
A Class of Nonlinear Stochastic Volatility Models and Its
Implications for Pricing Currency Options

Jun Yu1, Zhenlin Yang
School of Economics and Social Sciences,

Singapore Management University, Singapore 259756

Xibin Zhang
Department of Econometrics and Business Statistics
Monash University, Clayton, Victoria 3800, Australia

Abstract

This paper proposes a class of stochastic volatility (SV) models by applying the Box-Cox
transformation to the volatility equation. This class of nonlinear SV models encompasses
all standard SV models that have appeared in the literature, including the well known
lognormal model. It allows us to empirically compare and test all standard specifications
in a very convenient way and provides a measure of the degree of departure from the
classical models. We develop a likelihood-based technique for analyzing the model. Daily
dollar/pound exchange rate data suggest some evidence against lognormal model and strong
evidence against all the other classical specifications. An efficient algorithm is proposed to
study the economic importance of the proposed model on pricing currency options.

1 Introduction

Modeling the volatility of financial time series via stochastic volatility (SV) models has

received a great deal of attention in the theoretical finance literature as well as in the

empirical finance literature. Prices of options based on SV models are shown to be more

accurate than those based on the Black-Scholes model (see, for example, Melino and Turn-

bull (1990)). Moreover, the SV model offers a powerful alternative to GARCH-type models

to explain the well documented time varying volatility. Empirical successes of the lognormal

SV model relative to GARCH-type models are documented in Kim, Shephard and Chib

(1998) in terms of in-sample fitting and in Yu (2002) in terms of out-of-sample forecasting.
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The most widely used SV model is perhaps the lognormal (LN) specification which was

first introduced by Taylor (1982). It has been used to price stock options in Wiggins (1987)

and Scott (1987) and currency options in Chesney and Scott (1989). Since it assumes that

the logarithmic volatility follows an Ornstein-Uhlenbeck (OU) process, an implication of

this specification is that the marginal distribution of logarithmic volatility is normal. This

assumption has very important implications for financial economics and risk management.

Many other SV models coexist in the theoretical finance literature as well as in the

empirical literature. For example, Stein and Stein (1991) and Johnson and Shanno (1987)

assume the square root of volatility follows, respectively, an OU process and a geometric

Brownian motion, while Hull and White (1987) and Heston (1993) assume a geometric

Brownian motion and a square-root process for volatility. In particular, Heston’s model

has received a great deal of attention in the option price literature as it provides a closed

form expression to option pricing formula. In the discrete time case, various SV models

can be regarded as generalizations to the corresponding GARCH models. For example, a

polynomial SV model is a generalization of GARCH(1,1) (Bollerslev (1986)) while a square

root polynomial SV model is a generalization of standard deviation (SD)-GARCH(1,1).

Andersen (1994) introduces a general class of SV models, of which a class of polynomial

SV models has been emphasized. This class encompasses most of the discrete time SV

models in the literature. Other more recent classes of SV models include those proposed

by Barndorff-Nielsen and Shephard (2001), by Jones (2003) and by Meddahi (2001).

Despite all these alternative specifications, there is a lack of simple procedure for select-

ing an appropriate functional form of SV.2 The specification of the correct SV function, on

the other hand, is very important in several respects. First, different functional forms lead

to different formulae for option pricing. Misspecification of the SV function can result in

incorrect option prices. Second, the marginal distribution of volatility depends upon the

functional form of SV.
2It is well known that a GARCH process converges to a relevant stochastic volatility process (Nelson

(1990)). A specification test based on a GARCH family can be suggestive of an appropriate stochastic
volatility specification; see for example, Duan (1996) and Hentschel (1995). Such a test, however, is by no
mean a direct test of stochastic volatility specifications.
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In this paper, we propose a new class of SV models, namely, nonlinear SV models.

Like the class of Andersen (1994), it includes as special cases many SV models that have

appeared in the literature. It overlaps with but does not encompass the class of Andersen.

It also overlaps with the classes of Jones (2003) and Meddahi (2001). Different from these

alternative classes which preclude a simple comparison of competing SV models, an ad-

vantage of our proposed class is the ease with which coexisting specifications on stochastic

volatility can be tested. In fact, the specification test is based on a single parameter. This

parameter also provides a measure of degree of departure from classical SV models. Fur-

thermore, as a byproduct of this general way of modelling stochastic volatility, one obtains

the functional form of transformation which induces marginal normality of volatility. We

empirically test all standard specifications against our general specification using several

daily exchange rate data. Our empirical test of all standard SV models is, to the best of

our knowledge, the first in the literature. When daily dollar/pound data are used, for ex-

ample, our empirical test suggests some evidence against all standard SV models and favors

a nonlinear SV specification. Economic importance of this nonlinearity is examined. For

example, without sacrificing the overall goodness-of-fit, our nonlinear SV model improves

the fit to data when the market has little movement. We also find that our model implies

a smoother volatility series. Moreover, the marginal distribution of volatility is different

from a LN distribution. Most importantly, an application of our nonlinear SV model to

option pricing shows that the LN SV model overprices currency options, particularly out-

of-the-money options, when the true model is the empirically estimated nonlinear model.

However, when other exchange rate series are used, we find that only LN model but not

the other classical SV models is suitable. This finding provides a justification why the

LN model enjoys the most popularity in the empirical finance literature (see Table 1 for a

partial list of studies on the LN model).

The paper is organized as follows. Section 2 presents this class of nonlinear SV mod-

els. In Section 3, a Markov Chain Monte Carlo (MCMC) method is developed to provide

likelihood-based analysis of the proposed class of models. The class is fitted to daily ob-

servations on dollar/pound exchange rate series in Section 4. In Section 5 we illustrate

the economic importance of the proposed models in terms of their implications for pricing
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currency options. Finally in Section 6 we present conclusions and possible extensions.

2 A Class of Nonlinear SV Models

In the theoretical finance literature on option pricing, the SV model is often formulated

in terms of stochastic differential equations. For instance, Wiggins (1987), Chesney and

Scott (1989), and Scott (1991) specify the following model for the asset price P (t) and the

corresponding volatility σ2(t),

dP (t)/P (t) = αdt+ σ(t)dB1(t), (1)

d lnσ2(t) = λ(ξ − lnσ2(t))dt+ γdB2(t), (2)

where B1(t) and B2(t) are two Brownian motions and corr(dB1(t), dB2(t)) = ρ with ρ

capturing the so-called leverage effect.

In the empirical literature, the above continuous time model is often discretized. The

discrete time SV model may be obtained, for example, via the Euler-Maruyama approxi-

mation. The approximation, after a location shift and reparameterization, leads to the LN

SV model given by

Xt = σtet, (3)

lnσ2t = μ+ φ(lnσ2t−1 − μ) + σvt, (4)

where Xt is a continuously compounded return and et, vt are two sequences of independent

and identically distributed (iid) N(0, 1) random variables with corr(et, vt+1) = ρ. The

above model is equivalently represented, in the majority of empirical literature, by

Xt = exp(
1

2
ht)et, (5)

ht = μ+ φ(ht−1 − μ) + σvt, (6)

where ht = ln σ2t . See, for example, Yu (2005) for detailed account of the leverage effect.

The LN SV model specifies that the logarithmic volatility follows an AR(1) process.

However, this relationship may not always be warranted by the data. A natural general-

ization to this relationship is to allow a general (nonlinear) smooth function of volatility to
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follow an AR(1) process. That is,

Xt = σtet, (7)

h(σ2t , δ) = μ+ φ[h(σ2t−1, δ)− μ] + σvt, (8)

where et and vt are two N(0, 1) sequences with corr(et, vt+1) = ρ, and h(·, δ) is a smooth
function indexed by a parameter δ. A nice choice of this function is the Box-Cox power

function (Box and Cox (1964)):

h(t, δ) =

½
(tδ − 1)/δ, if δ 6= 0,
ln t, if δ = 0.

(9)

As the function h(·, δ) is specified as a general nonlinear function, the model is thus termed
in this paper the nonlinear SV (N-SV hereafter) model. Several attractive features of this

new class of SV models include: i) as we will show below it includes the LN SV model and

the other popular SV models as special cases, ii) it adds great flexibility to the functional

form, iii) it provides a degree of departure from a specific classical SV model, and iv) it

allows a simple test for the LN SV specification, i.e., a test of H0 : δ = 0, and some other

“classical” SV specifications. If we write ht = h(σ2t , δ), then we can re-write the N-SV

models as

Xt = [g(ht, δ)]
1/2et, (10)

ht = μ+ φ(ht−1 − μ) + σvt, (11)

where g(ht, δ) is the inverse Box-Cox transformation of the form

g(ht, δ) =

½
(1 + δht)

1/δ, if δ 6= 0,
exp(ht), if δ = 0.

(12)

Denote the vector of model parameters by θ = (μ, δ, φ, σ, ρ).

The idea of our proposed N-SV models is similar to that in the nonlinear ARCH

(NARCH) model proposed in Higgins and Bera (1992). Obviously, our model provides

a SV generalization of a nonlinear GARCH(1,1) model. Similar to the NARCH model,

the proposed N-SV model can be used to test the nested models based on one parameter.

5
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Compared with the NARCH model, however, our proposed class is more closely related to

the option literature as the nested models have been used for pricing options.

It can be seen that as δ → 0, (1 + δht)
1/(2δ) → exp(0.5ht) and ((σ2t )

δ − 1)/δ → lnσ2t .

Hence the proposed N-SV model includes the LN SV model as a special case. If δ = 1, the

variance equation (8) becomes

σ2t = μ0 + φ(σ2t−1 − μ0) + σvt, (13)

where μ0 = μ + 1. This is a polynomial SV model in Andersen (1994). According to this

specification, volatility follows a normal distribution as its marginal distribution. If δ = 0.5,

the variance equation (8) becomes

σt = μ00 + φ(σt−1 − μ00) + 0.5σvt, (14)

where μ00 = 0.5μ + 1. This is a square root polynomial SV model in Andersen (1994) and

can be regarded as a discrete time version of the continuous time SV model in Scott (1987)

and Stein and Stein (1991). As a result, the marginal distribution of the square root of

volatility is Gaussian.

In Table 1 we summarize some well-known SVmodels and show their parameter relations

with our model. For the continuous time SV models, their Euler discrete time versions are

considered. It can be seen that all these models can be obtained from our model by placing

the appropriate restrictions on the three parameters δ, μ and φ. In fact, all the models

except our model require δ to be 0, 0.5, or 1.3 For a general δ, our model is different from

any of them and δ provides some idea about the degree of departure from a “classical”

parametric SV model.

The Box-Cox transformation has been applied in various areas in finance. Perhaps the

most relevant applications to our work may be that proposed by Higgins and Bera (1992) for

reasons mentioned above. Another relevant application is Hentschel (1995) who introduces

a family of GARCH models by applying the Box-Cox transformation to the conditional

3Some specifications in Table 1 may be different from the actual specifications used in the original
references. However, they are equivalent to each other via Ito’s lemma. For example, Heston (1993) adopts
a square root specification for σ2t which is identical to assuming σt follows a particular OU process.
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standard deviation. A nice feature of our proposed class is that it provides a simple way to

test the null hypothesis of polynomial SV specifications against a variety of non-polynomial

alternatives. Moreover, as a consequence of specification testing, our proposed class provides

an effective channel to check the marginal distribution of unobserved volatility.

Table 1
Models δ μ φ

Taylor (1982), Wiggins (1987), Scott (1987) lnσ2t = μ+ φ(lnσ2t−1 − μ) + σvt 0
Chesney and Scott (1989)

Jacquier et al (1994), Harvey et al (1998)
Kim, Shephard and Chib (1998)
Scott (1987), Andersen (1994) σt = μ+ φ(σt−1 − μ) + σvt 0.5

Stein and Stein (1991)
Heston (1993) σt = φσt−1 + σvt 0.5 0

Hull and White (1987) lnσ2t = μ+ lnσ2t−1 + σvt 0 1
Johnson and Shanno (1987)

Andersen (1994) σ2t = μ+ φ(σ2t−1 − μ) + σvt 1
Clark (1973) lnσ2t = μ+ σvt 0 0

Nonlinear SV (σ2t )
δ−1
δ

= μ+ φ[
(σ2t−1)

δ−1
δ

− μ] + σvt

We now establish some basic statistical properties of the N-SV models. It is easy to see

that ht is stationary and ergodic if φ < 1 and that if so

μh ≡ E(ht) = μ, σ2h ≡ V ar(ht) =
σ2

1− φ
, and ρ(c) ≡ Corr(ht, ht−c) = φc.

It follows that Xt is stationary and ergodic as it is the product of two stationary and ergodic

processes. For the moments of Xt, a distributional constraint has to be imposed on vt or

ht. As σ2t is nonnegative, the exact normality of vt is incompatible unless δ = 0 or 1/δ is

an even integer.4 Our experience suggests that, as far as statistical inferences and pricing

options are concerned, the assumption of the exact normality of vt works well for all the

empirically possible values of parameters that we have encountered.5 Unfortunately, even in

4This is the well known truncation problem with the Box-Cox power transformation. The truncation
effect is negligible if δσh/(1 + δμ) is small, which is achieved when i) δ is small, or ii) μ is large, or iii) σh
is small. See Yang (1999) for a discussion on this.

5The same problem occurs in the model proposed by Stein and Stein (1991). They claim that “for a
wide range of empirically reasonable parameter values, the probability of passing the barrier at σ = 0 is so
small as to be of no significant consequence.”
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the case where 1/δ is an even integer, it does not seem to be possible to obtain an analytic

form for the moments of the model.6

To conclude this section, we attempt to offer a heuristic interpretation of δ from a finance

perspective.7 For ease of interpretation, we restrict ourselves to the range of positive δ.

Define m = 1/δ and re-write the inverse Box-Cox transformation as

σ2t = (1 +
ht
m
)m =

mY
i=1

(1 + hit), (15)

where {hit} can be understood as a sequence of intra-day volatility movements. From a

market microstructure perspective, intra-day volatility movement are caused primarily by

the arrival of new information. From (15) one can argue that on average there are m times

per day of new information arrivals and ht represents the average impact of the information

on volatility. In the LN SV model, as m→∞ and σ2t → exp(ht), new information arrives

at the market very frequently. In the N-SV model with a positive, finite value of δ, say

δ = 0.25, on average new information arrives at the market 4 times per day.

3 Estimation and Inference Using MCMC

The literature on estimating SV models is vast. Broto and Ruiz (2002) provide a recent

survey on numerous estimating techniques for SV models. In this section, we develop a

likelihood-based technique for model estimation and inference using MCMC. The evidence

is extensive for the good performance of MCMC in the context of SV models. See, for

example, Jacquier, Polson and Rossi (1994), Kim et al. (1998), and Meyer and Yu (2000).

Since volatility in SV models is latent, the computation of likelihood requires integrating

out the latent variables, which in turn makes the direct likelihood-based analysis numerically

difficult. LetX = (X1, X2, · · · ,XT ) be the vector of observations and f(X|θ) the likelihood
6As an alternative, Yu and Yang (2002) approximate the normality of ut = σ2t = (1 + δht)

1/δ by a
generalized LN distribution. This alternative specification gives rise to the analytic expression for model
moments and can be thought of nesting the standard SV models in approximation.

7Our treatment here is analogous to the introduction of continuously compounded returns. We are
grateful to Steve Satchell for pointing this out to us.
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function. To circumvent the problem caused by the latent process, a common practice is

to augment the parameter vector to (θ,h), where h = (h1, h2, · · · , hT ). Given a set of
priors, we can obtain the joint posterior, denoted as f(θ,h|X), based on the likelihood of
the augmented parameter vector. The sequence of sampled augmented parameter vector

forms a Markov chain whose stationary transition density is the joint posterior. When the

chain converges, the chain of simulated values is regarded as a sample obtained from the

joint posterior and hence can be used for statistical inferences.

3.1 Estimating the Nonlinear SV Model

Assume that the priors of model parameters are, respectively, σ2 ∼ IG(p/2, Sσ/2), (φ +

1)/2 ∼ Beta(ω, γ) and δ ∼ N(μδ, σ
2
δ), where IG denotes the inverted gamma distribution.

The joint posterior density for model parameters and latent volatilities is

f(θ,h|X) = prior(θ)× p(h1|θ)×
TY
t=2

p(ht|ht−1, θ)×
TY
t=1

p(Xt|ht, θ)

∝ (1 + φ)ω−0.5(1− φ)γ−0.5 exp

½
−(δ − μδ)

2

2σ2δ

¾
(16)

×
"

TY
t=1

g(ht, δ)
−1/2

#
exp

(
−

TX
t=1

X2
t

2g(ht, δ)

) ∙
1

σ2

¸T+p
2
+1

× exp
(
−(1− φ2)(h1 − μ)2 +

PT
t=2 [(ht − μ)− φ(ht−1 − μ)]2 + Sσ

2σ2

)
,

where p, Sσ, ω, γ, μδ and σ2δ are hyperparameters to be defined by users. When σ2 is

integrated out of (16), we can obtain the logarithm of the marginal posterior of (φ, δ, μ,h),

ln f(φ, δ, μ,h|X) ∝ (ω − 0.5) ln(1 + φ) + (γ − 0.5) ln(1− φ) (17)

−(δ − μδ)
2

2σ2δ
− 1
2

TX
t=1

ln g(ht, δ)−
TX
t=1

X2
t

2g(ht, δ)

−T + p

2
ln

(
(1− φ2)(h1 − μ)2 +

PT
t=2 [(ht − μ)− φ(ht−1 − μ)]2 + Sσ

2

)
.
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The sampling algorithm for the proposed model is based on (16) and (17). First, we use

the random-walk Metropolis-Hastings algorithm to sample (φ, δ) simultaneously, given all

the other parameters and latent volatilities. Second, we have found that the posterior of

μ, which is conditional on all the other parameters and latent volatilities, is Gaussian with

mean and variance defined by(
μ̂∗ = σ̂2μ{1−φ

2

σ2
h1 +

1−φ
σ2

PT
t=2(ht − φht−1)}

σ̂2μ = σ2
©
(T − 1)(1− φ2) + (1− φ2)

ª−1 . (18)

Thus, μ can be sampled directly from N(μ̂∗, σ̂2μ).
8 Third, we sample σ2 directly from its

conditional posterior,

σ2 ∼ IG

Ã
T + p

2
,
1

2

"
(1− φ2)(h1 − μ)2 +

TX
t=2

[(ht − μ)− φ(ht−1 − μ)]2 + Sσ

#!
. (19)

Finally, we sample each component of h sequentially, where the random-walk Metropolis-

Hastings algorithm is employed to update each component of h. Hence our sampling

algorithm is summarized as what follows.

1. Initialize θ and h;

2. Sample φ and δ based on (17), given all the other parameters and h;

3. Sample each component of h sequentially according to (16), given θ;

4. Sample σ2 from (19), given all the other parameters and h;

5. Sample μ from its conditional posterior, given σ2, φ and h;

6. Goto 2 and iterate for N0 +N times;

8As μ can be sampled directly, its prior has no effect on sampling the other parameters and latent
volatilities. That is why we have not inserted a prior of μ into the joint posterior (16). When the prior of
μ is required for further inferences, it can be assumed to be a uniform over a known interval.
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where N0 is the number of iterations in the burn-in period, and N is the number of

draws after the burn-in period.

Two important points should be noted. First, φ and δ are sampled simultaneously

according to the Metropolis-Hastings rule, rather than a single-move procedure.9 Second,

when we calculate the acceptance probability to update a component of h, say ht, we only

compute related items that change with the update of ht. Thus, the conditional posterior

of ht, given parameters and the other components of h, is (ignoring end conditions to save

space)

ln p(ht|θ,h\t) ∝ − 1
2δ
log(1 + δht)−

1

2
X2

t (1 + δht)
−1/δ

− 1

2σ2
[(ht − μ)− φ(ht−1 − μ)]2 − 1

2σ2
[(ht+1 − μ)− φ(ht − μ)]2 ,

for δ 6= 0, where h\t denotes h with ht deleted. When δ = 0, the conditional posterior of

ht becomes

ln p(ht|θ,h\t) ∝ −1
2
ht −

1

2
X2

t exp(−ht)

− 1

2σ2
[(ht − μ)− φ(ht−1 − μ)]2 − 1

2σ2
[(ht+1 − μ)− φ(ht − μ)]2 .

Hence ht can be sampled by using the random-walk Metropolis-Hastings algorithm, where

the acceptance probability is computed based on the above two equations.

Following Meyer and Yu (2000) we use the convergence checking criteria available in the

CODA software to check whether convergence has been achieved and the integrated auto-

correlation time, IACT, to measure the simulation inefficiency. All the reported results in

this paper are based on samples which have passed the Heidelberger and Welch convergence

test for all parameters.

9See Chib and Greenberg (1995) for detailed discussion on the Metropolis-Hastings algorithms. When
updating φ and δ, the random numbers are generated from the proposal Gaussian density on an elliptical
contour. This strategy may increase the sampling efficiency.
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3.2 Volatility Estimate, Likelihood Evaluation, and Likelihood
Ratio Test

Since MCMC methods provide samples from the joint posterior distribution of all the

parameters (including both model parameters and latent volatilities), a natural way for

estimating volatility is to integrate out the model parameters from the posterior. This

is a Bayesian approach and has been suggested in Jacquier et al. (1994). Alternatively,

one can make the use of the so-called particle filter techniques, a class of simulation-based

methods developed in recent statistics literature for filtering nonlinear non-Gaussian state

space models; see, for example, Gordon, Salmond and Smith (1993), Kitagawa (1996), and

Pitt and Shephard (1999). As a byproduct of filtering, one can do diagnostic checking to

look for some suggestion of what is wrong with the model, and to evaluate the likelihood

function of the model at the posterior mean. In this paper, following Berg et al (2004), we

employ Kitagawa’s filtering algorithm using 50, 000 particle points.

Once likelihood is evaluated at the posterior mean, one can make statistical comparisons

of the proposed N-SV model and any standard SV model. Since the N-SV model nests all

standard SV models, a simple test statistic is the likelihood ratio test defined by

LR = 2{ln f(x|M1, θ̂)− ln f(x|M0, θ̂)},

where M1 andM0 denote the N-SV model and a standard SV model respectively. For non-

nested model comparison, one can use the non-nested likelihood ratio test developed by

Atkinson (1986) for classical inferences, or for Bayesian inferences use the Bayesian factor

(Chib (1995)) if the prior is proper or deviance information criterion (Spiegelhalter et al.

(2002)) regardless of properties of the prior (Berg et al. (2004)). We focus on the likelihood

ratio test in this paper.

3.3 Simulation Studies

To check the reliability of the proposed MCMC algorithm for estimation of N-SV models

and for model comparison, we apply our algorithm to a simulated dataset. We generate

one data series of 2000 observations from the N-SV model using the following parameter

12
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values: μ = −0.2, σ = 0.2, φ = 0.95 and δ = 0.2. This parameter setting is selected to be

empirically realistic for daily exchange rates.

In both the simulation and empirical studies, we estimate the N-SV model using the

proposed MCMC algorithm. For comparison purposes, we also estimate the LN SV model

and for this we employ the all purpose Bayesian software package BUGS based on the single-

move Gibbs sampler as described in Meyer and Yu (2000) for ease of implementation. In

all cases we choose a burn-in period of 50,000 iterations and a follow-up period of 500,000,

and store every 50th iteration. The MCMC sampler is initialized by setting φ = 0.95, σ2 =

0.02, and μ = 0 for the LN SV model and arbitrarily initialized for the N-SV model.

The same prior distributions are used for the common parameters in both models.10 The

hyperparameters are, respectively, p = 10.0, ω = 20.0, γ = 1.5, Sσ = 0.1, μδ = 0.2 and

σ2δ = 1.

Table 2
True N-SV LN SV
Val Mean SD 90% CI MC SE IACT Mean SD MC SE IACT

φ 0.95 .9564 .0121 (.9348, .9741) .00019 121.9 .9598 .0120 .00050 883.7
σ 0.2 .1893 .0261 (.15, .2359) .00048 169.1 .1924 .0269 .00138 1319.7
μ -0.2 -.2105 .1144 (-.3968, -.0236) .00091 31.5 -.2137 .1256 .00269 229.0
δ 0.2 .2105 .1444 (.0011, .4355) .00250 149.9
Loglik -2657.346 -2658.990
LR Stat 3.287
p-Val 0.0698

Table 2 summarizes the results from estimation and model comparison, including the

posterior means, standard deviations, Monte Carlo standard errors (MC SE), IACT’s for all

the parameters, the likelihood values for both models, and the likelihood ratio statistic and

associated p value for the null hypothesis of the LN SV model against the N-SV model. For

the N-SV model we also report the 90% Bayesian credible (highest probability) intervals

for all the parameters.

10The only exception is for μ. In the LN SV model we choose an informative but reasonably flat prior
distribution for μ (i.e. a normal distribution with mean 0 and variance 25) while in the N-SV model we
use a diffuse prior for the reason argued above.
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First, it can be seen that the proposed MCMC procedure can precisely estimate all the

parameters in the N-SV model, including the key parameter, δ. Second, the 90% Bayesian

credible interval of δ includes the true value and excludes 0. Although not reported, we

find that even 99% Bayesian credible interval of δ does not include 0.5 or 1. The likelihood

ratio statistic favors the true specification and suggests some evidence against the LN model

once again. Third, the comparison of IACT’s across two models shows that the inefficiency

factors in the N-SV model are substantially smaller and suggests that better mixing has

been achieved in the N-SV model.

4 Empirical Results for Exchange Rates

SV models are often used to model the volatility of exchange rates (see for example, Melino

and Turnbull (1990), Harvey et al. (1994) and Mahieu and Schotman (1998)). In this

section we estimate the proposed models using daily dollar/pound exchange rates for the

period from January 1, 1986 to December 31, 1998. The dataset is available from the H-10

Federal Reserve Statistical Release. For convergence purposes we use the mean-corrected

and variance-scaled returns defined by

Xt =
Yt

s(Yt)
, with Yt = (lnSt − lnSt−1)−

1

n

X
(lnSt − lnSt−1),

where s(Yt) is the sample standard deviation of Yt and St is the exchange rate at time

t. The sample size is 3268. Since the LN SV model is the most widely used one in the

empirical finance literature, we also estimate it for comparison.

Table 3
N-SV LN SV

Mean SD 90% CI MC SE IACT Mean SD MC SE IACT
φ .9595 .0101 (.9417, .9745) .00017 138.3 .9676 .0091 .00026 408.2
σ .2066 .0269 (.1672, .2543) .00050 174.9 .1873 .0268 .00090 568.1
μ -.2244 .1044 (-.3913, -.0495) .00087 35.0 -.2579 .1095 .00103 44.1
δ .1716 .1203 (.0039, .3684) .00214 189.0

Loglik -4369.792 -4371.606
LR Stat 3.628
p-Val 0.0568
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Figure 1: Time series plots for dollar/pound exchange rate return.

Figure 1 displays the adjusted return series. In Table 3 we summarize the empirical

results, including the posterior means, standard deviations, Monte Carlo standard errors

(MC SE), IACT’s for all the parameters, the likelihood values for both models, and the

likelihood ratio statistic and associated p value for the null hypothesis of the LN SV model

against the N-SV model. For the N-SV model we also report the 90% Bayesian credible

intervals for all the parameters.

A few results emerge from Table 3. First, the posterior mean of δ in the proposed

N-SV model is 0.172 and the 90% Bayesian credible interval does not include 0. Although

not reported, we find that even 99% Bayesian credible interval of δ does not include 0.5

or 1. As a consequence, we find some, albeit weak, evidence against the LN SV model

and strong evidence against all the other SV models, including the Stein-Stein and Heston

specifications. Although all the standard SV models are rejected, the posterior quantities

of δ seem to suggest that the LN model is closer to the true specification than other SV

models with either δ = 0.5 or δ = 1. Second, the posterior mean of φ (0.9676) is close to 1 in
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the LN model and suggestive of high persistency of volatility. In the proposed N-SV model,

it remains at a similar level. In fact all the estimated parameters have similar magnitudes

and similar standard deviations across both models. Third, the likelihood ratio statistic

and the associated p value suggest that the LN model is rejected at the 10 percent level.

Fourth, as in the simulation study, IACT’s are large for most parameters and indicate a

slow convergence. However, all the chains mix well and the mixing is not affected in the

N-SV model. On the contrary, the inefficiency factors in the N-SV model are considerably

smaller than those in the LN model. Fifth, compared with other parameters, δ appears

more difficult to estimate and has the largest value of standard deviation. Finally, according

to our interpretation of δ, for the dollar/pound exchange rate on average new information

arrives at the market about 6 times per day.

To provide diagnostic checks for the observed series and two SV models, we follow Kim

et al. (1998, Section 4.2) and compute the forecast uniforms from one-step-ahead forecasts

for both models. Figure 2 gives the QQ-plot of the normalized innovations obtained from

the LN model and N-SV model respectively. The plot suggests that there are more outliers

in the normalized innovations that the LN SV cannot explain than the N-SV model. Similar

to Kim et al., we find that these outliers correspond to small values of |Xt| which are the
inliers of returns. Consequently, we can conclude that the N-SV model explains the inlier

behavior better than the LN SV model in this case.

As argued in Section 2, a byproduct of the new way to model volatility is that the

marginal distribution of volatility is obtained. The marginal distributions of volatility

implied from the estimated LN and N-SV models are plotted in Figure 4, where the solid

line is for the LN SV model and hence is the density function of a LN distribution. It can be

seen that these two distributions are not very close to each other. For example, it appears

that very little daily movement on the market is more possible in the N-SV model than in

the LN SV model. The finding is quite interesting and may have important implications

for risk management.

As a final comparison of the performances of the two SV models, we obtain and compare

two filtered volatilities. To conserve space, we do not plot them but merely summarize the

results. In general, the two filtered volatilities are very close to each other when volatility
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Figure 2: Diagnostic checks of two SV models for dollar/pound exchange rate returns. The
first panel is the QQ-plot of the normalized residuals from the LN SV model; the second
panel is the QQ-plot of the normalized residuals from the N-SV model.

is not high. When volatility is high, the differences become large. Moreover, we find that

the two filter volatilities have a similar sample mean (0.995 versus 1.004) but the sample

variance of estimated volatilities is considerably smaller for the N-SV model (0.3297 versus

0.3782), indicating that while two models imply a similar level of long term variance the N-

SV model tends to generate a smoother volatility series. As we will see below, this property

has important implications on option pricing.
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5 Implications for Option Pricing

Probably the most important application of the SV model is the pricing of options. Under

a set of assumptions, Hull and White (1987) show that the value of a European call option

on stocks based on a general specification of stochastic volatility is the Black-Scholes price

integrated over the distribution of the mean volatility. Using the characteristic function

approach, Heston (1993) derives a closed form solution for a European call option based

on a square-root specification of volatility. For most other SV models, including our newly

proposed N-SV model, option prices have no closed form solution and hence have to be

approximated. A flexible way for approximating option prices is via Monte Carlo simula-

tions. For example, Hull and White (1987) design an efficient procedure of carrying out the

Monte Carlo simulation to calculate a European call option on stocks.

To examine the economic importance of our N-SV models on option pricing, we price

options using both the LN and N-SV models provided the true model is the estimated N-SV

model. To price options, we follow Mahieu and Schotman (1998).

Let C be the value of a European call option on a currency with maturity τ (measured

in number of days), strike price X, current volatility σ20, current exchange rate S0, and the

difference between the domestic and the foreign interest rates rd − rf . Under the same set

of assumptions in Hull and White (1987), it can be shown that

C = e−τrd
Z ∞

0

BS(wτ)pdf(wτ |h0)dwτ , (20)

where w2τ is given by

w2τ =

Z τ

0

g(hs, δ)ds, (21)

and BS(wτ) is the Black-Scholes price for a currency option

BS(wτ) = F0N(d1)−XN(d2), (22)

in which F0 = S0e
(rd−rf )τ is the forward exchange rate applying to time τ , d1 and d2 are

given, respectively, by

d1 =
ln(F0/X) + w2τ

wτ
, (23)
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Figure 3: Marginal densities of dollar/pound exchange rate volatility implies from the LN
SV model and the N-SV model. The solid line is for the LN SV model; the point line is for
the N-SV model.

d2 = d1 − wτ . (24)

In discrete time we have to approximate w2τ . In this paper we follow the suggestion of Amin

and Ng (1993):

w2τ ≈
nX
t=1

g(hi, δ), (25)

where n is the number of discrete time periods until maturity of the option. In this paper,

we choose the unit discrete time period to be one trading day and hence n (= τ) is the

number of trading days before the maturity.

19
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The Monte Carlo algorithm for calculating the value of a European call option on a

currency may be summarized as follows:

1. Obtain the initial value of h0 based on the initial value of σ20;

2. Draw independent standard normal variates νi for 1 ≤ i ≤ n;

3. Generate hi according to

hi = μ+ φ(hi−1 − μ) + σνi, for i = 1, ..., n;

4. Calculate w2τ using equation (25);

5. Calculate BS(wτ) using equation (22) and call it p1;

6. Repeat Steps 3-5 using {−νi} and define the value of BS(wτ) by p2;

7. Calculate the average value of p1 and p2 and call it y;

8. Repeat Steps 2-7 for K times and hence we should have a sequence of y’s;

9. Calculate the mean of y’s and this is the estimate of the option price.

Our algorithm is closely related to the one suggested by Mahieu and Schotman (1998),

but there are two differences. The first difference is we use an antithetic method in Step

6 to reduce the variance of simulation errors. Finally, we use a much larger value of K

(10,000 as opposed to 500) to ensure that the approximation errors in calculating equation

(20) are very small.

The algorithm is then applied to price a half-year call option based on the LN and

N-SV models with the estimated parameter values in Table 2 imposed.11 In both models,

we choose n = 126, S0 = 1.5, rd = 0, rf = 0, K = 10, 000, σ0 = 0.006349,12 and S0/X

11Since the parameter estimates reported in Table 2 are based on the scaled data, for the purpose of
pricing options, we have to scale the data back by multiplying the mean equation by the sample standard
error of raw data which equals 0.006321 for the dollar/pound exchange rate.
12This initial value of standard error is very close to the sample standard error of the dollar/pound

exchange rate and corresponds to a square root of volatility of 160% per year.
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takes each of the following values, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25. Table

4 compares the option prices and percentage differences between the prices based on the

two estimated SV models.

The main conclusion we draw from the table is that the LN SV model tends to overprice

the options. In fact the N-SV option price is always no bigger than the LN option prices.

This finding is not surprising because we have found that while both models have a similar

value of long term variance the N-SV model tends to generate a smoother volatility series.

Prices of all the out-of-money options based on the N-SV model are systematically lower

than those based on the LN model and the deep-out-of-the-money options show the largest

percentage of discrepancies. The differences in the percentage term are much smaller for

in-the-money options and eventually disappear when the in-the-money option goes very

deep. Since near out-of-money options where the strike price is within about 10% of the

spot price are traded very frequently over the counter and on exchanges, our results have

important practical implications.

Table 4
LN SV N- SV Percentage

S0/X Option Price Option Price Difference
0.75 2.401e-5 1.172e-5 -104.86
0.8 1.511e-4 1.032e-4 -46.41
0.85 8.645e-4 7.231e-4 -19.55
0.9 0.00415 0.00386 -7.513
0.95 0.01548 0.01507 -2.721
1 0.04257 0.04213 -1.044
1.05 0.08701 0.08661 -0.462
1.1 0.1413 0.1410 -0.213
1.15 0.1971 0.1969 -0.102
1.2 0.2504 0.2503 -0.040
1.25 0.3001 0.3001 0.000

6 Conclusions and Extensions

In this paper a class of nonlinear SV models has been proposed. The new class facilitates

comparing and testing all standard parametric SV models. Since these alternative para-
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metric SV models coexist in the literature, our approach is useful in the sense that it can

provide evidence to support or against some of the classical specifications. The MCMC

approach is developed to provide a likelihood-based inference for the analysis of proposed

models. Simulation studies confirm that the proposed MCMC algorithm works well for the

new models. Empirical applications are performed first using daily dollar/pound exchange

rate series. Empirical results show that all the standard SV models are rejected and hence

suggest evidence of nonlinear stochastic volatility. Furthermore, model diagnostics indicate

that, without sacrificing the overall goodness-of-fit the nonlinear SV model improves the fit

to the data when the market has little movement. Moreover, this nonlinearity has important

implications for pricing currency options. In particular the LN models tend to overprice

out-of-money options. The deeper the out-of-money options, the larger the percentage bias.

For all the other four major exchange rate series considered, the only standard “classical"

SV model which cannot be rejected is the LN model. As a result, daily exchange volatility

is well described by the LN distribution as its marginal distribution, consistent with the

results found in recent literature (Andersen et al. (2001)).

Although in this paper we focus on one-factor SV models which are, at the same time,

free of jumps, there are some possible extensions to our work. One possibility is to use

the suggested methodology to analyze stock data. However, since stock data often display

a strong volatility feedback feature as well as a higher kurtosis than that could be gener-

ated from the mixture of distributions, one has to incorporate a leverage effect and a fat

tail error distribution into the nonlinear SV model. Also, because equity data often have

more than one volatility factors (Gallant and Tauchen (2001)), one needs to apply the Box-

Cox transformation to all the factors. Other interesting extensions would be to incorporate

jumps and long memory volatility into the model; see for example Duffie, Pan and Singleton

(2000) and Breidt, Crato and De Lima (1998). Thirdly, although we implement our theory

based on the discrete time SV models in the connection with MCMC, one can estimate

the continuous time N-SV models using alternative estimation methods. Finally, it would

be interesting to evaluate the out-of-sample forecasting performances of the nonlinear SV

models relative to standard SV models.
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