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Abstract

Maximum likelihood predictive densities (MLPD) for the inverse Gaussian distribution

are derived for the cases of one or both parameters unknown. They are then applied to

obtain estimators of the reliability function and prediction or shortest prediction intervals for

a future observation. Comparisons with the existing likelihood or frequentist methods show

that the MLPD estimators of reliability gives smaller bias and smaller MSE for a wide range

of population values, and that the MLPD prediction intervals are shorter while preserving

the correct coverage probability. The shortest MLPD prediction intervals further sharpen the

above equitailed MLPD intervals in terms of interval lengths.

Keywords: Inverse Gaussian distribution; maximum likelihood predictive density; prediction

intervals; reliability; shortest prediction intervals.
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1 INTRODUCTION

In studying the reliability and life testing of a product or device, one often needs to estimate

the reliability at a certain time or construct prediction intervals (PI) or bounds for the lifetime

of a new product or device. The inverse Gaussian (IG) distribution has been proven to be a very

suitable model for such studies (see, for example,[2, 9, 11]) as it arises as the first passage time

distribution of a Brownian motion, which is suitable for describing many physical phenomena such

as the time to fatigue of a metal specimen and the time to failure of an electronic component,

etc.. It is well known that this distribution is a very useful alternative to the popular lifetime

distributions such as Weibull, gamma and lognormal. Its probability density function (pdf),

denoted by IG(μ, λ) usually takes the following form:

f(y; μ, λ) = (λ/2πy3)1/2 exp[−λ(y − μ)2/2μ2y], y > 0; μ > 0, λ > 0. (1.1)

The mean, variance, skewness and kurtosis of this distribution are, respectively, μ, μ3/λ, 3
√

μ/λ,

and 15μ/λ. Thus, λ is a scale parameter, and μ is a location and scale parameter. Let Y and Ỹ

be respectively the arithmetic and harmonic means of the past sample. The maximum likelihood

estimators (MLE) of μ and λ are, respectively, μ̂ = Y and λ̂ = 1/(Ỹ −1−Y
−1). The restricted MLE

of μ for given λ is μ̂(λ) = Y and of λ for given μ is λ̂(μ) = nμ2/Q where Q =
∑n

i=1(Yi − μ)2/Yi.

The popularity of this distribution can be seen from a large number of research articles

already existed in the literature and two special monographs [6, 17]. Chhikara and Folks [6, p156]

give a discussion on why and when the inverse Gaussian distribution is better than the other

distributions such as lognormal in reliability studies. Many known properties that parallel those

of the normal distribution may be another reason why the IG distribution is so attractive. It

is known that in many of the reliability and life testing studies, it is necessary to estimate the

unknown pdf. There many ways to do so, namely, the maximum likelihood method, nonpara-

metric method, Bayesian method and fiducial method. In this article, we consider the maximum

likelihood predictive density (MLPD) [13] as an estimator of the unknown pdf and then apply it
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to obtain an estimator of the reliability function and to obtain prediction intervals (PI) or shortest

prediction intervals (SPI) [8] for a future observation.

Reliability estimation for the IG distribution has been considered by [4, 5] where MLE and

MVUE of the reliability were considered and compared, by [14, 18] where confidence bounds on

reliability were obtained, and by [1, 15] where Bayes estimation of reliability were considered. Jain

and Jain [12] proposed estimating IG reliability function using Weibull distribution as the two

distributions are well-known competitors of each other. Since the MLPD estimator is similar in

nature to the MLE, we will restrict our comparisons between these two. Monte Carlo simulation

results show that the MLPD estimator generally outperforms the MLE as it gives smaller bias

and smaller MSE for a wide range of population values.

Exact PIs for a future IG observation were obtained by [7]. These intervals can be very

wide and are of two-sided only. The PIs obtained from the MLPD overcome these drawbacks as

they can be both one-sided and two-sided, and the interval lengths can be much shorter than the

exact frequentist PIs. Furthermore, the MLPD SPIs can readily be obtained, which can further

shorten up the equitailed MLPD PIs significantly. Simulations show that the MLPD PIs preserve

excellent coverage properties. Numerical examples are given to illustrate the MLPD estimator of

the reliability and the MLPD PIs and SPIs.

In Section 2, we derive the MPLDs for a future IG observation based on a past sample from

the same population. Section 3 applies these MLPDs to obtain estimators of the reliability function

and presents some numerical examples and simulation results for illustrations and comparisons.

Section 4 applies the MLPDs to obtain PIs and SPIs for a future observation, and evaluates the

performance of these intervals using Monte Carlo simulations. Section 5 gives some discussions.

2 MLPDs FOR THE IG DISTRIBUTION

Speaking about the methods of estimating a pdf, the simplest one may be the maximum
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likelihood method, in which the MLE of the unknown pdf is obtained by replacing the unknown

parameters by their MLEs. Although this approach is simple, it often gives liberal PIs [10].

The MLPD differs from the MLE in that it maximizes the joint pdf of both past and future

observations. It was introduced in 1982 by Lejeune and Faulkenberry [13]. It, however, has not

received as much attention since then as it deserved, hence it is the purpose of this paper to

explore its usefulness in the context of reliability estimation and lifetime prediction for the IG

distribution. The formal definition of the MLPD for a future observation is as follows.

Let Y = (Y1, Y2, ..., Yn) be a sample of past observations and Yn+1 be a future observation,

from a population with pdf f(y; θ) indexed by a vector of parameters θ. The MLPD for T = Yn+1

based on Y = y is defined as

f̂ (t | y) ∝ max
θ

f(t; θ)f(y; θ), (2.1)

where f(t; θ) is the pdf of T , and f(y; θ) is the joint pdf of Y. Clearly, a closed-form expression for

an MLPD depends on the existence of explicit solutions for the maximum of (2.1). This is clearly

not a problem for the IG distribution. Lejeune and Faulkenberry provided a theorem stating the

MLPD possesses the usual large sample property in the sense that it converges as n goes large

to the pdf of T . They also gave conditions (though stringent) under which the MLPD and the

Bayesian prediction density are equivalent. It should be noted that the definition of the MLPD is

not restricted to the case of a single future observation, it can be any function of a future sample.

Now, the joint pdf of T and Y for the case of IG distribution can be written as

f(t; θ)f(y; θ) =
(

λ

2π

)n+1
2

n+1∏
i=1

y
− 3

2
i exp

[
− λ

2μ2

n+1∑
i=1

(yi − μ)2

yi

]
. (2.2)

Maximum of (2.2) with respect to μ or λ or both gives the MLPD of T . The closed-form expres-

sions for the MLEs or the restricted MLEs make it very easy for finding the maximum of (2.2).

Now, let μ̂∗(λ) and λ̂∗(μ) be the restricted MLEs, and μ̂∗ and λ̂∗ be the unrestricted MLEs based

on all n + 1 observations. When μ is unknown but λ is known, the maximum of (2.2) occurs

at μ̂∗(λ). Substituting μ̂∗(λ) into (2.2) for μ and rearranging the terms to make t explicit, one
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obtains the MLPD as follows,

f̃(t | y; λ) = k(y, λ)t−
3
2 exp

[
−λ

2

{
1
t

+
n

ỹ
− (n + 1)2

t + ny

}]
. (2.3)

When λ is unknown but μ is known, (2.2) is maximized at λ̂∗(μ). Similar manipulations

give the MLPD for this case as

f̃ (t | y; μ) = k(y, μ)t−
3
2

{
1 +

(t − μ)2

qt

}−n+1
2

. (2.4)

When both μ and λ are unknown, the maximum of (2.2) occurs at (μ̂∗, λ̂∗). Substituting

μ̂∗ and λ̂∗ into (2.2) for μ and λ, followed by some tedious algebra, gives the MLPD

f̃ (t | y) = k(y)t−
3
2

{
n

ỹ
+

1
t
− (n + 1)2

t + ny

}−n+1
2

. (2.5)

The normalizing constants k(y, λ), k(y, μ) and k(y) for the MLPDs can be found through either

integration or numerical integration. The MLPD (2.4) is seen to be the same as the Bayesian

predictive density of Chhikara and Guttman [7] where the constant k(y, μ) was shown to be

μ/
√

qβ(1/2, n/2). There are no closed form expressions for k(y, λ) and k(y), hence the use of

numerical integration is necessary, which can be done easily using many statistical software such

as Mathematica. Now, we summarize the properties of the MLPDs (2.3)-(2.5).

Theorem 2.1. The MLPDs defined in (2.3)-(2.5) are such that, for each fixed y, i) they

are all proper probability density functions; ii) they are all unimodal, provided n > 2 in (2.4) and

(2.5); iii) for (2.3) and (2.5) all k ≥ 1 moments are infinite; and for (2.4) the kth moment exists

provided that n > 2k − 2.

Proof: For i), it is easy to see that as t → 0, f̃(t | y; λ) → 0, and f̃(t | y; μ) and f̃(t | y)

are of order O(tn/2−1), hence they are integrable in [0, 1]. As t → ∞, all three functions are of

order O(t−3/2) or smaller, hence are integrable in [1,∞). Thus, all three functions are integrable

and hence proper pdfs.
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For ii), when n > 2, f̃(t | y; μ) and f̃(t | y) also converge to 0 as t → 0. Unimodality follows

by further showing that the derivative for each of the (2.3)-(2.5) has one and only one change of

sign. We choose the most realistic case (both parameters unknown) to give a detailed proof. The

other two cases can be handled in a similar way. We have,

∂f̃(t | y)
∂t

=
f̃(t | y)

2t

{
n

ỹ
+

1
t
− (n + 1)2

(t + ny)

}−1 {
c(t)

t(t + ny)2
− 3n

ỹ

}
,

where c(t) = (n − 2)(t + ny)2 + 3(n + 1)2t(t + ny) − (n + 1)3t2. Hence the problem reduces to

show that the functions c(t) has one and only one change of sign as all the other parts are either

positive functions of t or constants. It is easy to show that d2c(t)/dt2 = 2n(4 − n2) < 0, which

means that c(t) is strictly concave. Further c(0) = (n − 2)n2y2 > 0 and c(∞) = −∞, hence c(t)

has one and only one change of sign.

For iii), as t → ∞, f̃ (t | y; λ) and f̃(t | y) are of order O(t−3/2), and f̃(t | y; μ) is of order

t−(n+4)/2. Hence for (2.3) and (2.5) all k ≥ 1 moments are infinite, whereas for (2.4) the kth

moment exists provided k < (n + 2)/2.

It should be noted that Bayesian predictive densities are available for all the three cases

considered above [7]. Thus, one might be interested in considering the Bayesian predictive density

as an estimator of the pdf and use it for the reliability estimation, etc..

3 APPLICATION TO RELIABILITY ESTIMATION

The reliability function of a distribution is simply defined as R(t) = 1 − F (t), where F (t)

is the cumulative density function of a random variable T . For the IG distribution, the R(t) was

shown to be related to the cdf Φ of the standard normal random variable as follows

R(t; μ, λ) = Φ

⎛⎝√
λ

t

(
1− t

μ

)⎞⎠ − e2λ/μΦ

⎛⎝−
√

λ

t

(
1 +

t

μ

)⎞⎠ . (3.1)

Plots of R(t; μ, λ) and f(t; μ, λ) for different combinations of values of μ and λ are given in

Figure 3.1. Clearly, when parameter(s) are unknown, one can easily obtain the MLE of R(t; μ, λ)
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by replacing the unknown parameter(s) by their MLE(s). This leads to the MLE of R(t; μ, λ) as

R̂(t; μ) = R(t; μ, λ̂(μ)) when λ is unknown, R̂(t; λ) = R(t; μ̂(λ), λ) when μ is unknown, and R̂(t)

= R(t; μ̂, λ̂) when both μ and λ are unknown, where μ̂(λ) and λ̂(μ) are the restricted MLEs, and

μ̂ and λ̂ are the MLEs, given in the introduction.

(Insert Figure 3.1 near here)

Alternatively, one can easily obtain estimators of R(t; μ, λ) for various situations by con-

sidering the MLPD as an estimator of the unknown pdf. Thus, the MLPD estimators of the

reliability function are defined as

R̃(t; μ) = 1 −
∫ t

0
f̃(x | y; μ)dx, (3.2)

R̃(t; λ) = 1 −
∫ t

0
f̃(x | y; λ)dx, (3.3)

R̃(t) = 1 −
∫ t

0
f̃(x | y)dx, (3.4)

for the cases of i) μ known but λ unknown, ii) λ known but μ unknown, and iii) both μ and λ

unknown. There are other estimators of the reliability function for the IG distribution, such as

the MVUE given by Chhikara and Folks [4]. However, our MLPD estimator has close analogy to

the MLE, hence we restrict our comparisons between these two estimators.

To see the performance of the MLPD estimators of R(t), we first apply them to a couple

of real data sets. The estimated R(t)’s are then plotted together with the corresponding MLEs

in Figure 3.2. Though the estimation of R(t) from both methods requires only the values of

n and the MLEs of the parameters, the original data are provided for completeness. The one

parameter known cases can be handled by using the estimated value as the true value for the

MLPD estimator. However, it can not be done in the same way for the MLEs, hence comparison

can only be done for the case of both parameters unknown. In the first example, the two methods

give slightly different estimates of R(t), while in the second example, the two estimates are very

similar.

(Insert Figure 3.2 near here)
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Example 3.1. Fatigue lives (in hours) for 10 bearings tested on a certain tester [3]: 152.7,

172.0, 172.5, 173.3, 193.3, 204.7, 216.5, 234.9, 262.6, 422.6. The MLEs are μ̂ = 220.48 and λ̂ =

2708.86. The data is slightly skewed to the right.

Example 3.2. 46 repair times (in hours) for an airborne communication transceiver [6,

p139]: .2, .3, .5, .5, .5, .5, .6, .6, .7, .7, .7, .8, .8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0,

2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5.

The MLEs for the parameters are μ̂ = 3.61 and λ̂ = 1.6667. The data is skewed to the right.

It may be interesting to compare the two estimators when it is known which population the

data came from. To this end, one data set is generated from a known IG population by computer

simulation so that one can compare directly the estimated R(t)’s with the ’true’ one. The ’known’

R(t) and the estimated ones are plotted together in Figure 3.3.

Example 3.3. Simulated Data. Fifteen observations are generated from an IG(1,1) pop-

ulation: 0.9144, 0.2517, 0.6506, 0.9421, 0.9112, 0.2515, 0.5057, 0.9760, 1.5257, 0.5819, 0.4591,

0.6711, 0.3103, 0.3733, 0.3696. The resulted arithmetic and harmonic means are, respectively,

y = 0.6463, and ỹ = 0.4936. Plots of the pdf and R(t), and the estimated pdfs and R(t)’s are

given in Figure 3.3 for the cases of one parameter unknown and both parameters unknown. It is

seen from the plots that the two estimators perform very similarly.

(Insert Figure 3.3 near here)

Numerical examples can not tell the actual performance of the estimators in terms of bias

and the mean square error (MSE), etc.. Hence we now turn our attention to the Monte Carlo

simulations. Specifically, the bias and MSE of the ML and MLPD estimators are simulated for

many different combinations of μ and λ values at several time points. The algorithm described

in [6, p52] is used for generating inverse Gaussian random variates. Each row of the simulation

results is based on 10,000 random samples. The results are summarized in Tables 3.1. Notice

that the selected time points cover a very wide region of the population values (about 80%). The
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Table 3.1: Simulated biases and MSEs of the ML and MLPD Estimators of R(t)

(μ, λ) n t value r(t) bias(MLE) bias(MLPD) MSE(MLE) MSE(MLPD)
(1.0, 0.25) 10 0.3 0.5446 0.0000 0.0036 0.0166 0.0141

0.5 0.4001 -0.0132 0.0029 0.0156 0.0133
1.0 0.2384 -0.0237 0.0048 0.0104 0.0088
1.5 0.1657 -0.0247 0.0079 0.0073 0.0063
2.0 0.1237 -0.0204 0.0137 0.0051 0.0048

20 0.3 0.5446 0.0017 0.0043 0.0071 0.0065
0.5 0.4001 -0.0068 0.0024 0.0066 0.0061
1.0 0.2384 -0.0150 0.0009 0.0050 0.0045
1.5 0.1657 -0.0152 0.0033 0.0037 0.0034
2.0 0.1237 -0.0129 0.0068 0.0028 0.0027

(1.0, 1.0) 10 0.3 0.8343 0.0114 -0.0082 0.0082 0.0074
0.6 0.5536 0.0041 0.0044 0.0176 0.0151
0.9 0.3750 -0.0122 0.0025 0.0163 0.0141
1.2 0.2628 -0.0179 0.0049 0.0129 0.0114
1.5 0.1892 -0.0167 0.0103 0.0095 0.0088

20 0.3 0.8343 0.0067 -0.0041 0.0044 0.0042
0.6 0.5536 0.0029 0.0026 0.0080 0.0073
0.9 0.3750 -0.0054 0.0013 0.0075 0.0069
1.2 0.2628 -0.0083 0.0027 0.0060 0.0056
1.5 0.1892 -0.0097 0.0038 0.0047 0.0044

(1.0, 4.00) 10 0.5 0.8884 0.0091 -0.0127 0.0055 0.0055
1.0 0.4056 -0.0059 0.0022 0.0176 0.0152
1.5 0.1407 -0.0098 0.0135 0.0072 0.0071

20 0.5 0.8884 0.0037 -0.0082 0.0030 0.0030
0.8 0.5877 0.0031 0.0002 0.0084 0.0078
1.1 0.3318 -0.0061 0.0007 0.0074 0.0068
1.4 0.1753 -0.0067 0.0051 0.0046 0.0044

simulation results clearly favor the MLPD approach as smaller bias and MSE are observed. It is

interesting to note that the ML approach often underestimates R(t), whereas the MLPD approach

almost always slightly overestimates R(t).

4 APPLICATION TO LIFETIME PREDICTION

Prediction based on a known density is very simple. For example, a 95% PI for a future

observation T is simply defined as (a, b) such that
∫ a
−∞ f(t)dt = 0.025 and

∫ ∞
b f(t)dt = 0.025,

where f is the known pdf. This idea can easily be carried over to the case when f is unknown

and is estimated by f̂ , say. The resulted 95% PI is thus (â, b̂) such that
∫ â
−∞ f̂(t)dt = 0.025 and
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∫ ∞
b̂

f̂(t)dt = 0.025. The f̂ is usually referred to as the predictive density. When the predictive

density is unimodal, the 95% SPI based on f̂ (t) is defined as (ã, b̃) such that f̂(ã) = f̂(b̃) and

∫ b̃
ã f̂ (t)dt = 0.95 [8].

When prediction of a future observation is of concern, exact frequentist PIs are available

in [7]. However, as indicated in the introduction, these intervals can be too long and they are of

two-sided only. To overcome these difficulties, we derive the MLPD PIs of T for various situations,

i.e., one parameter unknown and both parameters unknown, and compare them with the exact

frequentist ones. Note that the notation T and Yn+1 are now inter-changeable.

Using the MLPD, a 100(1 − α)% equitailed MLPD PI for T is defined as (Le(Y), Ue(Y))

such that ∫ Le(Y)

0
f̂ (t | y)dt = α/2, and

∫ ∞

Ue(Y)
f̂(t | y)dt = α/2. (4.1)

When f̂(t | y) is unimodal as it is the case for the inverse Gaussian MLPDs, a 100(1−α)%

SPI [8] based on the MLPD f̂(t | y) is defined as {Ls(Y), Us(Y)} such that

f̂(Ls(Y) | y) = f̂(Us(Y) | y), and
∫ Us(Y)

Ls(Y)
f̂(t | y)dt = 1 − α. (4.2)

The data sets considered in Examples 3.1 and 3.2 are used again to illustrate the new

intervals and to compare them with the frequentist ones. Again the knowledge of the sample size

and the MLEs are sufficient for the calculations of the PIs. The assumed ’known’ parameter value

is taken to be its estimated value. The 90%, 95% and 99% PIs are calculated. The results are

summarized in Table 4.1. The results from the two examples show that MLPD PIs are generally

superior to the exact frequentist PIs in the sense that they provide shorter and sometime much

shorter intervals. The more skewed the data is, the larger the difference between the two types

of intervals in general. The shortest MLPD PIs further reduce the interval length significantly,

indicating the usefulness of the concept of the SPI.

It should be noted that the IG distribution not only applies to the fatigue life data, but also

to some other situations as long as the physical situation is conformable with the notion of the
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Table 4.1: Summary of Prediction Intervals for the Two Examples

Shortest MLPD PI MLPD PI Frequentist PI
Ex. 1-α Lower Upper Lower Upper Lower Upper

μ 3.1 0.90 118.4065 324.8901 132.5839 349.7623 136.5621 363.9824
unknown 0.95 108.3470 359.3695 121.4952 385.1988 125.0446 401.2984

0.99 91.5024 438.3416 102.8815 466.4547 105.6602 486.3372
3.2 0.90 0.1160 9.1213 0.3635 14.2858 0.4659 32.0564

0.95 0.0998 14.2918 0.2873 20.8617 0.3526 45.1257
0.99 0.0795 32.3827 0.1919 42.0887 0.2211 85.7317

λ 3.1 0.90 112.2316 324.1150 125.8338 346.0465 132.2020 367.7056
unknown 0.95 97.9738 359.8110 111.8942 385.0154 117.9987 411.9660

0.99 69.5364 449.7630 86.3496 484.7282 91.8448 529.2778
3.2 0.90 0.1012 8.5671 0.3471 13.0987 0.4525 28.8017

0.95 0.0852 13.1103 0.2712 18.5284 0.3381 38.5493
0.99 0.0657 26.9080 0.1751 34.0275 0.2056 63.3901

μ and λ 3.1 0.90 108.6992 333.8017 124.7491 362.0935 126.0114 397.8592
unknown 0.95 94.4503 375.4503 110.5725 408.8904 111.2539 458.1544

0.99 67.8166 487.6629 85.5138 536.9749 84.5699 635.4311
3.2 0.90 0.0990 9.0617 0.3475 14.3194 0.4439 33.9674

0.95 0.0658 14.3288 0.2718 21.0506 0.3314 48.8461
0.99 0.0738 32.4225 0.1755 43.6147 0.2014 99.1124

first passage time of a Brownian motion. Thus, the MLPD PIs are also applied to some other data

sets such as the Maximum Flood Level data in [3]; Strike Duration data for transport industry

and metal manufacture industry in [6]. The basic considerations for having more examples are to

see the effects of sample size and skewness. The results (not reported) generally agree with the

results from the two examples given above.

The advantage can finally be given to the MLPD approach only when coverage properties

of the PIs be assessed, which is what is going to be done next. Fitted models from several data

sets, including the two data sets considered in Examples 3.1 and 3.2, are used as the true models

for generating IG random variates. It is seen that these models cover various sample sizes and

population skewness. The simulation process for prediction can be simply described as follows. In

each run, a random sample of size n+1 is generated. The first n observations are used as the past

sample and the last one is treated as the future observation. The MLPD, shortest MLPD and

frequentist PIs are calculated based on the past sample, and then checked whether containing the
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future observation. The lengths of the intervals are also recorded. For 10,000 runs, the proportion

of the intervals covering the future observation and the average length of the 10,000 intervals are

recorded, and are used as, respectively, the Monte Carlo estimates of the coverage probability and

the expected interval length. The above overall process is repeated for several different parameter

settings and nominal levels. The simulation results given in Table 4.2 show that the MLPD PIs

have coverage probabilities very close to the nominal levels, and can have lengths much shorter

than the frequentist PIs.

5 DISCUSSIONS

Maximum likelihood predictive densities for the inverse Gaussian distribution are derived

and applied to reliability and lifetime predictions. Numerical examples and Monte Carlo simula-

tions show that this approach is quite promising as it gives reliability estimators with smaller bias

and MSE than the MLE approach, and it gives shorter prediction intervals for a future observa-

tion than the frequentist approach. Thus, this approach deserves more attention than it actually

does. In particular, more general reliability and life testing problems may be studied using this

approach, such as prediction concerning a future sample and prediction in the framework of the

inverse Gaussian regression. The MLPD approach is somehow similar to the Bayesian approach.

Lejeune and Faulkenberry [13] have provided conditions (though stringent) for its Bayesian equiv-

alence. However, to many practitioners the MLPD approach may be more attractive as there is

no need of discussions for prior distributions. Calculations of the MLPD estimator of reliability

function and MLPD prediction intervals require numerical integrations which seem to hinder the

application of this approach. However, simple numerical subroutines, such as Fortran IMSL, exist

for such tasks. For those who are relatively unfamiliar with programming languages, powerful and

yet user-friendly statistical softwares, such as Mathematica, exist, which make the applications

of the MLPD approach very easy. Note that all the plots in this paper were produced by Mathe-

matica 3.0. Numerical integration is involved in the process of evaluating every point in each plot
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Table 4.2: Summary of Simulation Results for Prediction Intervals

MLPD PI Frequentist PI
n μ λ 1 − α C. Prob. A. Length C. Prob. A. Length

μ unknown
10 220.48 2708.86 0.90 0.8985 217.1935 0.8980 227.5845

0.95 0.9499 264.2519 0.9492 276.9224
0.99 0.9891 366.4443 0.9884 383.6481

20 0.423 5.66 0.90 0.8977 0.3865 0.8957 0.4041
0.95 0.9519 0.4667 0.9508 0.4878
0.99 0.9900 0.6344 0.9908 0.6626

198 7.229 2.670 0.90 0.9039 27.6632 0.9036 69.1206
0.95 0.9470 40.7535 0.9450 93.9296
0.99 0.9900 79.9240 0.9920 159.8345

λ unknown
10 220.48 2708.86 0.90 0.9055 215.8108 0.9075 232.2444

0.95 0.9515 265.5278 0.9525 287.5875
0.99 0.9903 386.8654 0.9902 427.6287

20 0.423 5.66 0.90 0.9010 0.3841 0.9021 0.4059
0.95 0.9479 0.4674 0.9483 0.4948
0.99 0.9919 0.6568 0.9912 0.7005

46 3.61 1.6667 0.90 0.9021 12.6470 0.9007 28.2361
0.95 0.9500 18.1195 0.9484 38.1523
0.99 0.9894 33.6108 0.9886 63.1917

102 1.012 0.119 0.90 0.9060 4.4365 0.8990 25.7640
0.95 0.9620 7.7926 0.9590 35.8619
0.99 0.9910 19.6666 0.9860 61.3512

198 7.229 2.670 0.90 0.8973 27.0092 0.8987 66.3844
0.95 0.9534 39.5709 0.9532 89.4437
0.99 0.9909 75.5424 0.9906 146.0763

both μ and λ unknown
10 220.48 2708.86 0.90 0.8985 217.1935 0.8980 227.5845

0.95 0.9499 264.2519 0.9492 276.9224
0.99 0.9891 366.4443 0.9884 383.6481

20 0.423 5.66 0.90 0.8977 0.3865 0.8957 0.4041
0.95 0.9519 0.4667 0.9508 0.4878
0.99 0.9900 0.6344 0.9908 0.6626

198 7.229 2.670 0.90 0.9039 27.6632 0.9036 69.1206
0.95 0.9470 40.7535 0.9450 93.9296
0.99 0.9900 79.9240 0.9920 159.8345
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of the reliability functions. The complicated multi-plots in Figures 3.1-3.3 can be finished in less

than a minute if a 300 MHz PC is used.
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also greatly appreciated.

REFERENCES

1. Akman, O. and Huwang, L., Bayes computation for reliability estimation. IEEE Trans.

Reliability, 1997, 46, 52-55.

2. Bhattacharyya, G. K. and Fries, A., Fatigue failure models - Birnbaum-Saunders vs. inverse

Gaussian. IEEE Trans. Reliability, 1980, R-31, 439-440.

3. Cheng, R. C. H. and Amin, N. A. K., Maximum likelihood estimation of parameters in the

inverse Gaussian distribution with unknown origin. Technometrics, 1981, 23, 257-263.

4. Chhikara, R. S. and Folks, J. L., Estimation of the inverse Gaussian distribution. J. Amer.

Statist. Assoc., 1974, 69, 250-254.

5. Chhikara, R. S. and Folks, J. L., The inverse Gaussian distribution as a lifetime model.

Technometrics, 1977, 19, 461-468.

6. Chhikara, R. S. and Folks, J. L., The Inverse Gaussian Distribution: Theory, Methodology

and Applications. Marcel Dekker, Inc. New York and Basel, 1989.

7. Chhikara, R.S. and Guttman, I., Prediction limits for the inverse Gaussian distribution.

Technometrics, 1982, 24, 319-324.

8. Dahiya, R.C. and Guttman, I., Shortest confidence and prediction intervals for the log-

normal. Canadian J. Statist., 1982, 10, 277-291.

14

Appeared in:  Microelectronics Reliability, 1999, 39, 1413-1421.



9. Desmond, A. F., Local Maxima of Stationary Stochastic Processes and Stochastic Modelling

of Fatigue. Unpublished PhD thesis, University of Waterloo, 1983.

10. Geisser S., Predictive Inference: An Introduction. Chapman & Hall, New York London,

1991.

11. Goh, G. J., Tang, L. C. and Lim, S. C., Reliability modelling of stochastic wear-out failure.

Reliability Engineering and Systems Safety, 1989, 25, 303-314.

12. Jain, R. K. and Jain, S., Inverse Gaussian distribution and its application to reliability.

Microelectron. Reliab., 1996, 36, 1323-1335.

13. Lejeune, M. and Faulkenberry, G. D., A simple predictive density function. J. Amer. Statist.

Assoc., 1982, 77, 654-659.

14. Padgett, W. J., Confidence bounds on reliability for the inverse Gaussian model. IEEE

Trans. Reliability, 1979, R-28, 165-168.

15. Padgett, W. J., Bayes estimation of reliability for the inverse Gaussian model. IEEE Trans.

Reliability, 1981, R-30. 384-385.

16. Padgett, W. J., An approximate prediction interval for the mean of future observations from

the inverse Gaussian distribution. J. Statist. Comput. Simul., 1982, 14, 191-199.

17. Seshadri, V., The inverse Gaussian distribution: A case study in exponential family. Claren-

don Press · Oxford, 1993.

18. Tang, C. L. and Chang, D. S. Reliability bounds and tolerance limits of two inverse Gaussian

models. Microelectron. Reliab., 1994, 34, 247-259.

15

Appeared in:  Microelectronics Reliability, 1999, 39, 1413-1421.




