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Abstract.  In predicting a future lifetime based on a sample of past lifetimes, the Box-Cox transfor-

mation method provides a simple and unified procedure that is shown in this article to meet or often 

outperform the corresponding frequentist solution in terms of coverage probability and average length 

of prediction intervals.  Kullback-Leibler information and second-order asymptotic expansion are 

used to justify the Box-Cox procedure.  Extensive Monte Carlo simulations are also performed to 

evaluate the small sample behavior of the procedure.  Certain popular lifetime distributions, such as 

Weibull, inverse Gaussian and Birnbaum-Saunders are served as illustrative examples.  One 

important advantage of the Box-Cox procedure lies in its easy extension to linear model predictions 

where the exact frequentist solutions are often not available. 

 

Keywords:  Box-Cox transformation; coverage probability; Kullback-Leibler information; lifetime 

distributions; prediction interval. 

1. Introduction 

 Predictions for lifetime distributions have played, over the years, an important role in 

the reliability, life testing, and quality control.  These include predicting the safe life of a 

certain electronic component, predicting the fatigue life of a metal specimen in an 

accelerated life testing, and providing warranty limits for future performance of a specified 

system.  There are many types of prediction problems that concern a future observation, a 

future sample, future order statistics, etc.  The simplest and most important one is the 

prediction of a single future observation based on an independent past sample.  There are 

several methods for studying the prediction problems, namely, frequentist, likelihood type, 

Bayesian and Fiducial methods, etc.  The one that is most commonly used in practice is the 

frequentist approach.  Common lifetime distributions include exponential, gamma, Weibull, 

lognormal, inverse Gaussian and Birnbaum-Saunders.  Hahn and Nelson (1972), Patel (1989) 

and Hahn and Meeker (1991) give reviews on predictive inferences for all the common 
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distributions, except the Birnbaum-Saunders that was considered by Desmond and Yang 

(1995), among others. 

 In this article, we revisit the problem of predicting a future lifetime in a general way, 

using the frequentist approach incorporated with the Box-Cox transformation.  There are 

many reasons why this topic is worthy for further study:  (a) the exact frequentist prediction 

intervals are not available for certain distributions such as gamma and Birnbaum-Saunders 

unless a certain parameter is known; (b) the exact intervals may not be satisfactory such as 

the prediction intervals for the inverse Gaussian that can be very wide and are two-sided 

only; (c) it is desirable to have a unified approach that covers all the lifetime distributions to 

eliminate the problem of model selection one faces in practice, etc. The Box-Cox power 

transformation (Box and Cox, 1964) aims to transform a nonnegative random variable to 

normal, and it is a one-to-one transformation.  Hence it provides a natural approach to predict 

a nonnegative future lifetime through inverse transformation.  Hahn and Meeker (1991, p72) 

mentioned this approach for univariate distributions and Collins (1991) discussed it in the 

framework of a linear model.  However, neither theoretical nor empirical considerations have 

been given for the properties of the prediction interval obtained through a Box-Cox 

transformation.  Specifically, two issues need to be addressed: (i) lifetime observations are 

not transformable to exact normal using power transformation unless they come from a 

lognormal population, hence the amount of discrepancy from normality and its effect on the 

performance of the resulted prediction interval needs to be assessed; (ii) the transformation 

parameter is usually estimated from the same set of data, so the effect of this estimation on 

the prediction interval should also be investigated.  

 Section 2 introduces the Box-Cox method and presents some theoretical results 

concerning the two issues introduced above.  Section 3 gives Monte Carlo results, to evaluate 

the small sample behavior of the Box-Cox predictive pivot when data come from various 

lifetime distributions and to compare the Box-Cox prediction interval with the corresponding 

frequentist one in terms of coverage probability and average length of the intervals.  Section 

3 also illustrates and compares the prediction intervals using some real life data.  Finally, in 

Section 4, we give a discussion of the Box-Cox prediction interval in the linear model 
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framework.  To facilitate comparisons, we now summarize the prediction intervals for 

common lifetime distributions. 

 Essentially, any distribution with the positive half real line as its domain can be 

regarded as a lifetime distribution.  We concentrate on common two-parameter lifetime 

distributions and treat both parameters unknown.  Obviously, this is the case that is of the 

greatest practical interest.  Generically, we will use Y = (Y1, Y2, ..., Yn) to represent a sample 

of past observations from a certain lifetime distribution having probability density function 

(pdf) g(  , )  with parameters  and ,  and Y 0  a single future observation from the same 

population.  The mean and standard deviation of the past sample are denoted as usual by Y  

and s. 

 The gamma distribution is denoted by GA(, ),  where  is the scale parameter.  

When  = 1, the gamma becomes an exponential distribution where an exact prediction in-

terval can be found from Hahn and Nelson (1972).  This interval can be modified to give a 

prediction interval for gamma distribution for the case of  known.  Though the gamma 

distribution has been extensively studied, the simple frequentist prediction interval for the 

case of both parameters unknown does not seem to have been discovered.  Johnson, et al. 

(1995) gave a summary for the gamma distribution.  The Weibull distribution is denoted by 

WB(, ), where   is the scale parameter.  Engelhardt and Bain (1979) presented a pivotal 

quantity from which one-sided or two-sided prediction intervals can be derived.  However, 

the percentage points of this pivotal quantity has to be either simulated (Fertig, et al., 1980; 

Mee and Kushary, 1994) or approximated (Engelhardt and Bain, 1982).  We will follow the 

approximation (2) of Engelhardt and Bain (1982) for simulations and calculations.  The 

lognormal distribution is denoted by LN(, ), where  and  are the mean and standard 

deviation of log(Y).  A prediction interval for log(Y 0 ) can be constructed using the formula 

for normal distribution, which is inverted to give an interval for Y 0 .  The inverse Gaussian 

distribution is denoted by IG(, ), where  is the mean parameter. Chhikara and Guttman 

(1982) gave an exact prediction interval for Y 0 .  This interval is two-sided only and the 

upper limit sometimes has to be set to infinity.  Padgett (1982) proposed an approximate 

prediction interval, and Padgett and Tsoi (1986) showed via simulation that the approximate 
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interval is superior to the exact one when n is larger than 15.  The importance of the inverse 

Gaussian distribution in lifetime inferences is reflected by the number of articles in the lit-

erature and the two specialized monographs by Chhikara and Folks (1989) and Seshadri 

(1993).  The Birnbaum-Saunders distribution is denoted by BS(, ), where  is the scale 

parameter.  Desmond and Yang (1995) gave an approximate prediction interval for Y 0 . 

2. Box-Cox Prediction Interval and Its Theoretical Properties 

 We have just summarized the problem of predicting Y 0  based on  (Y1, Y2, ..., Yn) when g 

is one of the common lifetime distributions.  It is seen that simple frequentist prediction 

intervals do not exist for gamma and Weibull distributions.  For the inverse Gaussian 

distribution, it is available but can be very wide (there are cases where the upper limit has to 

be set to infinity), which is virtually of no practical value when warranty limits are desired.  

Also in practice, it is often difficult to decide which lifetime distribution is the true one (or 

suitable one) for the data.  A goodness of fit test can help, but sometimes it fails to 

discriminate the two closely related distribution.  Hence it is desirable to have a unified 

method that works for any life distribution and yet gives a reasonable approximation.  Box 

and Cox (1964) introduced a family of power transformation for a nonnegative random 

variable Y 

 Y ( )  = 
Y  1


,   0,

logY,   0,





 (2.1) 

in a desire to improve the validity of normal theory inferences, including prediction.  Let 

Yi( ), i = 1, 2, …, n, and Y 0 ( ) be transformed past and future observations.  Box and Cox 

assumed that there exists a  such that Yi( ) is N( ,)  for some  and .  Under this 

assumption, the log-likelihood function of (, , ), given Y = y = ( y1 , y2 , …, yn ), is 

 ( , , y) = – n
2 log(2 ) – n log( ) – 

1

22
yi( )   2

i1

n

  + ( 1) log(yi )
i1

n

 . (2.2) 

Maximizing (2.2) results the so called Box-Cox estimates ( ˆ , ˆ , ˆ ) of (, , ).  Clearly, 

ˆ , ˆ  and ˆ  are not the maximum likelihood estimates unless Yi( ) is exactly N( ,) .  

Box-Cox then recommended using ˆ  for the transformation and treat the so-transformed 
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observations Yi(
ˆ ), i = 1, …, n, and Y 0 ( ˆ ) as normal, hence all the normal theory inferences 

can be applied.  This method is usually termed as the Box-Cox transformation method and its 

validity has been investigated by many authors such as, Hinkley and Runger (1984), Cox and 

Reid (1987), Duan (1993), Yang (1996, 1998),  Hooper and Yang (1997), etc.  In predictive 

inferences, this method suggests that the following predictive pivot 

 TBC ( ˆ )  = 
Y 0 ( ˆ ) – Y ( ˆ )
s( ˆ ) 1 n1

 (2.3) 

should be referred to a tn1 distribution, where Y ( ˆ )  and s( ˆ ) are the sample mean and sam-

ple standard deviation in ˆ  scale.  A prediction interval for Y 0 ( ˆ ) follows immediately from 

(2.3), and after a simple inverse transformation we have a prediction interval for Y 0 : 

 1 ˆ  Y ( ˆ )  tn1( 2)s( ˆ ) 1 n1  1
 ̂


 (2.4) 

When ˆ = 0, the interval becomes  1
1 1)ˆ()2()ˆ(exp 
  nstY n  .   

 Clearly, (2.4) works for any continuous distribution with range being the positive half 

real line, but not necessarily a lifetime distribution.  The interval (2.4) will be referred to in 

this article as the Box-Cox prediction interval.  Hahn and Meeker (1991, p72) mentioned 

this interval and Collins (1991) discussed it in the framework of a linear model.  However, 

no considerations have been given for the properties of the Box-Cox prediction interval.  

Specifically, (i) the effect of non-normality of the transformed observations needs to be 

assessed, and (ii) the effect of estimating   needs to be quantified.  The first issue is critical 

for a successful application of the Box-Cox method for prediction; if a distribution can not 

even be transformed to anywhere near normal then it is almost surely that the interval (2.4) 

will behave poorly.  If a given distribution can be transformed closely to normal for some , 

then TBC ( )  will behave very closely to tn1 and the resulted interval will also behave well.  

In this case, what left is to investigate the effect of replacing  by the Box-Cox estimate ˆ .  

2.1.  Transforming a Known Distribution 

 Let g() be the known pdf of Yi , f (  ) be the true pdf of Yi( ) and (   , ) be a 

normal pdf with mean  and standard deviation .  We are looking for a  such that f (  ) 
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is "closest" to (   , ) for some  and  in a certain sense.  We choose the Kullback-

Leibler information number  as the measure of discrepancy between f (  ) and (   , ), 

i.e., 

 I( , ,)  = f (t  ) log
f (t  )

 (t  ,)









dt , (2.5) 

Minimizing ),,( I  over (, , ) results a pdf, f (  ), that is closest to a normal pdf.  

Hernandze and Johnson recommended (1981) to first find the values of  and  that best 

approximate ),(    by )( f  and then to search for the value of  that minimizes the 

remaining distance.  They showed that under mild conditions the values of  and  that 

minimize I( , ,)  are ( )= Eg[Y1( )] and  2 ( ) =VARg[Y1( )], which gives 

 Imin ( ) = 1
2 [log(2 ) 1] + Eg log[g(Y1)]  + (1–) Eg log(Y1 )  + 1

2 log VARg[Y1( )] . (2.6) 

They indicated that the value of  that minimizes (2.6) is independent of the scale parameter.  

Instead of (2.6), one can also work with the equation below if )(min I  has a unique minimum 

and if the differentiation and integration are interchangeable, 

 



d

dI )(min  = 
 

)]([V

)(),(C

1

11

AR

OV




Y

YY

g

g


 –  )log( 1YEg  = 0, (2.7) 

where )(1 Y  is the derivative of )(1 Y .  When  = 0, the derivative simplifies to 

 
0

min )(




d

dI
 = 

  
  2

11

3
11

)log()log(

)log()log(

YEYE

YEYE

gg

gg




. 

Hence if   3
11 )log()log( YEYE gg   = 0, then the log-transformation will be the optimal one.  

This condition is clearly satisfied by the lognormal distribution.  It is also satisfied by the 

Birnbaum-Saunders distribution since ])1(log[ 2122
4
1

2
1  ZZ   is an odd function of the 

standard normal random variable Z and Y1  = 22122
4
1

2
1 ])1([  ZZ  .  Rieck and Nedelman 

(1991) discussed this property in a general framework of the sinh-normal distribution.  Hence 

for the lognormal and Birnbaum-Saunders distributions, the best transformation to normality 

is the log-transformation, irrespective the values of  and .  The former has )0(minI  = 0, 

i.e., the log-transformation results exact normality, and the latter gives a non-zero )0(minI , 
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which means that the best-transformed distribution still deviates from normality.  A general 

result concerning the best transformation and the amount of discrepancy from normality 

seems impossible.  However, for the five popular lifetime distributions, it is sufficient to give 

some calculations that cover various parameter configurations.  The powerful numerical 

integration and minimum-finding features of MATHEMATICA 3.0 make these calculations 

handy.   

 Table 2.1 lists out the values of the best transformation , the mean () and standard 

deviation () of the random variable transformed according to , the Kullback-Leibler 

information number )1(minI  and )(min I , and the 10% and 5% tail probabilities of )( f .  

Notice that )1(minI  measures the distance between g( ) and a closest normal, and the 

difference between )1(minI  and )(min I  represents the improvement to normality by 

transformation.  The 5% tail probability, for example, means the probability that the 

standardized transformed variable falls outside of (–1.96, 1.96), the 95% bounds of N(0, 1).  

For the gamma, Birnbaum-Saunders and Weibull distributions, the parameter  is a scale 

parameter, hence does not affect the determination of the value.  For the inverse Gaussian 

distribution   depends only on  .   For the Weibull distribution, the best transformation 

is  = 0.2655 , and for all , )(min I  = 0.0028.  The Birnbaum-Saunders has the largest 

skewness 3.9355.  Thus, the cases considered in Table 2.1 should be extensive enough.  

Certain cases were also considered by Hernandze and Johnson (1981).  Our calculations 

agree with theirs, showing that the MATHE-MATICA 3.0 performs well in numerical 

integration and minimization.  Notice that in performing numerical integrations, the 

integration limits for Y are taken to be   and  1  to avoid numerical overflow or underflow, 

where   is a small positive number. 

Table 2.1.  Summary of limiting parameter values, KL information numbers  

and tail probabilities of f  for 10% and 5% nominal levels 

g( , )     Imin(1) Imin( ) 10% 5% 
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IG(1, 5) 1.34 –0.0258 –0.0940 0.4284 0.1374 0.0005 0.1004 0.0485 
IG(1, 3) 1.73 –0.0379 –0.1512 0.5405 0.2179 0.0011 0.1005 0.0476 
IG(1, 1) 3 –0.0746 –0.3932 0.8611 0.5420 0.0042 0.1002 0.0444 
IG(4, 1) 6 –0.1291   0.3492 1.2009 1.3844 0.0112 0.0996 0.0400 
BS( 1

4 , 1) 0.75   0.0   0.0 0.2481 0.0452 0.0001 0.1002 0.0495 

BS(1, 1) 2.52   0.0   0.0 0.9147 0.5023 0.0077 0.0988 0.0411 
BS(2, 1) 3.40   0.0   0.0 1.5914 1.1626 0.0382 0.0862 0.0230 

GA(3, 1) 1.15   0.3120   1.1491 0.8138 0.1267 0.0002 0.1004 0.0493 
GA(1 1

2 ,1) 1.63   0.2884   0.1648 0.9205 0.2607 0.0010 0.1009 0.0485 

GA(1,1) 2   0.2654 –0.3641 1.0079 0.4189 0.0028 0.1014 0.0474 

WB(3, 1) 0.17   0.7963 –0.1214 0.3360 0.0074 0.0028 0.1014 0.0474 
WB(2, 1) 0.63   0.5309 –0.1821 0.5039 0.0540 0.0028 0.1014 0.0474 
WB(1, 1) 2   0.2655 –0.3640 1.0078 0.4189 0.0028 0.1014 0.0474 

 Results of this section show that all the common life distributions can be transformed 

very closely to a normal distribution.  The largest discrepancy occurs in the Birnbaum-

Saunders distribution with large skewness.  The more skewed the population is, the larger the 

improvement to normality through transformation.  Tail probabilities are all very close to the 

nominal level.  The results are certainly encouraging and they set a foundation for a valid 

application of Box-Cox transformation to prediction.  

2.2.  The Limiting Behavior of )ˆ(BC T  

 To assess the effect of estimating transformation, we first look at the limiting behavior 

of  TBC ( ˆ ) .  The following theorem shows that when n is large the discrepancy between 

TBC ( ˆ )  and tn1 parallels the discrepancy between f (  ) and (   ,). 

 Theorem 2.1. Assume ˆ 
p

 , and E[ )(iY ] and )]()([  ii YYE  exist.  Then, 

 )ˆ(BC T  = 1

0

1)ˆ(

)ˆ(–)ˆ(
 ns

YY




 d  


 –)(0Y

. 

 Proof:  Y 0 ( ˆ ) is a continuous function of (Y 0 , ˆ ) that converges in distribution, hence 

Y 0 ( ˆ ) 
d

Y 0 ( ) (see Serfling, 1980, p24).  Now a first -order Taylor expansion gives 

 Y ( ˆ )  = Y ( )  + ( ˆ – )[  

n

i iYn 1
)(1   + nR ]. 

The law of large number ensures that 

n

i iYn 1
)(1   converges in probability, hence nR

p

  0 

as ̂
p

  , so is the second term.  Also )(Y
p

  , which gives )ˆ(Y
p

  .  Now 
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 )ˆ(2 s  =  2
1

)ˆ()ˆ(1
1 


n

i i YYn   =   
n

i iYn 1

2 )ˆ(1
1   – )ˆ(2

1 Yn
n
 . 

The last term above converges in probability to  2  and the first term becomes by a first-

order Taylor expansion around  , 

  
n

i iYn 1

2 )ˆ(1
1   =  

n

i iYn 1

2 )(1
1   + ( ˆ – )[  

n

i ii YYn 1
)()(1

2    + R n ]. 

The law of large number shows that  
n

i ii YYn 1
)()(1

2    
p

 )]()([  ii YYE   and 

 
n

i iYn 1

2 )(1
1   

p

  2  +  2 .  Hence  
n

i iYn 1

2 )ˆ(1
1   

p

  2  +  2  and )ˆ(2 s  
p

   2 .  

Finally, an application of Slusky's Theorem gives the result. 

 Hernandze and Johnson (1981) showed that, under certain regularity conditions, ˆ  

converges almost surely to , the value that minimizes the Kullback-Leibler information 

number.  Theorem 2.1 tells that TBC ( ˆ )  does not converge to the limit of the reference distri-

bution, the standard normal, unless the original observations are taken from lognormal.  

However, for the common lifetime distributions, the distribution of  ]–)([ 0Y  is seen to 

be very close to standard normal, hence it is expected that this effect will be generally small.  

Besides, other transformation might exist, which may work better for certain individual 

lifetime distribution than the Box-Cox power transformation. 

 2.3.  The Effect of Estimating Transformation 

 Theorem 2.2.  Assume ˆ –  = Op(n1 2 ) , )(BC T  = )]([ BC TE   + Op(n1 2 )  and )(BC T  

= Op(1), where   is a point interior of the interval joining   and ˆ .  Then, as n    , 

)ˆ(BC T  differs from TBC ( )  at most on third order, i.e., the error of approximating  )ˆ(BC T  

by )(BC T  is at most )( 1nOp . 

 Proof.  Under the assumptions, we have by Taylor's Theorem  

 We continue to explore the higher-order performance of )ˆ(BC T .  In particular, we 

want to compare )ˆ(BC T  with )(BC T , the -known predictive pivot, to quantify the pure 

effect of estimating transformation. The following result shows that this effect is negligible 

for moderate n.  Let )(BC T  and )(BC T  be the first- and second-order derivatives of )ˆ(BC T

evaluated at . 
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 )ˆ(BC T  = )(BC T  + )]([ BC TE  ( ̂ –) + )( 1nOp . 

The result follows by showing that )]([ BC TE   is of order )( 21nO  or smaller, which is done  

by some straightforward calculations and some reasonable approximations. 

 Theorem 2.2 shows that the first- and second-order effect of estimating  are zero.  

Similarly, one can study the third- and even higher-order effects by carrying out expansions 

to the corresponding order.  However, the results of Theorem 2.2 almost guarantees a good 

agreement between )ˆ(BC T  and )(BC T  for a moderate n, which is sufficient for the most of 

the practical purposes, we decide not to proceed further.  Instead, we will use Monte Carlo 

simulations to do further investigations. 

 

3. Monte Carlo Simulations and Real Data Illustrations 

 In this section, Monte Carlo simulations are employed to simulate the distribution of 

the Box-Cox predictive pivot TBC ( ˆ )  and to compare the Box-Cox prediction interval with 

the corresponding frequentist interval, if it exits.  All the simulations are performed using 

F90 on a Cray J916 Supercomputer with system UNICOS 9.0.2.6.  The following IMSL sub-

routines are used: RNGAM for generating gamma random numbers, RNWEI for Weibull 

random numbers, and RNNOR for standard normal random numbers that are converted to 

lognormal random numbers by exponentiating, to Birnbaum-Saunders random numbers by 

their relationship with standard normal random numbers, and to inverse Gaussian random 

numbers by an algorithm described in Chhikara and Folks (1989, p52).  The simulation pro-

cess can be described simply as follows.  In each run, a random sample of size n+1 is gener-

ated from a life-time distribution.  The first n random numbers are used to calculate ˆ , 

TBC ( ˆ )  or the prediction intervals, and the last one acts as a future observation.  For each 

configuration, 10,000 samples are generated, giving 10,000 values of TBC ( ˆ )  which are used 

to calculate various summary statistics such as mean, standard deviation, etc.  In the case of 

prediction interval, the 10,000 samples give 10,000 pairs of prediction intervals, upon which 

average lengths of the intervals and the proportion of the intervals that cover the future 

observation are calculated.   
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3.1. The Distribution of TBC ( ˆ )  

 Simulation results concerning the distribution of TBC ( ˆ )  are summarized in Table 3.1.   

Obviously, skewness () is an important factor with regard to the performance of TBC ( ˆ ) , so 

we have configured parameters to give lightly skewed to heavily skewed populations.  Four 

different sample sizes are considered.  The simulated mean, standard deviation, upper and 

lower 2.5% and 5% values of TBC ( ˆ )  are reported.  The lognormal distribution is included 

mainly for simulating the pure effect of estimating transformation.  Simulation for other 

distributions reflects the combined effect of non-normality and transformation estimation. 

 The results in Table 3.1 show a general excellent agreement between the distributions 

of TBC ( ˆ )  and tn1.  When populations (other than lognormal) are very skewed, TBC ( ˆ )  

seems to have slightly smaller tail values than tn1.  This agrees with the results in Sections 

2.1 and 2.2.  When sample size is very small, TBC ( ˆ )  seems slightly skewed to the right in 

the gamma and Weibull cases. The results for the lognormal distribution indicate that the 

pure effect of estimating  is negligible unless n is very small.  In any situation, estimating  

does not seem to introduce any serious problem.  This agrees with Theorem 2.2.  Finally, the 

2.5% tail values seem to decrease slightly with the increase of the population skewness. 

Table 3.1.  Simulation results for the distribution of TBC ( ˆ )  

g( , )  n Mean Sd.Dev. Lower 2.5% Lower 5% Upper 5% Upper 2.5%
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IG(1, 9) 1 20 –0.0070 1.1404 –2.1659 –1.7693 1.7612 2.1561 
  40   0.0191 1.0549 –2.0301 –1.6713 1.7307 2.0892 
  80   0.0161 1.0312 –2.0167 –1.6787 1.6940 2.0416 
IG(1, 1) 3 10 –0.0096 1.4503 –2.3221 –1.8486 1.8421 2.3598 
  20 –0.0029 1.1097 –2.0757 –1.7328 1.7156 2.1068 
  40 –0.0019 1.0395 –1.9922 –1.6839 1.6747 1.9878 
  80 –0.0272 1.0200 –1.9961 –1.7046 1.6236 1.9508 
IG(4, 1) 6 10 –0.0046 1.3455 –2.3311 –1.8394 1.7780 2.2342 
  20   0.0019 1.0841 –2.0427 –1.7382 1.6705 1.9599 
  40 –0.0160 1.0487 –1.9551 –1.7045 1.6704 1.9561 
  80 –0.0067 1.0232 –1.9762 –1.7031 1.6328 1.8882 
BS( 1

4 , 1)  0.75 20   0.0015 1.1180 –2.1934 –1.7922 1.7417 2.1195 

  40 –0.0110 1.0528 –2.1059 –1.7003 1.6783 1.9916 
BS(1, 1)    2.52 10   0.0116 1.2651 –2.2186 –1.7813 1.8289 2.2912 
  20   0.0041 1.0832 –2.0494 –1.6923 1.7304 2.0634 
  40 –0.0051 1.0304 –1.9569 –1.6623 1.6662 1.9595 
BS(2, 1)    3.40 10   0.0014 1.2677  –2.0471 –1.6740 1.7228 2.1000 
  20 –0.0054 1.0531 –1.9087 –1.6609 1.6431 1.8915 
  40 –0.0132 1.0236 –1.8454 –1.6414 1.6341 1.8414 
LN(1, 1

2 )   1.75 10 –0.0005 1.5546 –2.5034 –1.8951 1.9048 2.4876 

  20   0.0031 1.1294 –2.1769 –1.7550 1.7597 2.1305 
  40   0.0162 1.0584 –2.0219 –1.6683 1.7324 2.1217 
LN(1, 1)   6.18 10   0.0147 1.5398 –2.4533 –1.8815 1.9289 2.5257 
  20   0.0157 1.1341 –2.1420 –1.7214 1.7866 2.1816 
  40   0.0037 1.0670 –2.0729 –1.7179 1.7478 2.0731 
LN(1,2)   414.4 20   0.0041 1.1194 –2.1085 –1.7372 1.7274 2.1329 
  40 –0.0023 1.0480 –2.0477 –1.7079 1.6867 2.0478 

GA(4,1) 1 10   0.0124 1.4668 –2.3645 –1.8826 1.8959 2.7059 
  20   0.0051 1.1096 –2.1042 –1.7279 1.7736 2.2203 
  40 –0.0026 1.0623 –2.0582 –1.7006 1.7078 2.0405 
GA(1,4) 2 10  0.0759 1.7057 -2.2059 -1.7590 1.9419 2.5884 
  20   0.0212 1.1344 –2.1503 –1.7183 1.7840 2.2355 
  40   0.0221 1.0460 –1.9711 –1.6457 1.7574 2.0974 
GA( 1

4 ,1) 4 20   0.0080 1.0711 –1.8246 –1.5736 1.7849 2.0518 

  40 –0.0053 1.0191 –1.7803 –1.5517 1.7423 1.9809 

WB(3,1)   0.17 20 –0.0010 1.1135 –2.0554 –1.7092 1.7666 2.1379 
  40   0.0111 1.0378 –1.9535 –1.6556 1.7301 2.0514 
WB(2,1)   0.63 10   0.0545 1.7635 –2.1971 –1.7689 1.9675 2.5790 
  20   0.0293 1.1004 –1.9996 –1.6359 1.7610 2.1297 
  40   0.0088 1.0639 –2.0054 –1.6722 1.7856 2.0992 
WB(1,1) 2 10   0.0785 1.8943 –2.1184 –1.7164 1.9008 2.5155 
  20   0.0115 1.1019 –2.0078 –1.6628 1.7620 2.1231 
  40   0.0135 1.0559 –1.9304 –1.6448 1.7301 2.0478 

Note: for n = 10, 20, 40 and 80, tn1(0.05) = 1.883, 1.729, 1.685, and 1.6645; tn1(0.025) = 

2.262, 2.093, 2.023, and 1.9905,  and sd( tn1) = 1.1338, 1.0572, 1.0267, and 1.0129. 

3.2. Monte Carlo Comparisons of Prediction Intervals  

 A good agreement between the distributions of TBC ( ˆ )  and tn1 ensures a good 

coverage property of the Box-Cox prediction interval.  However, the length of the prediction 
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interval is another important factor that needs to be assessed and compared with that of the 

frequentist interval.  We choose four lifetime distributions for which the exact or 

approximate frequentist prediction intervals exist.  Again, parameters are configured to give 

different population skewness.  The 90%, 95% and 99% intervals are considered.  The 

selected results for the 90% interval are reported in Table 3.2.  More extensive results are 

available from the author. 

 Table 3.2a presents the results for comparing the Box-Cox prediction interval with the 

corresponding exact inverse Gaussian prediction interval.  The results clearly favor the Box-

Cox prediction interval in general in terms of coverage probability and average length.  Also, 

the Box-Cox approach allows for one-sided prediction intervals which are useful in certain 

practical situations.  The discrepancy between two intervals increases as skewness   

increases.  When   is small to moderate, the two intervals are comparable. 

Table 3.2a  Simulated average lengths (upper entries) and coverage probabilities 

for the 90% IG and BC prediction intervals when samples are from an IG(, ) 
 n = 15 n = 30 n = 50 
 (, )    IG BC IG BC IG BC
 1, 9 1 1.2776 1.1948 1.1985 1.1139 1.1767 1.0939 
   0.8946 0.8916 0.8897 0.8942 0.9008  0.8996 
 1, 4 1

2  2 1.9414 1.6837 1.7807 1.5478 1.7343 1.5133 

   0.9063 0.8989  0.8993  0.8982 0.8997  0.8956 
 1, 1 3 6.9687 3.5863 5.1342 3.0328 4.7291 2.8925 
   0.8976 0.8981 0.9008  0.8960 0.8973  0.8950 
 1, 9

16  4 29.73911 4.6868  9.0992 3.8040 7.7466   3.5622 

   0.8942 0.8931 0.8998 0.9052 0.8997 0.9035 
 4, 1 6   29.3343   19.8301 77.6350 17.8370 
   0.8986 0.9031 0.8951 0.8952 0.9069 0.9012 

 The simulation results in Table 3.2b suggest an almost equivalent performance of the 

Box-Cox and Birnbaum-Saunders prediction intervals, especially when populations are not 

too skewed.  The skewness of the Birnbaum-Saunders distribution depends only on the shape 

parameter .  If   0 , then  3.9355.  When population is very skewed, the Box-Cox 

intervals are longer, but coverage probabilities are higher than the Birnbaum-Saunders inter-

vals.  Both approach allow one-sided prediction intervals. 

Table 3.2b.  Simulated average lengths (upper entries) and coverage probabilities  
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of the 90% BS and BC prediction intervals when samples are from a BS(, ) 
 n = 15 n = 30 n = 50 
 (, )    BS BC BS BC BS BC
 1

4 , 1 0.75 0.9293 0.9305 0.8799 0.8764 0.8631  0.8609 

   0.9040 0.8942 0.8972 0.8948 0.9047 0.9013 
 1

2 , 1 1.45 2.0142 2.0461 1.8770 1.8811 1.8371 1.8363 

   0.9050 0.8980  0.8976  0.8947 0.8953 0.8937 
 1, 1 2.52  5.0386 5.4953 4.5937 4.7315 4.4556 4.5401 
   0.8993 0.8995  0.8977 0.9010 0.8991 0.9022 
 2, 1 3.40 16.0173 22.1222 14.0239  16.4519 13.5751 15.2794 
    0.8937 0.9198 0.8947 0.9148 0.8981 0.9175 

 Table 3.2c concerns the lognormal distribution where when  is known TBC ( )  has the 

exact tn1 distribution.  Hence the simulation in this case reflects the pure effect of estimating 

.  The results show that this effect is generally very small unless the population is extremely 

skewed and a high coverage (99%) is desired.  In this case simulation may run into difficulty 

as there is a possibility that 1 ˆ [Y ( ˆ )  tn1( 2)s( ˆ ) 1 n1 ] is negative, especially 

when n is small.  However, this is not a problem of practical concern as seen in the next 

subsection. 

Table 3.2c.  Simulated average lengths (upper entries) and coverage probabilities  

of the 90% LN and BC prediction intervals when samples are from an LN(, ) 
 n = 15 n = 30 n = 50 
 (, )    LN BC LN BC LN BC
 1, 1

4  0.78 2.5209 2.5476 2.4111 2.4061 2.3605 2.3536 

   0.8962 0.8889 0.8957 0.8917 0.9039 0.9011 
 1, 1

2  1.75 5.6529 5.7564 5.3100 5.3112 5.1650   5.1479 

   0.8965 0.8891  0.9016  0.8980 0.8981 0.8945 
 1, 1 6.18 17.2046  18.4606 15.2314 15.3474 14.4710 14.4859 
   0.9035 0.8949 0.8984  0.8955 0.9014 0.8980 
 1, 1 1

2  33.47 48.5716 56.3198  38.7353 39.5036 35.7174 35.9523 

    0.8996 0.8910 0.9017 0.8982 0.8945 0.8908 

 The results in Table 3.2d show that the Box-Cox prediction interval is generally 

comparable with the corresponding Weibull interval: the Weibull interval is slightly shorter, 

but the Box-Cox interval has a slightly higher coverage.  The Box-Cox interval is much 

easier to implement than the Weibull interval.  Beside increasing the length of the interval, 

changing the skewness does not seem to affect much of the relative performance of the two 
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intervals.  In all above situations, increasing sample size reduces the discrepancy between the 

two intervals. 

Table 3.2d.  Simulated average lengths (upper entries) and coverage probabilities  

of the 90% WB and BC prediction intervals when samples are from a WB() 
 n = 20 n = 50 n = 100 
 ()       WB BC WB BC   WB BC 
  3, 1 .17 1.0746 1.1353 1.0720 1.0916 1.0613 1.0804 
  0.8862 0.8977 0.8962 0.8994 0.8923 0.8978 
  2, 1 .63 1.5037 1.6171 1.5010 1.5442 1.4869 1.5263 
  0.8808 0.8952 0.8917 0.8958 0.8894 0.8969 
  1, 1 2.0 2.9705 3.4149 2.9469 3.1276 2.8956 3.0502 
  0.8860 0.8968 0.8904 0.8934 0.8897 0.8948 

3.3. Real Data Illustrations 

 In this subsection, we consider some real data sets to illustrate the Box-Cox prediction 

interval and to compare it with the existing ones.  The four data sets considered have been 

extensively used for illustrating the applications of the popular lifetime distributions in the 

context of reliability and life testing. 

 Vehicle Failure Data.  The following data set, analyzed by Bilikan et al. (1979) and by 

Cheng and Iles (1990), are the number of miles to failure of a type of vehicle: 184, 250, 439, 

444, 450, 478, 487, 524, 688, 850, 1048, 1280, 1364, 1488, 1513, 1860, 1947, 1991, 2200, 2446.   

 Ball Bearings Data. The following data set, the endurance of deep groove ball 

bearings, is probably one of the most frequently used data set in literature for illustrating the 

applications of lifetime distributions.  It can be found from Chhikara and Folks (1989, p73):  

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 

68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

 Repair Time Data.  Repair times (in hours) for an airborne communication transceiver 

were reported by Von Alven (1964, p156) and subsequently analyzed by Chhikara and Folks 

(1977), Padgett (1982), Chhikara and Folks (1989, p139) where a '0.5' was missed from the 

data set, etc., using inverse Gaussian distribution.  The data is omitted from this paper. 

 Fatigue Life Data. The data considered in this example are the fatigue lives of 101 

aluminum coupons (Birnbaum and Saunders, 1969, p343).  We omit the data as it is long.  
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 Six different types of prediction intervals are calculated (the last one corresponds to the 

sample percentiles) and the results are summarized in Table 3.3, where ˆ   denotes the sample 

skewness.  Results from these data sets all show a good performance of the Box-Cox 

prediction interval.  It gives the shortest 99% prediction interval for the fatigue life data.  In 

many cases, the Weibull interval is the shortest, but has a slightly lower coverage than 

nominal levels as seen from the results of earlier subsection.  The repair time data is the most 

skewed data set among the four, where the largest discrepancy among the intervals is 

observed.  The fatigue life data is least skewed and the largest in size, where a very similar 

performance among the intervals is observed.  The inverse Gaussian interval can be much 

wider than others even when data is not much skewed, as seen from the vehicle failure data. 

Table 3.3.  Prediction intervals for real life data 
P.I.         90%          95%        99% 
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Vehicle Failure Data, ˆ  = 0.2727, n = 20, ˆ   = 0.4032 

BC (183.08, 2826.00) (116.12, 3443.32) (35.01, 5059.85) 
IG (274.49, 4926.91) (215.70, 6655.38) (137.42, 12559.26) 
BS (222.37, 3172.33) (175.38, 4022.04) (112.12,  6291.83) 
LN (220.67,  3330.65) (165.83, 4432.11) (90.75,  8098.61) 
WB (162.68, 2471.25) (97.78,  2816.89) (28.92, 3531.09) 
EP (187.30, 2433.70) (184.00, 2246.00) (184.00,  2246.00) 

Ball Bearings Data, ˆ = 0.1905, n = 23, ˆ   = 0.9206 

BC (23.55, 152.61) (18.55, 179.26) (10.85, 247.07) 
IG (27.88, 195.29) (23.31, 238.30) (16.46, 357.23) 
BS (24.72, 160.85) (20.68, 192.28) (14.60, 272.40) 
LN (24.90, 161.73) (20.50, 196.46) (13.66, 294.82) 
WB (17.96, 143.06) (12.23, 158.20) (4.90, 188.22) 
EP (28.92, 128.04) (17.88, 173.40) (17.88, 173.40) 

Repair Time Data, ˆ = –0.1014, n = 46, ˆ   = 2.8568 

BC (0.3209,  14.3872) (0.2419,   23.0032) (0.1336,  63.9771) 
IG (0.4268,  35.5374) (0.3140,   52.2935) (0.1837, 114.9859) 
BS (0.3135,  13.0724) (0.2376,  17.2432) (0.1471,  27.8582) 
LN (0.2915,  12.8025) (0.2000,  18.6561) (0.0934, 39.9391) 
WB (0.1236, 12.1760) (0.0542,  15.2975) (0.0079, 22.7251) 
EP (0.5000, 10.3000) (0.3000,  22.0000) (0.2000,  24.5000) 

Fatigue Life Data, ˆ = 0.5805, n = 101, ˆ   = 0.3288 

BC (97.94, 172.34) (91.63, 180.53) (79.68, 197.19) 
IG (100.53, 178.05) (95.14,  188.19) (85.35,  209.96) 
BS (99.15, 175.25) (93.84,  185.16) (84.22, 206.32) 
LN (99.24,  169.52) (93.89,  185.20) (84.13, 206.68) 
WB (91.40,  169.52) (81.97, 174.89) (63.74, 184.63) 
EP (100.00,  166.00) (96.00, 174.00) (70.00, 212.00) 

 

4. Prediction based on a Transformed Linear Model 

 Theoretical and empirical results suggest that even if observations can not be 

transformed to exact normal, the Box-Cox procedure still provides a reasonable 

approximation to prediction intervals.  This is very useful when the exact prediction intervals 

are not available or when the available intervals are wide.  The importance of Box-Cox 

procedure also lies in its nonparametric feature.  In practice, one rarely knows exactly which 

distribution the observations came from, hence it is desirable to have a prediction procedure 

that is robust against misspecification of the parent distribution.  An easy generalization to 

general linear model prediction is another main advantage of the Box-Cox transformation 
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method for prediction.  This is based on the popular Box-Cox transformed linear model of 

the form 

 Y ( )  = 0  + X + e (4.1) 

where X is an n  p  matrix containing the values of  p  predictors,   is a p 1 vector of 

regression coefficients, and e  is a vector of independent errors, assumed to have the same 

normal distribution with mean zero and standard deviation .  Suppose that the values of 

predictors are all centered at their averages, and the future value x0  ( p 1) of the predictor-

vector is also centered at this point.  Thus, the prediction interval (2.4) can be easily extended 

to give a prediction interval for a future observation Y 0  at the predictor value x0 : 

 1  ˆ  Y  ˆ x0  tn p1( 2) ˆ  1 n1  (x 0 ) ( X X)1 x0  1
 ̂
, (4.2) 

where ˆ , ˆ  and ˆ are the mle's of ,  and  under the assumptions that the errors in (4.1) 

are normal.  The interval (4.2) is easy to compute and accounts for uncertainty in 0 ,   and 

  but ignores uncertainty about  (Collins, 1991).  Similar to the one-sample situation, the 

validity of the prediction interval (4.2) also depends on the validity of ignoring uncertainty 

about  and the validity of the normality assumption of model (4.1).  This can be investigated 

in a similar way as in the one-sample case.  Carroll and Ruppert (1981) studied similar 

problems of predicting the median or mean of a future observation.  Their results indicate 

that the effect of estimating transformation is small.  Our results together with those of 

Carroll and Ruppert hint a good performance of the interval (4.2); hence, we will not pursue 

further the properties of (4.2) in this article. 
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 Vehicle Failure Data.  The following data set, analyzed by Bilikan et al. (1979) and by 

Cheng and Iles (1990), are the number of miles to failure of a type of vehicle: 184, 250, 439, 

444, 450, 478, 487, 524, 688, 850, 1048, 1280, 1364, 1488, 1513, 1860, 1947, 1991, 2200, 2446.   

 Ball Bearings Data. The following data set, the endurance of deep groove ball 

bearings, is probably one of the most frequently used data set in literature for illustrating the 

applications of lifetime distributions.  It can be found from Chhikara and Folks (1989, pp. 

73):  17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 

68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

 Repair Time Data.  Repair times (in hours) for an airborne communication transceiver 

were reported by Von Alven (1964, pp. 156) and subsequently analyzed by Chhikara and 

Folks (1977), Padgett (1982), Chhikara and Folks (1989, 139) where a '0.5' was missed from 

the data set, etc., using inverse Gaussian distribution.  The 46 observations are: 0.2, 0.3, 0.5, 

0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 
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2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4,  7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5.  

 Fatigue Life Data. The following data (Birnbaum and Saunders, 1969, pp. 343), are 

the fatigue lives of 101 aluminum coupons: 70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 

108, 109, 109,  112, 112, 113, 114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 

128, 128, 129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 134, 136, 

136, 137, 138, 138, 138, 139, 139, 141, 141, 142, 142, 142, 142, 142, 142, 144, 144, 145, 146, 148, 148, 149, 

151, 151, 152, 155, 156, 157, 157, 157, 157, 158, 159, 162, 163, 163, 164, 166, 166, 168, 170, 174, 196, 212.  

 All these four data sets have been extensively used in the context of reliability and life 

testing.  Six different types of prediction intervals are calculated (the last one corresponds to 

the sample percentiles) and the results are summarized in Table 3.3.  It is seen from the table 

that the Box-Cox prediction interval is always one of the shorter ones while the inverse 

Gaussian is always the longest among six, which can be more than twice as long as the Box-

Cox interval.  
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