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Lemma A8: For models specified by (9), (16) and (28) with u, = Qé (Nen, assume (a) Assumptions
S1-S3 hold, (b) the unrestricted QMLEs of the parameters that the tests concern are \/n_r-consistent,l
and (c) the matrices B, *(p), A, (\) and Q;%()\) defined therein are uniformly bounded in both row
and column sums. Then, (i) Rgn = /{34—01)(77/;%) and Rjn = Kkj+0p(1),7 =4,5,6, (i) Rjn = 0p(1),7 =
3,4,5,6, and (iii) if k3 = 0 and conditions in (A-T) hold for model (16), then both ks, and Rg, are
op(1). Finally, the results remain for Model (23) if instead w,, = Wyvy, + €, such that the jth sample

_1
cumulant of o~ > (Nu, == k5, j=1,...,6.

Proof: Note that &, is the jth cumulant of &glén where”denotes either”or”, and that k1, = k1 =0
and Ko, = k2 = 1 by construction. Note also that p and A\ denote the true parameter values and the
null hypothesis, p = 0 or A = 0, is not imposed.

Proof for SED Model (9): Y,, = X, + B,,'(p)en. The unrestricted residuals are
én = Bn (pAn>(}/n - Xan) = Mn(pAn>Bn(pAn>}/7u

where M,,(p) = I,, — Bn(p)Xn[X),Bn(p) Bn(p)Xn] 1 X] B.(p) is the projection matrix, also defined
below (9) of the main text. Since My, (pn)Bn(prn)Xn =0 and By, (pn) = Bn(pn) — (pn — p)Wa, we have

én - Mn(pAn>Bn(pAn>B7:1(p)gn
= En — (In - Mn(ﬁn))En - (pAn - p)Mn (pAn)Wntl(p)En =é&n — EL- (A'l)

As the elements of X,, are uniformly bounded (Assumption S2) and B,(p) = I, — pW,, is uniformly
bounded in both row and column sums (Assumption S3), the elements of B, (p)X, are uniformly
bounded. B, (p)By,(p) is positive definite by Assumption (¢). Thus, lim, %X;LB;L (p)Bn(p)X,, exists
and is nonsingular, and M, (p) is uniformly bounded in both row and column sums (Lee, 2004b, Lemma
A.5). By a result of Kelejian and Prucha (1999) or Lee (2002): product of two conformable square
matrices uniformly bounded in both row and column sums is also uniformly bounded in both row and
column sums, M, (p)W,,B,;1(p) is uniformly bounded in both row and column sums. Thus, By Lemma
A.3 of Lee (2004b), M, (p,)W, B, *(p) uniformly bounded (in probability) in both row and column
sums. This shows that the elements of M,,(p,)W, B, (p)e, are O,(1), and hence the elements of &,
are Op(n;%) because the elements of I,, — M,,(py,) are O,(n~') and p, — p = Op(n;%).
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Using 62 = 02 4+ Op(n, ?), we have by (A-1) for the 3rd cumulant,

n

"%Sn - n}73 (én © én)/én
n
_1
= n},s (en © €n)'en — nis (en © En)/EIL + nis (en © ELYEL - n},s (E;rz © ELYEL + Op(nr ?),

_1
where ® denotes the Hadamard product. As the elements of £f, are O,(n, ?), all terms involving

el are Op(n, ) or smaller. Further, by the generalized Chebyshev inequality and Assumption S3:

1The \/nr-consistency of An for the SLD model is proved by Lee (2004a). Similarly, one can prove the \/n,-consistency
of pp, for the SED model and that of A, for the SEC model. Following Lee (2004a), it can be proved that 62 is always
\/n-consistent, but Bn is y/nr-consistent in general for the SLD model and /n-consistent for the other two models.



P(ValE Yl el — ksl > M) < gmiVar(3;, €d ;) = =0(1). It follows that ~Lz (e, ®e,)'en =

i=1"n,i

1
%Zi:l €pi = K3+ Op(n_%) and that Ran = K3 + Op(nr ?). Similarly, one shows that R4y, = ﬁ(én ®

£n) (6n ©®&y) =3 =131 € —3+ Op(n;%) = K4 + 0p(1), where the last step follows Kolmogorov
law of large numbers: + Y% e} ; = E(ep, ;) 4+ 0p(1), and that &j, = £; + 0,(1),j = 5,6.2

To prove (i) and (iii), note that the restricted residuals &, = M,,Y,, = M, B, *(p)e,, = Gpepn, where
M,, = M, (0). We have for 3rd cumulant, k3, = ﬁ(én ©&p)én = ﬁ Z?zl(g;man)?’, where g;, ; is the
ith row of Gy,. Let gy, ;; be the jth element of g, ;. Obviously, G, is uniformly bounded in both absolute
row and column sums, i.e., max; ., |gn,ij| < ¢1 and max; Zj |gn.ijl < coo, and hence |gyi5] < co, Vi, 7,

for finite positive constants cg, ¢; and co,. We have,

E[% Z?:l(g;z,ign)g] = %USHS 217';1 22;1 gg,ij =0(1), (A-2)
since %l 217';1 22;1 gi,ij| < %22;1 Z?=1 |gi,ij| < %C(Q) 217';1 Z?=1 |gn,ijl < C(Q)COO = O(1); and
6i:—é/én——02tr(G/G )+ Op(n~ )_0 + Op(n~ ) (A-3)

by generalized Chebyshev inequality, where 2 = O(1) as 1tr(G},G,) = O(1). Further,
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where wu,; = > 7 _ ih JJkEn i and v, ; = Zk 1 f 11 R jki€n kEn,l- Let Sy ; be the increasing o-field
generated by {€n1,...,€n,;}. As both w, ; and v, ; are S, j_i-measurable, they are independent of
enj. Thus, {e} ; — Ee} ,,
martingale difference (m.d.) array, and the weak law of large numbers (WLLN) for m.d. arrays (see,
e.g., Davidson, 1994, p. 299) can be applied to show that:

1<j<n},{enjtn;,1<j<n}, and {e, v, ,1 < j < n} each forms a

(a) 250 b iy (€3, —Eed ) =50, (b) 230 enjuny —— 0, and (¢) £ 37 en jun; —— 0.

For (a), first |e) ; — Ee} ;| is uniformly integrable. It is easy to see that hy j;; = Z:L 198 >0,
%22;1 hnjji < %22;1 2:';1 |9n,ij|3 < 2}; Z;L 12? 1 |9n ij| 0(2)01 < 00, and n2 Z h2 =

n,j5j
#Zj(zigi,ij)Q < #Z](Zz |gi,ij|) < nz (Z |9n w|)

<
< 1cjcf. Thus, (a) follows by the

WLLN for m.d. arrays. For (b), we have E|En7]un7]| = Eley, ;| E|un 4|, and
_ j—1 j—1 j—1
o 2E|“n,j| < Zi=1 [Pkl < Zi=1 ?:1 gi,ij|9n,ik| = 217';1 gi,ij i=1 |gn,ik] < oo 217';1 gi,ij

where {31, giﬂ»j} are the diagonal elements of G}, G,, and thus are uniformly bounded. It is follows
that the sequence {|e, jun ;|} are uniformly integrable, and thus the result (b) follows by the WLLN

for m.d. arrays. Similarly, (¢) follows due to the uniform integrability of {|e,_ jvn ;|}, because,

2Note that the results become &jp = k; + Op(ny 2) if (2j)th moment of e, ; exists, j = 4,5,6.



Blon,l = E|TiS S5 b rokEnkEnd] < Sohmt St [hnuilElen k] Elen,|
< (Elenxl)? Zk 1 z 1 Z?:l |Gl |9, itel |Gl
(Elenxl)? (Zi=1 |gn7ij|)(zzz1 |gn,ik|)(zl 1 19n, zl|) (Elen,k])?crcd.
Hence, the results (a) — (¢) together with (A-2) and (A-3) lead to
. o3
Ran = i (325 Tisy S 0h.5) +0p(1) = Op(1), (A-4)

where the leading term equals to x3 if p = 0 but not in general. The results for the other terms in

A

IN

(#4) can be proved in the same manner, but obviously much more tedious. The results in (i) follow

immediate from a result in (i) for A3,, and from (A-4) for Rs,.

Proof for SLD Model (16): A,(\)Y, = X,0 + &,. The unrestricted residuals are &, =
MA An)Yn = MuAn(NYy — Ay = M W,Y, = Myue, — Ay — NM,W,Y,, = &, — el where

= (I, — Myp)en + (A — N M, W,Y,,. Tt is easy to see that the elements of ], are Op(n, 2 ) and thus
similar arguments as for the SED model lead to the results in (7).

To show (i4) and (7i4), the restricted residuals are &, = M,,Y,, = M, A, Y (\) (X, f+€n) = pin +Gnén,
where 1, = G, X, and G,, = M, A,;;1()\) as that for the SED model. We have for the 3rd cumulant,

23y (i + g0y i80)?
= % P Mi,i + % e M%,i(gé,ifn) + % iy Mn,i(géz,ifn)Q + % Z?:l(g;z,ign)g,

xR

w

3
I

where 2377 (g, 6n)® = :‘ig( ZZ 1 251 Gy ij) +0p(1) as for the SED model; Lk (g En) =
%ijl Un,j€n,j = 0p(1) by the WLLN for m.d. arrays where ¢, ; = 7", Mi,igmij; and

2
Y i (G i€n)? = = 20 Cnen j + 2D Un g = 5 00— Cng + 0p(1),

by the WLLN for m.d., arrays, where ¢, ; = Y7 pin,igs ;; and u, j = Zi;i (D0 HnyiGn,ijGn.ik) En k-
Finally by generalized Chebyshev inequality, we show that

52 = 12,20 = Lulpn + LoP0(G)Ga) + Op(n ) = 0% + Oy (n %), (A-5)

n

where it is clear that 2 is bounded away from zero. Putting everything together, we obtain,

~ 0_3
F3n = nz73 Zz 1 :“n it nz73 ?:1 Cnj + “3(W Z?:l 22;1 gi,ij) + 0p(1) = Op(1). (A-6)

The results &, = O,(1),j = 4,5, 6, can each be shown in a similar fashion as for &3,, but obviously at
the cost of a much more tedious algebra.

Finally, when mg = 0, Rgn = 0p(l) as seen from the result in (¢). Now, from (A-6), k3, =
no3 PRI no3 ?:1 Cn,j +0p(1). From (A-5), it is easy to show that 5,2 = O(1). It follows that
Ran = 0p(1), prov1ded that

B IR
nlggoﬁ;um =0 and nlgr;o—Zcm =0. (A-7)
1=
While these conditions are not restrictive, as average of of {fin;} is zero, L 31" | ,uni represents the
sample skewness, and % Z?zl Cn,; is the sum of the sample covariances between f,, and gm pJ=1....n,

they do show that it is less reliable to use the restricted residuals than the unrestricted ones.



Proof for SEC Model (23). The unrestricted QML residuals for the SEC model are
En = Q;E(j\n)(Yn - Xan) = Mn(j\n)ﬂr_zi(j\n)yna

where M, (\) = I, — Q;% N X, [X;Q;l()\)Xn]_lX;LQ;% (M), a projection matrix.
First, suppose the SEC model can be written in the form: Y;, = X,,3+ Q2 (\)e,,, satisfying Assump-

tions S1-S3. Then, &, = Mn(j\n)ﬂn 2(An)2 (Ney, = En—(ln—Mn()\n))+(5\n—)\)[%Q;E N2 Nen =
en —€l,, where ), lies between A and A and thus A, — \ = Op(ny %). It is easy to see that the elements
of &l are Op(n;%), and the rest of the proof for (i) follows that of the SED model. The proofs of (i)
and (i44) are the same as those of the SED model as &, = M,,Y,, = Mnﬂé (Men. Tt is easy to see that
the results remain valid with a more general €2, (A) matrix as discussed in Footnote 4.

Now, for the true SEC model: Y,, = X, + u,, with u,, = W,v, + ¢, and &,, = ge,,, we have, &, =
Mo ()0 )Y = My ()2 2 () (Wintm + 1) = Q0 2 (\) (Wit +€0) + Op(nr 2) = €0 + Oy (ny 2.
This shows that the EDF f'n of 6,12, and the EDF of o, ¢, say F,, agree asymptotically, and hence
their cumulants, where o2 is the sample variance of €,. By the assumption given in Proposition 3.3
and Lemma A8, kj, = kj(Fn) —= k; = k;(F), 5 =1,...,6. It follows that ij, = rj, j=1,...,6.
Thus the results remain valid for SEC model with u,, = W, v,, + ¢,,.

A discussion on the plausibility of the underlining assumption is as follows. It is clear that x 2, Kj
for j = 1,2. For j > 3, denote ¢, = H,v, + G,&, where H,, = Q;%()\)Wn with its elements denoted
by {hn;} and G,, = Q;%()\) with its elements denote by {gn.i;}. Let Ky be the rth cumulant of vy, ;.
By repeatedly using the WLLN for m.d. arrays, it is straightforward, though tedious, to prove the
following useful result:

N2 LD PRI
Kjn = “va Zzhimt +Hjﬁzzggz,it+op(1)’ (A-8)
i=1 t=1 i=1 t=1

for j > 3. Thus, if 257 S0, hzw-t —0and 30 S, gfw-t — 1, then, Kj, — Kj,j > 3. It can be
shown that these conditions are true for spatial layouts with unbounded h,,. In this case, the elements of
W, Wy, are O(h,;!), and thus the diagonal elements of €, (1)\) are 1+ O(h,!) and off-diagonal elements
are O(h,;1). This leads to that the diagonal elements of 2, % () are 1+O(h;, 1) and off-diagonal elements
are O(h,;!); and the elements of Q, % (\)W,, are all O(h,;!) as the diagonal elements of W,, are zero
and off-diagonal elements are O(h,,'). It follows that > ;" hzw-t =o(1) and Y}, gfm»t =1+ o(1) for

j =3, and hence £ 377, Y20 bl — Oand S50, S g5 — L
Obviously, when o2 is small relative to 0%, M/2L37" 37" B .~ 0and 2307 Y0 gl ~ 1
for any spatial layouts as in this case, H,, ~ W,, and G,, = I,,. An accurate approximation to the finite
sample critical values when A is close to its null value is clearly more important than when it is far

away. Further, k,;, k; and kj,, j > 3, are all zero when v,, and e,, are both normally distributed.
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