
“LM Tests of Spatial Dependence Based on Bootstrap Critical Values”
A Supplement to Appendix A: Detailed Proof of Lemma A8

Zhenlin Yang
School of Economics, Singapore Management University,

zlyang@smu.edu.sg

Lemma A8: For models specified by (9), (16) and (23) with un = Ω
1
2
n (λ)εn, assume (a) Assumptions

S1-S3 hold, (b) the unrestricted QMLEs of the parameters that the tests concern are
√
nr-consistent,1

and (c) the matrices B−1
n (ρ), A−1

n (λ) and Ω− 1
2

n (λ) defined therein are uniformly bounded in both row
and column sums. Then, (i) κ̂3n = κ3 +Op(n

− 1
2

r ) and κ̂jn = κj +op(1), j = 4, 5, 6, (ii) κ̃jn = Op(1), j =
3, 4, 5, 6, and (iii) if κ3 = 0 and conditions in (A-7) hold for model (16), then both κ̂3n and κ̃3n are
op(1). Finally, the results remain for Model (23) if instead un = Wnvn + εn such that the jth sample

cumulant of σ−1Ω− 1
2

n (λ)un
p−→ κj, j = 1, . . . , 6.

Proof: Note that κ̈jn is the jth cumulant of σ̈−1
n ε̈n where¨denotes eitherˆor ,̃ and that κ̈1n = κ1 = 0

and κ̈2n = κ2 = 1 by construction. Note also that ρ and λ denote the true parameter values and the
null hypothesis, ρ = 0 or λ = 0, is not imposed.

Proof for SED Model (9): Yn = Xnβ + B−1
n (ρ)εn . The unrestricted residuals are

ε̂n = Bn(ρ̂n)(Yn −Xnβ̂n) = Mn(ρ̂n)Bn(ρ̂n)Yn,

where Mn(ρ) = In − Bn(ρ)Xn [X′
nBn(ρ)′Bn(ρ)Xn ]−1X′

nBn(ρ)′ is the projection matrix, also defined
below (9) of the main text. Since Mn(ρ̂n)Bn(ρ̂n)Xn = 0 and Bn(ρ̂n) = Bn(ρn) − (ρ̂n − ρ)Wn , we have

ε̂n = Mn(ρ̂n)Bn(ρ̂n)B−1
n (ρ)εn

= εn − (In −Mn(ρ̂n))εn − (ρ̂n − ρ)Mn(ρ̂n)WnB
−1
n (ρ)εn ≡ εn − ε†n. (A-1)

As the elements of Xn are uniformly bounded (Assumption S2) and Bn(ρ) = In − ρWn is uniformly
bounded in both row and column sums (Assumption S3), the elements of Bn(ρ)Xn are uniformly
bounded. B′

n(ρ)Bn(ρ) is positive definite by Assumption (c). Thus, limn→∞ 1
n
X′

nB
′
n(ρ)Bn(ρ)Xn exists

and is nonsingular, and Mn(ρ) is uniformly bounded in both row and column sums (Lee, 2004b, Lemma
A.5). By a result of Kelejian and Prucha (1999) or Lee (2002): product of two conformable square
matrices uniformly bounded in both row and column sums is also uniformly bounded in both row and
column sums, Mn(ρ)WnB

−1
n (ρ) is uniformly bounded in both row and column sums. Thus, By Lemma

A.3 of Lee (2004b), Mn(ρ̂n)WnB
−1
n (ρ) uniformly bounded (in probability) in both row and column

sums. This shows that the elements of Mn(ρ̂n)WnB
−1
n (ρ)εn are Op(1), and hence the elements of ε†n

are Op(n
− 1

2
r ) because the elements of In −Mn(ρ̂n) are Op(n−1) and ρ̂n − ρ = Op(n

− 1
2

r ).

Using σ̂2
n = σ2 +Op(n

− 1
2

r ), we have by (A-1) for the 3rd cumulant,

κ̂3n = 1
nσ̂3

n
(ε̂n � ε̂n)′ε̂n

= 1
nσ3 (εn � εn)′εn − 3

nσ3 (εn � εn)′ε†n + 3
nσ3 (εn � ε†n)′ε†n − 1

nσ3 (ε†n � ε†n)′ε†n + Op(n
− 1

2
r ),

where � denotes the Hadamard product. As the elements of ε†n are Op(n
− 1

2
r ), all terms involving

ε†n are Op(n
− 1

2
r ) or smaller. Further, by the generalized Chebyshev inequality and Assumption S3:

1The
√

nr -consistency of λ̂n for the SLD model is proved by Lee (2004a). Similarly, one can prove the
√

nr-consistency

of ρ̂n for the SED model and that of λ̂n for the SEC model. Following Lee (2004a), it can be proved that σ̂2
n is always√

n-consistent, but β̂n is
√

nr -consistent in general for the SLD model and
√

n-consistent for the other two models.
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P (
√
n| 1n

∑n
i=1 e

3
n,i − κ3| ≥ M) ≤ 1

M2
1
nVar(

∑n
i=1 e

3
n,i) = 1

M2O(1). It follows that 1
nσ3 (εn � εn)′εn =

1
n

∑n
i=1 e

3
n,i = κ3 +Op(n− 1

2 ) and that κ̂3n = κ3 +Op(n
− 1

2
r ). Similarly, one shows that κ̂4n = 1

nσ̂4
n
(ε̂n �

ε̂n)′(ε̂n � ε̂n) − 3 = 1
n

∑n
i=1 e

4
n,i − 3 + Op(n

− 1
2

r ) = κ4 + op(1), where the last step follows Kolmogorov
law of large numbers: 1

n

∑n
i=1 e

4
n,i = E(e4n,i) + op(1), and that κ̂jn = κj + op(1), j = 5, 6.2

To prove (ii) and (iii), note that the restricted residuals ε̃n = MnYn = MnB
−1
n (ρ)εn ≡ Gnεn, where

Mn = Mn(0). We have for 3rd cumulant, κ̃3n = 1
nσ̃3

n
(ε̃n � ε̃n)′ε̃n = 1

nσ̃3
n

∑n
i=1(g

′
n,iεn)3, where g′n,i is the

ith row of Gn. Let gn,ij be the jth element of gn,i. Obviously, Gn is uniformly bounded in both absolute
row and column sums, i.e., maxj

∑
i |gn,ij| ≤ c1 and maxi

∑
j |gn,ij| ≤ c∞, and hence |gn,ij| ≤ c0, ∀i, j,

for finite positive constants c0, c1 and c∞. We have,

E[ 1
n

∑n
i=1(g

′
n,iεn)3] = 1

nσ
3κ3

∑n
i=1

∑n
j=1 g

3
n,ij = O(1), (A-2)

since 1
n
|∑n

i=1

∑n
j=1 g

3
n,ij| ≤ 1

n

∑n
i=1

∑n
j=1 |g3

n,ij| ≤ 1
n
c20

∑n
i=1

∑n
j=1 |gn,ij| ≤ c20c∞ = O(1); and

σ̃2
n = 1

n
ε̃′nε̃n = 1

n
σ2tr(G′

nGn) + Op(n− 1
2 ) ≡ σ̄2

n +Op(n− 1
2 ), (A-3)

by generalized Chebyshev inequality, where σ̄2
n = O(1) as 1

n tr(G′
nGn) = O(1). Further,

1
n

n∑
i=1

(g′n,iεn)3 =
1
n

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

gn,ijgn,ikgn,ilεn,jεn,kεn,l

=
1
n

n∑
j=1

n∑
k=1

n∑
l=1

hn,jkl εn,jεn,kεn,l, where hn,jkl =
n∑

i=1

gn,ijgn,ikgn,il

=
1
n

n∑
j=1

hn,jjj ε
3
n,j +

6
n

∑ ∑
j > k

hn,jjkεn,jε
2
n,k +

4
n

∑ ∑ ∑
j > k > l

hn,jklεn,jεn,kεn,l,

=
1
n

n∑
j=1

hn,jjj ε
3
n,j +

6
n

n∑
j=1

εn,jun,j +
4
n

n∑
j=l

εn,jvn,j,

where unj =
∑j−1

k=1 hn,jjkε
2
n,k and vn,j =

∑j−1
k=1

∑k−1
l=1 hn,jklεn,kεn,l. Let Sn,j be the increasing σ-field

generated by {εn,1, . . . , εn,j}. As both un,j and vn,j are Sn,j−1-measurable, they are independent of
εn,j. Thus, {ε3n,j − Eε3n,j, 1 ≤ j ≤ n}, {εn,j,un,j, 1 ≤ j ≤ n}, and {εn,jvn,j, 1 ≤ j ≤ n} each forms a
martingale difference (m.d.) array, and the weak law of large numbers (WLLN) for m.d. arrays (see,
e.g., Davidson, 1994, p. 299) can be applied to show that:

(a) 1
n

∑n
j=1 hn,jjj (ε3n,j − Eε3n,j)

p−→ 0, (b) 1
n

∑n
j=1 εn,jun,j

p−→ 0, and (c) 1
n

∑n
j=l εn,jvn,j

p−→ 0.

For (a), first |ε3n,j − Eε3n,j | is uniformly integrable. It is easy to see that hn,jjj =
∑n

i=1 g
3
n,ij > 0,

1
n

∑n
j=1 hn,jjj ≤ 1

n

∑n
j=1

∑n
i=1 |gn,ij|3 ≤ c20

1
n

∑n
j=1

∑n
i=1 |gn,ij| ≤ c20c1 < ∞, and 1

n2

∑
j h

2
n,jjj =

1
n2

∑
j(

∑
i g

3
n,ij)

2 ≤ 1
n2

∑
j(

∑
i |g3

n,ij|)2 ≤ 1
n2 c

4
0

∑
j(

∑
i |gn,ij|)2 ≤ 1

nc
4
0c

2
1. Thus, (a) follows by the

WLLN for m.d. arrays. For (b), we have E|εn,jun,j| = E|εn,j| E|un,j|, and

σ−2E|un,j| ≤
∑j−1

k=1 |hn,jjk| ≤
∑j−1

k=1

∑n
i=1 g

2
n,ij|gn,ik| =

∑n
i=1 g

2
n,ij

∑j−1
k=1 |gn,ik| ≤ c∞

∑n
i=1 g

2
n,ij

where {∑n
i=1 g

2
n,ij} are the diagonal elements of G′

nGn and thus are uniformly bounded. It is follows
that the sequence {|εn,jun,j|} are uniformly integrable, and thus the result (b) follows by the WLLN
for m.d. arrays. Similarly, (c) follows due to the uniform integrability of {|εn,jvn,j|}, because,

2Note that the results become κ̂jn = κj + Op(n
− 1

2
r ) if (2j)th moment of en,i exists, j = 4, 5,6.
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E|vn,j| = E
∣∣ ∑j−1

k=1

∑k−1
l=1 hn,jklεn,kεn,l

∣∣ ≤ ∑j−1
k=1

∑k−1
l=1 |hn,jkl|E|εn,k|E|εn,l|

≤ (E|εn,k|)2
∑j−1

k=1

∑k−1
l=1

∑n
i=1 |gn,ij||gn,ik||gn,il|

≤ (E|εn,k|)2
( ∑n

i=1 |gn,ij|
)( ∑n

k=1 |gn,ik|
)( ∑n

l=1 |gn,il|
) ≤ (E|εn,k|)2c1c2∞.

Hence, the results (a) − (c) together with (A-2) and (A-3) lead to

κ̃3n = κ3

(
σ3

nσ̄3

∑n
i=1

∑n
j=1 g

3
n,ij

)
+ op(1) = Op(1), (A-4)

where the leading term equals to κ3 if ρ = 0 but not in general. The results for the other terms in
(ii) can be proved in the same manner, but obviously much more tedious. The results in (iii) follow
immediate from a result in (i) for κ̂3n, and from (A-4) for κ̃3n.

Proof for SLD Model (16): An(λ)Yn = Xnβ + εn. The unrestricted residuals are ε̂n =
MnAn(λ̂n)Yn = MnAn(λ)Yn − (λ̂n − λ)MnWnYn = Mnεn − (λ̂n − λ)MnWnYn = εn − ε†n, where
ε†n = (In −Mn)εn +(λ̂n − λ)MnWnYn. It is easy to see that the elements of ε†n are OP (n− 1

2
r ), and thus

similar arguments as for the SED model lead to the results in (i).
To show (ii) and (iii), the restricted residuals are ε̃n = MnYn = MnA

−1
n (λ)(Xnβ+εn) = μn+Gnεn,

where μn = GnXnβ and Gn = MnA
−1
n (λ) as that for the SED model. We have for the 3rd cumulant,

σ̃3
nκ̃3n = 1

n

∑n
i=1(μn,i + g′n,iεn)3

= 1
n

∑n
i=1 μ

3
n,i + 3

n

∑n
i=1 μ

2
n,i(g′n,iεn) + 3

n

∑n
i=1 μn,i(g′n,iεn)2 + 1

n

∑n
i=1(g

′
n,iεn)3,

where 1
n

∑n
i=1(g

′
n,iεn)3 = κ3

(
σ3

n

∑n
i=1

∑n
j=1 g

3
n,ij

)
+ op(1) as for the SED model; 1

n

∑n
i=1 μ

2
n,i(g

′
n,iεn) =

1
n

∑n
j=1 ψn,jεn,j = op(1) by the WLLN for m.d. arrays where ψn,j =

∑n
i=1 μ

2
n,ign,ij; and

1
n

∑n
i=1 μn,i(g′n,iεn)2 = 1

n

∑n
j=1 ζn,jε

2
n,j + 2

n

∑n
j=1 un,jεn,j = σ2

n

∑n
j=1 ζn,j + op(1),

by the WLLN for m.d., arrays, where ζn,j =
∑n

i=1 μn,ig
2
n,ij and un,j =

∑j−1
k=1

( ∑n
i=1 μn,ign,ijgn,ik

)
εn,k.

Finally by generalized Chebyshev inequality, we show that

σ̃2
n = 1

n
ε̃′nε̃n = 1

n
μ′

nμn + 1
n
σ2tr(G′

nGn) + Op(n− 1
2 ) ≡ σ̄2

n +Op(n− 1
2 ), (A-5)

where it is clear that σ̄2
n is bounded away from zero. Putting everything together, we obtain,

κ̃3n = 1
nσ̄3

n

∑n
i=1 μ

3
n,i + σ2

nσ̄3
n

∑n
j=1 ζn,j + κ3

(
σ3

nσ̄3
n

∑n
i=1

∑n
j=1 g

3
n,ij

)
+ op(1) = Op(1). (A-6)

The results κ̃jn = Op(1), j = 4, 5, 6, can each be shown in a similar fashion as for κ̃3n, but obviously at
the cost of a much more tedious algebra.

Finally, when κ3 = 0, κ̂3n = op(1) as seen from the result in (i). Now, from (A-6), κ̃3n =
1

nσ̄3
n

∑n
i=1 μ

3
n,i + σ2

nσ̄3
n

∑n
j=1 ζn,j + op(1). From (A-5), it is easy to show that σ̄−2

n = O(1). It follows that
κ̃3n = op(1), provided that

lim
n→∞

1
n

n∑
i=1

μ3
n,i = 0 and lim

n→∞
1
n

n∑
i=1

ζn,i = 0. (A-7)

While these conditions are not restrictive, as average of of {μn,i} is zero, 1
n

∑n
i=1 μ

3
n,i represents the

sample skewness, and 1
n

∑n
j=1 ζn,j is the sum of the sample covariances between μn and g2

n,j, j = 1, . . . , n,
they do show that it is less reliable to use the restricted residuals than the unrestricted ones.
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Proof for SEC Model (23). The unrestricted QML residuals for the SEC model are

ε̂n = Ω− 1
2

n (λ̂n)(Yn −Xnβ̂n) = Mn(λ̂n)Ω− 1
2

n (λ̂n)Yn,

where Mn(λ) = In − Ω− 1
2

n (λ)Xn [X′
nΩ−1

n (λ)Xn]−1X′
nΩ−1

2
n (λ), a projection matrix.

First, suppose the SEC model can be written in the form: Yn = Xnβ+Ω
1
2
n (λ)εn , satisfying Assump-

tions S1-S3. Then, ε̂n = Mn(λ̂n)Ω− 1
2

n (λ̂n)Ω
1
2
n (λ)εn = εn−(In−Mn(λ̂n))+(λ̄n−λ)[ d

dλΩ− 1
2

n (λ)]Ω
1
2
n (λ)εn ≡

εn −ε†n, where λ̄n lies between λ̂n and λ and thus λ̄n−λ = Op(n
− 1

2
r ). It is easy to see that the elements

of ε†n are Op(n
− 1

2
r ), and the rest of the proof for (i) follows that of the SED model. The proofs of (ii)

and (iii) are the same as those of the SED model as ε̃n = MnYn = MnΩ
1
2
n (λ)εn . It is easy to see that

the results remain valid with a more general Ωn(λ) matrix as discussed in Footnote 4.
Now, for the true SEC model: Yn = Xnβ + un, with un = Wnvn + εn and εn = σen, we have, ε̂n =

Mn(λ̂n)Ω− 1
2

n (λ̂n)Yn = Mn(λ̂n)Ω− 1
2

n (λ̂n)(Wnvn +εn) = Ω− 1
2

n (λ)(Wnvn +εn)+Op(n
− 1

2
r ) ≡ εn +Op(n

− 1
2

r ).
This shows that the EDF F̂n of σ̂−1

n ε̂n and the EDF of σ−1
n εn, say Fn, agree asymptotically, and hence

their cumulants, where σ2
n is the sample variance of εn. By the assumption given in Proposition 3.3

and Lemma A8, κjn = κj(Fn) p−→ κj = κj(F), j = 1, . . . , 6. It follows that κ̂jn
p−→ κj , j = 1, . . . , 6.

Thus the results remain valid for SEC model with un = Wnvn + εn.
A discussion on the plausibility of the underlining assumption is as follows. It is clear that κjn

p−→ κj

for j = 1, 2. For j ≥ 3, denote εn = Hnvn + Gnεn where Hn = Ω− 1
2

n (λ)Wn with its elements denoted
by {hn,ij} and Gn = Ω− 1

2
n (λ) with its elements denote by {gn,ij}. Let κvr be the rth cumulant of vn,i.

By repeatedly using the WLLN for m.d. arrays, it is straightforward, though tedious, to prove the
following useful result:

κjn = κvj
λj/2

n

n∑
i=1

n∑
t=1

hj
n,it + κj

1
n

n∑
i=1

n∑
t=1

gj
n,it + op(1), (A-8)

for j ≥ 3. Thus, if 1
n

∑n
i=1

∑n
t=1 h

j
n,it → 0 and 1

n

∑n
i=1

∑n
t=1 g

j
n,it → 1, then, κjn → κj, j ≥ 3. It can be

shown that these conditions are true for spatial layouts with unbounded hn. In this case, the elements of
WnWm are O(h−1

n ), and thus the diagonal elements of Ωn(λ) are 1 +O(h−1
n ) and off-diagonal elements

are O(h−1
n ). This leads to that the diagonal elements of Ω− 1

2
n (λ) are 1+O(h−1

n ) and off-diagonal elements
are O(h−1

n ); and the elements of Ω− 1
2

n (λ)Wn are all O(h−1
n ) as the diagonal elements of Wn are zero

and off-diagonal elements are O(h−1
n ). It follows that

∑n
t=1 h

j
n,it = o(1) and

∑n
t=1 g

j
n,it = 1 + o(1) for

j ≥ 3, and hence 1
n

∑n
i=1

∑n
t=1 h

j
n,it → 0 and 1

n

∑n
i=1

∑n
t=1 g

j
n,it → 1.

Obviously, when σ2
v is small relative to σ2, λj/2 1

n

∑n
i=1

∑n
t=1 h

j
n,it ≈ 0 and 1

n

∑n
i=1

∑n
t=1 g

j
n,it ≈ 1

for any spatial layouts as in this case, Hn ≈Wn and Gn ≈ In. An accurate approximation to the finite
sample critical values when λ is close to its null value is clearly more important than when it is far
away. Further, κvj, κj and κjn, j ≥ 3, are all zero when vn and en are both normally distributed.
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