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Abstract: Maximum likelihood predictive densities (MLPD) for a future lognormal obser-

vation are obtained and their applications to reliability and life testing are considered.

When applied to reliability and failure rate estimations, they give estimators that can be

much less biased and less variable than the usual MLEs obtained by replacing the unknown

parameters in the density function by their MLEs. When applied to lifetime predictions,

they give prediction intervals that are shorter than the usual frequentist intervals. Using the

MLPDs, it is also rather convenient to construct the shortest prediction intervals. Extensive

simulations are performed for comparisons. A numerical example is given for illustration.
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1 Introduction

The lognormal distribution may be one of the most versatile distributions. It

has been seen to have applications in many fields, such as agriculture, entomology,

economics, geology, industry and quality control. See Crow and Shimizu [1] or John-

son and Kolz [4, Ch14] for a complete account of the lognormal distribution. In

terms of life testing and reliability, the lognormal distribution is known as a serious

competitor to the Weibull distribution. A random variable (rv) X is said to have a

lognormal distribution if log X is distributed as normal with mean μ and standard

deviation σ. Hence, its probability density function (pdf) is of the form:

f(x; μ, σ) =
1√

2πσx
exp

{
− 1

2σ2
(log x − μ)2

}
, x > 0;−∞ < μ < ∞, σ > 0. (1)

Letting τ = exp(σ2), the mean, variance, skewness and kurtosis of the lognormal

distribution are, respectively, eμ, e2μτ (τ − 1), (τ − 1)1/2(τ +2) and τ 4 +2τ 3 + 3τ 2 − 6.

From the skewness expression, it is clear that the population skewness γ can go up

very fast as σ increases. For examples, when σ = 1, we have γ = 6.18, and when

σ = 2, we have γ = 414.4. Hence, from a practical point of view it is very unlikely to

have σ > 2 for the lognormal distribution.

As the logarithm of a lognormal random variable has a normal distribution,

many statistical methods, such as methods for computing statistical intervals, for the

normal distribution can be directly translated to suit for the lognormal distribution

[3, p207]. Problems related to reliability and failure rate of the lognormal have been

considered by Rohn [7] and Sweet [9], among the others. Dahiya and Guttman

[2] provided shortest confidence and prediction intervals for this distribution. The

Bayesian approach has also been used for estimating the mean of the lognormal [10],

estimating the reliability function [6], and constructing prediction intervals [8], etc.

In this article, the maximum likelihood predictive densities (MLPD) for a fu-

ture lognormal observation based on an independent past sample are derived. Based
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on these MLPDs, one can easily obtain estimators for the reliability and failure rate

functions and construct prediction interval (PI) and shortest prediction interval (SPI)

for a future observation. Yang [11] derived MLPDs for the inverse Gaussian distri-

bution and applied them to reliability and lifetime predictions. He showed that the

MLPD estimators of reliability possess smaller bias and mean squared error (MSE)

than the usual MLEs. The PIs obtained through the MLPDs can have much shorter

lengths than the usual frequentist PIs while preserving good coverage properties.

Section 2 derives the MLPDs for the lognormal distribution for the cases of one

or both parameters unknown. Section 3 discusses the applications of these MLPDs to

reliability and life testing studies, including the reliability and failure rate estimations,

and PI and SPI constructions. Extensive simulations are performed to compare the

MLPD estimators of reliability and failure rate with the usual MLEs obtained by

simply replacing the parameters in the pdf by their MLEs. A numerical example is

provided in Section 4 for illustration. Finally, a discussion is given in Section 5.

Compared with the usual maximum likelihood method, the MLPD method gives

reliability estimators with smaller bias and MSE, and failure rate estimators with

much smaller bias and MSE. This latter finding is quite promising as an accurate

estimation of the failure mechanism is very important to the reliability practitioners.

The MLPD method also gives prediction intervals with shorter length compared to

the usual frequentist PI though with slightly lesser coverage. One advantage of the

MLPD approach in constructing PIs is that it allows us to obtain shortest PIs in a

rather simple manner.

2 The MLPDs for the Lognormal Distribution

Let X = (X1, X2, . . . , Xn) be a sample of past observations from a lognormal

population with pdf specified in (1). Let Y or Xn+1, whichever convenient, be a future
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observation from the same population. According to Lejeune and Faulkenberry [5],

the maximum likelihood predictive density (MLPD) of Y given X = x is defined as,

f̃(y | x) ∝ max
θ

f(y; θ)f(x; θ), (2)

where θ = (μ, σ), or = μ, or = σ, representing the unknown parameter(s) of interest.

The joint pdf of X and Y can be written as

f(y; μ, σ)f(x; μ, σ) =
1

(
√

2πσ)n+1

(
n+1∏
i=1

1

xi

)
exp

[
− 1

2σ2

n+1∑
i=1

(log xi − μ)2

]
(3)

Maximizing (3) with respect to μ and σ, or μ only, or σ only, gives the MLPDs of Y

for the cases of both parameters unknown or one parameter unknown, respectively.

For the lognormal distribution, it is well known that the MLEs of μ and σ based on

the past sample are

μ̂n =
1

n

n∑
i=1

log Xi and σ̂n =
1

n

n∑
i=1

(log Xi − μ̂n)2,

and the restricted MLEs of μ for a given σ and of σ for a given μ are, respectively,

μ̂n(σ) = μ̂n and σ̂n(μ) =
1

n

n∑
i=1

(log Xi − μ)2.

We now derive the MLPDs by starting with the most practical case.

Case of both parameters unknown. Let μ̂n+1 and σ̂n+1 denote the MLEs of

μ and σ based on all the n + 1 observations. The joint pdf (3) achieves its maximum

at μ̂n+1 and σ̂n+1. Simple algebra shows that

μ̂n+1 =
1

n + 1

n+1∑
i=1

log Xi =
1

n + 1
log Y +

n

n + 1
μ̂n,

σ̂n+1 =
1

n + 1

n+1∑
i=1

(log Xi − μ̂n+1)
2 =

1

n + 1

[
n

n + 1
(log Y − μ̂n)2 + nσ̂2

n

]

Substituting μ̂n+1 and σ̂n+1 into (3), we have

f(y | x) ∝ max
μ,σ

f(y; μ, σ)f(x; μ, σ)
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∝ 1

(
√

2πσ̂n+1)n+1

(
n+1∏
i=1

1

xi

)
exp

[
− 1

2σ̂2
n+1

n+1∑
i=1

(log xi − μ̂n+1)
2

]

∝ 1

xn+1

(σ̂2
n+1)

−(n+1)/2

∝ 1

y

[
n

n + 1
(log y − μ̂n)2 + nσ̂2

n

]−(n+1)/2

∝ 1

y

[
1 +

(log y − μ̂n)2

(n + 1)σ̂2
n

]−(n+1)/2

,

Integrating the last expression (through a t-integration) gives the normalizing con-

stant and hence the final form of the MLPD for Y :

f̃ (y | x) =
Γ[(n + 1)/2]√

(n + 1)πσ̂nΓ(n/2)

1

y

[
1 +

(log y − μ̂n)2

(n + 1)σ̂2
n

]−(n+1)/2

(4)

Case of only μ unknown. When σ is known but μ is unknown, it is easy

to see that (3) is maximized at μ̂n+1, the restricted MLE of μ based on all n + 1

observations. Using the identity
∑n+1

i=1 (log xi− μ̂n+1)
2 = n

n+1
(log y− μ̂n)

2 +nσ̂n, some

simple algebra gives the MLPD for this case:

f̃(y | x; σ) =

√
n√

2(n + 1)πσ

1

y
exp

[
− n

2(n + 1)σ2
(log y − μ̂n)2

]
(5)

Case of only σ unknown. For the last case where μ is known but σ is

unknown, the maximum of (3) happens at σ̂2
n+1(μ) = 1

n+1

∑n+1
i=1 (log xi − μ)2, the

restricted MLE of σ for a given μ based on all n + 1 observations. Similar algebraic

work as in the case of both parameters unknown gives the MLPD:

f̃(y | x; μ) =
Γ[(n + 1)/2]√
nπσ̂n(μ)Γ(n/2)

1

y

[
1 +

(log y − μ)2

nσ̂2
n(μ)

]−(n+1)/2

(6)

Notice that the MLPD f̃(y | x; σ) for the σ known case is a lognormal and hence

its properties are well known. In particular, it is unimodal. The MLPDs f̃ (y | x) and

f̃(y | x; μ) for the other two cases have an identical structure

g(y) =
Γ[(n + 1)/2]√
nπσ∗Γ(n/2)

1

y

[
1 +

(log y − μ∗)2

nσ∗2

]−(n+1)/2

(7)
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which is termed by Dahiya and Guttman as the log-t distribution with n degrees of

freedom and with parameters μ∗ and σ∗. Their properties are summarized in the

following theorem.

Theorem 1. Let Y be a random variable having a log-t distribution with

pdf g(y) given in (7). We have,

i) g(y) is a decreasing function of y if σ∗ ≥ (n + 1)/2
√

n,

and has two stationary points y1 and y2 if σ∗ < (n + 1)/2
√

n;

ii) the two stationary points are, respectively, the local minima and maxima;

iii) the probability P (Y < y1) is negligible if n is large relative to σ∗.

Proof. Part i) of the theorem is from Dahiya and Guttman. Part ii) can be

proved by showing that d2g(y)/dy2 > 0 at y1 and < 0 at y2 which is easy following

the result of Dahiya and Guttman. To prove iii), notice that

c1 =
log y1 − μ∗

σ∗ = − 1

2σ∗

[
n + 1 +

√
(n + 1)2 − 4nσ∗

]

Hence P (Y < y1) = P (tn < c1) is negligible if n is large relative to σ∗, where tn

denotes a t random variable with n degrees of freedom.

The part ii) of the theorem simply says that as y moves from 0 to ∞, g(y) first

decreases down to the local minimum, then increases up to the local maximum, and

then decreases again down to zero. The last part of the theorem tells that the MLPDs

f̃(y | x) and f̃(y | x; μ) are essentially unimodal as in practice n is usually larger than

10 and σ is smaller than 2.

Given the MLPDs (4)-(6), it is easy to show, through t- or normal integrations,

that the cumulative MLPDs are:

F̃ (y | x) = Ψn

(
log t − μ̂n√
1 + n−1σ̂n

)
(8)

Appeared in:  .  Microelectronics Reliability, 2000, 40, 1051-1059.



PREDICTIVE DENSITIES FOR LOGNORMAL 7

F̃ (y | x; σ) = Φ

(
log t − μ̂n√
1 + n−1σ

)
(9)

F̃ (y | x; μ) = Ψn

(
log t − μ

σ̂n(μ)

)
(10)

where Ψn denotes the cumulative distribution function (CDF) of a t distribution with

n degrees of freedom, and Φ denotes the CDF of the standard normal distribution.

3 Applications to Reliability and Life Testing

The MLPDs can have many applications in studying the problems related to

reliability and life testing, such as reliability estimation, failure rate estimate, con-

structing prediction intervals, etc. No doubt, the simple forms of the MLPDs and

cumulative MLPDs derived earlier make these studies handy.

3.1 Reliability estimation

The reliability function of the lognormal distribution is seen to be of the form:

R(t) = 1 −Φ[(log t − μ)/σ]

The simplest method for estimating R(t) may be the maximum likelihood estimation

(MLE) method where the unknown parameter(s) are replace by their MLEs in the

expression of R(t). Thus, the MLEs for R(t) are,

R̂(t) = 1 − Φ[(log t − μ̂n)/σ̂n]

R̂(t, σ) = 1 − Φ[(log t − μ̂n)/σ]

R̂(t, μ) = 1 − Φ[(log t − μ)/σ̂n(μ)]

respectively for the cases of i) both parameters unknown, ii) only μ unknown, and

iii) only σ unknown.
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Now, considering the MLPDs derived in Section 2 as estimators of the unknown

pdf, we propose the MLPD estimators of the reliability function R(t) as

R̃(t) = 1 − F̃ (t | x)

R̃(t, σ) = 1 − F̃ (t | x, σ)

R̃(t, μ) = 1 − F̃ (t | x, μ),

respectively, for the three cases.

A comparison for both parameter unknown case. Clearly, comparing

two reliability estimators is one of the major themes of this paper. Since the case

of both parameters unknown is the most realistic case, we thus concentrate on this

situation for comparisons. Comparisons for the other cases can be carried out in

a similar way. An analytical comparison may be difficult, we thus turn to Monte

Carlo simulations to perform this task. For each of the sample size chosen, various

combinations of the parameter values are considered to give populations ranging from

moderately skewed to very skewed. For each parameter configuration, a number of

’time’ points are considered that cover a large portion of the population values. Each

row of the simulation results are based on 10, 000 samples generated from a specified

lognormal population. Table 1 lists the results for n = 10 and 20. The results show

that the MLPD estimator is generally less biased and less variable than the MLE,

especially when the population is very skewed. The bias of the MLPD estimator

can be much smaller than that of the MLE, especially when the population is very

skewed and the time point is within the middle 80% of the population. For example,

for the parameter configuration (n, μ, σ) = 10, 1.0, 2.0, the bias at t = 3.5 is −0.0038

for the MLE, but is only −0.0001 for the MLPD estimator. Increasing the sample

size reduces the discrepancies between the two methods.

All the simulations are carried out using F90 on a mainframe machine in the
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National University of Singapore. The IMSL subroutines ANORDF and TDF are used

for calculating the CDFs of the standard normal and t distributions. The Fortran

code is available from the author upon request.

3.2 Failure rate estimation

The failure rate function r(t) for the lognormal distribution has the form:

r(t) =
(
√

2πσx)−1 exp[−(log x − μ)2/(2σ2)]

1 −Φ[(log t− μ)/σ]
.

Its MLEs of are

r̂(t) =
(
√

2πσ̂nt)
−1 exp[−(log t − μ̂n)2/(2σ̂2

n)]

1 − Φ[(log t− μ̂n)/σ̂n]
,

r̂(t, σ) =
(
√

2πσt)−1 exp[−(log t − μ̂n)2/(2σ2)]

1 − Φ[(log t− μ̂n)/σ]
,

r̂(t, μ) =
(
√

2πσ̂n(μ)t)−1 exp[−(log t − μ)2/(2σ̂2
n(μ))]

1 −Φ[(log t − μ)/σ̂n(μ)]
,

respectively, for the cases of both parameters unknown, only μ unknown and only σ

unknown. The corresponding MLPD estimators of r(t) are given by:

r̃(t) =
kn(x)t−1[1 + (log t− μ̂n)2/((n + 1)σ̂2

n)]−(n+1)/2

1 − Ψn[(log t − μ̂n)/(
√

1 + n−1σ̂n)]
,

r̃(t, σ) =
kn(x, σ)t−1 exp[−n(log t − μ̂n)2/(2(n + 1)σ2)]

1 −Φ[(log t − μ̂n)/(
√

1 + n−1σ)]
,

r̃(t, μ) =
kn(x, μ)t−1[1 + (log t − μ)2/(nσ̂2

n(μ))]−(n+1)/2

1 −Ψn[(log t− μ)/σ̂n(μ)]
,

where kn(x), kn(x, σ) and kn(x, μ) are the normalizing constants given in (4)-(6).

A comparison for both parameters unknown case. Again, we concen-

trate on the case of both parameters unknown and use Monte Carlo simulations to

compare the performance of the two estimators of the failure rate. Similar parameter

configurations as in the reliability estimation case are used. The results are reported

in Table 2 for n = 10 and 20.
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Table 1: Simulation Results for Reliability Estimators

Bias MSE
n (μ, σ) t R(t) MLE MLPD MLE MLPD
10 (1.0, 0.5) 1.5 0.8828 0.0074 -0.0144 0.0059 0.0060

2.0 0.7303 0.0100 -0.0059 0.0140 0.0124
2.5 0.5665 0.0046 -0.0003 0.0193 0.0168
3.5 0.3066 -0.0118 0.0019 0.0154 0.0135
4.0 0.2199 -0.0121 0.0065 0.0113 0.0102
4.5 0.1567 -0.0101 0.0110 0.0081 0.0077

(1.0, 1.0) 1.0 0.8413 0.0104 -0.0107 0.0083 0.0078
2.0 0.6205 0.0106 0.0017 0.0179 0.0155
3.0 0.4607 -0.0030 -0.0001 0.0196 0.0170
4.0 0.3496 -0.0091 0.0017 0.0173 0.0150
5.0 0.2711 -0.0138 0.0021 0.0137 0.0121
6.5 0.1917 -0.0106 0.0093 0.0102 0.0093

(1.0, 1.5) 0.5 0.8705 0.0090 -0.0127 0.0066 0.0065
1.5 0.6541 0.0090 -0.0020 0.0166 0.0145
2.5 0.5223 0.0020 0.0004 0.0193 0.0167
4.5 0.3684 -0.0059 0.0034 0.0171 0.0149
6.0 0.2988 -0.0100 0.0040 0.0157 0.0138
9.5 0.2021 -0.0114 0.0080 0.0106 0.0096

(1.0, 2.0) 0.5 0.8014 0.0117 -0.0079 0.0104 0.0094
1.5 0.6169 0.0061 -0.0023 0.0177 0.0154
3.5 0.4497 -0.0038 -0.0001 0.0186 0.0162
6.5 0.3315 -0.0092 0.0027 0.0167 0.0146

11.5 0.2354 -0.0125 0.0053 0.0125 0.0111
15.0 0.1965 -0.0115 0.0082 0.0104 0.0095

20 (1.0, 0.5) 1.5 0.8828 0.0039 -0.0080 0.0031 0.0031
2.0 0.7303 0.0084 0.0000 0.0068 0.0063
2.5 0.5665 0.0003 -0.0021 0.0085 0.0079
3.5 0.3066 -0.0060 0.0011 0.0075 0.0069
4.0 0.2199 -0.0066 0.0033 0.0055 0.0052
4.5 0.1567 -0.0051 0.0062 0.0042 0.0041

(1.0, 1.0) 1.0 0.8413 0.0052 -0.0062 0.0043 0.0041
2.0 0.6205 0.0046 0.0001 0.0082 0.0076
3.0 0.4607 -0.0004 0.0011 0.0088 0.0081
4.0 0.3496 -0.0051 0.0004 0.0080 0.0074
5.0 0.2711 -0.0063 0.0020 0.0068 0.0064
6.5 0.1917 -0.0066 0.0041 0.0051 0.0048

(1.0, 1.5) 0.5 0.8705 0.0050 -0.0068 0.0034 0.0034
1.5 0.6541 0.0037 -0.0020 0.0080 0.0075
2.5 0.5223 0.0024 0.0015 0.0085 0.0079
4.5 0.3684 -0.0047 0.0002 0.0081 0.0075
6.0 0.2988 -0.0053 0.0020 0.0072 0.0067
9.5 0.2021 -0.0045 0.0058 0.0055 0.0052

(1.0, 2.0) 0.5 0.8014 0.0071 -0.0034 0.0054 0.0051
1.5 0.6169 0.0050 0.0007 0.0082 0.0077
3.5 0.4497 -0.0019 -0.0001 0.0086 0.0080
6.5 0.3315 -0.0059 0.0003 0.0077 0.0072

11.5 0.2354 -0.0059 0.0034 0.0061 0.0057
15.0 0.1965 -0.0049 0.0056 0.0052 0.0049
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The results are rather surprising: the MLPD estimator performs much better

than the MLE, almost uniformly across the time points. The bias and MSE of the

MLPD estimator can be much smaller than those of the MLE. For example, at the

parameter configuration (n, μ, σ, t) = (10, 1.0, 2.0, 15.0), the bias and MSE for the

MLPD estimator are 0.0012 and 0.0003, whereas for the MLE, they are 0.0138 and

0.0012, respectively. It seems that the MLPD estimator performs even better at the

two ends of the distribution. This is somehow in contrast to the MLPD estimator

for reliabilities. Increasing the sample size reduces the discrepancy between the two

estimators.

3.3 Prediction intervals

For the lognormal distribution, exact frequentist prediction internals (PI) for

the log of a future observation can easily be constructed based on the normal theory.

Exponentiate these intervals give PIs for the future observation in the original scale.

Let Zα/2 be the 100(α/2)% point of the standard normal distribution and tν(α/2)

be that for a t distribution with ν degrees of freedom. When both parameters are

unknown, an exact 100(1 − α)% PI for Y is given by:

exp
{
μ̂n ± tn−1(α/2)σ̂n

√
(n + 1)/(n − 1)

}
. (11)

When σ is known but μ is unknown, an 100(1 − α)% PI for Y has the form:

exp
{
μ̂n ± Zα/2σ

√
1 + n−1

}
. (12)

Finally, when μ is known but σ is unknown, an 100(1 − α)% PI for Y has the form:

exp
{
μ ± tn(α/2)σ̂n(μ)

√
1 + n−1

}
. (13)

The corresponding PIs based on the MLPDs can be easily constructed. An

equitailed PI for a future observation Y > 0 based on a predictive density p(y), say, is
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Table 2: Simulation Results for Failure Rate Estimators

Bias MSE
n (μ, σ) t r(t) MLE MLPD MLE MLPD
10 (1.0, 0.5) 1.5 0.2971 -0.0153 -0.0110 0.0248 0.0201

2.0 0.4525 0.0271 0.0062 0.0482 0.0390
2.5 0.5556 0.0806 0.0354 0.0936 0.0661
3.5 0.6544 0.1638 0.0479 0.1862 0.0808
4.0 0.6731 0.1946 0.0301 0.2439 0.0765
4.5 0.6807 0.2111 0.0002 0.2834 0.0647

(1.0, 1.0) 1.0 0.2876 -0.0041 -0.0071 0.0204 0.0168
2.0 0.3067 0.0360 0.0149 0.0234 0.0178
3.0 0.2872 0.0589 0.0264 0.0309 0.0182
4.0 0.2647 0.0655 0.0234 0.0324 0.0151
5.0 0.2444 0.0649 0.0154 0.0288 0.0108
6.5 0.2190 0.0673 0.0072 0.0295 0.0078

(1.0, 1.5) 0.5 0.3232 -0.0120 -0.0102 0.0285 0.0232
1.5 0.2506 0.0250 0.0094 0.0155 0.0121
2.5 0.2034 0.0341 0.0154 0.0132 0.0089
4.5 0.1516 0.0374 0.0145 0.0105 0.0052
6.0 0.1291 0.0331 0.0093 0.0075 0.0032
9.5 0.0978 0.0288 0.0033 0.0054 0.0016

(1.0, 2.0) 0.5 0.3479 0.0011 -0.0078 0.0274 0.0226
1.5 0.2063 0.0256 0.0111 0.0112 0.0084
3.5 0.1257 0.0260 0.0114 0.0059 0.0034
6.5 0.0842 0.0200 0.0062 0.0029 0.0014

11.5 0.0568 0.0162 0.0031 0.0017 0.0006
15.0 0.0470 0.0138 0.0014 0.0012 0.0003

20 (1.0, 0.5) 1.5 0.2971 -0.0071 -0.0055 0.0110 0.0097
2.0 0.4525 0.0138 0.0032 0.0168 0.0152
2.5 0.5556 0.0349 0.0149 0.0256 0.0220
3.5 0.6544 0.0722 0.0250 0.0489 0.0342
4.0 0.6731 0.0840 0.0185 0.0613 0.0374
4.5 0.6807 0.0877 0.0038 0.0637 0.0344

(1.0, 1.0) 1.0 0.2876 -0.0016 -0.0038 0.0084 0.0075
2.0 0.3067 0.0160 0.0063 0.0074 0.0066
3.0 0.2872 0.0236 0.0103 0.0078 0.0063
4.0 0.2647 0.0276 0.0109 0.0076 0.0056
5.0 0.2444 0.0257 0.0063 0.0068 0.0046
6.5 0.2190 0.0263 0.0030 0.0062 0.0036

(1.0, 1.5) 0.5 0.3232 -0.0089 -0.0084 0.0123 0.0109
1.5 0.2506 0.0119 0.0046 0.0050 0.0045
2.5 0.2034 0.0141 0.0060 0.0036 0.0030
4.5 0.1516 0.0158 0.0066 0.0026 0.0019
6.0 0.1291 0.0144 0.0049 0.0020 0.0014
9.5 0.0978 0.0120 0.0018 0.0013 0.0008

(1.0, 2.0) 0.5 0.3479 0.0006 -0.0046 0.0113 0.0102
1.5 0.2063 0.0120 0.0053 0.0035 0.0031
3.5 0.1257 0.0112 0.0052 0.0016 0.0012
6.5 0.0842 0.0084 0.0029 0.0007 0.0005

11.5 0.0568 0.0067 0.0015 0.0004 0.0003
15.0 0.0470 0.0057 0.0007 0.0003 0.0002
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defined as {L, U} such that
∫ L
0 p(y)dy = α/2 and

∫∞
U p(y)dy = α/2. Thus, when both

parameters are unknown, a 100(1 − α)% equitailed MLPD PI for a future lognormal

observation is defined as {Le, Ue} such that F̃ (Le | x) = α/2 and F̃ (Ue | x) = 1−α/2.

The resulted MLPD PI for Y is easily seen to be of the form:

exp
{
μ̂n ± tn(α/2)σ̂n

√
1 + n−1

}
. (14)

Similarly, the MLPD PI for the case of only μ unknown has the form:

exp
{
μ̂n ± Zα/2σ

√
1 + n−1

}
, (15)

and the MLPD PI for the case of only σ unknown is

exp {μ ± tn(α/2)σ̂n(μ)} . (16)

The MLPD PI for the σ known case is the same as the frequentist PI, and

the MLPD PIs for the other two cases are slightly different from the frequentist PIs.

Closer examination shows that in these two cases the MLPD PIs are shorter with

slightly lower coverage than the nominal levels. Again, we would like to concentrate

on the both parameters unknown case for comparisons. The coverage probability for

the frequentist PI is 1 − α and the coverage probability for the MLPD PI can be

calculated as follows:

CP = P{μ̂n − tn(α/2)σ̂n

√
1 + n−1 ≤ log Y ≤ μ̂n + tn(α/2)σ̂n

√
1 + n−1}

= P{−tn(α/2) ≤ log Y − μ̂n

σ̂n

√
1 + n−1

≤ tn(α/2)}

= P{−tn(α/2)
√

1 − n−1 ≤ tn−1 ≤ tn(α/2)
√

1 − n−1}.

The true coverage probability of the MLPD PI is slightly smaller than the nominal

levels. It depends only on n. The larger the n is, the closer the coverage probability

is to the nominal level. It can be easily calculated using a certain statistical software

such as MINITAB. For n = 10, the coverage probabilities for the 90%, 95% and
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Table 3: A Summary of the Ratio of the Interval Lengths

R
n α a b σ̂n = 0.5 1.0 1.5 2.0 2.5
10 0.1 6.6163 6.4769 1.0146 1.0226 1.0327 1.0436 1.0547

.05 10.2962 9.9415 1.0216 1.0364 1.0541 1.0726 1.0916

.01 28.4986 26.2276 1.0457 1.0868 1.1327 1.1807 1.2307
20 0.1 5.9438 5.9168 1.0032 1.0048 1.0069 1.0092 1.0115

.05 8.6490 8.5862 1.0046 1.0075 1.0110 1.0147 1.0184

.01 19.0865 18.7822 1.0090 1.0163 1.0244 1.0327 1.0410
50 0.1 5.6302 5.6265 1.0005 1.0007 1.0010 1.0013 1.0017

.05 7.9361 7.9278 1.0007 1.0011 1.0016 1.0021 1.0026

.01 15.8383 15.8031 1.0013 1.0023 1.0033 1.0045 1.0056

99% nominal levels are, respectively, 0.8804, 0.9363 and 0.9852; for n = 20, they are

0.8909, 0.9438 and 0.9879; and for n = 50, they are 0.8965, 0.9476 and 0.9892. This

shows that the coverages of the MLPD PIs are very close to the nominal level even

when n is very small. Now, we like to see how the two intervals compare in term of

the interval lengths. The ratio of the lengths of the frequentist and the MLPD PIs is:

R =
aσ̂n − a−σ̂n

bσ̂n − b−σ̂n

where a = exp[tn−1(α/2)
√

(n + 1)/(n − 1)] and b = exp[tn(α/2)
√

(n + 1)/(n)]. The

ratio R depends on the sample size n, the nominal level and the value σ̂n, but does

not depend on the value of μ̂n. It is easy to see that R is always larger than 1,

suggesting that the MLPD PI is always shorter than the frequentist PI. From the

results in Table 3 we see that R increases as α or σ̂n increases, but decreases to 1 as

n goes large. The frequentist PI can be as high as 23% longer than the MLPD PI.

Reducing the skewness of the population or increasing the sample size can reduce the

discrepancy between the two PIs significantly.

Appeared in:  .  Microelectronics Reliability, 2000, 40, 1051-1059.



PREDICTIVE DENSITIES FOR LOGNORMAL 15

3.4 Shortest prediction intervals

Let p(y) be a predictive density function of a random variable Y . Dahiya and

Guttman defines the shortest prediction interval of level 1−α for Y as {Ls, Us} such

that (i) P (Ls ≤ Y ≤ Us) = 1−α and (ii) for y1 ∈ {Ls, Us} and y2 � {Ls, Us}, p(y1) ≥
p(y2). In the case that the predictive density is unimodal, the conditions are reduced

to (i) p(Ls) = p(Us) and (ii)
∫ Us
Ls

p(y)dy = 1 − α.

When σ is known but μ is unknown, the MLPD f̃ (y | x; σ) is unimodal, hence

the shortest MLPD PI for Y is defined as {Ls(σ), Us(σ)} such that

Φ

{
log Us(σ) − μ̂n√

1 + n−1σ

}
− Φ

{
log Ls(σ)− μ̂n√

1 + n−1σ

}
= 1 − α

exp

{
[log Us(σ)− μ̂n]2 − [log Ls(σ) − μ̂n]

2

2(1 + n−1)σ2

}
=

Ls(σ)

Us(σ)
(17)

For the other two cases, the MLPDs are not unimodal, but are either purely

decreasing functions or functions with two stationary points. Hence the shortest

PIs are either one-sided, or sets consisting of two sub-intervals. In these cases, the

Theorem 4 of Dahiya and Guttman can be easily used to give MLPD SPIs.

Clearly, the shortest MLPD PIs should possess similar coverage properties as

the corresponding equitailed MLPD PIs. Thus, it is only necessary to compare the

length of the MLPD PI with that of the equitailed PI. The examples given in next

section will help to see the difference.

4 An Illustrative Example

The times to failures (in hours) for 20 guidance systems were considered by

Hanh and Shapiro (1967) to fit a lognormal distribution and again by Dahiya and

Guttman (1982) for illustrating their shortest prediction intervals. The data: 1, 4,

5, 6, 15, 20, 40, 40, 60, 93, 95, 106, 125, 151, 200, 268, 459, 827, 840, 1089, is quite
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Table 4: Results for the Guidance System Example

t R̂(t) R̃(t) r̂(t) r̃(t)
1 0.9817 0.9726 0.023013 0.027345
5 0.8997 0.8870 0.019685 0.019838

10 0.8241 0.8128 0.015807 0.015581
20 0.7197 0.7118 0.011785 0.011500
40 0.5920 0.5887 0.008257 0.008004
80 0.4537 0.4554 0.005498 0.005280

150 0.3325 0.3386 0.003668 0.003473
250 0.2451 0.2542 0.002585 0.002408
500 0.1493 0.1613 0.001568 0.001418

1000 0.0825 0.0953 0.000929 0.000808
2000 0.0412 0.0527 0.000540 0.000448
5000 0.0139 0.0222 0.000257 0.000198

skewed. The MLEs are μ̂n = 4.1511 and σ̂n = 1.9856, respectively. The estimated

values for the reliability and failure rate at 12 different time points are calculated

for both MLE and MLPD methods. The results are summarized in Table 4. From

the results we see that the MLE and MLPD estimators are quite conformable when

the time points are in the center half of the population. Significant discrepancies are

observed at the two end areas, particularly for the failure rate estimators. Figure

1 presents plots of the estimated reliability and failure rate functions based on this

data set. The plots clearly reveal the discrepancies of the two methods, particularly

for the failure rate functions.

Insert Figure 1 near here

The 90% frequentist, MLPD equitailed and MLPD shortest PIs are, respec-

tively, {1.7188, 2346.08}, {1.9003, 2122.18} and {0.0, 941.62}. Notice that the short-

est MLPD PI is one-sided and is much shorter than the other two PIs. This indicates

the need for constructing the shortest possible prediction interval for a very skewed

distribution.
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5 Discussions

Continuing on the work of Yang [11] for the inverse Gaussian distribution, the

usefulness of the MLPD approach in reliability and life testing studies is demonstrated

once more by the lognormal distribution. Closed and simple forms of the MLPD and

cumulative MLPD exist for lognormal distribution, which makes it technically more

attractive than the inverse Gaussian distribution. The good property of the MLPD

estimator of the failure rate deserves more attention and more detailed investigations.

Furthermore, this property signals the feasibility of obtaining better reliability and

failure rate estimators for other lifetime distributions besides lognormal and inverse

Gaussian.
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