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Abstract. A simple and unified prediction interval (PI) for the median of a future lifetime

can be obtained through a power transformation. This interval usually possesses the correct

coverage, at least asymptotically, when the transformation is known. However, when the

transformation is unknown and is estimated from the data, a correction is required. A

simple correction factor is derived based on large sample theory. Simulation shows that

the unified PI after correction performs well. When compared with the existing frequentist

PI′s, it shows an equivalent or a better performance in terms of coverage probability and

average length of the interval. Its nonparametric aspect and the ease of usage makes it very

attractive to practitioners. Real data examples are provided for illustration.
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1 Introduction

Prediction concerning future lifetimes is an important topic in reliability and

medical studies. Examples include predicting the safe life of a electronic device and

the recurrence times of diseases. The future median life is often called the ’typical

life’ in practice. It is thus useful to consider the prediction of this median life to gain

information on the lasting time of a future electronic component, remaining life of a

certain patient, etc. There are many distributions that can be used to model lifetimes.

The most popular ones include the exponential, Weibull, gamma, lognormal, and

inverse Gaussian.

Inference methods used for lifetime data, such as prediction, still faces some

practical problems. For example, i) for many lifetime distributions, an exact or ap-

proximate frequentist prediction interval (PI) for a future median life is not available;

ii) in practice, it is often not clear which distribution that the observations have come

from and hence model selection can be a problem for practitioners; iii) the existing

frequentist PI may be unsatisfactory or may be too complicated to be implemented

in practice; iv) standard normal-theory linear model inference methods can not be

used for the lifetime analysis, etc. Hence it is highly desirable to have a unified PI

for a future median life that works for any lifetime distribution.

The Box-Cox transformation (Box and Cox, 1964) aims to transform positive

continuous data to near normality so that standard normal theory inference meth-

ods can be applied. Lifetimes are positive, continuous and the median of a lifetime

distribution is transformable under a one-to-one transformation. Hence, if the ob-

servations can be transformed to normality, then the usual method gives a PI for

the mean/median of a transformed future observation and a simple inverse transfor-

mation gives a PI for the median of the original future observation. Clearly, this

interval is correct for any sample size when exact normality can be achieved and is
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only asymptotically correct when a certain form of symmetry (mean = median) can

be achieved by the transformation. When the transformation parameter is unknown,

a common practice (Hahn and Meeker, 1991, p72) is to replace it by its estimator

and treat the resultant interval as the correct one, i.e., ignore the variability from

estimating the transformation. No doubt, if this approach works, it gives a simple

and unified PI as no specification is necessary for the exact form of the lifetime dis-

tribution. However, as we shall argue in this paper, such extra variability can not be

ignored and a correction of this interval needs to be made.

Yang (1999b) applied the Box-Cox transformation technique to give a simple

and unified PI for a future lifetime and showed that this unified PI often meets or

outperforms the existing frequentist PI′s. Similar performance can be expected for

the unified PI for a future median life as the two problems are similar in nature.

However, there are major differences between the two problems: the first concerns a

random variable, where the second concerns a parameter. The latter is often called a

confidence interval. We call it a prediction interval since we are stressing the ”future”

performance. Section 2 introduces the Box-Cox PI for a future median life obtained

by a simple substitution of the transformation estimator. Section 3 presents some

large sample theory concerning the performance of the Box-Cox PI. Through this

theory, a simple correction factor is introduced. Section 4 presents some simulation

results regarding the small sample performance of the adjusted Box-Cox PI, which is

also called the unified PI in this article. Section 5 presents some real life examples to

illustrate the applications of this unified PI. Section 6 is a general discussion on the

results obtained and their implications to reliability and medical studies.

The unified PI is shown to possess asymptotically correct coverage. Monte

Carlo simulations show that it also possesses good coverage properties even when

the sample sizes are not large. The new interval is also compared with the existing
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frequentist PI′s through simulation and real data examples and is found to be superior

or equivalent. The main attractivenesses of the new interval are its simplicity and

unified/nonparametric nature, which make it very appealing to practitioners.

2 The Box-Cox Prediction Interval

Let Y = (Y1, Y2, . . . , Yn) be a sample of past observations from a lifetime distri-

bution with probability density function (pdf) represented by g(y; θ), where θ is the

parameter vector. Let Y0 be a future observation from the same distribution. We are

interested in constructing a unified PI for

δ0 = Median(Y0)

based on the observed value of Y. The Box-Cox transformation technique provides

a solution to this problem. We now outline the Box-Cox method for constructing

prediction intervals for the median of a future lifetime observation.

For a positive random variable Yi, Box and Cox (1964) proposed a parametric

family of power transformations:

h(Yi, λ) =

{
Y λ

i −1

λ
, λ �= 0,

log Yi, λ = 0,
(2.1)

and assumed that there exists a λ such that h(Yi, λ) has an N(μ, σ2) distribution for

some μ and σ. This assumption leads to the maximum likelihood estimators (MLE)

of (λ, μ, σ) as follows:

μ̂(λ̂) =
1

n
1′nh(Y, λ̂) ≡ h̄(Y, λ̂),

σ̂(λ̂) =
1√
n
‖h(Y, λ̂) − h̄(Y, λ̂)1n‖ (2.2)

λ̂ = arg min
�

Ẏ −�‖h(Y, �) − h̄(Y, �)1n‖,

where 1n is a column vector of 1′s and Ẏ is the geometric mean of the (Y1, · · · , Yn).

Strictly speaking, μ̂, σ̂, and λ̂ are not the MLE′s unless the original observations
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came from the lognormal distribution. Thus, they are often called the Box-Cox

estimators (Yang 1999a, b). When λ is assumed known, the restricted MLE′s of μ

and σ are, respectively, μ̂(λ) and σ̂(λ).

Box and Cox suggested that, once an estimated transformation λ̂ is obtained,

one should use λ̂ for the transformation and treat the transformed observations

h(Y1, λ̂), · · · , h(Yn, λ̂) as normal; hence, normal-theory inference methods can be ap-

plied. This method, called the Box-Cox transformation method, has proven to be

very useful in statistical methodology development and application promotions. Yang

(1999b) investigated properties of the PI for Y0 itself obtained by this method and

found that this interval outperforms or meets the corresponding frequentist PI′s for

some popular lifetime distributions such as the gamma, Weibull, lognormal, inverse

Gaussian and Birnbaum-Saunders.

In predicting Eg[h(Y0, λ)], the mean of the transformed future observation, the

Box-Cox transformation method suggests that the following pivotal quantity

T (λ) =
μ̂(λ) − Eg[h(Y0, λ)]

σ̂(λ)/
√

n − 1

should have a t distribution with n − 1 degrees of freedom. A 100(1 − α)% PI for

Eg[h(Y0, λ)] can be easily obtained by standard normal theory:

{
μ̂(λ) ± tn−1(α/2)σ̂(λ)/

√
n − 1

}
(2.3)

Now, the power transformation is monotonic. If the transformed observations are

symmetrically distributed, we then have

Eg[h(Y0, λ)] = Median[h(Y0, λ)]

= h[Median(Y0), λ]

= h(δ0, λ).
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Based on the above, a simple inverse transformation of the interval (2.3) gives a

100(1 − α)% PI for δ0:

{
1 + λ

[
μ̂(λ) ± tn−1(α/2)σ̂(λ)/

√
n − 1

]}1/λ
. (2.4)

It is obvious that the interval (2.4) is correct for any sample size if exact normality

can be achieved by the transformation and is asymptotically correct as long as the

mean and median of the transformed observations are the same. This indicates that,

unlike the case of predicting Y0 itself, the exact normality may not be so important

to the performance of the PI for δ0, especially when n is not small.

Finally, when λ is unknown and is estimated by λ̂, a common practice is to

replace λ in (2.4) by λ̂ and the resulted PI for δ0 becomes,

{
1 + λ̂

[
μ̂(λ̂) ± tn−1(α/2)σ̂(λ̂)/

√
n − 1

]}1/λ̂
, (2.5)

or exp[μ̂(0)± tn−1(α/2)σ̂(0)/
√

n − 1] when λ̂ = 0. The interval given by (2.5) will be

referred to in this article as the Box-Cox prediction interval.

Clearly, for the PI (2.5) to have correct coverage asymptotically, it is necessary

that the pivotal quantity

T (λ̂) =
μ̂(λ̂) − h(δ0, λ̂)

σ̂(λ̂)/
√

n − 1

converges to standard normal. Unfortunately, this is not true as shown in Section 3,

hence a correction is necessary.

3 Large Sample Behavior of the Box-Cox PI

The PI (2.5) is simple and easy to implement. It is unified in the sense that it

works with any distribution having a domain of the positive half real line. However,

its analytical properties remain unknown. In particular, its coverage properties and

interval size are not known. We now provide some large sample results for the limiting
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behavior of this PI. Let τ 2 be the asymptotic variance of
√

n(λ̂ − λ), hλ and hλλ be

the first and second partial derivatives of h(y, λ) with respect to λ, and h̄λ and h̄λλ

be the corresponding averages.

Theorem 3.1 Suppose i) E[h(Y0, λ)] = h(δ0, λ); ii) λ̂ →p λ and
√

n(λ̂ − λ)/τ →d

N(0, 1); iii) Eg[hλ(Yi, λ)] and Eg[h(Yi, λ)hλ(Yi, λ)] both exist; and iv) h̄λλ(Y, λ) =

Op(1). Then,

T (λ̂) →d N(0, 1 + c2)

where c = τ{Eg[hλ(Y0, λ)]−hλ(δ0, λ)}/σ. If, further, the first six moments of h(Yi, λ)

are the same as those of N(μ, σ2) and λσ/(1 + λμ) is small, then c ≈ 1/
√

6.

The proof of Theorem 3.1 is given in the Appendix. The result of Theorem 3.1 is

an important one. It demonstrates that the prediction interval for the future median

obtained in the regular way does not have the correct coverage. This is true even

when n is large, due to the estimation of the transformation. It quantifies the effect

of estimating the transformation by a simple constant and suggests that the Box-Cox

PI for δ0 given in (2.5) should be corrected to be of the form

{
1 + λ̂

[
μ̂(λ̂) ± ktn−1(α/2)σ̂(λ̂)/

√
n − 1

]}1/λ̂
, (3.1)

which becomes exp[μ̂(0) ± ktn−1(α/2)σ̂(0)/
√

n − 1] when λ̂ = 0, where

k =
√

1 + c2 ≈
√

1 + 1/6.

Thus, k ≈ 1.0801, which is significantly larger than one, and this certainly can not

be ignored for any sample size. For example, for n = 20, t19(0.05) = 1.7291, but

kt19(0.05) = 1.8676, showing a significant difference. It is easily inferred that the

Box-Cox PI is too short if no correction is made. To contrast with the Box-Cox

PI given in (2.5), the interval (3.1) will be referred to as the Unified Prediction
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Interval or adjusted Box-Cox prediction interval. The approximate value for c is

obtained under the assumption that λσ/(1 + λμ) is small. This is not unrealistic

since the positiveness of Yi implies the positiveness of 1 + λh(Yi, λ), which in turn

implies λσ � (1 + λμ). See Yang (1999a) for a detailed discussion on this.

Note that with the Box-Cox power transformation the condition i) of Theorem

3.1 is true for lognormal and Birnbaum-Saunders distribution (Yang, 1999b). It may

not be exactly true for the other distributions such as the Weibull and gamma, but

this is not a problem of practical concern. Usually, the transformed observations are

nearly symmetrically distributed as symmetry is one of the goals that the Box-Cox

transformation intends to achieve. Also, estimation methods specifically designed for

achieving symmetry have been discussed by, among others, Taylor(1985).

4 Small Sample Behavior of the Unified PI

Theorem 3.1 shows that the unified PI given by (3.1) has the correct cover-

age when n is large. When n is small, its behavior is investigated by Monte Carlo

simulation. Random numbers Y1, Y2, · · ·Yn are first generated from one of the life-

time distributions. The estimate λ̂ is then obtained and the original observations

are transformed according to this estimated power transformation. Finally the PI is

calculated. Various popular lifetime distributions such as the Weibull, gamma, log-

normal, inverse Gaussian and Birnbaum-Saunders are considered. For each parameter

configuration, 10,000 PI′s are generated and the number of PI′s covering δ0 is divided

by 10,000 to give a Monte Carlo estimate of the coverage probability. The average

length of these 10,000 intervals is also recorded to give a measure of the expected

length of the Box-Cox prediction interval.

Exact or approximate PI′s are available for the lognormal (Hahn and Meeker,

1991, p56), Weibull (Nelson, 1982, p232) and gamma (Lawless, 1982, p216) distri-
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butions. Also, a distribution-free method has been reported in the literature, see

for example Hahn and Meeker (1991, p82). The PI for the gamma is based on the

likelihood ratio test that is too complicated to be used in practice. We thus compare

the Box-Cox PI only with the Weibull, lognormal and distribution-free PI′s. The

distribution-free PI is conservative in the sense that it has a coverage probability

larger than the nominal level. Hence, for comparison and for checking the exact cov-

erage probabilities of the approximate PI′s (Weibull and distribution-free), we also

record the results for these three intervals. There is another reason why we record

the results for the ”wrong” PI′s: we wish to see what happens when none of the PI′s

listed is the correct one.

Lognormal random sample. This is the case that is of greatest interest

as the assumptions of the theorem are completely satisfied and an exact frequentist

PI exists. The difference between the unified and exact PI′s thus reflects the pure

effect of estimating the transformation. The μ and σ in the table represent the mean

and standard deviation of the logged observation. When σ increases, the population

skewness increases quickly. The simulated coverage probability (C.P.) and average

length (A.L.) of the PI′s are summarized in Table 4.1. The results show that the

Unified PI performs very well. The C.P.s and A.L.s are all very close to those of the

exact PI in all cases. Simulation was also carried out for n = 30, 50, 100 and 200

cases. The results (not reported) show that as n increases, the C.P. approaches the

nominal level. This agrees with the theory. From Table 4.1, we also see that using

the Weibull interval for lognormal data will result in a PI with a very poor coverage.

The distribution-free PI is indeed very conservative, especially when n is very small,

with its interval length being as much as several times longer than that of the unified

PI. For example, when n = 10 and σ = 2, the 99% distribution-free PI has an A.L.

of 130.64 with a C.P. of 0.9982, whereas the corresponding values for the unified PI
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are 28.85 and 0.9907, respectively.

Table 4.1: Simulation Results for the Lognormal Distribution

Unified PI Lognormal PI Weibull PI Dist.-Free PI
(μ, σ) 1-δ C.P. A.L. C.P. A.L. C.P. A.L. C.P. A.L.

1.0, 0.5 .90 .8898 1.60 .9018 1.58 .7950 1.41 .9364 2.60
.95 .9476 2.01 .9493 1.95 .8636 1.67 .9778 2.92
.99 .9923 3.00 .9895 2.90 .9439 2.24 .9983 4.84

1.0, 1.0 .90 .8836 3.50 .8957 3.42 .7926 3.27 .9312 6.72
.95 .9472 4.48 .9441 4.36 .8579 3.98 .9774 7.13
.99 .9901 7.29 .9907 6.86 .9436 5.42 .9981 14.45

1.0, 1.5 .90 .8937 6.07 .8983 5.89 .7856 6.01 .9288 14.55
.95 .9477 8.05 .9517 7.82 .8618 7.47 .9787 15.03
.99 .9914 14.61 .9900 13.87 .9376 10.83 .9985 41.92

1.0, 2.0 .90 .8889 9.90 .9044 9.52 .7874 10.27 .9317 30.89
.95 .9511 13.74 .9487 13.26 .8576 13.13 .9789 30.79
.99 .9907 28.85 .9888 26.73 .9406 20.12 .9982 130.64

n = 10 ↑ n = 20 ↓
1.0, 0.5 .90 .8884 1.09 .9000 1.05 .7504 0.99 .9236 1.50

.95 .9506 1.33 .9511 1.28 .8490 1.19 .9622 1.65

.99 .9892 1.85 .9905 1.76 .9357 1.57 .9923 2.47
1.0, 1.0 .90 .8936 2.29 .9008 2.20 .7559 2.26 .9196 3.33

.95 .9472 2.79 .9496 2.68 .8373 2.69 .9573 3.58

.99 .9921 3.95 .9897 3.76 .9416 3.59 .9920 5.82
1.0, 1.5 .90 .8967 3.67 .9007 3.48 .7628 3.85 .9221 5.75

.95 .9477 4.57 .9500 4.34 .8354 4.69 .9603 6.05

.99 .9923 6.74 .9901 6.35 .9381 6.43 .9945 11.11
1.0, 2.0 .90 .9007 5.39 .8974 5.06 .7555 6.03 .9244 9.21

.95 .9483 6.85 .9462 6.43 .8385 7.44 .9603 9.48

.99 .9903 10.75 .9900 9.95 .9337 10.59 .9930 20.32
C.P.=coverage probability, A.L.=average length.

Weibull random sample. The Weibull distribution may be one of the most

frequently used lifetime distributions in practice. However, a satisfactory and easy-

to-use PI still does not seem to have been obtained. We use the one reported in

Nelson (1982, p232) for comparison. The cumulative distribution function takes the

form F (y) = 1 − exp[−(y/β)ν]. The three different parameter configurations results

in small to large population skewness. The simulation results summarized in Table

4.2 show that the unified PI clearly outperforms the Weibull PI in terms of both

coverage probability and average length of the intervals. The Weibull PI can perform
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Table 4.2: Simulation Results for the Weibull Distribution

Unified PI Weibull PI Lognormal PI Dist.-Free PI
(ν, β) 1-α C.P. A.L. C.P. A.L. C.P. A.L. C.P. A.L.

1.0, 5.0 .90 .8886 4.56 .8492 4.36 .8860 4.42 .9362 7.95
.95 .9494 5.76 .9061 5.36 .9539 5.74 .9818 8.55
.99 .9909 8.85 .9616 7.53 .9904 9.59 .9981 14.12

0.5, 5.0 .90 .8912 8.20 .8463 8.16 .8866 7.29 .9345 20.43
.95 .9449 11.25 .9026 10.94 .9494 10.83 .9771 21.25
.99 .9914 21.50 .9601 18.09 .9895 25.51 .9981 50.10

0.1, .01 .90 .8896 5.1 .8556 10.3 .8951 3.8 .9364 1422.
.95 .9480 16.4 .9028 40.2 .9493 28.3 .9792 1402.
.99 .9895 392.3 .9578 1200.6 .9898 18125. .9981 845697.

n = 10 ↑ n = 20 ↓
1.0, 5.0 .90 .8864 3.09 .8655 3.04 .8469 2.85 .9197 4.48

.95 .9446 3.77 .9272 3.66 .9238 3.50 .9583 4.85

.99 .9905 5.26 .9740 4.97 .9865 5.04 .9925 7.40
0.5, 5.0 .90 .8936 4.82 .8710 4.97 .8475 3.91 .9175 8.29

.95 .9458 6.06 .9264 6.21 .9239 5.05 .9590 8.63

.99 .9900 9.23 .9749 9.20 .9868 8.29 .9927 16.23
0.1, 5.0 .90 .8928 77.6 .8724 99.8 .8479 25.2 .9163 1242.6

.95 .9446 179.8 .9255 215.2 .9316 61.6 .9585 1339.6

.99 .9903 944.5 .9748 1539.8 .9870 658.8 .9924 27398.6

rather poorly when the sample size is small and when the data is very skewed. For

example, when n = 10 and ν = 0.1, the 99% Weibull PI has C.P. and A.L. 0.9578 and

1200, respectively, compared with 0.9895 and 392.3 for the unified PI. The lognormal

PI performs in a rather unstable way as it is a wrong PI for the Weibull data. It

performs well when the logarithm of the Weibull is close to normal, but otherwise

poorly. Again, the distribution-free PI can give a very conservative and long interval.

Notice that for the Weibull density, the symmetry condition is not satisfied with the

power transformation, which may give rise to extra effects, but the simulation results

do not show any significant effect due to this lack of symmetry.

Inverse Gaussian random sample. The emphasis here and in the following

gamma case is to address the following questions: what will happen when none of the

PI′s is the right one and what is the performance of each of them? The pdf is of the

form [β/(2πy3)] exp[−β(y−ν)2/(2ν2y)]. The simulation results show that the unified
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Table 4.3: Simulation Results for the Inverse Gaussian Distribution

Unified PI Weibull PI Lognormal PI Dist.-Free PI
(ν, β) 1-α C.P. A.L. C.P. A.L. C.P. A.L. C.P. A.L.

1.0, 4.0 .90 .8919 0.50 .7855 0.44 .8978 0.49 .9349 0.81
.95 .9477 0.62 .8598 0.52 .9482 0.61 .9755 0.91
.99 .9905 0.93 .9407 0.69 .9907 0.89 .9970 1.48

0.5, 1.0 .90 .8843 0.31 .7842 0.28 .8998 0.31 .9351 0.55
.95 .9418 0.39 .8568 0.34 .9455 0.38 .9767 0.60
.99 .9905 0.61 .9361 0.45 .9878 0.58 .9976 1.01

1.0, 1.0 .90 .8765 0.73 .7641 0.68 .8936 0.72 .9360 1.40
.95 .9422 0.93 .8444 0.82 .9472 0.91 .9778 1.49
.99 .9881 1.48 .9358 1.09 .9891 1.39 .9978 2.70

4.0, 1.0 .90 .8770 2.85 .7257 2.94 .8889 2.95 .9350 7.42
.95 .9416 3.56 .8158 3.57 .9444 3.79 .9798 7.60
.99 .9900 6.81 .9291 4.94 .9909 6.28 .9977 17.99

n = 10 ↑ n = 20 ↓
1.0, 4.0 .90 .8886 0.34 .7457 0.31 .9009 0.33 .9243 0.47

.95 .9478 0.42 .8316 0.37 .9479 0.39 .9555 0.52

.99 .9907 0.57 .9343 0.49 .9904 0.55 .9934 0.78
0.5, 1.0 .90 .8815 0.21 .7347 0.20 .9014 0.20 .9203 0.30

.95 .9471 0.26 .8270 0.24 .9507 0.25 .9561 0.33

.99 .9892 0.36 .9301 0.31 .9911 0.34 .9930 0.50
1.0, 1.0 .90 .8904 0.48 .7141 0.46 .8976 0.46 .9216 0.72

.95 .9409 0.59 .8031 0.56 .9469 0.57 .9563 0.77

.99 .9884 0.83 .9244 0.74 .9909 0.79 .9930 1.25
4.0, 1.0 .90 .8772 1.67 .6191 1.88 .8752 1.74 .9191 2.87

.95 .9374 2.09 .7378 2.25 .9390 2.14 .9602 2.97

.99 .9866 3.08 .8886 3.08 .9877 3.11 .9919 5.67

PI still performs very well. The Weibull PI performs rather poorly. It is interesting

to note that the lognormal PI performs very well, and it is superior to the unified

PI. This is due to the fact that the best normalizing transformation for the inverse

Gaussian observations is often close to the log transformation (Yang, 1999b). The

distribution-free PI performs as usual: conservatively with a long interval length. As

in the Weibull case, this case also does not satisfy the symmetry condition with the

power transformation, but the mean and median are very close if the population is

not very skewed. See the last section for illustrations of this.

Gamma random sample. We finally use the gamma distribution to check

the performance of the four PI′s when none of them are exactly correct. Here β is
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Table 4.4: Simulation Results for the Gamma Distribution

Unified PI Weibull PI Lognormal PI Dist.-Free PI
(ν, β) 1-α C.P. A.L. C.P. A.L. C.P. A.L. C.P. A.L.

4.0, 1.0 .90 .8946 2.17 .8197 1.91 .8956 2.13 .9328 3.3695
.95 .9469 2.69 .8827 2.28 .9494 2.65 .9769 3.8397
.99 .9910 3.98 .9517 3.06 .9910 3.94 .9983 6.0408

2.0, 1.0 .90 .8906 1.46 .8337 1.33 .8924 1.43 .9322 2.3698
.95 .9466 1.82 .8953 1.59 .9507 1.79 .9811 2.6213
.99 .9899 2.72 .9531 2.16 .9895 2.75 .9974 4.1636

1.0, 1.0 .90 .8912 0.91 .8482 0.87 .8893 0.88 .9354 1.5844
.95 .9447 1.15 .8995 1.08 .9469 1.16 .9793 1.7290
.99 .9895 1.78 .9591 1.51 .9915 1.93 .9983 2.8282

0.5, 1.0 .90 .8819 0.50 .8572 0.52 .8815 0.48 .9320 1.0086
.95 .9442 0.66 .9107 0.66 .9471 0.67 .9790 1.0519
.99 .9906 1.10 .9616 1.05 .9918 1.43 .9986 1.8889

n = 10 ↑ n = 20 ↓
4.0, 1.0 .90 .8844 1.50 .8349 1.36 .8811 1.43 .9187 2.0241

.95 .9464 1.83 .8908 1.63 .9444 1.74 .9584 2.2439

.99 .9907 2.51 .9618 2.16 .9895 2.40 .9912 3.2829
2.0, 1.0 .90 .8922 1.00 .8464 0.94 .8732 0.94 .9159 1.3845

.95 .9460 1.22 .9080 1.13 .9360 1.15 .9565 1.5155

.99 .9915 1.68 .9686 1.50 .9891 1.61 .9925 2.2613
1.0, 1.0 .90 .8872 0.62 .8737 0.61 .8553 0.57 .9212 0.8946

.95 .9448 0.76 .9262 0.73 .9266 0.70 .9592 0.9687

.99 .9915 1.06 .9740 1.00 .9886 1.01 .9929 1.4861
0.5, 1.0 .90 .8762 0.32 .8875 0.38 .8041 0.27 .9208 0.5206

.95 .9386 0.40 .9328 0.41 .9093 0.35 .9593 0.5479

.99 .9892 0.57 .9798 0.60 .9850 0.55 .9920 0.8987

the scale parameter and ν is the shape parameter. The results in Table 4.4 show that

the unified PI is quite robust against changes of distributional shape. The Weibull

PI again performs poorly although better than in the case of the inverse Gaussian

random samples. The lognormal PI performs well when the data is not so skewed, but

deteriorates quite significantly when data is very skewed. For example, when n = 20

and ν = 0.5, the 90% lognormal PI has a coverage of only 80.41%.

Note that for the Weibull, inverse Gaussian and gamma distributions, simulation

is also carried out for the cases of sample sizes 30 and 50. All the simulation results

(not reported) are similar to the case of n = 20. The coverage probability does not

seem to improve much for the unified PI as the sample size increases. This reflects
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the effect of asymmetry after transformation. This problem can be resolved by either

introducing a bias correction factor or by working with a different transformation

family which gives symmetric property.

5 Numerical Examples

We now present three real life examples to illustrate the Box-Cox PI and to

compare it with the frequentist and distribution-free PI′s. All the three data sets

have been used extensively for lifetime data analysis.

Example 5.1: Insulating Fluid Data. Nelson (1982, p228) reported data,

representing the times to breakdown of an insulating fluid in an accelerated test at

different test voltages for illustrating the statistical intervals for the Weibull. We

take the data corresponding to voltage of 32kV: 0.270 0.400 0.690 0.790 2.750 3.910

9.880 13.949 15.930 27.799 53.239 82.847 89.282 100.575 215.099. This data is small

(n = 15) and is moderately skewed to the right as the sample skewness γ̂ = 1.7452.

Example 5.2: Ball Bearing Data. The following data set, the endurance

of deep groove ball bearings, is probably one of the most frequently used data set in

literature for illustrating the applications of lifetime distributions. It can be found

from Chhikara and Folks (1989, p73): 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48,

51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12,

105.84, 127.92, 128.04, 173.40. This data is of medium sized (n = 23) and is slightly

skewed to the right as the sample skewness γ̂ = 0.9206.

Example 5.3: Repair Time Data. Repair times (in hours) for an airborne

communication transceiver were given in Chhikara and Folks (1989, p139) where a .5

was missed from the original paper: .2, .3, .5, .5, .5, .5, .6, .6, .7, .7, .7, .8, .8, 1.0,

1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0,

4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5. This data set is fairly large
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Table 5.1: Prediction Intervals based on Real Data Sets

Corrected PL Weibull PL Lognormal PL Dist.-Free PL
Lower Upper Lower Upper Lower Upper Lower Upper

Insulating Fluid Data: n = 15; λ̂ = 0.0827; γ̂ = 1.7452
.90 3.8468 29.6616 5.3233 33.3543 3.6516 23.6134 0.7900 53.2390
.95 3.1014 35.4740 4.3593 40.7297 3.0530 28.2438 0.7900 82.8470
.99 2.0140 49.9302 2.8260 62.8286 2.1525 40.0595 0.6900 89.2820

Ball Bearing Data: n = 23; λ̂ = 0.1905; γ̂ = 0.9206
.90 53.1100 79.2252 58.1365 82.5482 52.8554 76.1991 51.8400 84.1200
.95 51.0267 82.1958 56.0574 85.6097 51.0329 78.9203 48.4800 84.1200
.99 47.1511 88.2536 51.9527 92.3736 47.6548 84.5146 45.6000 98.6400

Repair Time Data: n = 46; λ̂ = −0.1014; γ̂ = 2.8568
.90 1.3641 2.4424 1.8008 2.9880 1.4745 2.5307 1.0000 3.0000
.95 1.2923 2.5875 1.7122 3.1426 1.4000 2.6653 1.0000 3.3000
.99 1.1638 2.8990 1.5464 3.4795 1.2653 2.9490 1.0000 4.0000

(n = 42) and is very skewed as the sample skewness γ̂ = 2.8568.

The calculated PI′s are summarized in Table 5.1. It is seen from the table

that the unified PI is always one of the shorter ones and the distribution-free PI is

always the longest. For the Insulating Fluid Data, the lognormal PI is the shortest

one, but not much different from the unified PI. This is reasonable as the estimated

transformation is very close to the log transformation. For the Ball Bearing Data, all

the intervals are very close as the data is not that skewed. The repair time data is

the most skewed of the three. In this case, he unified PI and the lognormal PI are

almost the same. The Weibull PI can be 11-13% longer than the unified PI.

6 Discussions

A unified prediction interval for a future median life is obtained. It is shown

that this interval possesses good large and small sample properties. It is simple and

easy to implement and is robust against changes of distributions. This interval can

be easily applied in reliability and life sciences studies to gain insights on the safe life
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of an electronic component and the survival time of a patient. For estimating the

median of the original observation though Box-Cox transformation, Carroll and Rup-

pert (1981) examined (in a general linear model framework) the effect of estimating

the transformation in terms of the mean squared errors and found that this effect is

generally not large. Our result is consistent with theirs for the special one sample

model.

One may naturally think that the results in Theorem 3.1 should be directly

generalizable to the general linear model, but unfortunately, unlike the case of pre-

dicting the individual Y0, the results of Theorem 3.1 can not be generalized to the

linear model case, especially the simple correction factor can not be easily obtained.

Nevertheless, there is a general agreement that, no matter for a one sample model

or a general linear model, the prediction interval for the median obtained by simply

substituting the transformation estimator into the interval needs to be corrected.

It may be interesting to see what happens to the Box-Cox PI if no correction

is applied. Our simulation results (not reported) show that this effect can not be

ignored, no matter if the sample size is large or small. For example, for the lognor-

mal case the simulated C.P. for 90% level, n = 20, can be as low as 0.8619 before

correction, compared with the lowest 0.8884 (Table 4.1) after correction. It may also

be interesting to see how much the mean and median can differ for the cases of the

Weibull, inverse Gaussian and gamma distributions. This can be easily accomplished

using the results of Yang (1999b, Table 2.1). We pick two inverse Gaussian cases to

illustrate this point. For (ν, β) = (1, 1), the mean = −0.3942 and median = −0.3976

with a population skewness of 3; for (ν, β) = (4, 1), the mean = 0.3492 and median

= 0.3270 with a population skewness of 6. This shows that the mean and median of a

transformed inverse Gaussian observation will not differ much unless the population

is very skewed. Similar calculations (not reported) show that the same conclusion
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applies to other lifetime distributions as well.

Appendix: Proof of the Theorem 3.1

We give a sketch of the proof. Detail is available from the author. By Taylor

expansions, we have

h̄(Y, λ̂) = h̄(Y, λ) + (λ̂ − λ)h̄λ(Y, λ) +
1

2
(λ̂ − λ)2[h̄λλ(Y, λ) − Rn],

h(δ0, λ̂) = h(δ0, λ) + (λ̂ − λ)hλ(δ0, λ) +
1

2
(λ̂ − λ)2[hλλ(δ0, λ) − R′

n],

where Rn and R′
n converge to zero as λ̂ → λ. Taking the difference, we have

h̄(Y, λ̂) − h(δ0, λ̂) = h̄(Y, λ) − h(δ0, λ) + (λ̂ − λ)[h̄λ(Y, λ) − hλ(δ0, λ)] + Op(n
−1),

where the second term is of the same order as the first since h̄λ(Y, λ) →p Eg[hλ(Y0, λ)],

which is different from hλ(δ0, λ) in general. Now, it is easy to see that

σ̂−1(λ̂) = σ̂−1(λ) + Op(n
− 1

2 ) = σ−1 + Op(n
− 1

2 )

Hence, T (λ̂) can be written as

T (λ̂) = T (λ) +
√

n(λ̂ − λ){Eg [hλ(Y0, λ)] − hλ(δ0, λ)}/σ.

Since T (λ) →d N(0, 1) and
√

n(λ̂ − λ)/τ →d N(0, 1), the result follows by showing

that T (λ) and λ̂ are asymptotically independent. This can be inferred from a result

of Yang (1996).

Finally, for the power transformation, one can easily show that hλ(Y0, λ) =

λ−1[Y λ
0 log Y0 − h(Y0, λ)] which converges to 1

2
log2 Y0 as λ → 0. Using the relation

log Y0 = λ−1 log[1 + λh(Y0, λ)] and the approximation

λ log Y ≈ log(1 + λμ) + θe0 − 1

2
θ2e2

0

where θ = λσ/(1+λμ) and e0 = h(Y0, λ)−μ, some algebraic work leads to c ≈ τθ/2λ

which becomes 1/
√

6 as τ ≈ (λ/θ)
√

2/3 as shown by Yang (1999a, pp. 175).
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