3.87 .2512 .1638 .0604 3.34 2.47 .1234 .0574 .0096
3 4.11 3.36 .2076 .1238 .0410 3.29 2.41 .1160 .0520 .0078

200 1 3.36 2.70 .1328 .0698 .0170 3.11 2.41 .1052 .0506 .0088
2 3.97 3.33 .1940 .1184 .0362 3.32 2.53 .1242 .0592 .0124
3 3.58 2.89 .1566 .0852 .0226 3.16 2.42 .1104 .0492 .0084

500 1 3.17 2.61 .1168 .0582 .0154 3.08 2.49 .1060 .0534 .0124
2 3.40 2.76 .1346 .0736 .0178 3.12 2.40 .1038 .0514 .0080
3 3.30 2.70 .1334 .0698 .0176 3.12 2.48 .1128 .0526 .0116

Rook Contiguity, ρ = 0
50 1 4.30 3.45 .2258 .1362 .0468 3.23 2.33 .1044 .0454 .0066

2 5.36 4.26 .3252 .2246 .0970 3.40 2.28 .1154 .0468 .0056
3 4.87 3.84 .2840 .1826 .0716 3.39 2.32 .1116 .0500 .0066

100 1 3.46 2.81 .1378 .0778 .0188 3.07 2.36 .0956 .0476 .0068
2 4.18 3.40 .2180 .1300 .0448 3.19 2.33 .1050 .0508 .0052
3 3.79 3.08 .1722 .1032 .0318 3.13 2.35 .1072 .0484 .0074

200 1 3.28 2.70 .1212 .0674 .0160 3.04 2.40 .0992 .0504 .0088
2 3.75 3.16 .1732 .0982 .0328 3.13 2.42 .1062 .0514 .0088
3 3.52 2.88 .1498 .0880 .0196 3.12 2.41 .1070 .0546 .0080

500 1 3.15 2.63 .1158 .0578 .0150 3.05 2.51 .1064 .0518 .0122
2 3.29 2.76 .1262 .0688 .0196 3.03 2.43 .0984 .0474 .0104
3 3.22 2.62 .1174 .0636 .0150 3.04 2.40 .0988 .0492 .0106

Group Interaction, ρ = .5
50 1 4.34 3.42 .2298 .1440 .0468 3.35 2.34 .1168 .0496 .0056

2 5.37 4.26 .3220 .2214 .0958 3.52 2.37 .1260 .0568 .0078
3 4.78 3.79 .2790 .1830 .0656 3.42 2.35 .1258 .0504 .0048

100 1 3.84 3.14 .1770 .1050 .0310 3.29 2.50 .1192 .0568 .0100
2 4.50 3.76 .2364 .1502 .0548 3.32 2.38 .1134 .0522 .0076
3 4.07 3.29 .2014 .1252 .0334 3.25 2.34 .1120 .0492 .0060

200 1 3.38 2.74 .1378 .0760 .0148 3.15 2.46 .1144 .0514 .0102
2 3.81 3.13 .1730 .1020 .0328 3.20 2.43 .1064 .0524 .0110
3 3.64 2.93 .1612 .0932 .0244 3.22 2.48 .1158 .0544 .0110

500 1 3.16 2.58 .1164 .0616 .0130 3.07 2.46 .1062 .0556 .0096
2 3.41 2.77 .1392 .0724 .0182 3.12 2.43 .1110 .0492 .0088
3 3.28 2.63 .1264 .0632 .0146 3.10 2.42 .1100 .0524 .0070

Note: for dgp, 1=normal, 2=normal mixture, and 3=lognormal.
Heteroskedasticity hni ∝ | 1

T−1

∑T
t=2 ΔXit|.
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Table 3 Empirical Mean, sd and Size of T SDPD4
AQS for Testing λ1 = λ2 = 0

AQS Test SAQS Test

n dgp mean sd 10% 5% 1% mean sd 10% 5% 1%
Group Interaction, (ρ, λ3) = (0, 0)

50 1 2.52 2.39 .1592 .0914 .0206 2.24 2.04 .1198 .0582 .0098
2 3.12 2.99 .2316 .1430 .0504 2.34 2.04 .1354 .0640 .0094
3 2.73 2.66 .1822 .1102 .0296 2.22 2.00 .1188 .0572 .0092

100 1 2.33 2.25 .1354 .0688 .0150 2.18 2.04 .1160 .0554 .0090
2 2.71 2.73 .1828 .1098 .0352 2.23 2.07 .1208 .0610 .0108
3 2.48 2.52 .1554 .0896 .0262 2.19 2.09 .1192 .0594 .0122

200 1 2.16 2.17 .1158 .0618 .0146 2.08 2.06 .1086 .0532 .0120
2 2.39 2.38 .1430 .0834 .0228 2.14 2.03 .1156 .0578 .0104
3 2.25 2.21 .1274 .0682 .0150 2.11 2.01 .1104 .0536 .0090

500 1 2.07 2.09 .1050 .0560 .0136 2.04 2.04 .1012 .0524 .0118
2 2.17 2.20 .1182 .0670 .0180 2.06 2.02 .1070 .0544 .0118
3 2.17 2.15 .1216 .0642 .0140 2.10 2.05 .1124 .0564 .0108

Rook Contiguity, (ρ, λ3) = (0, 0)
50 1 2.35 2.33 .1456 .0738 .0214 2.07 1.96 .1056 .0474 .0086

2 3.06 2.99 .2238 .1382 .0456 2.27 2.00 .1240 .0596 .0078
3 2.68 2.61 .1794 .1056 .0306 2.17 1.98 .1116 .0554 .0088

100 1 2.19 2.15 .1220 .0632 .0136 2.05 1.95 .1034 .0510 .0090
2 2.44 2.41 .1532 .0886 .0200 2.04 1.87 .1032 .0430 .0044
3 2.37 2.35 .1440 .0846 .0216 2.10 1.98 .1066 .0532 .0086

200 11 2.06 2.06 .1168 .0584 .0106 1.99 1.95 .1084 .0498 .0066
2 2.24 2.26 .1304 .0686 .0184 2.02 1.97 .1012 .0448 .0084
3 2.12 2.10 .1120 .0606 .0114 1.98 1.90 .0946 .0470 .0066

500 1 2.00 2.04 .1006 .0500 .0110 1.97 1.99 .0964 .0464 .0096
2 2.13 2.13 .1148 .0566 .0134 2.02 1.97 .1026 .0478 .0084
3 2.01 2.02 .1016 .0546 .0114 1.95 1.93 .0952 .0476 .0088

Group Interaction, (ρ, λ3) = (.5, .3)
500 1 2.55 2.45 .1642 .0926 .0252 2.25 2.05 .1270 .0622 .0098

2 3.29 3.15 .2474 .1628 .0608 2.46 2.14 .1484 .0714 .0116
3 2.85 2.73 .1994 .1224 .0358 2.34 2.09 .1332 .0664 .0106

500 1 2.30 2.28 .1360 .0752 .0180 2.14 2.06 .1172 .0576 .0108
2 2.71 2.72 .1808 .1124 .0348 2.22 2.05 .1266 .0594 .0102
3 2.40 2.42 .1492 .0858 .0244 2.12 2.03 .1120 .0582 .0100

500 1 2.19 2.19 .1266 .0626 .0146 2.11 2.08 .1158 .0548 .0110
2 2.43 2.41 .1496 .0836 .0208 2.17 2.04 .1188 .0564 .0104
3 2.26 2.28 .1294 .0726 .0178 2.10 2.05 .1090 .0558 .0108

500 1 1.97 1.96 .0942 .0468 .0086 1.94 1.92 .0912 .0442 .0086
2 2.14 2.14 .1138 .0610 .0156 2.03 1.99 .1008 .0502 .0100
3 2.11 2.18 .1096 .0572 .0144 2.05 2.08 .0998 .0524 .0126

Note: for dgp, 1=normal, 2=normal mixture, and 3=lognormal.
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Table 4 Empirical Mean, sd and Size of T SDPD5
AQS for Testing λ2 = λ3 = 0

AQS Test SAQS Test

n dgp mean sd 10% 5% 1% mean sd 10% 5% 1%
Group Interaction, (ρ, λ1) = (0, 0)

50 1 2.62 2.51 .1772 .0990 .0260 2.32 2.13 .1344 .0690 .0124
2 3.23 3.13 .2488 .1574 .0530 2.43 2.12 .1448 .0694 .0116
3 2.89 2.72 .2018 .1240 .0378 2.37 2.09 .1366 .0676 .0096

100 1 2.31 2.26 .1328 .0740 .0152 2.16 2.04 .1128 .0564 .0100
2 2.74 2.73 .1912 .1120 .0328 2.29 2.11 .1306 .0628 .0104
3 2.55 2.63 .1658 .1004 .0298 2.25 2.19 .1322 .0656 .0140

200 1 2.19 2.10 .1212 .0616 .0130 2.12 1.99 .1120 .0548 .0098
2 2.51 2.59 .1596 .0896 .0270 2.24 2.16 .1258 .0626 .0120
3 2.27 2.31 .1334 .0746 .0198 2.12 2.09 .1182 .0578 .0128

500 1 2.09 2.13 .1094 .0606 .0142 2.06 2.09 .1058 .0578 .0124
2 2.16 2.13 .1152 .0614 .0130 2.05 1.97 .1024 .0512 .0088
3 2.13 2.16 .1132 .0604 .0158 2.07 2.06 .1066 .0542 .0130

Rook Contiguity, (ρ, λ1) = (0, 0)
50 1 2.49 2.45 .1584 .0914 .0226 2.19 2.08 .1242 .0586 .0118

2 3.17 3.07 .2368 .1522 .0504 2.39 2.09 .1422 .0664 .0098
3 2.78 2.76 .1880 .1160 .0380 2.27 2.09 .1224 .0650 .0122

100 1 2.20 2.20 .1226 .0640 .0142 2.06 2.00 .1070 .0492 .0084
2 2.53 2.54 .1550 .0950 .0262 2.13 2.00 .1124 .0546 .0084
3 2.35 2.35 .1420 .0804 .0210 2.09 1.99 .1100 .0528 .0094

200 1 2.03 1.97 .1048 .0502 .0088 1.96 1.88 .0970 .0436 .0060
2 2.25 2.22 .1306 .0666 .0150 2.01 1.88 .0996 .0436 .0054
3 2.11 2.12 .1126 .0562 .0140 1.98 1.92 .0934 .0442 .0092

500 1 2.05 2.04 .1010 .0518 .0126 2.02 2.00 .0964 .0486 .0108
2 2.11 2.15 .1152 .0602 .0150 2.01 2.00 .1016 .0508 .0110
3 2.06 2.04 .1058 .0548 .0114 2.00 1.95 .0994 .0494 .0092

Group Interaction, (ρ, λ1) = (.5, .3)
50 1 2.71 2.57 .1844 .1088 .0322 2.39 2.16 .1466 .0736 .0118

2 3.34 3.19 .2566 .1640 .0596 2.51 2.16 .1566 .0778 .0130
3 2.99 2.87 .2166 .1316 .0408 2.44 2.16 .1494 .0752 .0128

100 1 2.53 2.49 .1660 .0948 .0244 2.36 2.26 .1472 .0764 .0162
2 2.93 2.95 .2066 .1302 .0462 2.42 2.22 .1454 .0792 .0154
3 2.69 2.64 .1814 .1094 .0326 2.38 2.22 .1468 .0760 .0150

200 1 2.26 2.31 .1354 .0750 .0190 2.17 2.19 .1240 .0664 .0156
2 2.53 2.54 .1630 .0930 .0242 2.26 2.15 .1300 .0638 .0132
3 2.44 2.42 .1474 .0860 .0224 2.28 2.20 .1272 .0680 .0138

500 1 2.17 2.15 .1184 .0646 .0144 2.14 2.11 .1134 .0608 .0126
2 2.24 2.24 .1288 .0698 .0174 2.13 2.07 .1118 .0576 .0122
3 2.20 2.21 .1226 .0652 .0160 2.13 2.12 .1146 .0606 .0130

Note: for dgp, 1=normal, 2=normal mixture, and 3=lognormal.
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Table 5 Empirical Mean, sd and Size of T SDPD2
AQS for Testing λ2 = 0

AQS Test SAQS Test

n dgp mean sd 10% 5% 1% mean sd 10% 5% 1%
Group Interaction, (ρ, λ1, λ3) = (0, 0, 0)

50 1 0.01 1.14 .1582 .0872 .0204 0.01 1.08 .1324 .0678 .0130
2 0.00 1.15 .1590 .0902 .0236 -0.01 1.08 .1372 .0696 .0132
3 0.01 1.45 .2592 .1820 .0766 0.00 1.22 .1860 .1078 .0234

100 1 0.02 1.07 .1250 .0708 .0164 0.02 1.04 .1170 .0586 .0124
2 -0.03 1.09 .1314 .0746 .0182 -0.03 1.05 .1206 .0618 .0122
3 0.05 1.33 .2122 .1366 .0512 0.04 1.15 .1538 .0862 .0192

200 1 -0.03 1.05 .1160 .0572 .0146 -0.03 1.03 .1104 .0522 .0124
2 0.02 1.04 .1182 .0624 .0160 0.02 1.02 .1108 .0582 .0124
3 -0.01 1.24 .1788 .1110 .0418 -0.01 1.12 .1440 .0782 .0156

500 1 -0.02 1.01 .1046 .0550 .0114 -0.02 1.00 .1022 .0530 .0100
2 0.01 1.02 .1084 .0534 .0108 0.01 1.01 .1058 .0512 .0100
3 0.02 1.13 .1388 .0836 .0250 0.02 1.06 .1190 .0632 .0162

Rook Contiguity, (ρ, λ1, λ3) = (0, 0, 0)
50 1 0.02 1.07 .1252 .0618 .0140 0.03 1.02 .1054 .0490 .0076

2 -0.01 1.11 .1386 .0802 .0190 -0.01 1.04 .1174 .0592 .0110
3 0.02 1.42 .2430 .1660 .0674 0.03 1.18 .1654 .0920 .0248

100 1 0.00 1.04 .1166 .0552 .0122 0.00 1.01 .1036 .0484 .0092
2 -0.01 1.03 .1116 .0558 .0110 -0.01 0.99 .0982 .0452 .0068
3 -0.02 1.27 .1914 .1236 .0438 -0.02 1.11 .1426 .0790 .0152

200 1 0.01 0.99 .0998 .0474 .0100 0.01 0.98 .0952 .0442 .0090
2 -0.01 1.01 .1084 .0512 .0092 -0.01 0.99 .1006 .0454 .0070
3 -0.03 1.18 .1554 .0958 .0342 -0.03 1.07 .1234 .0638 .0150

500 1 0.02 0.98 .0906 .0466 .0076 0.02 0.98 .0880 .0444 .0074
2 0.01 0.97 .0942 .0448 .0074 0.01 0.96 .0912 .0430 .0062
3 0.00 1.09 .1284 .0716 .0194 0.00 1.03 .1110 .0550 .0104

Group Interaction, (ρ, λ1, λ3) = (.5, .2, .2)
50 1 0.00 1.16 .1632 .0912 .0238 0.00 1.10 .1418 .0718 .0162

2 0.00 1.16 .1578 .0942 .0232 0.01 1.09 .1334 .0742 .0136
3 0.05 1.45 .2580 .1754 .0684 0.03 1.21 .1830 .1008 .0232

100 1 0.00 1.11 .1380 .0766 .0204 -0.01 1.07 .1270 .0682 .0146
2 -0.01 1.11 .1372 .0762 .0196 -0.01 1.08 .1240 .0654 .0130
3 0.05 1.36 .2124 .1408 .0576 0.03 1.18 .1594 .0846 .0228

200 1 0.02 1.01 .1028 .0536 .0128 0.02 1.00 .0976 .0504 .0104
2 0.00 1.02 .1088 .0540 .0108 0.00 1.00 .1032 .0488 .0094
3 0.01 1.25 .1814 .1174 .0418 0.01 1.13 .1414 .0812 .0186

500 1 0.01 1.08 .1128 .0556 .0138 0.01 1.07 .1102 .0542 .0136
2 0.02 1.08 .1204 .0656 .0184 0.02 1.07 .1186 .0628 .0170
3 0.00 1.39 .1576 .0962 .0308 0.00 1.31 .1364 .0780 .0220

Note: for dgp, 1=normal, 2=normal mixture, and 3=lognormal.
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Table 6 Empirical Mean, sd and Size of T STPD
AQS for Testing ρ = 0

AQS Test SAQS Test

n dgp mean sd 10% 5% 1% mean sd 10% 5% 1%
Group Interaction, λ = (0, 0, 0)′

50 1 0.01 1.11 .1370 .0740 .0172 0.02 1.05 .1128 .0592 .0096
2 0.00 1.29 .2078 .1334 .0476 0.01 1.11 .1460 .0704 .0124
3 -0.01 1.18 .1682 .0946 .0264 0.01 1.07 .1228 .0606 .0110

100 1 -0.02 1.08 .1260 .0670 .0162 -0.02 1.04 .1144 .0582 .0114
2 -0.04 1.19 .1672 .0974 .0284 -0.03 1.08 .1300 .0654 .0152
3 -0.01 1.12 .1470 .0824 .0220 -0.01 1.06 .1264 .0648 .0132

200 1 -0.04 1.03 .1132 .0566 .0096 -0.03 1.01 .1080 .0512 .0072
2 -0.02 1.10 .1352 .0748 .0194 -0.01 1.04 .1110 .0574 .0118
3 -0.01 1.06 .1138 .0606 .0162 0.00 1.02 .1046 .0512 .0114

500 1 0.00 1.01 .1014 .0538 .0114 0.00 1.00 .0988 .0520 .0104
2 -0.03 1.04 .1132 .0588 .0138 -0.03 1.01 .1034 .0488 .0104
3 0.01 1.02 .1040 .0506 .0130 0.02 1.00 .0980 .0476 .0116

Rook Contiguity, λ = (0, 0, 0)′

50 1 -0.01 1.12 .1478 .0824 .0190 0.01 1.06 .1238 .0606 .0106
2 -0.06 1.32 .2136 .1370 .0494 -0.04 1.14 .1508 .0822 .0140
3 -0.05 1.22 .1794 .1078 .0324 -0.03 1.10 .1430 .0710 .0142

100 1 0.01 1.07 .1292 .0738 .0168 0.02 1.04 .1150 .0632 .0114
2 -0.03 1.18 .1642 .0970 .0304 -0.02 1.07 .1262 .0622 .0118
3 0.00 1.12 .1426 .0774 .0194 0.00 1.05 .1216 .0624 .0086

200 1 0.00 1.04 .1154 .0618 .0136 0.01 1.02 .1096 .0566 .0114
2 -0.03 1.10 .1316 .0754 .0224 -0.02 1.03 .1102 .0558 .0124
3 -0.02 1.07 .1244 .0672 .0172 -0.01 1.03 .1102 .0588 .0128

500 1 -0.02 1.01 .1048 .0522 .0094 -0.02 1.00 .1026 .0506 .0090
2 0.00 1.06 .1190 .0650 .0148 0.00 1.03 .1102 .0560 .0098
3 -0.03 1.04 .1174 .0580 .0128 -0.02 1.02 .1116 .0530 .0100

Group Interaction, λ = (.3, .3, .3)′

50 1 0.03 1.14 .1544 .0858 .0220 0.03 1.07 .1300 .0634 .0110
2 0.01 1.28 .2030 .1300 .0464 0.02 1.12 .1504 .0760 .0112
3 0.03 1.19 .1656 .0984 .0300 0.04 1.08 .1318 .0650 .0122

100 1 0.02 1.06 .1232 .0678 .0140 0.02 1.02 .1134 .0582 .0102
2 -0.03 1.19 .1662 .0976 .0308 -0.02 1.07 .1300 .0654 .0110
3 0.00 1.11 .1384 .0770 .0178 0.01 1.05 .1172 .0560 .0100

200 1 0.02 1.04 .1102 .0582 .0126 0.02 1.02 .1054 .0526 .0100
2 -0.01 1.10 .1306 .0746 .0176 0.00 1.03 .1112 .0542 .0094
3 0.00 1.07 .1234 .0660 .0156 0.01 1.03 .1096 .0548 .0114

500 1 -0.01 1.01 .1024 .0528 .0112 -0.01 1.01 .0998 .0506 .0098
2 0.00 1.06 .1202 .0666 .0160 0.00 1.03 .1124 .0588 .0116
3 0.01 1.01 .1072 .0508 .0092 0.01 1.00 .1024 .0460 .0078

Note: for dgp, 1=normal, 2=normal mixture, and 3=lognormal.
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Table 7 Empirical Mean, sd and Size of T SPD
AQS for Testing ρ = λ2 = 0

AQS Test SAQS Test

n dgp mean sd 10% 5% 1% mean sd 10% 5% 1%
Group Interaction, λ1 = 0, λ3 = 0

50 1 2.58 2.47 .1718 .0976 .0240 2.28 2.08 .1338 .0644 .0108
2 3.28 3.15 .2516 .1646 .0588 2.39 2.06 .1386 .0650 .0086
3 2.90 2.79 .2014 .1246 .0400 2.33 2.09 .1310 .0662 .0112

100 1 2.32 2.30 .1338 .0708 .0200 2.16 2.07 .1132 .0546 .0126
2 2.78 2.79 .1874 .1166 .0362 2.23 2.04 .1206 .0604 .0094
3 2.45 2.43 .1520 .0868 .0220 2.15 2.01 .1138 .0564 .0094

200 1 2.15 2.13 .1198 .0624 .0134 2.07 2.01 .1092 .0532 .0094
2 2.45 2.46 .1576 .0902 .0212 2.16 2.04 .1206 .0592 .0092
3 2.26 2.22 .1296 .0676 .0164 2.10 1.99 .1086 .0512 .0094

500 1 2.06 2.03 .1096 .0556 .0116 2.03 1.99 .1068 .0528 .0104
2 2.20 2.18 .1278 .0650 .0168 2.07 1.99 .1102 .0510 .0104
3 2.13 2.13 .1130 .0598 .0150 2.05 2.02 .1040 .0520 .0116

Rook Contiguity, λ1 = 0, λ3 = 0
50 1 2.39 2.33 .1452 .0782 .0186 2.11 1.97 .1098 .0512 .0076

2 3.14 3.02 .2334 .1528 .0528 2.30 2.00 .1290 .0592 .0068
3 2.76 2.66 .1908 .1124 .0332 2.20 1.98 .1172 .0568 .0074

100 1 2.18 2.16 .1214 .0638 .0140 2.03 1.95 .1022 .0474 .0066
2 2.59 2.69 .1660 .0970 .0314 2.09 1.96 .1036 .0508 .0086
3 2.42 2.45 .1462 .0854 .0250 2.11 2.00 .1080 .0594 .0084

200 1 2.06 2.08 .1084 .0550 .0118 1.98 1.97 .0968 .0472 .0104
2 2.39 2.40 .1404 .0778 .0212 2.11 1.98 .1070 .0516 .0078
3 2.14 2.13 .1160 .0612 .0134 1.98 1.91 .0984 .0464 .0070

500 1 2.06 2.00 .1050 .0560 .0140 2.03 1.96 .1000 .0510 .0110
2 2.13 2.07 .1260 .0600 .0110 2.01 1.89 .1070 .0420 .0060
3 2.05 2.09 .0980 .0530 .0140 1.98 1.99 .0960 .0440 .0130

Group Interaction, λ1 = 0.3, λ3 = 0.3
50 1 2.46 2.35 .1534 .0842 .0206 2.17 1.98 .1114 .0528 .0096

2 3.24 3.14 .2456 .1586 .0554 2.36 2.06 .1362 .0642 .0098
3 2.83 2.74 .1974 .1152 .0344 2.28 2.03 .1262 .0584 .0094

100 1 2.29 2.20 .1324 .0670 .0142 2.12 1.98 .1102 .0498 .0096
2 2.66 2.64 .1758 .1056 .0286 2.15 1.94 .1064 .0502 .0072
3 2.42 2.44 .1498 .0846 .0230 2.10 2.00 .1084 .0536 .0094

200 1 2.18 2.19 .1222 .0638 .0148 2.10 2.07 .1122 .0560 .0112
2 2.38 2.41 .1460 .0812 .0216 2.10 2.01 .1114 .0536 .0094
3 2.24 2.24 .1290 .0694 .0168 2.07 2.00 .1096 .0532 .0100

500 1 2.02 2.06 .1070 .0570 .0120 1.99 2.01 .1030 .0540 .0110
2 2.10 2.19 .1120 .0540 .0140 1.99 2.01 .0940 .0470 .0110
3 2.07 2.14 .1120 .0610 .0130 2.00 2.02 .1030 .0510 .0100

Note: for dgp, 1=normal, 2=normal mixture, and 3=lognormal.
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